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Abstract

Local adaptation can occur when spatially separated populations are subjected to
contrasting environmental conditions. Historically, understanding the genetic basis
of adaptation has been difficult, but increased availability of genome-wide markers
facilitates studies of local adaptation in non-model organisms of conservation con-
cern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies
on sagebrush for forage and cover. This reliance has led to widespread population
declines following reductions in the distribution of sagebrush, leading to geographic
separation between populations. In this study, we used >20,000 single nucleotide
polymorphisms, genotype-environment association methods, and demographic mod-
eling to examine neutral genetic variation and local adaptation in the pygmy rabbit in
Nevada and California. We identified 308 loci as outliers, many of which had func-
tional annotations related to metabolism of plant secondary compounds. Likewise,
patterns of spatial variation in outlier loci were correlated with landscape and cli-
matic variables including proximity to streams, sagebrush cover, and precipitation.
We found that populations in the Mono Basin of California probably diverged from
other Great Basin populations during late Pleistocene climate oscillations, and that
this region is adaptively differentiated from other regions in the southern Great Basin
despite limited gene flow and low effective population size. Our results demonstrate

that peripherally isolated populations can maintain adaptive divergence.
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in genetic patterns of isolation by distance. In addition, when geo-

Identifying how neutral and selective processes determine patterns
of biological diversity remains one of the grand challenges of evo-
lutionary biology (Heywood, 1991; Loiselle et al., 1995; Rousset,
2001; Vekemans & Hardy, 2004). Even in species that are nearly
continuously distributed, limitations to dispersal will typically result

graphic or environmental barriers exist, spatial connectivity may
be reduced further, limiting gene flow, increasing genetic drift,
and ultimately leading to genetic discontinuities across the land-
scape (Coulon et al., 2004; Cushman et al., 2006; Lowe & Allendorf,
2010). When populations separated in space are subjected to con-

trasting environmental conditions and selective pressures, genetic
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differentiation may also reflect local adaptation (Hanski et al., 2011;
Kawecki & Ebert, 2004; Sork et al., 2010). Given sufficient time, in-
teractions between genetic drift and directional selection may give
rise to substantial within-species adaptive genetic differentiation
across spatially separated populations (Araneda et al., 2016; Mable,
2019). However, the extent to which actively declining populations
can maintain adaptive genetic variation requires additional study
with high-resolution genetic data sets (Hoffmann & Willi, 2008;
Schoville et al., 2011).

Given the scope of declines in biodiversity throughout the late
20th and early 21st centuries, documenting spatial patterns in ge-
netic variation has become central to conservation and management
(Hoffmann & Willi, 2008; Lowe & Allendorf, 2010). As humans frag-
ment existing habitat, wildlife populations become more isolated, re-
ducing genetic variation within populations, and increasing genetic
divergence among populations (Gibbs, 2001; Keyghobadi, 2007;
Templeton et al., 1990; Young et al., 1996). Although reductions in
gene flow may facilitate local adaptation (Rdsanen & Hendry, 2008;
Tigano & Friesen, 2016), habitat fragmentation often reduces effec-
tive population sizes to a point where genetic drift is the dominant
evolutionary force, thus reducing potential for local adaptation in
isolated populations and the probability of species persistence
(Sultan & Spencer, 2002; Tigano & Friesen, 2016).

While identifying the genetic basis of ecological adaptations
will remain a challenge for decades to come, major technological
and analytical advances are pushing this area of inquiry forward
(Fitzpatrick & Keller, 2015; Larsen & Matocq, 2019; Manel et al.,
2010; Sork et al., 2013). However, for most wild non-model systems,
functional genomic data needed to make a priori predictions still do
not exist, and sparse genome-wide data coupled with statistical lim-
itations make it difficult to infer directional selection post hoc (Manel
et al., 2010; Schoville et al., 2011; Sork et al., 2013). Since adaptive
genetic diversity is shaped by both genetic drift and selection,
adaptive genetic variation may display complex and unpredictable
patterns relative to neutral expectations (Hoffmann & Willi, 2008;
Holderegger et al., 2006; Meyer-Lucht et al., 2016; Sork et al., 2016).
Thus, studies that hope to disentangle adaptive and neutral genetic
variation must exercise caution in choice of molecular markers by
either leveraging a priori knowledge of neutral and adaptive roles
associated with gene regions of choice or discriminating between
adaptive and neutral loci post hoc (Manel et al., 2010; Savolainen
et al., 2013; Schoville et al., 2011; Sork et al., 2016). Nonetheless, by
coupling functional genomic information from model systems with
new methods of analysis that integrate genomic data with remotely
sensed environmental data, we can generate hypotheses about po-
tential associations between genotype and environment.

These advances have been particularly important in allowing
for detailed investigation of local adaptation in non-model spe-
cies, including those of conservation importance (Kohn et al., 2006;
Savolainen et al., 2013; Segelbacher et al., 2010; Sork et al., 2013).
The pygmy rabbit (Brachylagus idahoensis), listed as a species of
special concern in California and Nevada (Larrucea et al., 2018),
is a sagebrush specialist that relies on big sagebrush (Artemisia

tridentata) for both diet and shelter (Gabler et al., 2001; Katzner &
Parker, 1997; White et al., 1982). Although the range of this species
encompasses much of the Great Basin of western North America,
reduction in the distribution of big sagebrush caused by overgrazing,
invasion of exotic grasses, and changes in fire regimes has severely
limited the distribution of suitable habitat (Crawford et al., 2010;
Gabler et al., 2001; Weiss & Verts, 1984), resulting in pygmy rabbit
population declines and a pressing need for increased conservation
efforts (Crawford et al., 2010; Crowell et al., 2020; Dobler & Dixon,
1990; Larrucea & Brussard, 2008).

Studies of genetic diversity in the pygmy rabbit have revealed
low to moderate genetic differentiation between populations and
pervasive isolation-by-distance in several geographic regions (Estes-
Zumpf et al., 2010; Larrucea et al., 2018; Warheit, 2001). In the
southern portion of its range, Larrucea et al. (2018) documented
marked differentiation between pygmy rabbit populations in the
Mono Basin of California and populations in the southern Great Basin
(Fsr = 0.14-0.31, average 0.22). Byer et al. (2021) showed that pop-
ulation genetic structure, as measured by microsatellite variation, is
strongly correlated to the distribution of sagebrush (Figure 1). While
range-wide studies of genetic variation have not been conducted,
strong divergence between populations in Oregon and Washington
(Fgr = 0.29 to 0.32; Elias et al., 2013; Larrucea et al., 2018; Warheit,
2001) suggest relatively low gene flow between these regions, al-
though the timescale of this differentiation remains uncertain. All
recent studies of pygmy rabbits have used microsatellite markers,
which generally have less power to detect genetic differentiation
than SNP data sets (Fischer et al., 2017; Hauser et al., 2011) and do
not address adaptive genetic variation due to their selective neutral-
ity (Manel et al., 2010).

Here, we present the first application of single nucleotide poly-
morphisms (SNPs) to characterize neutral and adaptive spatial ge-
netic structure across the southern range of the pygmy rabbit by:
(i) identifying loci potentially under directional selection, (ii) charac-
terizing both neutral and adaptive genetic variation throughout the
study area, and (iii) contextualizing patterns of genetic divergence
in light of demographic history. We made several predictions. First,
since previous studies of sagebrush obligates have found signatures
of directional selection at genes associated with metabolism of plant
secondary compounds (PSCs), we predicted that we would detect
a signature of selection in genes associated with detoxification
(Zimmerman et al., 2019). Second, we predicted that adaptive ge-
netic divergence should correspond to ecological differences across
the study region, particularly along climatic gradients. Third, given
documented subdivision between Mono Basin and other Great Basin
populations (Larrucea et al., 2018), we expected our demographic
modeling would show the deepest time of divergence between the
Mono Basin and other study regions, indicating prolonged isolation
of this region. Overall, we expected that pygmy rabbit population
genetic structure across this portion of the range would be charac-
terized by broad-scale patterns of divergence largely reflective of
their biogeographic history, coupled with patterns of neutral and
adaptive divergence along current environmental gradients.
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FIGURE 1 Location of pygmy rabbit sampling localities (black dots), labelled by region (Austin, Elko, Hart, or Mono). (a) Present-day
sagebrush distribution shown in green. (b) Projections of sagebrush distribution in the mid-Holocene (6000 years before present, or YBP)
based on hind-casted distribution models of sagebrush (Byer et al., 2021). (c) Projections of sagebrush distribution in the late Pleistocene
(22,000 YBP), with the footprint of pluvial lakes in blue. Modified from Byer et al. (2021) [Colour figure can be viewed at wileyonlinelibrary.

com]

2 | MATERIALS AND METHODS

2.1 | Field sampling, tissue sampling, and
sequencing

We live-trapped at 18 localities in four core sampling regions
(Austin, Elko, Hart-Sheldon, and Mono Basin) across the southern
Great Basin (Figure 1) from 2016-2019, as described in Crowell
et al. (2020). Briefly, we captured pygmy rabbits at active bur-
rows using burlap-covered Tomahawk live traps. We documented
sex, age, and reproductive status for each animal, and took a small
ear biopsy (3 mm diameter) from each individual and stored the
tissue in 95% ethanol at ambient temperature before long-term
storage at -20°C. We then extracted and quantified DNA con-
centrations for all samples, and we proceeded with preparation
of 3RAD libraries following Bayona-Vasquez et al. (2019). See
Supporting Information S1 for more details on DNA extraction
and sequencing.

Following sequencing, we used ipyraD v0.9.42 for de novo as-
sembly and SNP discovery, producing a data set of 35,677 loci
and 354,946 SNPs across 536 individuals with 7.5% missing data
(Eaton & Overcast, 2020). This data set was filtered further using
package DARTR in R version 3.6.1 (Gruber et al., 2018; R Core
Team, 2020), producing a data set of 21,379 SNPs across 515
individuals; after dropping sampling localities with fewer than
five individuals, our final sample size was 503 individuals across
12 sampling localities (see Supporting Information S1 for more
details on de novo assembly, SNP discovery, and filtering). These
samples were distributed across all years of sampling, with 103
in 2016, 209 in 2017, 161 in 2018, and 30 in 2019. This final data
set (Fg; = 0.081, F|¢ = 0.020, Hy = 0.253) was used for all further
analyses.

2.2 | Identification of outlier SNPs

We used three approaches to identify outlier loci that may be subject
to directional selection and to separate our data set into putatively
neutral and outlier subsets. We first used a principal components
analysis (PCA) to detect outlier SNPs using the package pcaDAPT in
R (Luu et al., 2017). This method decomposes genetic variation into
principal components (PCs), after which SNPs that are particularly
influential in shaping genetic differentiation along each component
are identified. We ran an initial PCA with 10 PCs and inspected vari-
ance explained by each PC using screeplots; after selecting the first
several PCs that explained the most variance, we computed test sta-
tistics, adjusted these test statistics using a Bonferroni procedure,
and used a false discovery rate (FDR) of 0.05 to control for false
positives (Luu et al., 2017; Rédin-Maérch et al., 2019).

Our second approach used latent factors to account for coarse-
scale population structure documented in previous studies (repre-
senting divergence between the Mono Basin and other Great Basin
populations; Larrucea et al., 2018) and identified loci differentiated
upon simplified environmental axes using latent factor mixed mod-
els (LFMM) in the packages trMm and Lea in R (Frichot & Francois,
2015; Frichot et al., 2013). First, in order to eliminate missing data,
we imputed any N/A values in our genetic matrix with the most
common value at each SNP across all individuals (https://popgen.
nescent.org/2018-03-27_RDA_GEA.html). Given low proportions of
missing data, we did not expect that this imputation method would
impact downstream analyses; to verify this, we also explored two
alternate imputation strategies: (i) imputing all missing data as ho-
mozygotes for the major allele (imputing O for all genotypes), and (ii)
imputing all missing data as heterozygotes (imputing 1 for all geno-
types). Neither of these settings appeared to visually alter patterns
in multivariate genotypic space. Next, we selected a suite of land
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cover, topographic, soil, and climate covariates that were previously
identified as influential in species distribution models for this species
(Dilts & Shoemaker, 2020); see Supporting Information S2 for de-
tails on these layers), and sampled covariates for each individual. We
grouped these variables into PCs using function rda in package vecan
(Dixon, 2003); as with pcabapT, we inspected screeplots and propor-
tions of variance explained by each axis to select the total number
of environmental PCs to include in the analysis. We then used these
PCs as fixed effects in downstream analyses. Given previous sup-
port from microsatellite analyses for a two-cluster solution, with one
cluster encompassing the Mono Basin and the other encompassing
remaining Great Basin populations (Larrucea et al., 2018), we chose
to use two latent factors; although higher values of K were ultimately
indicated from downstream clustering analyses (see below), initial
tests of values of K between 4 and 7 did not appear to substantially
alter the number of outliers detected. We then ran the Gibbs sam-
pler with K = 2 for 4000 iterations, following a burnin of 2000 iter-
ations, and replicated each run three times. We ran this procedure
separately for each PC, and we combined median z-scores for each
PC-specific run. Finally, we adjusted p-values by a genomic inflation
factor (GIF), and we used a FDR of 0.05 to control for false positives.

Finally, our third approach used partial redundancy analy-
sis (pRDA), an ordination-based approach that controls for spatial
structure in genetic differentiation and identifies outliers based on
scores along environmental axes. While a number of Genotype-
Environment Association (GEA) approaches exist, several recent
studies have suggested advantages of redundancy analysis, includ-
ing: (i) it has similar power to detect outlier loci as other approaches
while minimizing false positive rates, and (ii) constrained redundancy
analysis allows for identification of selective gradients in environ-
mental variables (Capblancq et al., 2018; Forester et al., 2016, 2018;
Sork et al., 2016). We used the same imputed data set as applied
above. The same variables used for LFMM were used for pRDA anal-
yses as fixed effects, and additive effects of latitude and longitude
were included as conditioning factors to describe geographic struc-
ture in genetic variation. We assessed overall pRDA significance and
significance of each pRDA axis using permutation tests with 9999
permutations and o« = 0.05, and ordination plots were then used to
depict multivariate relationships. Analogous to the previous two ap-
proaches, we then inspected the proportion of variance explained
by each constrained axis, assessed significance of the first five axes
using permutation tests with 9999 permutations, and we calculated
scores for each SNP along each significant axis (up to three axes).
We retained outliers that were outside of three standard deviations
from the mean SNP loading along each axis. Outliers detected by
pcaDAPT, LFMM, and pRDA were combined into a single data set that
we refer to as our outlier data set. Although fitness associations
would be necessary to confirm the role of outliers in evolutionary
adaptation and the adaptive value of loci may shift across space and
time (Hoffmann & Sgro, 2011; Schoville et al., 2011), we refer to vari-
ation in these outliers as “putatively adaptive”. We combined any
SNPs not included in this outlier data set and hereafter refer this as
our “neutral” data set.

To annotate loci containing outlier SNPs for functional roles, we
first filtered the original list of assembled loci exported from ipyRAD
to only include SNPs in our outlier data set. We converted these
sequences into FasTA format and used a batch run in online BLAsT to
query this data set against the nucleotide database using MeGABLAST
(Altschul et al., 1990). We filtered BLasT hits to E-values less than or
equal to 107 (with BLAST hits otherwise set to default settings),
followed by manual pruning of BLAST hits to remove hits not asso-
ciated with functional genes. Since initial tests of these parameter
settings suggested very few loci with functional gene BLAST hits
(10%), we opted not to use more stringent filtering settings. We then
used the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) to group gene hits by potential functional role
(Dennis et al., 2003).

2.3 | Population differentiation

For each data set (neutral and outlier), we calculated population ge-
netic summary statistics (Ho, Hg, and F¢) using the function gl.basic.
stats in packages pArRTR and ApeceNeT (Gruber et al., 2018; Jombart
& Ahmed, 2011). For initial calculation of these summary statistics,
we considered each sampling locality to be a separate population.
We also calculated Watterson's theta (6,,) and allelic richness (A)
using ARLEQUIN Vv.3.5.2.2 (Excoffier & Lischer, 2010). We calculated
pairwise F¢; among focal regions, among sampling localities within
focal regions, and among all sampling localities for both neutral and
outlier data sets using packages HiErrsTAT and pARTR (Goudet, 2005).
For pairwise F¢ calculations, we assessed significance by using 100
bootstrapped runs to assess significance and calculate 95% confi-
dence intervals. We used Mantel correlation tests of Nei's D and
geographic distance between individuals within each region and
sampling locality to test for isolation-by-distance.

We then identified spatial clusters in neutral genetic variation
using Tess3R, a spatially-explicit clustering approach. This approach
calculates ancestry coefficients using a graph-based non-negative
matrix factorization algorithm and uses information on spatial sam-
ple coordinates to control for population structure. We ran this
model for K =1 to 8 using the projected least squares algorithm, vi-
sualized cross-validation scores for each value of K, and inferred the
optimal K based on when cross-validation scores plateau or start in-
creasing (Caye et al., 2016). As a point of comparison, we also identi-
fied clusters using fastSTRUCTURE, a nonspatial Bayesian approach
to clustering (Raj et al., 2014). We ran the algorithm for K = 1 to 8,
and used the function “chooseK” to select the optimal value of K
from these runs. Given low numbers of expected outlier loci, we did
not explore clusters for the outlier data set.

2.4 | Simulations of demographic history

We employed two demographic analyses based on the folded site-
frequency spectrum (SFS) to estimate changes in population sizes,
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divergence dates, and gene flow. First, we estimated changes in
effective population size over the past 100,000 years using the
model-free, multiepoch coalescent method implemented in stair-
WAYPLOT V.2 (Liu & Fu, 2015). staiRwavpLOT uses the SFS and a muta-
tion rate estimate as input, and its model-free estimation has been
shown to outperform pairwise sequentially Markovian coalescent
approaches (PSMC) for recent demographic histories (Li & Durbin,
2011). Second, we tested a suite of demographic scenarios based on
different patterns of divergence, population size change, and gene
flow using the model-based likelihood method implemented in FasT-
siMcoAL 2.6 (Excoffier et al., 2013). Briefly, this program generates ex-
pected SFS under user-specified demographic scenarios, which are
then compared to the SFS generated from observed data (Excoffier
et al., 2013; Rédin-Mérch et al., 2019). First, we imputed our neu-
tral data set using the same approach outlined for outlier detection
analyses to reduce issues with uneven proportions of missing data
across sampling regions. Assuming four sampling regions (Austin,
Elko, Hart, and Mono), we then used easySFS (https://github.com/
isaacovercast/ easySFS) to generate the SFS, projecting our neutral
data set down to 30 individuals within each sampling region to pro-
duce between 14,677 (Mono) and 19,719 segregating sites (Austin),
with counts of monomorphic sites approximated based on the total
invariant base-pairs sequenced across all loci. While initial cluster-
ing analyses suggested support for within-region differentiation, we
chose to focus on these four sampling regions for several reasons: (i)
K = 4 for fastSTRUCTURE supports broad-scale clustering between
regions (Figure 2a), (ii) these four regions corresponded to the dis-
tribution of sampling effort in space, and thus represent a priori ex-
pectations for spatial genetic patterns, and (i) a separate analysis of
pairwise F¢; between sampling localities within and among regions
indicated lower average F.; between localities within the same re-
gion (average Fo; = 0.042) relative to localities not in the same region
(average Fy; = 0.094; Supporting Information S3).

For model selection, we ran 50 replicates of each model with
400,000simulations per replicate and estimated maximum-likelihood
parameter values with the number of expectation conditional max-
imization cycles set to 40. We generated confidence intervals and
ranges of parameter values by subsampling 70% of loci 25 times and
running these 25 subsampled SFS 50 times each. Our alternative
models were based on different hypothesized topologies for the his-
tory of regional divergence in the study area, as informed by two
sources of information: (i) hierarchical structuring observed in initial
analyses of genetic clustering, and (ii) previously studied Holocene
and late Pleistocene biogeographic changes that have impacted the
distribution of sagebrush (Byer et al., 2021; Figure 1). Briefly, this
prior work leveraged a microsatellite data set to evaluate explana-
tory power of resistance surfaces that represent mid-Holocene and
late-Pleistocene sagebrush cover (as proxies for interglacial and gla-
cial periods, respectively; Byer et al., 2021; Millar & Woolfenden,
2016). The east-west model proposes that contemporary declines
in sagebrush distribution in central Nevada have led to divergence
between eastern and western regions, separating Mono and Hart
from Elko and Austin (Figure 1b). The north-south model proposes

that the distribution of pluvial lakes near the last glacial maximum
(22,000 years before present [YBP]) led to early divergence of re-
gions to the north and south, splitting Mono and Austin from Elko
and Hart (Figure 1c); this model mirrors initial clustering results at
K = 2, which suggest broad-scale divergence between Austin and
more northern regions (Elko and Hart-Sheldon; Figure 2a). Finally,
we tested a model of early divergence between Mono and the other
three regions, based on previous analyses showing differentiation of
the Mono region (Larrucea et al., 2018) and initial clustering results
that point to a distinct genetic cluster for Mono Basin from K =4 to
K =7 (Figure 2a).

All models included estimates of historical gene flow in both di-
rections between the ancestral populations, as well as contempo-
rary migration between spatially proximate regions. Finally, since
STAIRWAYPLOT results showed evidence of continuous bouts of popula-
tion size change over long periods (see below), we used continuous
growth rate parameters along each branch, based on the expected
growth rate required to produce the sampled ancestral population
sizes from current population sizes. During simulations, we used the
mutation rate estimate for the mouse of 5.7 x 10™?/bp/generation
(Milholland et al., 2017). Effective population size was drawn from
a uniform distribution of between 10 and either 5000, 50,000, or
200,000 individuals for current, recent ancestral, and the deepest
ancestral lineages, respectively. Generation time for B. idahoensis is
~1 year (Stearns, 1992; Zeoli et al., 2008). We drew divergence times
from a uniform distribution of between 100 and 15,000 generations
(= years) for the most recent divergences in the models, and be-
tween 1000 and 150,000 generations for the ancestral divergence.
Finally, the numbers of migrants per generation for each migration
route specified in the model were drawn from a log-uniform distribu-
tion of between 0.00001 and 10 haploid individuals per generation,
and converted to migration rates using the effective population size
estimates (See Supporting Information S4 for the.est and.tpl files

used to specify each model).

3 | RESULTS

3.1 | Outliers
In our pcaDAPT analysis, we obtained principal components that sepa-
rated individuals by study region (Supporting Information S5). The
first principal component explained approximately 3% of variance,
while the second through fifth components explained between 1.5%
to 2% of variance each, followed by a plateau in cumulative percent
of variance explained. We therefore chose the first five principal
components for outlier detection. Ultimately, we detected 106 out-
liers out of 21,379 SNPs (0.5%) using a FDR of 0.05 for g-values.
As in Luu et al. (2017), distributions of p-values visually adhered to
a peak near zero and a uniform distribution of remaining p-values
(Supporting Information Sé).

We retained two environmental principal components for our

investigation of GEAs using LFMM. The first principal component
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highlighted gradients associated with mean annual temperatures,
distance to intermittent and perennial streams, and precipitation
in the coldest quarter, whereas the second highlighted associations
between solar radiation, sandiness, sagebrush cover, and tempera-
ture seasonality. Inspection of sample sites within multivariate envi-
ronmental space suggested slight separation between sample sites
in the Mono Basin relative to sample sites in other study regions,
although most sample sites grouped in a single environmental clus-
ter near the origin (Supporting Information S7). Genomic inflation
factors were very high for associations with both principal compo-
nents (A, = 5.96, A, = 7.83) indicating extensive population structure
in our data set (Rodin-Morch et al., 2019). After correcting p-values
based on these GIFs, we detected 46 outliers associated with PC1
(mean annual temperature and distance to intermittent/perennial
streams) and 28 associated with PC2 (solar radiation, sandiness, and
sage cover). Of these 74 SNPs, only four overlapped with the outliers
detected using PcADAPT.

Our final outlier detection procedure used pRDA, with envi-
ronmental variables conditioned on geographic location. The first

three constrained axes (RDA1, RDA2, and RDA3) explained 27.8%,
22.0%, and 21.7% of explainable variation after accounting for
geographic effects, and were the only significant axes (p < .05).
Furthermore, although approximately 38% of explainable varia-
tion was multicollinear between geography and environment, ap-
proximately 62% was explained by environmental variables alone
(Supporting Information S8). Given that these three axes collec-
tively accounted for 72% of explainable variation, we restricted
our remaining analyses to these three axes alone. Loci outside of
the mean loading +3 SD on each axis were identified as outliers,
which indicated 82 loci on RDA1, 45 on RDA2, and 61 on RDA3
as outlier loci, for a total of 188. Of these 188, eight overlapped
with those found using LFMM and 51 overlapped with those
found using pcapApPT. Although not a focus of analysis, excluding
Mono Basin from outlier detection led to detection of nine, four,
and 79 outliers from pcabapT, LFMM, and pRDA, respectively, sug-
gesting that many outliers originally detected for the Great Basin
overall were associated with differentiation of the Mono Basin
(Supporting Information S9).
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Out of the 308 loci detected overall, 57 matched with existing
genetic records using BLasTN (E-scores <le-15). We reduced these
57 matches down to 38 genes in the NCBI Gene database. Although
we did not detect clustering in DAVID terms at an EASE score thresh-
old of 0.05, we did detect significant enrichment (based on EASE score
threshold of 0.05) in metal ion-binding genes (Supporting Information
$10). We also investigated loci identified through each outlier detec-
tion method separately; using similar BLAST settings, 26 out of the 106
PCADAPT loci (24.5%), 14 out of 74 LFMM loci (16.7%), and 30 out of 188
pRDA loci (14.9%) matched to existing accessions, which were then re-
duced down to 24, 14, and 19 unique genes, respectively (Supporting
Information S9). Genes identified in the pcabapT data set included
aldo-keto reductase family 1 member B, REC114 meiotic recombi-
nation protein, and FAT atypical cadherin 4 (Supporting Information
S510). Genes identified in the LFMM data set included ADAM metal-
lopeptidase 10, a heat shock protein 90 alpha family member, im-
munoglobulin kappa constant 1, a serine/threonine-protein kinase
MARK?2-like region, a microtubule interacting and trafficking domain,
pericentrin, and a V-set and immunoglobulin domain-containing pro-
tein (Supporting Information $10). Genes identified within the pRDA
data set included ATPase H+/K+ transporting nongastric alpha2 sub-
unit, a hypoxanthine phosphoribosyltransferase 1, a zinc finger protein
35, and G protein-coupled receptor 176 (Supporting Information S10).
Only one outlier locus identified by all three methods was matched
with a gene region of known function; this locus was matched to
Sec23 homologue B (Supporting Information S10).

3.2 | Multivariate genotype-environment
associations

Although the pRDA conducted for the overall SNP data set was pri-

marily used to identify outlier loci, visualization of this constrained
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ordination for the neutral data set revealed several features as-
sociated with genetic differentiation between study regions; we
present this information to contextualize environmental gradients
associated with genetic variation in pygmy rabbits (Figure 3). For the
neutral data set, the first axis (RDA1) contrasted precipitation in the
coldest month (r = -.87) with distance to perennial and intermittent
streams (r = .81), temperature seasonality (r = .61) and compound
topographic index (r = .69), the second (RDA?2) captured variation in
sage cover (r = .49), precipitation in the coldest quarter (r = .38), and
soil sandiness (r = .35), and the third (RDA3) contrasted precipitation
in the warmest month (r = .76) and sage cover (r = .52) with tempera-
ture seasonality (r = -.70) and mean annual temperature (r = -.58).
Furthermore, this pRDA captured spatial clustering in genetic vari-
ation as well (Figure 3a). Ordinations for the outlier data set high-
lighted similar environmental gradients to the neutral pRDA; unlike
the neutral pRDA, only Mono Basin appeared to be differentiated
along RDA1 (Figure 3b). Furthermore, Mono Basin was also related
to RDA2 in contrasting directions between the neutral and outlier
data sets (Figure 3b). In a similar fashion, the pRDA based on pcapbapT
and LFMM outliers appeared to only highlight divergence in environ-
mental and genetic space between Mono Basin and remaining Great

Basin study regions (Supporting Information S11).

3.3 | Genetic differentiation and
demographic history

After excluding the 308 outlier SNPs documented previously, our
data set was comprised of 21,071 putatively neutral SNPs. The
Mono Basin was the most genetically distinct region based on
both the neutral (range of pairwise Fs; between other regions and
Mono Basin =0.099 to 0.133) and outlier data sets (Fg; =0.375 to

0.403; Table 1). Genetic distances within each region conformed to
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FIGURE 3 Association of genetic and environmental variation as identified through partial redundancy analysis. Position of each cluster
(as indicated by colours and ellipses) identified using Tess3r along redundancy axes (RDA1 and RDA2) for (a) the neutral data set and (b) the
outlier data set. Primary variable loadings are described along each axis direction, and were generally similar between ordinations (although
note opposite directions of associations along RDA2 between data sets) [Colour figure can be viewed at wileyonlinelibrary.com]
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isolation-by-distance for both neutral and outlier data sets (Table 2).
Within regions, pairwise F.; comparisons revealed some sampling
localities that were more strongly differentiated than others, with
consistent trends in neutral and outlier data sets. Within Austin,
Austin 3 was strongly differentiated from other sampling localities
(Table 3). Within Elko, Elko 1 appeared to be more strongly differen-
tiated from other localities (Table 3, Figure 2c). Within Hart-Sheldon,
Hart 4 appeared to be more strongly differentiated from other lo-
calities (Table 3). Every pairwise F¢; comparison between localities
across all regions was significant for both neutral and outlier data
sets (Table 3). Clustering using tess3r indicated strongest support
for K = 7 for the neutral data set, and revealed several key trends
(Figure 2a,b). First, as suggested by regional analyses of genetic dif-
ferentiation, sites in the Mono Basin were the most genetically dif-
ferentiated. Second, sites in Elko formed two distinct clusters—one
that included only Elko 1 and one that included only Elko 2 and 3.
Third, Austin 3 appeared to be genetically distinct from nearly every
site sampled. Finally, Hart 4 was assigned a unique cluster as well
(Figure 2c). Clustering using fastSTRUCTURE indicated that K = 6
maximized marginal likelihood; patterns of admixture for K = 6 were
relatively similar between clustering approaches (Figure 2a).

Model testing in rFasTsiMcoaL showed that the Mono-early model
was best supported (Figure 4a, Table 4a; full ranges of parameter
values across bootstrapped runs presented below and in Table 4b).
The Mono-early model received essentially all of the model weight
(AIC=442,442, v = ~1), while poor support existed for the east-west
(AIC = 443,966, w = ~0) and north-south (AIC = 442,870, w = ~0).
The best-supported model indicated a relatively ancient divergence
between Mono and other regions, sometime between 62,000~
214,000 YBP, with a more contemporary split between Hart, Elko,
and Austin dating to 148-638 YBP (Figure 4a). Coalescent effec-
tive population sizes for each region were generally small, with low-
est sizes for Mono (45-721) and Elko (5-290), and highest for Hart
(208-1918) and Austin (185-1592). Stairway plots for each region
corroborated the small contemporary effective population sizes
and indicated magnitudes of population size change consistent with
those recovered from rasTtsiMcoAL. There were peaks in effective pop-
ulation size between 25,000 to 100,000 YBP for each region, with
declines from 25,000 YBP to present (Figure 4b). Estimates for mi-
gration rates were highest from Elko to Austin (median = 6.31), from
Elko to Hart (median = 2.67), from Hart to Elko (median = 2.55), and
from Mono to Hart (median = 2.54; Table 4b).

4 | DISCUSSION

Species that are obligately linked to another should exhibit patterns
of neutral and adaptive divergence driven by the taxon on which
they are dependent (Gandon et al., 2008; Kaltz & Shykoff, 1998;
Lively & Dybdahl, 2000). Pygmy rabbits are ecologically reliant
on sagebrush, and our examination of both neutral and putatively
adaptive genetic variation suggests that this dependence has had a
substantive impact on the biogeography and molecular evolution of

the pygmy rabbit. We evaluated alternative models of demographic
history across the southern Great Basin, and related genetic varia-
tion in neutral and outlier loci to current environmental gradients
using multivariate approaches. Our major findings were: (i) the Mono
Basin of California diverged and has been largely genetically isolated
from the remainder of the range since the late Pleistocene, (b) de-
spite having maintained low effective population sizes since the late
Pleistocene, the Mono Basin region appears to be differentiated
from the rest of the southern Great Basin at both neutral and outlier
loci, (c) signatures of putative local adaptation across the southern
Great Basin appear to be partly driven by availability of sagebrush,
and (d) putatively adaptive loci were disproportionately common in
gene regions associated with metal ion-binding; proteins that are
involved in multiple metabolic pathways including binding of toxic
compounds. Together, these data support the ecological and evolu-
tionary influence that sagebrush availability and use has had on the
pygmy rabbit.

4.1 | Demographic history

Our simulations of demographic history suggest that the Mono
Basin diverged from the remainder of the range during climatic os-
cillations of the late Pleistocene (as a proxy for glacial conditions;
Millar & Woolfenden, 2016). Reconstruction of historic sagebrush
distribution suggests that both interglacial and glacial distribu-
tions were limited between the Mono Basin and the remainder of
the Great Basin. Albeit largely isolated, Mono Basin connections to
the populations immediately to the east (Austin region) may have
been more probable during interglacial periods, while connections
to the northern regions (Hart) may have been more common during
interglacial periods (Figure 1). The latter scenarios are supported by
gene flow parameter estimates showing genetic connectivity, albeit
limited, between Hart and Mono is higher and thus perhaps more
recent, than between Austin and Mono. Although no pygmy rabbit
populations are known to be currently extant between Mono Basin
and northwestern Nevada, museum records do exist from 1926
in Lassen County (U.C. Berkeley Accession MVM:Mamm: 36346-
36362, 36368, 36369, 39870), suggesting that pygmy rabbits were
probably more abundant between Mono and Hart during the recent
past.

Our estimates of effective size through time (Figure 4b) show
concerted, precipitous declines across the southern range initiat-
ing between 5000 and 10,000 YBP that have continued to today.
This is consistent with the decline of pygmy rabbits in the fossil
record beginning in the mid-Holocene, which also coincides with
decline of sagebrush in the paleorecord (Commendador & Finney,
2016; Grayson, 2006). The southern (Austin) and eastern (Elko)
portions of the range may have begun to decline during the end of
the Pleistocene (Figure 4b). Albeit in decline, sagebrush distribution
may have allowed limited gene flow among pygmy rabbit popula-
tions of the Austin, Elko and Hart regions until the past several hun-
dred years, which is consistent with the lack of genetic structure in
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TABLE 1 Pairwise Fg; among study

regions for (a) the neutral data set and (b)

the outlier data set. F.; values are shown (a)
below the diagonal and permutation-

based 95% confidence intervals are shown

above the diagonal

Austin

Elko

Hart-Sheldon

Mono Basin
(b)

Austin

Elko

Hart-Sheldon

Mono Basin

previous genetic data sets across this region (Larrucea et al., 2018).
Finally, the Elko region is central to the overall range of the pygmy
rabbit and appears to have been an important source of gene flow
into other regions, but the cause of apparent recent precipitous de-

clines in effective size warrant further investigation.

4.2 | Environmental associations and signatures of
local adaptation

By coupling detailed demographic analysis with information on en-
vironmental correlates of putative adaptive differentiation, we are
able to make an initial hypothesis of the relative influences of drift
and natural selection on genetic differentiation in the southern Great
Basin. Although signatures of putative adaptive divergence were ev-
ident across all focal regions in our study, pairwise Fg; for our outlier
data set was much higher for comparisons between Mono Basin and
other regions, suggesting either (i) particularly strong signatures of
local adaptation are present in this area, or (ii) spatial genetic struc-
ture from neutral processes may still be present in the outlier data
set. Genetic differentiation in the Mono Basin samples also appeared
to be strongly associated with RDA1, which contrasted precipita-
tion in the coldest quarter with distance to streams and temperature
indices. In contrast, RDA2, which contrasted sagebrush cover and
precipitation in the warmest quarter, grouped Mono Basin samples
differently between outlier and neutral data sets, potentially illus-
trating contrasting environmental relationships between the neu-
tral and outlier data sets (Figure 3b). This suggests that the Mono
Basin is environmentally unique, which may require unique adaptive
responses for population persistence. These signatures of putative
adaptive divergence appear to have emerged despite reductions in
gene flow and effective population size through time.

Although associations between environmental and genetic dif-
ferentiation were overall weaker for Austin, Elko, and Hart than
for Mono, we documented two genetic clusters not discovered by
Larrucea et al. (2018): one that consisted solely of Austin 3, and
the other that consisted of Elko 1. Austin 3 is surrounded by the
Shoshone and Toiyabe mountain ranges and may be largely discon-
nected from remaining Austin populations and potentially exposed

Austin Elko Hart-Sheldon Mono Basin

0.030-0.031 0.054-0.056 0.096-0.100
0.030 0.044-0.046 0.100-0.104
0.055 0.045 0.128-0.133
0.098 0.102 0.130

0.059-0.080 0.062-0.090 0.372-0.435
0.071 0.060-0.089 0.342-0.401
0.077 0.074 0.353-0.410
0.403 0.375 0.378

to different climatic conditions relative to remaining sites, particu-
larly increased snowfall. Finally, Elko 1 differentiated from remain-
ing populations in Elko along axis RDA2 and was associated more
strongly with lower sagebrush cover relative to other populations
within Elko, suggesting the potential that sagebrush cover may be
exerting selective pressure on these populations (Gabler et al., 2001;
Katzner & Parker, 1997; Larrucea & Brussard, 2008; White et al.,
1982).

4.3 | Lociunder putative divergent selection

Across all three of our screening methods, we identified a relatively
small proportion of our overall data set (~1.7%) as outliers. This
proportion is similar to those in other studies; for example Xuereb
et al. (2018) identified 71 out of 3699 SNPs (~2%) as outliers using
BayeScan and RDAs for the giant sea cucumber (Parastichopus cali-
fornicus), Araneda et al. (2016) identified 58 out of 1240 SNPs (~5%)
as outlier using LOSITAN for the Chilean blue mussel (Mytilus chilen-
sis), and Rodin-Morch et al. (2019) identified 812 out of 27,590 SNPs
(~3%) as outliers using pcabapT and LFMM for the moor frog (Rana
arvalis). In addition, very few of our identified outliers overlapped
between approaches, probably because each method varies in its
consideration of environmental gradients (from no consideration
for pcapaAPT to PC-based representation for LFMM and pRDA) and
represents population structure in a variety of ways (PCA-based for
PCADAPT, latent factors for LFMM, constrained axes for pRDA). As in
other studies, relatively few of our outlier loci (57 out of 308, or
18.5%, representing 38 unique gene IDs) matched to genes of known
function, emphasizing a challenge of using reduced-representation
approaches that target random parts of the genome when study-
ing non-model organisms. Below, we highlight several notable func-
tional categories among these genes.

The only significant enrichment detected was for metal ion-
binding genes. This and other observed gene ontology terms in our
outlier data set (“metal ion-binding”, “zinc”, “oxidoreductase”) have all
been previously associated with detoxification in a number of taxa,
including bivalves (Cross et al., 2018; Silliman, 2019), plants (Gardiner
et al., 2018; Silva-Brandéo et al., 2017), and birds (Zimmerman et al.,
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TABLE 2 Summary statistics for genetic diversity within each region for (a) the neutral data set and (b) the outlier data set

Region n A O

(@)
Austin 237 2.00 3120.06
Austin 1 9 1.83 5110.84
Austin 2 150 2.00 3339.69
Austin 3 78 1.97 3640.20
Elko 184 2.00 3236.00
Elko 1 72 1.96 3638.64
Elko 2 105 1.99 3518.78
Elko 3 7 1.81 5340.66
Hart-Sheldon 65 1.95 3659.32
Hart 1 8 1.72 4584.67
Hart 2 46 1.92 3820.51
Hart 3 5 1.69 5129.08
Hart 4 6 1.67 4699.20
Mono Basin 17 1.71 3637.74
Mono 1 5 1.56 4168.66
Mono 2 12 1.62 3482.32

(b)
Austin 237 1.98 44.97
Austin 1 9 1.74 66.29
Austin 2 150 1.97 47.62
Austin 3 78 1.93 50.68
Elko 184 1.99 47.04
Elko 1 72 191 50.51
Elko 2 105 1.98 51.00
Elko 3 7 1.74 72.01
Hart-Sheldon 65 191 51.28
Hart 1 8 1.66 61.18
Hart 2 46 1.86 52.22
Hart 3 5 1.65 70.34
Hart 4 6 1.61 62.25
Mono Basin 17 1.77 57.96
Mono 1 5 1.67 73.17
Mono 2 12 1.71 58.38

Ho He FFis IBD
0.27 0.27 0.006 Yes (r = .45, p = .001)
0.27 0.27 -0.005 No (r=.22,p =.083)
0.27 0.28 0.013 Yes (r=.06, p =.003)
0.26 0.27 0.013 Yes (r=.09, p =.005)
0.26 0.27 0.034 Yes (r=.60, p =.001)
0.26 0.26 0.016 Yes (r=.05, p =.024)
0.26 0.27 0.028 Yes (r=.09, p =.003)
0.25 0.27 0.046 No (r=-.13, p =.750)
0.25 0.25 0.012 Yes (r=.36,p=.001)
0.24 0.24 -0.009 No (r=-.03,

p=.583)
0.25 0.26 0.025 Yes (r = .10, p =.014)
0.25 0.26 0.013 No (r=-.21,p =.811)
0.24 0.24 -0.012 No (r=-.19, p = .800)
0.21 0.21 0.012 Yes (r=.85, p =.001)
0.21 0.22 0.001 No (r = -.20,

p =.800)
0.21 0.21 0.001 No (r=.11,p = .151)
0.24 0.23 -0.034 Yes (r=.77,p = .001)
0.24 0.22 -0.063 No (r=.12, p =.357)
0.21 0.21 -0.001 No (r=.02, p =.254)
0.26 0.26 -0.014 Yes (r=.15, p = .006)
0.24 0.24 -0.003 Yes (r=.66, p =.001)
0.24 0.24 -0.016 No (r=.04,p =.088)
0.24 0.24 0.003 No (r=.02, p =.348)
0.25 0.25 0.000 No (r=.17,p = .228)
0.24 0.23 -0.037 Yes (r=.36, p=.001)
0.24 0.23 -0.052 No (r=.01, p =.492)
0.25 0.24 -0.012 No (r=.04,p =.222)
0.26 0.24 -0.054 No (r=-.46, p = .894)
0.23 0.22 -0.016 No (r=-.13, p = .640)
0.27 0.28 0.020 Yes (r=.86, p =.001)
0.28 0.29 0.011 No (r=-.05,p =.536)
0.26 0.26 -0.001 No (r=-.01, p = .490)

Note: n, sample size; A, mean allelic richness; ©,,, Watterson’s estimator; H, observed heterozygosity; H,, expected heterozygosity; F,¢, inbreeding
coefficient. The IBD column indicates if significant isolation-by-distance was detected within the specified sampling region or locality.

2019). Most important, these genes are often enriched in adaptively
divergent outlier data sets for taxa with dietary specialization. In the
Gunnison's sage-grouse (Centrocercus minimus), Zimmerman et al.
(2019) found significant enrichment in cytochrome P450 gene re-
gions, which have functions associated with metabolism of PSCs
through metal ion-binding and oxidoreductase activity. As with the
pygmy rabbit, the Gunnison's sage-grouse is a sagebrush obligate,
relying on sagebrush both for diet and shelter (Zimmerman et al.,
2019). Since sagebrush species vary in composition and quantities

of PSCs, Zimmerman et al. (2019) suggested that variation in genes
associated with metabolism of PSCs may reflect local adaptation to
different species of sagebrush (Frye et al., 2013; Kelsey et al.,1982;
Zimmerman et al., 2019). Pygmy rabbits are largely reliant on big
sagebrush (Artemisia tridentata) and appear to be highly efficient at
reducing concentrations of monoterpenes in their gut (Shipley et al.,
2006; White et al., 1982); however, they often live in close proxim-
ity to other species of sagebrush such as the threetip sagebrush (A.
tripartia) and may consume both when available (Green & Flinders,
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the neutral data set are shown below the A Al AU 2 AT E
diagonal and Fg; values for the outlier data Austin 1 0 0.020 0.090
set are shown above the diagonal Austin 2 0.018 0 0.124
Austin 3 0.041 0.030 0
Region = Elko
Elko 1 Elko 2 Elko 3
Elko 1 0 0.100 0.083
Elko 2 0.039 0 0.005
Elko 3 0.038 0.007 0
Region = Hart-Sheldon
Hart 1 Hart 2 Hart 3 Hart 4
Hart 1 0 0.041 0.053 0.079
Hart 2 0.035 0 0.021 0.045
Hart 3 0.047 0.021 0 0.041
Hart 4 0.073 0.045 0.046 0
Region = Mono Basin
Mono 1 Mono 2
Mono 1 0 0.101
Mono 2 0.102 0
(a) East-West Model North-South Model Mono-early Model
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FIGURE 4 Demographic history of pygmy rabbits across the southern Great Basin. (a) Alternative scenarios of divergence with gene flow
and population size change in pygmy rabbits tested in FastsiMcoaL 2.6. The Mono-early Model (third from left) was best supported by the
coalescent simulations, and median estimates of parameter values across model runs on subsampled data sets are presented. Diploid sizes
are presented for convenience. Arrows indicate directional migration (in effective migrants/generation) between focal regions. (b) Effective
population size through time for each focal region showing concerted recent population declines across regions [Colour figure can be viewed

at wileyonlinelibrary.com]
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TABLE 4 (a) Relative rankings of demographic history models, as evaluated in FastsimcoaL. K = number of parameters, LL = log likelihood,
AIC = Akaike’s Information Criterion, AAIC = change in AIC relative to the top model, and ® = model selection weight. (b) Quartiles of
divergence times (T), diploid effective population sizes (N), and diploid effective migration rates (MIG) for nonparametric bootstrapped runs,
produced from 25 subsampled data sets each subjected to 50 replicate runs

(a)

Model K LL AIC AAIC ®
Mono-Early 18 -96,067.166 442,441.649 0 1
North-South 20 -96,159.275 442,869.826 428.177621 1.053E-93
East-West 20 -96,397.265 443,965.811 1524.16207 0
(b)
Parameter Minimum 25% Quartile Median 75% Quartile Maximum
Mono 45 69 96 368 721
Nyare 208 438 641 985 1918
Neio 5 9 12 30 290
N austin 185 359 487 764 1592
N pncestral 44,371 62,742 72,060 91,663 112,200
N pustin/Elko/Hart 709 1958 6852 17,080 28,100
Tancestral 62,089 79,666 129,427 177,366 213,968
WnistinyElko/Hart 148 230 286 489 638
MIG 00— Austin/Elko/Hart 1.51E-4 3.37E-4 6.26E-4 1.11E-3 0.22
MIG p s tin/Elko/HartsMono 5.53E-5 7.84E-5 1.09E-4 2.93E-4 6.01E-4
MIG, 010 Hart 0.67 1.95 2.54 3.46 6.18
MIG,,, - Smono 1.26E-4 2.08E-3 2.26E-2 0.26 0.58
MIG,, SEko 8.1E-3 2.15 2.55 3.06 4.11
MIGg; o hart 3.43E-4 4.14E-2 2.67 7.93 9.92
MIGg0 o austin 2.73E-4 4.05 6.31 7.04 8.95
MIG pctinseko 2.19E-4 0.40 0.95 1.21 291
MIG, < tinsMono 5.20E-2 0.41 0.45 0.70 0.86
MIG 8.21E-4 5.48E-2 1.43 2.07 4.59

Mono—>Austin

1980). Furthermore, volatile oil content varies even within species
of sagebrush as a function of soil characteristics, with documented
relationships between oil content and magnesium and phosphorus
content in soils for big sagebrush (Powell, 1970). We acknowledge
that zinc finger proteins have diverse functions and may thus not be
associated with detoxification loci. However, similarity between our
results and those of Zimmerman et al. (2019) - and the fact that zinc
finger proteins often flank CYP450 tandem arrays, which have doc-
umented importance for detoxification (M. Holding, personal obser-
vation) - may indicate local adaptation in a sagebrush specialist to

variation in PSCs across the landscape.

4.4 | Conclusions

Geneticisolation may either accelerate the selective effects of local
environmental conditions (Rdsinen & Hendry, 2008) or decrease
adaptive potential by reducing effective population sizes (Sultan
& Spencer, 2002; Tigano & Friesen, 2016). In our study, signatures
of putative local adaptation among and within our focal study

regions suggest the possibility that selection has shaped variation
between these regions (Fraser et al., 2011; Rellstab et al., 2017,
Richardson et al., 2014). For the Mono Basin, long-term divergence
from other southern Great Basin regions (Figure 4a), low rates of
immigration from other regions (Figure 4a), and marked differen-
tiation associated with environmental gradients (Figure 1b) sug-
gest that historical isolation may have facilitated the accumulation
of locally-adapted alleles (Haldane, 1930; Tigano & Friesen, 2016).
However, recent declines in effective population size (Figure 4b)
may increase the influence of genetic drift and reduce the ability
of these populations to respond to selection in the future (Tigano
& Friesen, 2016). For Austin, Elko, and Hart, high rates of gene flow
(Figure 4a), low environmental differentiation between regions
(Figure 2), and reduced counts of outliers for outlier scans exclud-
ing Mono Basin may point to more modest adaptive differentiation
among these regions, and reduced effects of genetic drift due to
greater genetic connectivity throughout these regions. Overall,
our study suggests that the Mono Basin is evolutionarily highly
distinct and harbors the strongest signals of adaptive divergence
among sites.
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Nevertheless, environmental associations with outlier SNPs were
relatively weak, with environment only explaining approximately 5%
of total variance in the SNP data set (Supporting Information S7).
This fact — combined with noticeable clustering by study region
within multivariate space, substantial geographic separation be-
tween study regions, and relatively high degrees of multicollinearity
between geographic and environmental variables — generates diffi-
culties in separating purely environmental effects on genetic varia-
tion from those explainable by distance alone (Gaggiotti et al., 2009;
Kawecki & Ebert, 2004; Rasanen & Hendry, 2008; Stiebens et al.,
2013). Although redundancy analyses are robust to moderate to
relatively high degrees of population differentiation (Forester et al.,
2018), it is not clear if these detected signatures of putative adap-
tive divergence are more reflective of environmental differences or
geographic separation between study sites; both are often viewed
as important processes facilitating local adaptation, and may both
be influential in the pygmy rabbit system (Kawecki & Ebert, 2004;
Risinen & Hendry, 2008; Sork et al., 2010). Further study is needed
to determine how the interaction between environment, geography,
and demographic change through time affects genetic variation in

this species.

4.5 | Future directions

Although it remains to be seen if our observed outlier loci are (or
are linked to) ecologically adaptive loci, differentially adapted pop-
ulations may respond to environmental change in distinct ways,
necessitating more dynamic and flexible conservation planning
initiatives to account for these different responses (Hallfors et al.,
2016; Hoffmann & Sgro, 2011). Efforts are underway to assemble a
high-quality pygmy rabbit genome (Holding et al., 2021), and further
work will leverage this genome to understand the genomic position
of putatively adaptive SNPs. While our results mirror enrichment
in detoxification loci documented in the Gunnison's sage-grouse
(Zimmerman et al., 2019), we suspect that reappraisal of adaptive
genetic variation with the aid of the pygmy rabbit genome may high-
light even more gene families as potentially important for driving
adaptive genetic divergence, particularly if SNPs not within func-
tional gene regions are linked with detoxification loci (Lowry et al.,
2017; although see Catchen et al., 2017). Since changes in genotype
frequencies are mediated by selection on phenotypes, we suggest
that future studies explore the relationships between phenotypes
and fitness at both broad (between Mono Basin and remaining study
regions) and finer (within Elko and Austin) scales. Furthermore, de-
veloping a better understanding of local adaptation will be important
in predicting how populations will respond to ongoing environmen-
tal change (Hoffmann & Sgro, 2011; Schoville et al., 2011).
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