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1  |  INTRODUC TION

Identifying how neutral and selective processes determine patterns 
of biological diversity remains one of the grand challenges of evo-
lutionary biology (Heywood, 1991; Loiselle et al., 1995; Rousset, 
2001; Vekemans & Hardy, 2004). Even in species that are nearly 
continuously distributed, limitations to dispersal will typically result 

in genetic patterns of isolation by distance. In addition, when geo-
graphic or environmental barriers exist, spatial connectivity may 
be reduced further, limiting gene flow, increasing genetic drift, 
and ultimately leading to genetic discontinuities across the land-
scape (Coulon et al., 2004; Cushman et al., 2006; Lowe & Allendorf, 
2010). When populations separated in space are subjected to con-
trasting environmental conditions and selective pressures, genetic 
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Abstract
Local adaptation can occur when spatially separated populations are subjected to 
contrasting environmental conditions. Historically, understanding the genetic basis 
of adaptation has been difficult, but increased availability of genome-wide markers 
facilitates studies of local adaptation in non-model organisms of conservation con-
cern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies 
on sagebrush for forage and cover. This reliance has led to widespread population 
declines following reductions in the distribution of sagebrush, leading to geographic 
separation between populations. In this study, we used >20,000  single nucleotide 
polymorphisms, genotype-environment association methods, and demographic mod-
eling to examine neutral genetic variation and local adaptation in the pygmy rabbit in 
Nevada and California. We identified 308 loci as outliers, many of which had func-
tional annotations related to metabolism of plant secondary compounds. Likewise, 
patterns of spatial variation in outlier loci were correlated with landscape and cli-
matic variables including proximity to streams, sagebrush cover, and precipitation. 
We found that populations in the Mono Basin of California probably diverged from 
other Great Basin populations during late Pleistocene climate oscillations, and that 
this region is adaptively differentiated from other regions in the southern Great Basin 
despite limited gene flow and low effective population size. Our results demonstrate 
that peripherally isolated populations can maintain adaptive divergence.
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differentiation may also reflect local adaptation (Hanski et al., 2011; 
Kawecki & Ebert, 2004; Sork et al., 2010). Given sufficient time, in-
teractions between genetic drift and directional selection may give 
rise to substantial within-species adaptive genetic differentiation 
across spatially separated populations (Araneda et al., 2016; Mable, 
2019). However, the extent to which actively declining populations 
can maintain adaptive genetic variation requires additional study 
with high-resolution genetic data sets (Hoffmann & Willi, 2008; 
Schoville et al., 2011).

Given the scope of declines in biodiversity throughout the late 
20th and early 21st centuries, documenting spatial patterns in ge-
netic variation has become central to conservation and management 
(Hoffmann & Willi, 2008; Lowe & Allendorf, 2010). As humans frag-
ment existing habitat, wildlife populations become more isolated, re-
ducing genetic variation within populations, and increasing genetic 
divergence among populations (Gibbs, 2001; Keyghobadi, 2007; 
Templeton et al., 1990; Young et al., 1996). Although reductions in 
gene flow may facilitate local adaptation (Räsänen & Hendry, 2008; 
Tigano & Friesen, 2016), habitat fragmentation often reduces effec-
tive population sizes to a point where genetic drift is the dominant 
evolutionary force, thus reducing potential for local adaptation in 
isolated populations and the probability of species persistence 
(Sultan & Spencer, 2002; Tigano & Friesen, 2016).

While identifying the genetic basis of ecological adaptations 
will remain a challenge for decades to come, major technological 
and analytical advances are pushing this area of inquiry forward 
(Fitzpatrick & Keller, 2015; Larsen & Matocq, 2019; Manel et al., 
2010; Sork et al., 2013). However, for most wild non-model systems, 
functional genomic data needed to make a priori predictions still do 
not exist, and sparse genome-wide data coupled with statistical lim-
itations make it difficult to infer directional selection post hoc (Manel 
et al., 2010; Schoville et al., 2011; Sork et al., 2013). Since adaptive 
genetic diversity is shaped by both genetic drift and selection, 
adaptive genetic variation may display complex and unpredictable 
patterns relative to neutral expectations (Hoffmann & Willi, 2008; 
Holderegger et al., 2006; Meyer-Lucht et al., 2016; Sork et al., 2016). 
Thus, studies that hope to disentangle adaptive and neutral genetic 
variation must exercise caution in choice of molecular markers by 
either leveraging a priori knowledge of neutral and adaptive roles 
associated with gene regions of choice or discriminating between 
adaptive and neutral loci post hoc (Manel et al., 2010; Savolainen 
et al., 2013; Schoville et al., 2011; Sork et al., 2016). Nonetheless, by 
coupling functional genomic information from model systems with 
new methods of analysis that integrate genomic data with remotely 
sensed environmental data, we can generate hypotheses about po-
tential associations between genotype and environment.

These advances have been particularly important in allowing 
for detailed investigation of local adaptation in non-model spe-
cies, including those of conservation importance (Kohn et al., 2006; 
Savolainen et al., 2013; Segelbacher et al., 2010; Sork et al., 2013). 
The pygmy rabbit (Brachylagus idahoensis), listed as a species of 
special concern in California and Nevada (Larrucea et al., 2018), 
is a sagebrush specialist that relies on big sagebrush (Artemisia 

tridentata) for both diet and shelter (Gabler et al., 2001; Katzner & 
Parker, 1997; White et al., 1982). Although the range of this species 
encompasses much of the Great Basin of western North America, 
reduction in the distribution of big sagebrush caused by overgrazing, 
invasion of exotic grasses, and changes in fire regimes has severely 
limited the distribution of suitable habitat (Crawford et al., 2010; 
Gabler et al., 2001; Weiss & Verts, 1984), resulting in pygmy rabbit 
population declines and a pressing need for increased conservation 
efforts (Crawford et al., 2010; Crowell et al., 2020; Dobler & Dixon, 
1990; Larrucea & Brussard, 2008).

Studies of genetic diversity in the pygmy rabbit have revealed 
low to moderate genetic differentiation between populations and 
pervasive isolation-by-distance in several geographic regions (Estes-
Zumpf et al., 2010; Larrucea et al., 2018; Warheit, 2001). In the 
southern portion of its range, Larrucea et al. (2018) documented 
marked differentiation between pygmy rabbit populations in the 
Mono Basin of California and populations in the southern Great Basin 
(FST = 0.14–0.31, average 0.22). Byer et al. (2021) showed that pop-
ulation genetic structure, as measured by microsatellite variation, is 
strongly correlated to the distribution of sagebrush (Figure 1). While 
range-wide studies of genetic variation have not been conducted, 
strong divergence between populations in Oregon and Washington 
(FST = 0.29 to 0.32; Elias et al., 2013; Larrucea et al., 2018; Warheit, 
2001) suggest relatively low gene flow between these regions, al-
though the timescale of this differentiation remains uncertain. All 
recent studies of pygmy rabbits have used microsatellite markers, 
which generally have less power to detect genetic differentiation 
than SNP data sets (Fischer et al., 2017; Hauser et al., 2011) and do 
not address adaptive genetic variation due to their selective neutral-
ity (Manel et al., 2010).

Here, we present the first application of single nucleotide poly-
morphisms (SNPs) to characterize neutral and adaptive spatial ge-
netic structure across the southern range of the pygmy rabbit by: 
(i) identifying loci potentially under directional selection, (ii) charac-
terizing both neutral and adaptive genetic variation throughout the 
study area, and (iii) contextualizing patterns of genetic divergence 
in light of demographic history. We made several predictions. First, 
since previous studies of sagebrush obligates have found signatures 
of directional selection at genes associated with metabolism of plant 
secondary compounds (PSCs), we predicted that we would detect 
a signature of selection in genes associated with detoxification 
(Zimmerman et al., 2019). Second, we predicted that adaptive ge-
netic divergence should correspond to ecological differences across 
the study region, particularly along climatic gradients. Third, given 
documented subdivision between Mono Basin and other Great Basin 
populations (Larrucea et al., 2018), we expected our demographic 
modeling would show the deepest time of divergence between the 
Mono Basin and other study regions, indicating prolonged isolation 
of this region. Overall, we expected that pygmy rabbit population 
genetic structure across this portion of the range would be charac-
terized by broad-scale patterns of divergence largely reflective of 
their biogeographic history, coupled with patterns of neutral and 
adaptive divergence along current environmental gradients.
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2  |  MATERIAL S AND METHODS

2.1  |  Field sampling, tissue sampling, and 
sequencing

We live-trapped at 18  localities in four core sampling regions 
(Austin, Elko, Hart-Sheldon, and Mono Basin) across the southern 
Great Basin (Figure 1) from 2016–2019, as described in Crowell 
et al. (2020). Briefly, we captured pygmy rabbits at active bur-
rows using burlap-covered Tomahawk live traps. We documented 
sex, age, and reproductive status for each animal, and took a small 
ear biopsy (3 mm diameter) from each individual and stored the 
tissue in 95% ethanol at ambient temperature before long-term 
storage at –20°C. We then extracted and quantified DNA con-
centrations for all samples, and we proceeded with preparation 
of 3RAD libraries following Bayona-Vásquez et al. (2019). See 
Supporting Information S1 for more details on DNA extraction 
and sequencing.

Following sequencing, we used ipYRad v0.9.42 for de novo as-
sembly and SNP discovery, producing a data set of 35,677  loci 
and 354,946 SNPs across 536 individuals with 7.5% missing data 
(Eaton & Overcast, 2020). This data set was filtered further using 
package daRtR in R version 3.6.1 (Gruber et al., 2018; R Core 
Team, 2020), producing a data set of 21,379 SNPs across 515 
individuals; after dropping sampling localities with fewer than 
five individuals, our final sample size was 503 individuals across 
12  sampling localities (see Supporting Information S1 for more 
details on de novo assembly, SNP discovery, and filtering). These 
samples were distributed across all years of sampling, with 103 
in 2016, 209 in 2017, 161 in 2018, and 30 in 2019. This final data 
set (FST = 0.081, FIS = 0.020, HO = 0.253) was used for all further 
analyses.

2.2  |  Identification of outlier SNPs

We used three approaches to identify outlier loci that may be subject 
to directional selection and to separate our data set into putatively 
neutral and outlier subsets. We first used a principal components 
analysis (PCA) to detect outlier SNPs using the package pcadapt in 
R (Luu et al., 2017). This method decomposes genetic variation into 
principal components (PCs), after which SNPs that are particularly 
influential in shaping genetic differentiation along each component 
are identified. We ran an initial PCA with 10 PCs and inspected vari-
ance explained by each PC using screeplots; after selecting the first 
several PCs that explained the most variance, we computed test sta-
tistics, adjusted these test statistics using a Bonferroni procedure, 
and used a false discovery rate (FDR) of 0.05 to control for false 
positives (Luu et al., 2017; Rödin-Mörch et al., 2019).

Our second approach used latent factors to account for coarse-
scale population structure documented in previous studies (repre-
senting divergence between the Mono Basin and other Great Basin 
populations; Larrucea et al., 2018) and identified loci differentiated 
upon simplified environmental axes using latent factor mixed mod-
els (LFMM) in the packages lfmm and lEa in R (Frichot & François, 
2015; Frichot et al., 2013). First, in order to eliminate missing data, 
we imputed any N/A values in our genetic matrix with the most 
common value at each SNP across all individuals (https://popgen.
nesce​nt.org/2018-03-27_RDA_GEA.html). Given low proportions of 
missing data, we did not expect that this imputation method would 
impact downstream analyses; to verify this, we also explored two 
alternate imputation strategies: (i) imputing all missing data as ho-
mozygotes for the major allele (imputing 0 for all genotypes), and (ii) 
imputing all missing data as heterozygotes (imputing 1 for all geno-
types). Neither of these settings appeared to visually alter patterns 
in multivariate genotypic space. Next, we selected a suite of land 

F I G U R E  1  Location of pygmy rabbit sampling localities (black dots), labelled by region (Austin, Elko, Hart, or Mono). (a) Present-day 
sagebrush distribution shown in green. (b) Projections of sagebrush distribution in the mid-Holocene (6000 years before present, or YBP) 
based on hind-casted distribution models of sagebrush (Byer et al., 2021). (c) Projections of sagebrush distribution in the late Pleistocene 
(22,000 YBP), with the footprint of pluvial lakes in blue. Modified from Byer et al. (2021) [Colour figure can be viewed at wileyonlinelibrary.
com]

(a) (b) (c)

https://popgen.nescent.org/2018-03-27_RDA_GEA.html
https://popgen.nescent.org/2018-03-27_RDA_GEA.html
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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cover, topographic, soil, and climate covariates that were previously 
identified as influential in species distribution models for this species 
(Dilts & Shoemaker, 2020); see Supporting Information S2 for de-
tails on these layers), and sampled covariates for each individual. We 
grouped these variables into PCs using function rda in package vEgan 
(Dixon, 2003); as with pcadapt, we inspected screeplots and propor-
tions of variance explained by each axis to select the total number 
of environmental PCs to include in the analysis. We then used these 
PCs as fixed effects in downstream analyses. Given previous sup-
port from microsatellite analyses for a two-cluster solution, with one 
cluster encompassing the Mono Basin and the other encompassing 
remaining Great Basin populations (Larrucea et al., 2018), we chose 
to use two latent factors; although higher values of K were ultimately 
indicated from downstream clustering analyses (see below), initial 
tests of values of K between 4 and 7 did not appear to substantially 
alter the number of outliers detected. We then ran the Gibbs sam-
pler with K = 2 for 4000 iterations, following a burnin of 2000 iter-
ations, and replicated each run three times. We ran this procedure 
separately for each PC, and we combined median z-scores for each 
PC-specific run. Finally, we adjusted p-values by a genomic inflation 
factor (GIF), and we used a FDR of 0.05 to control for false positives.

Finally, our third approach used partial redundancy analy-
sis (pRDA), an ordination-based approach that controls for spatial 
structure in genetic differentiation and identifies outliers based on 
scores along environmental axes. While a number of Genotype-
Environment Association (GEA) approaches exist, several recent 
studies have suggested advantages of redundancy analysis, includ-
ing: (i) it has similar power to detect outlier loci as other approaches 
while minimizing false positive rates, and (ii) constrained redundancy 
analysis allows for identification of selective gradients in environ-
mental variables (Capblancq et al., 2018; Forester et al., 2016, 2018; 
Sork et al., 2016). We used the same imputed data set as applied 
above. The same variables used for LFMM were used for pRDA anal-
yses as fixed effects, and additive effects of latitude and longitude 
were included as conditioning factors to describe geographic struc-
ture in genetic variation. We assessed overall pRDA significance and 
significance of each pRDA axis using permutation tests with 9999 
permutations and α = 0.05, and ordination plots were then used to 
depict multivariate relationships. Analogous to the previous two ap-
proaches, we then inspected the proportion of variance explained 
by each constrained axis, assessed significance of the first five axes 
using permutation tests with 9999 permutations, and we calculated 
scores for each SNP along each significant axis (up to three axes). 
We retained outliers that were outside of three standard deviations 
from the mean SNP loading along each axis. Outliers detected by 
pcadapt, LFMM, and pRDA were combined into a single data set that 
we refer to as our outlier data set. Although fitness associations 
would be necessary to confirm the role of outliers in evolutionary 
adaptation and the adaptive value of loci may shift across space and 
time (Hoffmann & Sgro, 2011; Schoville et al., 2011), we refer to vari-
ation in these outliers as “putatively adaptive”. We combined any 
SNPs not included in this outlier data set and hereafter refer this as 
our “neutral” data set.

To annotate loci containing outlier SNPs for functional roles, we 
first filtered the original list of assembled loci exported from ipYRad 
to only include SNPs in our outlier data set. We converted these 
sequences into fasta format and used a batch run in online Blast to 
query this data set against the nucleotide database using mEgaBlast 
(Altschul et al., 1990). We filtered Blast hits to E-values less than or 
equal to 10−15 (with BLAST hits otherwise set to default settings), 
followed by manual pruning of BLAST hits to remove hits not asso-
ciated with functional genes. Since initial tests of these parameter 
settings suggested very few loci with functional gene BLAST hits 
(10%), we opted not to use more stringent filtering settings. We then 
used the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) to group gene hits by potential functional role 
(Dennis et al., 2003).

2.3  |  Population differentiation

For each data set (neutral and outlier), we calculated population ge-
netic summary statistics (HO, HE, and FIS) using the function gl.basic.
stats in packages daRtR and adEgEnEt (Gruber et al., 2018; Jombart 
& Ahmed, 2011). For initial calculation of these summary statistics, 
we considered each sampling locality to be a separate population. 
We also calculated Watterson's theta (ΘW) and allelic richness (A) 
using aRlEquin v.3.5.2.2 (Excoffier & Lischer, 2010). We calculated 
pairwise FST among focal regions, among sampling localities within 
focal regions, and among all sampling localities for both neutral and 
outlier data sets using packages hiERfstat and daRtR (Goudet, 2005). 
For pairwise FST calculations, we assessed significance by using 100 
bootstrapped runs to assess significance and calculate 95% confi-
dence intervals. We used Mantel correlation tests of Nei’s D and 
geographic distance between individuals within each region and 
sampling locality to test for isolation-by-distance.

We then identified spatial clusters in neutral genetic variation 
using tEss3R, a spatially-explicit clustering approach. This approach 
calculates ancestry coefficients using a graph-based non-negative 
matrix factorization algorithm and uses information on spatial sam-
ple coordinates to control for population structure. We ran this 
model for K = 1 to 8 using the projected least squares algorithm, vi-
sualized cross-validation scores for each value of K, and inferred the 
optimal K based on when cross-validation scores plateau or start in-
creasing (Caye et al., 2016). As a point of comparison, we also identi-
fied clusters using fastSTRUCTURE, a nonspatial Bayesian approach 
to clustering (Raj et al., 2014). We ran the algorithm for K = 1 to 8, 
and used the function “chooseK” to select the optimal value of K 
from these runs. Given low numbers of expected outlier loci, we did 
not explore clusters for the outlier data set.

2.4  |  Simulations of demographic history

We employed two demographic analyses based on the folded site-
frequency spectrum (SFS) to estimate changes in population sizes, 
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divergence dates, and gene flow. First, we estimated changes in 
effective population size over the past 100,000  years using the 
model-free, multiepoch coalescent method implemented in staiR-
waYplot v.2 (Liu & Fu, 2015). staiRwaYplot uses the SFS and a muta-
tion rate estimate as input, and its model-free estimation has been 
shown to outperform pairwise sequentially Markovian coalescent 
approaches (PSMC) for recent demographic histories (Li & Durbin, 
2011). Second, we tested a suite of demographic scenarios based on 
different patterns of divergence, population size change, and gene 
flow using the model-based likelihood method implemented in fast-
simcoal 2.6 (Excoffier et al., 2013). Briefly, this program generates ex-
pected SFS under user-specified demographic scenarios, which are 
then compared to the SFS generated from observed data (Excoffier 
et al., 2013; Rödin-Mörch et al., 2019). First, we imputed our neu-
tral data set using the same approach outlined for outlier detection 
analyses to reduce issues with uneven proportions of missing data 
across sampling regions. Assuming four sampling regions (Austin, 
Elko, Hart, and Mono), we then used easySFS (https://github.com/
isaac​overc​ast/ easySFS) to generate the SFS, projecting our neutral 
data set down to 30 individuals within each sampling region to pro-
duce between 14,677 (Mono) and 19,719 segregating sites (Austin), 
with counts of monomorphic sites approximated based on the total 
invariant base-pairs sequenced across all loci. While initial cluster-
ing analyses suggested support for within-region differentiation, we 
chose to focus on these four sampling regions for several reasons: (i) 
K = 4 for fastSTRUCTURE supports broad-scale clustering between 
regions (Figure 2a), (ii) these four regions corresponded to the dis-
tribution of sampling effort in space, and thus represent a priori ex-
pectations for spatial genetic patterns, and (iii) a separate analysis of 
pairwise FST between sampling localities within and among regions 
indicated lower average FST between localities within the same re-
gion (average FST = 0.042) relative to localities not in the same region 
(average FST = 0.094; Supporting Information S3).

For model selection, we ran 50 replicates of each model with 
400,000 simulations per replicate and estimated maximum-likelihood 
parameter values with the number of expectation conditional max-
imization cycles set to 40. We generated confidence intervals and 
ranges of parameter values by subsampling 70% of loci 25 times and 
running these 25 subsampled SFS 50 times each. Our alternative 
models were based on different hypothesized topologies for the his-
tory of regional divergence in the study area, as informed by two 
sources of information: (i) hierarchical structuring observed in initial 
analyses of genetic clustering, and (ii) previously studied Holocene 
and late Pleistocene biogeographic changes that have impacted the 
distribution of sagebrush (Byer et al., 2021; Figure 1). Briefly, this 
prior work leveraged a microsatellite data set to evaluate explana-
tory power of resistance surfaces that represent mid-Holocene and 
late-Pleistocene sagebrush cover (as proxies for interglacial and gla-
cial periods, respectively; Byer et al., 2021; Millar & Woolfenden, 
2016). The east-west model proposes that contemporary declines 
in sagebrush distribution in central Nevada have led to divergence 
between eastern and western regions, separating Mono and Hart 
from Elko and Austin (Figure 1b). The north-south model proposes 

that the distribution of pluvial lakes near the last glacial maximum 
(22,000 years before present [YBP]) led to early divergence of re-
gions to the north and south, splitting Mono and Austin from Elko 
and Hart (Figure 1c); this model mirrors initial clustering results at 
K =  2, which suggest broad-scale divergence between Austin and 
more northern regions (Elko and Hart-Sheldon; Figure 2a). Finally, 
we tested a model of early divergence between Mono and the other 
three regions, based on previous analyses showing differentiation of 
the Mono region (Larrucea et al., 2018) and initial clustering results 
that point to a distinct genetic cluster for Mono Basin from K = 4 to 
K = 7 (Figure 2a).

All models included estimates of historical gene flow in both di-
rections between the ancestral populations, as well as contempo-
rary migration between spatially proximate regions. Finally, since 
staiRwaYplot results showed evidence of continuous bouts of popula-
tion size change over long periods (see below), we used continuous 
growth rate parameters along each branch, based on the expected 
growth rate required to produce the sampled ancestral population 
sizes from current population sizes. During simulations, we used the 
mutation rate estimate for the mouse of 5.7 × 10−9/bp/generation 
(Milholland et al., 2017). Effective population size was drawn from 
a uniform distribution of between 10 and either 5000, 50,000, or 
200,000 individuals for current, recent ancestral, and the deepest 
ancestral lineages, respectively. Generation time for B. idahoensis is 
~1 year (Stearns, 1992; Zeoli et al., 2008). We drew divergence times 
from a uniform distribution of between 100 and 15,000 generations 
(= years) for the most recent divergences in the models, and be-
tween 1000 and 150,000 generations for the ancestral divergence. 
Finally, the numbers of migrants per generation for each migration 
route specified in the model were drawn from a log-uniform distribu-
tion of between 0.00001 and 10 haploid individuals per generation, 
and converted to migration rates using the effective population size 
estimates (See Supporting Information S4 for the.est and.tpl files 
used to specify each model).

3  |  RESULTS

3.1  |  Outliers

In our pcadapt analysis, we obtained principal components that sepa-
rated individuals by study region (Supporting Information S5). The 
first principal component explained approximately 3% of variance, 
while the second through fifth components explained between 1.5% 
to 2% of variance each, followed by a plateau in cumulative percent 
of variance explained. We therefore chose the first five principal 
components for outlier detection. Ultimately, we detected 106 out-
liers out of 21,379 SNPs (0.5%) using a FDR of 0.05 for q-values. 
As in Luu et al. (2017), distributions of p-values visually adhered to 
a peak near zero and a uniform distribution of remaining p-values 
(Supporting Information S6).

We retained two environmental principal components for our 
investigation of GEAs using LFMM. The first principal component 

https://github.com/isaacovercast/
https://github.com/isaacovercast/
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highlighted gradients associated with mean annual temperatures, 
distance to intermittent and perennial streams, and precipitation 
in the coldest quarter, whereas the second highlighted associations 
between solar radiation, sandiness, sagebrush cover, and tempera-
ture seasonality. Inspection of sample sites within multivariate envi-
ronmental space suggested slight separation between sample sites 
in the Mono Basin relative to sample sites in other study regions, 
although most sample sites grouped in a single environmental clus-
ter near the origin (Supporting Information S7). Genomic inflation 
factors were very high for associations with both principal compo-
nents (λ1 = 5.96, λ2 = 7.83) indicating extensive population structure 
in our data set (Rödin-Mörch et al., 2019). After correcting p-values 
based on these GIFs, we detected 46 outliers associated with PC1 
(mean annual temperature and distance to intermittent/perennial 
streams) and 28 associated with PC2 (solar radiation, sandiness, and 
sage cover). Of these 74 SNPs, only four overlapped with the outliers 
detected using pcadapt.

Our final outlier detection procedure used pRDA, with envi-
ronmental variables conditioned on geographic location. The first 

three constrained axes (RDA1, RDA2, and RDA3) explained 27.8%, 
22.0%, and 21.7% of explainable variation after accounting for 
geographic effects, and were the only significant axes (p <  .05). 
Furthermore, although approximately 38% of explainable varia-
tion was multicollinear between geography and environment, ap-
proximately 62% was explained by environmental variables alone 
(Supporting Information S8). Given that these three axes collec-
tively accounted for 72% of explainable variation, we restricted 
our remaining analyses to these three axes alone. Loci outside of 
the mean loading ±3 SD on each axis were identified as outliers, 
which indicated 82  loci on RDA1, 45 on RDA2, and 61 on RDA3 
as outlier loci, for a total of 188. Of these 188, eight overlapped 
with those found using LFMM and 51 overlapped with those 
found using pcadapt. Although not a focus of analysis, excluding 
Mono Basin from outlier detection led to detection of nine, four, 
and 79 outliers from pcadapt, LFMM, and pRDA, respectively, sug-
gesting that many outliers originally detected for the Great Basin 
overall were associated with differentiation of the Mono Basin 
(Supporting Information S9).

F I G U R E  2  Genetic structure of pygmy rabbit populations across the southern Great Basin. (a) Individual-level admixture proportions 
from K = 2, 4, 6, and 7 for faststRuctuRE and tEss3R. (b) Cross-validation plot for K = 1 to 8 for tEss3R, indicating an elbow in cross-validation 
scores around K = 7. (c) Spatial clustering using the K = 7 solution using tEss3R; each symbol designates population-level admixture 
proportions [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Out of the 308  loci detected overall, 57  matched with existing 
genetic records using Blastn (E-scores <1e-15). We reduced these 
57 matches down to 38 genes in the NCBI Gene database. Although 
we did not detect clustering in DAVID terms at an EASE score thresh-
old of 0.05, we did detect significant enrichment (based on EASE score 
threshold of 0.05) in metal ion-binding genes (Supporting Information 
S10). We also investigated loci identified through each outlier detec-
tion method separately; using similar BLAST settings, 26 out of the 106 
pcadapt loci (24.5%), 14 out of 74 LFMM loci (16.7%), and 30 out of 188 
pRDA loci (14.9%) matched to existing accessions, which were then re-
duced down to 24, 14, and 19 unique genes, respectively (Supporting 
Information S9). Genes identified in the pcadapt data set included 
aldo-keto reductase family 1  member B, REC114  meiotic recombi-
nation protein, and FAT atypical cadherin 4 (Supporting Information 
S10). Genes identified in the LFMM data set included ADAM metal-
lopeptidase 10, a heat shock protein 90 alpha family member, im-
munoglobulin kappa constant 1, a serine/threonine-protein kinase 
MARK2-like region, a microtubule interacting and trafficking domain, 
pericentrin, and a V-set and immunoglobulin domain-containing pro-
tein (Supporting Information S10). Genes identified within the pRDA 
data set included ATPase H+/K+ transporting nongastric alpha2 sub-
unit, a hypoxanthine phosphoribosyltransferase 1, a zinc finger protein 
35, and G protein-coupled receptor 176 (Supporting Information S10). 
Only one outlier locus identified by all three methods was matched 
with a gene region of known function; this locus was matched to 
Sec23 homologue B (Supporting Information S10).

3.2  |  Multivariate genotype-environment 
associations

Although the pRDA conducted for the overall SNP data set was pri-
marily used to identify outlier loci, visualization of this constrained 

ordination for the neutral data set revealed several features as-
sociated with genetic differentiation between study regions; we 
present this information to contextualize environmental gradients 
associated with genetic variation in pygmy rabbits (Figure 3). For the 
neutral data set, the first axis (RDA1) contrasted precipitation in the 
coldest month (r = −.87) with distance to perennial and intermittent 
streams (r =  .81), temperature seasonality (r =  .61) and compound 
topographic index (r = .69), the second (RDA2) captured variation in 
sage cover (r = .49), precipitation in the coldest quarter (r = .38), and 
soil sandiness (r = .35), and the third (RDA3) contrasted precipitation 
in the warmest month (r = .76) and sage cover (r = .52) with tempera-
ture seasonality (r = −.70) and mean annual temperature (r = −.58). 
Furthermore, this pRDA captured spatial clustering in genetic vari-
ation as well (Figure 3a). Ordinations for the outlier data set high-
lighted similar environmental gradients to the neutral pRDA; unlike 
the neutral pRDA, only Mono Basin appeared to be differentiated 
along RDA1 (Figure 3b). Furthermore, Mono Basin was also related 
to RDA2 in contrasting directions between the neutral and outlier 
data sets (Figure 3b). In a similar fashion, the pRDA based on pcadapt 
and LFMM outliers appeared to only highlight divergence in environ-
mental and genetic space between Mono Basin and remaining Great 
Basin study regions (Supporting Information S11).

3.3  |  Genetic differentiation and 
demographic history

After excluding the 308 outlier SNPs documented previously, our 
data set was comprised of 21,071 putatively neutral SNPs. The 
Mono Basin was the most genetically distinct region based on 
both the neutral (range of pairwise FST between other regions and 
Mono Basin =0.099 to 0.133) and outlier data sets (FST =0.375 to 
0.403; Table 1). Genetic distances within each region conformed to 

F I G U R E  3  Association of genetic and environmental variation as identified through partial redundancy analysis. Position of each cluster 
(as indicated by colours and ellipses) identified using tEss3R along redundancy axes (RDA1 and RDA2) for (a) the neutral data set and (b) the 
outlier data set. Primary variable loadings are described along each axis direction, and were generally similar between ordinations (although 
note opposite directions of associations along RDA2 between data sets) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


4180  |    BYER et al.

isolation-by-distance for both neutral and outlier data sets (Table 2). 
Within regions, pairwise FST comparisons revealed some sampling 
localities that were more strongly differentiated than others, with 
consistent trends in neutral and outlier data sets. Within Austin, 
Austin 3 was strongly differentiated from other sampling localities 
(Table 3). Within Elko, Elko 1 appeared to be more strongly differen-
tiated from other localities (Table 3, Figure 2c). Within Hart-Sheldon, 
Hart 4 appeared to be more strongly differentiated from other lo-
calities (Table 3). Every pairwise FST comparison between localities 
across all regions was significant for both neutral and outlier data 
sets (Table 3). Clustering using tess3r indicated strongest support 
for K = 7 for the neutral data set, and revealed several key trends 
(Figure 2a,b). First, as suggested by regional analyses of genetic dif-
ferentiation, sites in the Mono Basin were the most genetically dif-
ferentiated. Second, sites in Elko formed two distinct clusters—one 
that included only Elko 1 and one that included only Elko 2 and 3. 
Third, Austin 3 appeared to be genetically distinct from nearly every 
site sampled. Finally, Hart 4 was assigned a unique cluster as well 
(Figure 2c). Clustering using fastSTRUCTURE indicated that K = 6 
maximized marginal likelihood; patterns of admixture for K = 6 were 
relatively similar between clustering approaches (Figure 2a).

Model testing in fastsimcoal showed that the Mono-early model 
was best supported (Figure 4a, Table 4a; full ranges of parameter 
values across bootstrapped runs presented below and in Table 4b). 
The Mono-early model received essentially all of the model weight 
(AIC = 442,442, ω = ~1), while poor support existed for the east-west 
(AIC = 443,966, ω = ~0) and north-south (AIC = 442,870, ω = ~0). 
The best-supported model indicated a relatively ancient divergence 
between Mono and other regions, sometime between 62,000–
214,000 YBP, with a more contemporary split between Hart, Elko, 
and Austin dating to 148–638 YBP (Figure 4a). Coalescent effec-
tive population sizes for each region were generally small, with low-
est sizes for Mono (45–721) and Elko (5–290), and highest for Hart 
(208–1918) and Austin (185–1592). Stairway plots for each region 
corroborated the small contemporary effective population sizes 
and indicated magnitudes of population size change consistent with 
those recovered from fastsimcoal. There were peaks in effective pop-
ulation size between 25,000 to 100,000 YBP for each region, with 
declines from 25,000 YBP to present (Figure 4b). Estimates for mi-
gration rates were highest from Elko to Austin (median = 6.31), from 
Elko to Hart (median = 2.67), from Hart to Elko (median = 2.55), and 
from Mono to Hart (median = 2.54; Table 4b).

4  |  DISCUSSION

Species that are obligately linked to another should exhibit patterns 
of neutral and adaptive divergence driven by the taxon on which 
they are dependent (Gandon et al., 2008; Kaltz & Shykoff, 1998; 
Lively & Dybdahl, 2000). Pygmy rabbits are ecologically reliant 
on sagebrush, and our examination of both neutral and putatively 
adaptive genetic variation suggests that this dependence has had a 
substantive impact on the biogeography and molecular evolution of 

the pygmy rabbit. We evaluated alternative models of demographic 
history across the southern Great Basin, and related genetic varia-
tion in neutral and outlier loci to current environmental gradients 
using multivariate approaches. Our major findings were: (i) the Mono 
Basin of California diverged and has been largely genetically isolated 
from the remainder of the range since the late Pleistocene, (b) de-
spite having maintained low effective population sizes since the late 
Pleistocene, the Mono Basin region appears to be differentiated 
from the rest of the southern Great Basin at both neutral and outlier 
loci, (c) signatures of putative local adaptation across the southern 
Great Basin appear to be partly driven by availability of sagebrush, 
and (d) putatively adaptive loci were disproportionately common in 
gene regions associated with metal ion-binding; proteins that are 
involved in multiple metabolic pathways including binding of toxic 
compounds. Together, these data support the ecological and evolu-
tionary influence that sagebrush availability and use has had on the 
pygmy rabbit.

4.1  |  Demographic history

Our simulations of demographic history suggest that the Mono 
Basin diverged from the remainder of the range during climatic os-
cillations of the late Pleistocene (as a proxy for glacial conditions; 
Millar & Woolfenden, 2016). Reconstruction of historic sagebrush 
distribution suggests that both interglacial and glacial distribu-
tions were limited between the Mono Basin and the remainder of 
the Great Basin. Albeit largely isolated, Mono Basin connections to 
the populations immediately to the east (Austin region) may have 
been more probable during interglacial periods, while connections 
to the northern regions (Hart) may have been more common during 
interglacial periods (Figure 1). The latter scenarios are supported by 
gene flow parameter estimates showing genetic connectivity, albeit 
limited, between Hart and Mono is higher and thus perhaps more 
recent, than between Austin and Mono. Although no pygmy rabbit 
populations are known to be currently extant between Mono Basin 
and northwestern Nevada, museum records do exist from 1926 
in Lassen County (U.C. Berkeley Accession MVM:Mamm: 36346–
36362, 36368, 36369, 39870), suggesting that pygmy rabbits were 
probably more abundant between Mono and Hart during the recent 
past.

Our estimates of effective size through time (Figure 4b) show 
concerted, precipitous declines across the southern range initiat-
ing between 5000 and 10,000 YBP that have continued to today. 
This is consistent with the decline of pygmy rabbits in the fossil 
record beginning in the mid-Holocene, which also coincides with 
decline of sagebrush in the paleorecord (Commendador & Finney, 
2016; Grayson, 2006). The southern (Austin) and eastern (Elko) 
portions of the range may have begun to decline during the end of 
the Pleistocene (Figure 4b). Albeit in decline, sagebrush distribution 
may have allowed limited gene flow among pygmy rabbit popula-
tions of the Austin, Elko and Hart regions until the past several hun-
dred years, which is consistent with the lack of genetic structure in 
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previous genetic data sets across this region (Larrucea et al., 2018). 
Finally, the Elko region is central to the overall range of the pygmy 
rabbit and appears to have been an important source of gene flow 
into other regions, but the cause of apparent recent precipitous de-
clines in effective size warrant further investigation.

4.2  |  Environmental associations and signatures of 
local adaptation

By coupling detailed demographic analysis with information on en-
vironmental correlates of putative adaptive differentiation, we are 
able to make an initial hypothesis of the relative influences of drift 
and natural selection on genetic differentiation in the southern Great 
Basin. Although signatures of putative adaptive divergence were ev-
ident across all focal regions in our study, pairwise FST for our outlier 
data set was much higher for comparisons between Mono Basin and 
other regions, suggesting either (i) particularly strong signatures of 
local adaptation are present in this area, or (ii) spatial genetic struc-
ture from neutral processes may still be present in the outlier data 
set. Genetic differentiation in the Mono Basin samples also appeared 
to be strongly associated with RDA1, which contrasted precipita-
tion in the coldest quarter with distance to streams and temperature 
indices. In contrast, RDA2, which contrasted sagebrush cover and 
precipitation in the warmest quarter, grouped Mono Basin samples 
differently between outlier and neutral data sets, potentially illus-
trating contrasting environmental relationships between the neu-
tral and outlier data sets (Figure 3b). This suggests that the Mono 
Basin is environmentally unique, which may require unique adaptive 
responses for population persistence. These signatures of putative 
adaptive divergence appear to have emerged despite reductions in 
gene flow and effective population size through time.

Although associations between environmental and genetic dif-
ferentiation were overall weaker for Austin, Elko, and Hart than 
for Mono, we documented two genetic clusters not discovered by 
Larrucea et al. (2018): one that consisted solely of Austin 3, and 
the other that consisted of Elko 1. Austin 3 is surrounded by the 
Shoshone and Toiyabe mountain ranges and may be largely discon-
nected from remaining Austin populations and potentially exposed 

to different climatic conditions relative to remaining sites, particu-
larly increased snowfall. Finally, Elko 1 differentiated from remain-
ing populations in Elko along axis RDA2 and was associated more 
strongly with lower sagebrush cover relative to other populations 
within Elko, suggesting the potential that sagebrush cover may be 
exerting selective pressure on these populations (Gabler et al., 2001; 
Katzner & Parker, 1997; Larrucea & Brussard, 2008; White et al., 
1982).

4.3  |  Loci under putative divergent selection

Across all three of our screening methods, we identified a relatively 
small proportion of our overall data set (~1.7%) as outliers. This 
proportion is similar to those in other studies; for example Xuereb 
et al. (2018) identified 71 out of 3699 SNPs (~2%) as outliers using 
BayeScan and RDAs for the giant sea cucumber (Parastichopus cali-
fornicus), Araneda et al. (2016) identified 58 out of 1240 SNPs (~5%) 
as outlier using LOSITAN for the Chilean blue mussel (Mytilus chilen-
sis), and Rödin-Mörch et al. (2019) identified 812 out of 27,590 SNPs 
(~3%) as outliers using pcadapt and LFMM for the moor frog (Rana 
arvalis). In addition, very few of our identified outliers overlapped 
between approaches, probably because each method varies in its 
consideration of environmental gradients (from no consideration 
for pcadapt to PC-based representation for LFMM and pRDA) and 
represents population structure in a variety of ways (PCA-based for 
pcadapt, latent factors for LFMM, constrained axes for pRDA). As in 
other studies, relatively few of our outlier loci (57 out of 308, or 
18.5%, representing 38 unique gene IDs) matched to genes of known 
function, emphasizing a challenge of using reduced-representation 
approaches that target random parts of the genome when study-
ing non-model organisms. Below, we highlight several notable func-
tional categories among these genes.

The only significant enrichment detected was for metal ion-
binding genes. This and other observed gene ontology terms in our 
outlier data set (“metal ion-binding”, “zinc”, “oxidoreductase”) have all 
been previously associated with detoxification in a number of taxa, 
including bivalves (Cross et al., 2018; Silliman, 2019), plants (Gardiner 
et al., 2018; Silva-Brandão et al., 2017), and birds (Zimmerman et al., 

Austin Elko Hart-Sheldon Mono Basin

(a)

Austin 0.030–0.031 0.054–0.056 0.096–0.100

Elko 0.030 0.044–0.046 0.100–0.104

Hart-Sheldon 0.055 0.045 0.128–0.133

Mono Basin 0.098 0.102 0.130

(b)

Austin 0.059–0.080 0.062–0.090 0.372–0.435

Elko 0.071 0.060–0.089 0.342–0.401

Hart-Sheldon 0.077 0.074 0.353–0.410

Mono Basin 0.403 0.375 0.378

TA B L E  1  Pairwise FST among study 
regions for (a) the neutral data set and (b) 
the outlier data set. FST values are shown 
below the diagonal and permutation-
based 95% confidence intervals are shown 
above the diagonal
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2019). Most important, these genes are often enriched in adaptively 
divergent outlier data sets for taxa with dietary specialization. In the 
Gunnison's sage-grouse (Centrocercus minimus), Zimmerman et al. 
(2019) found significant enrichment in cytochrome P450  gene re-
gions, which have functions associated with metabolism of PSCs 
through metal ion-binding and oxidoreductase activity. As with the 
pygmy rabbit, the Gunnison's sage-grouse is a sagebrush obligate, 
relying on sagebrush both for diet and shelter (Zimmerman et al., 
2019). Since sagebrush species vary in composition and quantities 

of PSCs, Zimmerman et al. (2019) suggested that variation in genes 
associated with metabolism of PSCs may reflect local adaptation to 
different species of sagebrush (Frye et al., 2013; Kelsey et al.,1982; 
Zimmerman et al., 2019). Pygmy rabbits are largely reliant on big 
sagebrush (Artemisia tridentata) and appear to be highly efficient at 
reducing concentrations of monoterpenes in their gut (Shipley et al., 
2006; White et al., 1982); however, they often live in close proxim-
ity to other species of sagebrush such as the threetip sagebrush (A. 
tripartia) and may consume both when available (Green & Flinders, 

TA B L E  2  Summary statistics for genetic diversity within each region for (a) the neutral data set and (b) the outlier data set

Region n A ΘW HO HE FIS IBD

(a)

Austin 237 2.00 3120.06 0.27 0.27 0.006 Yes (r = .45, p = .001)

Austin 1 9 1.83 5110.84 0.27 0.27 –0.005 No (r = .22, p = .083)

Austin 2 150 2.00 3339.69 0.27 0.28 0.013 Yes (r = .06, p = .003)

Austin 3 78 1.97 3640.20 0.26 0.27 0.013 Yes (r = .09, p = .005)

Elko 184 2.00 3236.00 0.26 0.27 0.034 Yes (r = .60, p = .001)

Elko 1 72 1.96 3638.64 0.26 0.26 0.016 Yes (r = .05, p = .024)

Elko 2 105 1.99 3518.78 0.26 0.27 0.028 Yes (r = .09, p = .003)

Elko 3 7 1.81 5340.66 0.25 0.27 0.046 No (r = −.13, p = .750)

Hart-Sheldon 65 1.95 3659.32 0.25 0.25 0.012 Yes (r = .36, p = .001)

Hart 1 8 1.72 4584.67 0.24 0.24 –0.009 No (r = −.03, 
p = .583)

Hart 2 46 1.92 3820.51 0.25 0.26 0.025 Yes (r = .10, p = .014)

Hart 3 5 1.69 5129.08 0.25 0.26 0.013 No (r = −.21, p = .811)

Hart 4 6 1.67 4699.20 0.24 0.24 –0.012 No (r = −.19, p = .800)

Mono Basin 17 1.71 3637.74 0.21 0.21 0.012 Yes (r = .85, p = .001)

Mono 1 5 1.56 4168.66 0.21 0.22 0.001 No (r = −.20, 
p = .800)

Mono 2 12 1.62 3482.32 0.21 0.21 0.001 No (r = .11, p = .151)

(b)

Austin 237 1.98 44.97 0.24 0.23 –0.034 Yes (r = .77, p = .001)

Austin 1 9 1.74 66.29 0.24 0.22 –0.063 No (r = .12, p = .357)

Austin 2 150 1.97 47.62 0.21 0.21 –0.001 No (r = .02, p = .254)

Austin 3 78 1.93 50.68 0.26 0.26 –0.014 Yes (r = .15, p = .006)

Elko 184 1.99 47.04 0.24 0.24 –0.003 Yes (r = .66, p = .001)

Elko 1 72 1.91 50.51 0.24 0.24 –0.016 No (r = .04, p = .088)

Elko 2 105 1.98 51.00 0.24 0.24 0.003 No (r = .02, p = .348)

Elko 3 7 1.74 72.01 0.25 0.25 0.000 No (r = .17, p = .228)

Hart-Sheldon 65 1.91 51.28 0.24 0.23 –0.037 Yes (r = .36, p = .001)

Hart 1 8 1.66 61.18 0.24 0.23 –0.052 No (r = .01, p = .492)

Hart 2 46 1.86 52.22 0.25 0.24 –0.012 No (r = .04, p = .222)

Hart 3 5 1.65 70.34 0.26 0.24 –0.054 No (r = −.46, p = .894)

Hart 4 6 1.61 62.25 0.23 0.22 –0.016 No (r = −.13, p = .640)

Mono Basin 17 1.77 57.96 0.27 0.28 0.020 Yes (r = .86, p = .001)

Mono 1 5 1.67 73.17 0.28 0.29 0.011 No (r = −.05, p = .536)

Mono 2 12 1.71 58.38 0.26 0.26 –0.001 No (r = −.01, p = .490)

Note: n, sample size; A, mean allelic richness; ΘW, Watterson’s estimator; HO, observed heterozygosity; He, expected heterozygosity; FIS, inbreeding 
coefficient. The IBD column indicates if significant isolation-by-distance was detected within the specified sampling region or locality.
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Region = Austin

Austin 1 Austin 2 Austin 3

Austin 1 0 0.020 0.090

Austin 2 0.018 0 0.124

Austin 3 0.041 0.030 0

Region = Elko

Elko 1 Elko 2 Elko 3

Elko 1 0 0.100 0.083

Elko 2 0.039 0 0.005

Elko 3 0.038 0.007 0

Region = Hart-Sheldon

Hart 1 Hart 2 Hart 3 Hart 4

Hart 1 0 0.041 0.053 0.079

Hart 2 0.035 0 0.021 0.045

Hart 3 0.047 0.021 0 0.041

Hart 4 0.073 0.045 0.046 0

Region = Mono Basin

Mono 1 Mono 2

Mono 1 0 0.101

Mono 2 0.102 0

TA B L E  3  Pairwise FST within sampling 
localities in each region. FST values for 
the neutral data set are shown below the 
diagonal and FST values for the outlier data 
set are shown above the diagonal

F I G U R E  4  Demographic history of pygmy rabbits across the southern Great Basin. (a) Alternative scenarios of divergence with gene flow 
and population size change in pygmy rabbits tested in fastsimcoal 2.6. The Mono-early Model (third from left) was best supported by the 
coalescent simulations, and median estimates of parameter values across model runs on subsampled data sets are presented. Diploid sizes 
are presented for convenience. Arrows indicate directional migration (in effective migrants/generation) between focal regions. (b) Effective 
population size through time for each focal region showing concerted recent population declines across regions [Colour figure can be viewed 
at wileyonlinelibrary.com]
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1980). Furthermore, volatile oil content varies even within species 
of sagebrush as a function of soil characteristics, with documented 
relationships between oil content and magnesium and phosphorus 
content in soils for big sagebrush (Powell, 1970). We acknowledge 
that zinc finger proteins have diverse functions and may thus not be 
associated with detoxification loci. However, similarity between our 
results and those of Zimmerman et al. (2019) – and the fact that zinc 
finger proteins often flank CYP450 tandem arrays, which have doc-
umented importance for detoxification (M. Holding, personal obser-
vation) – may indicate local adaptation in a sagebrush specialist to 
variation in PSCs across the landscape.

4.4  |  Conclusions

Genetic isolation may either accelerate the selective effects of local 
environmental conditions (Räsänen & Hendry, 2008) or decrease 
adaptive potential by reducing effective population sizes (Sultan 
& Spencer, 2002; Tigano & Friesen, 2016). In our study, signatures 
of putative local adaptation among and within our focal study 

regions suggest the possibility that selection has shaped variation 
between these regions (Fraser et al., 2011; Rellstab et al., 2017; 
Richardson et al., 2014). For the Mono Basin, long-term divergence 
from other southern Great Basin regions (Figure 4a), low rates of 
immigration from other regions (Figure 4a), and marked differen-
tiation associated with environmental gradients (Figure 1b) sug-
gest that historical isolation may have facilitated the accumulation 
of locally-adapted alleles (Haldane, 1930; Tigano & Friesen, 2016). 
However, recent declines in effective population size (Figure 4b) 
may increase the influence of genetic drift and reduce the ability 
of these populations to respond to selection in the future (Tigano 
& Friesen, 2016). For Austin, Elko, and Hart, high rates of gene flow 
(Figure 4a), low environmental differentiation between regions 
(Figure 2), and reduced counts of outliers for outlier scans exclud-
ing Mono Basin may point to more modest adaptive differentiation 
among these regions, and reduced effects of genetic drift due to 
greater genetic connectivity throughout these regions. Overall, 
our study suggests that the Mono Basin is evolutionarily highly 
distinct and harbors the strongest signals of adaptive divergence 
among sites.

TA B L E  4  (a) Relative rankings of demographic history models, as evaluated in fastsimcoal. K = number of parameters, LL = log likelihood, 
AIC = Akaike’s Information Criterion, ∆AIC = change in AIC relative to the top model, and ω = model selection weight. (b) Quartiles of 
divergence times (T), diploid effective population sizes (N), and diploid effective migration rates (MIG) for nonparametric bootstrapped runs, 
produced from 25 subsampled data sets each subjected to 50 replicate runs

(a)

Model K LL AIC ∆AIC ω

Mono-Early 18 –96,067.166 442,441.649 0 1

North-South 20 –96,159.275 442,869.826 428.177621 1.053E-93

East-West 20 –96,397.265 443,965.811 1524.16207 0

(b)

Parameter Minimum 25% Quartile Median 75% Quartile Maximum

NMono 45 69 96 368 721

NHart 208 438 641 985 1918

NElko 5 9 12 30 290

NAustin 185 359 487 764 1592

NAncestral 44,371 62,742 72,060 91,663 112,200

NAustin/Elko/Hart 709 1958 6852 17,080 28,100

TAncestral 62,089 79,666 129,427 177,366 213,968

TAustin/Elko/Hart 148 230 286 489 638

MIGMono→Austin/Elko/Hart 1.51E-4 3.37E-4 6.26E-4 1.11E-3 0.22

MIGAustin/Elko/Hart→Mono 5.53E-5 7.84E-5 1.09E-4 2.93E-4 6.01E-4

MIGMono→Hart 0.67 1.95 2.54 3.46 6.18

MIGHart→Mono 1.26E-4 2.08E-3 2.26E-2 0.26 0.58

MIGHart→Elko 8.1E-3 2.15 2.55 3.06 4.11

MIGElko→Hart 3.43E-4 4.14E-2 2.67 7.93 9.92

MIGElko→Austin 2.73E-4 4.05 6.31 7.04 8.95

MIGAustin→Elko 2.19E-4 0.40 0.95 1.21 2.91

MIGAustin→Mono 5.20E-2 0.41 0.45 0.70 0.86

MIGMono→Austin 8.21E-4 5.48E-2 1.43 2.07 4.59
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Nevertheless, environmental associations with outlier SNPs were 
relatively weak, with environment only explaining approximately 5% 
of total variance in the SNP data set (Supporting Information S7). 
This fact — combined with noticeable clustering by study region 
within multivariate space, substantial geographic separation be-
tween study regions, and relatively high degrees of multicollinearity 
between geographic and environmental variables — generates diffi-
culties in separating purely environmental effects on genetic varia-
tion from those explainable by distance alone (Gaggiotti et al., 2009; 
Kawecki & Ebert, 2004; Räsänen & Hendry, 2008; Stiebens et al., 
2013). Although redundancy analyses are robust to moderate to 
relatively high degrees of population differentiation (Forester et al., 
2018), it is not clear if these detected signatures of putative adap-
tive divergence are more reflective of environmental differences or 
geographic separation between study sites; both are often viewed 
as important processes facilitating local adaptation, and may both 
be influential in the pygmy rabbit system (Kawecki & Ebert, 2004; 
Räsänen & Hendry, 2008; Sork et al., 2010). Further study is needed 
to determine how the interaction between environment, geography, 
and demographic change through time affects genetic variation in 
this species.

4.5  |  Future directions

Although it remains to be seen if our observed outlier loci are (or 
are linked to) ecologically adaptive loci, differentially adapted pop-
ulations may respond to environmental change in distinct ways, 
necessitating more dynamic and flexible conservation planning 
initiatives to account for these different responses (Hällfors et al., 
2016; Hoffmann & Sgro, 2011). Efforts are underway to assemble a 
high-quality pygmy rabbit genome (Holding et al., 2021), and further 
work will leverage this genome to understand the genomic position 
of putatively adaptive SNPs. While our results mirror enrichment 
in detoxification loci documented in the Gunnison's sage-grouse 
(Zimmerman et al., 2019), we suspect that reappraisal of adaptive 
genetic variation with the aid of the pygmy rabbit genome may high-
light even more gene families as potentially important for driving 
adaptive genetic divergence, particularly if SNPs not within func-
tional gene regions are linked with detoxification loci (Lowry et al., 
2017; although see Catchen et al., 2017). Since changes in genotype 
frequencies are mediated by selection on phenotypes, we suggest 
that future studies explore the relationships between phenotypes 
and fitness at both broad (between Mono Basin and remaining study 
regions) and finer (within Elko and Austin) scales. Furthermore, de-
veloping a better understanding of local adaptation will be important 
in predicting how populations will respond to ongoing environmen-
tal change (Hoffmann & Sgro, 2011; Schoville et al., 2011).
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