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Abstract
In this paper, we consider a bistable monotone reaction–diffusion system in
cylindrical domains. We first prove the existence of the entire solution emanat-
ing from a planar front. Then, it is proved that the entire solution converges
to a planar front if the propagation is complete and the domain is bilaterally
straight. Finally, we give some geometrical conditions on the domain such that
the propagation of the entire solution is complete or incomplete, respectively.
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1. Introduction

In this paper, we consider the following reaction–diffusion system{
ut = DΔu+ F(u), t ∈ R, x ∈ Ω

∂νu = 0, x ∈ ∂Ω,
(1.1)

where u(t, x) = (u1(t, x), u2(t, x)), 0 = (0, 0) and Ω is an unbounded open connected set of RN

defined by

Ω = {(x1, x′) ∈ R
N ; x1 ∈ R, x′ ∈ ω(x1) ⊂ R

N−1}, (1.2)

3Current address: School of Mathematical Sciences, Tongji University, Shanghai, People’s Republic of China
∗Author to whom any correspondence should be addressed.
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where ω is independent of x1 for x1 < 0. Notice that the left side of Ω is a half straight cylin-
der. Here, ν(x) is the unit outward normal on ∂Ω and the homogeneous Neumann boundary
condition ∂νu = (∂νu1, ∂νu2) = 0 implies that there is no flux cross the boundary ∂Ω.

Let us first clarify some notions. For any two vectors a = (a1, a2) and b = (b1, b2), the sym-
bol a � bmeans ai < bi for i = 1, 2, and a � b means ai � bi for i = 1, 2. The interval [a, b]
denotes the set of q ∈ R

2 such that a � q � b. Throughout this paper, we assume that

(A1) D is a 2× 2 diagonal matrix with elements D1 > 0, D2 > 0.
(A2) F has two stable equilibria 0 = (0, 0) and 1 = (1, 1), that is, F(0) = F(1) = 0 and all the

eigenvalues of F′(0) and F′(1) lie in the open left-half complex plane. We also assume
that the matrixes F′(0) and F′(1) are irreducible.

(A3) The reaction term F(u) = (F1(u),F2(u)) is defined on an open domain E of R2 and of
class C1 in u. Moreover, F satisfies the following conditions

∂Fi

∂u j
(u) � 0 for all u ∈ [0, 1] ⊂ E and for all i �= j.

Actually, the technique used in this paper can be trivially extended to an n-dimensional
system for n � 2. Here, we only deal with n = 2 for convenience. From above assumptions,
one knows that (1.1) is a monotone system. It therefore implies that a comparison principle
holds for system (1.1), see [15, 18].

The system (1.1) arises in various fields of sciences such as mathematical ecology, popula-
tion genetics, chemical reactor theory, etc. Particularly, this system can describe the population
distribution of two species which are interacting with each other in a certain manner and simul-
taneously diffusing over the domain. In the study of the cross-diffusion of two species, the
travelling front plays a key role. For instance, the travelling front can describe the invasion
of the species into a fresh region in the cooperative system or the invasion of one species to
another in the competition system. Some evidence of existence of travelling fronts can be found
in [8] for a competition model and in [6] for a model which describes chemical phenomenon
on isothermal catalyst surface. For the general monotone reaction–diffusion system, we refer
to [17, 18] for some conditions ensuring the existence of travelling fronts and refer to [5] for
some abstract results. It is worth to mention that the authors of [17, 18] used the topologi-
cal methods, while the authors of [5] used the dynamical theory. Since the system (1.1) may
contain stable equilibrium other than 0 and 1, it may not exist travelling fronts connecting 0
and 1 in general. Therefore, in this paper, we always assume that (1.1) in one dimension, that
is, Ω = R, admits a unique (up to shifts) travelling front Φ(x − ct) = (φ1(x − ct),φ2(x − ct))
satisfying ⎧⎪⎪⎨

⎪⎪⎩
−Diφ

′′
i − cφ′

i − Fi(Φ) = 0,

Φ(+∞) = 0, Φ(−∞) = 1,

φ′
i < 0 onR for i = 1, 2.

(1.3)

It is known from [18, chapter 3] that there exist C > 0 and β > 0 such that

φi(ξ) � C e−βξ for ξ � 0, 1− φi(ξ) � C eβξ for ξ < 0 and |φ′
i(ξ)|, |φ′′

i (ξ)|

� C eβ|ξ| for ξ ∈ R.

Indeed, some stability results for the travelling front Φ(x − ct) can be referred to
[1, 13, 14, 18, 19]. In the study of travelling fronts, the propagation speed c is also an
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important aspect. For instance, the sign of c represents who is the winner in the competition
system. Some results about the relationship between the parameters and the sign of the speed
can be referred to [11]. Throughout this paper, we assume that

c > 0.

Otherwise, we can replace the roles of 0 and 1.
Since we are interested in how the geometry of the domain effects the diffusion, we first

recall some results for the scalar bistable reaction–diffusion equation

ut = Δu+ f (u), t > 0, x ∈ Ω, (1.4)

where Ω is a smooth unbounded open connected set of RN and the function f is of bistable,
that is, it satisfies

f (0) = f (1) = 0, f < 0 on (0, θ) and f > 0 on (θ, 1) for some θ ∈ (0, 1),

and f ′(0) < 0, f ′(1) < 0. From [7], it is known that (1.4) in one dimension admits travelling
fronts φ(x · e− ct) connecting 0 and 1 and hence, (1.4) in high dimensional space RN (N � 2)
admits planar fronts φ(x · e− ct) for any e ∈ S

N−1. In [3], Berestycki, Hamel and Matano
have studied the propagation phenomenon when the domain is an exterior domain, that is,
Ω = R

N \ K whereK is a bounded connected open set ofRN and K is called an obstacle. They
proved that the planar front φ(x − ct) can propagate infinitely far from the obstacle, that is,
there is an entire solution u(t, x) such that

u(t, x)→ φ(x · e− ct) as t→−∞ uniformly inΩ.

From their work, one knows that if K is star-shaped or directionally convex with respect to
some hyperplane4, then the propagation of u is complete, that is, satisfying

u→ 1 as t→+∞ locally uniformly inΩ.

They also gave an example such that u cannot propagate completely. Such complete and incom-
plete propagation phenomena appear in cylindrical domains too. In [2], Berestycki, Bouhours
and Chapuisat investigated the propagation of a planar front in the domain which is a cylinder
with different kind of cross sections, that is, Ω is defined by (1.2). They first proved that a pla-
nar front φ(x1 − ct) can propagate from the left side of the cylinder, that is, there is an entire
solution u(t, x) satisfying

u(t, x)→ φ(x1 − ct) as t→−∞ uniformly inΩ.

They also gave some conditions such that the propagation of u is complete or incomplete.
In this paper, we aim to extend the results of [2] to our system (1.1). We emphasize here

that the authors of [2] dealt with a scalar reaction–diffusion equation and we are dealing with
a system of reaction–diffusion equations. Due to this, many modifications and new techniques
are needed. For example, theorem 1.5 and lemma 4.1 in the scalar case are known to be proved

4 The obstacle K is called star-shaped if either K = ∅ or there is x in the interior Int(K) of K such that x + t(y− x) ∈
Int(K) for all y ∈ ∂K and t ∈ [0, 1). In the latter case, we say that K is star-shaped with respect to the point x. The
obstacle K is called directionally convex with respect to a hyperplane H = {x ∈ R

N : x · e = a}, with e ∈ S
N−1 and

a ∈ R, if for every line Σ parallel to e, the set K ∩Σ is either a single line segment or empty and if K ∩ H is equal to
the orthogonal projection of K onto H.
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by the energy functional which is invalid in our case. Indeed, since we assumed the existence of
travelling front Φ(x − ct) satisfying (1.3). It means that there exist planar fronts Φ(x · e− ct)
of (1.1) with Ω = R

N for any unit vector e ∈ S
N−1. We fist prove the existence and uniqueness

of the entire solution u(t, x) of (1.1) emanating from the planar front Φ(x1 − ct).

Theorem 1.1. Let Ω ⊂ R
N satisfying (1.2). Then, system (1.1) admits a unique entire

solution u(t, x) satisfying

u(t, x)→ Φ(x1 − ct) as t→−∞ uniformly inΩ. (1.5)

Moreover, u(t, x) is increasing in t, 0 � u(t, x) � 1 for all (t, x) ∈ R× Ω.

The existence of the entire solution u(t, x) emanating from the planar front Φ(x1 − ct)
implies that the planar front enters in the left side of the cylinder. We now investigate the large
time behaviour of the entire solution u(t, x). The following theorem shows that if the right side
ofΩ is straight, then the entire solution u(t, x) converges to a planar front as t→+∞ provided
by the complete propagation.

Theorem 1.2. If Ω is bilaterally straight, that is, ω(x1) is independent of x1 when x1 � 0
and x1 � L for some L > 0, and the propagation of u(t, x) is complete, that is, it satisfies

u(t, x)→ 1 locally uniformly inΩ as t→+∞, (1.6)

then there is a constant σ such that

u(t, x)→ Φ(x1 − ct + σ) as t→+∞ uniformly inΩ.

Remark 1.3. Theorem 1.2 implies that in the bilaterally straight cylinder, the entire solution
u(t, x) is a transition front connecting 0 and 1 and has a global mean speed equal to c, see [10]
for definitions of the transition front and the global mean speed.

The following theorem shows some geometrical conditions of Ω such that u(t, x) can
propagate completely.

Theorem 1.4. The propagation of u(t, x) is complete, if Ω satisfies one of the following
conditions

(a) For all x ∈ ∂Ω, ν1(x) � 0 where ν1(x) is the first component of the outward unit normal
at x;

(b) For a sufficiently large R0, R× B′
R0

⊂ Ω where B′
R0
denotes the ball of RN−1 with centre

0 and radius R0 and Ω is axially star-shaped, that is, for any x = (x1, x′) ∈ ∂Ω and
ν = (ν1, ν ′), ν ′ · x′ � 0 for all x ∈ ∂Ω;

(c) Ω is a dilated domain with any shift x0 ∈ R
N by a cylinder Ω′ and a large constant R0,

that is, Ω = R0Ω
′ + x0.

Finally, we give some conditions of Ω such that the propagation of u(t, x) is incomplete or
blocked.

Theorem 1.5. Let a and b be two constants such that −∞ < a < b < +∞. There exists
ε > 0 small enough depending on the distance b− a and

Ω ∩ {x ∈ R
N , b < x1 < b+ 1}

such that if

|Ω ∩ {x ∈ R
N , x1 ∈ (a, b)}| < ε,
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then the propagation of u is blocked, that is,

u(t, x)→ u∞ inΩ as t→+∞with u∞(x)→ 0 as x1 →+∞.

We organize this paper as follows. In section 2, we give some comparison principles which
are key tools in the sequel and prove the existence of the entire solution u(t, x) emanating from
a planar front. Section 3 is devoted to the proof of that u(t, x) converges to a planar front when
the right side of Ω is straight and the propagation of u(t, x) is complete. In section 4, we give
some geometrical conditions on Ω such that the propagation of the entire solution u(t, x) is
complete or incomplete, respectively.

2. Existence of front-like solutions

In this section, we prove the existence of the entire solution emanating from a planar front.
The idea of the proof is inspired by [3]. However, since we are dealing with a system, some
adaption should be made upon a system. We will need some comparison principles for our
system (1.1) and prove theorem 1.1 by constructing sub- and supersolutions.

2.1. Comparison principles

In this subsection, we list some comparison principles.We first state the definitions of sub- and
supersolutions.

Definition 2.1. If a functionu = (u1, u2) satisfies u1, u2 ∈ C1,1(Γ× Ω) ∩ C1,2(Γ× Ω) where
Γ ⊂ R and that{

ut −Δu− F(u) � 0, inΓ× Ω

∂νu � 0, onΓ× ∂Ω,
(2.1)

then u is called a supersolution of (1.1) inΓ× Ω. If u satisfies the reversed differential inequali-
ties, then it is called a subsolution of (1.1) inΓ× Ω. If u and v are supersolutions (subsolutions)
of (1.1) in Γ× Ω, then

min(u, v)(max(u, v)),

(min and max are to be understood componentwise) is still a supersolution (subsolution) of
(1.1) in Γ× Ω.

Definition 2.2. Let S be a smooth hypersurface dividing Ω into disjoint regions Ω1, Ω2;
namely, Ω = Ω1 ∪ S ∪Ω2. Suppose u = (u1, u2) ∈ C1,0(Γ× Ω)× C1,0(Γ× Ω) is C1 on each
Ω1, Ω2 and C2 on each Ω1, Ω2. Suppose further that (2.1) holds except on S and that

∂ui
∂ξ

+
∂ui
∂ζ

� 0 on S,

where ξ, ζ denote the inner normal on ∂Ω1 ∩ S, ∂Ω2 ∩ S respectively. Then, u is called a super-
solution of (1.1) in Γ× Ω. If u satisfies the reversed differential inequalities, then it is called a
subsolution of (1.1) in Γ× Ω.

Then, the following proposition follows from [12, 15, 18].

Proposition 2.3. If u and u are sub- and supersolutions of (1.1) in R
+ × Ω and it holds

u(0, x) � u(0, x) for x ∈ Ω, then we have u(t, x) � u(t, x) for all (t, x) ∈ R
+ × Ω.
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We can also have the following proposition.

Proposition 2.4. Let u and u be sub and supersolutions of (1.1) in Q where
Q = (0, τ)× Ω, τ ∈ (0,+∞) and u(t, x) � u(t, x) for all (t, x) ∈ Q. If ui(t0, x0) = ui(t0, x0)
for some (t0, x0) ∈ Q, then ui(t, x) = ui(t, x) for all (t, x) ∈ Q, t � t0. If u(t, x) �≡ v(t, x) and
ui(t0, x0) = ui(t0, x0) for some (t0, x0) ∈ ∂Q = (0, τ)× ∂Ω, then ∂ν(ui(t0, x0)− ui(t0, x0)) > 0
where ν is the unit outward normal on ∂Ω.

Proof. The first part of this proposition can directly follow from [6]. We only prove the last
assert.

Let v(t, x) = u(t, x)− u(t, x). We have

(vi)t −Δvi − Fi(u)+ Fi(u) � 0, inQ.

By assumption (A3), one has

Fi(u)− Fi(u) =
∑
j=1,2

∂Fi

∂u j
(θ(t, x))(uj − u j) �

∂Fi

∂ui
(θ(t, x))(ui − ui),

where u(t, x) � θ(t, x) � u(t, x). Then, it follows that

(vi)t −Δvi −
∂Fi

∂ui
(θ(t, x))vi � 0, inQ.

Since vi(t, x) � 0 in Q and vi(t0, x0) = 0 for (t0, x0) ∈ ∂Ω and by Hopf lemma, one has that

∂νvi(t0, x0) < 0.

This completes the proof. �

2.2. Construction of sub- and supersolutions

We construct sub- and supersolutions for (1.1) by the idea inspired by [16]. By our assumptions
and Perron–Frobenius theorem, one knows that the principal eigenvalues of F′(0) and F′(1)
are negative and the corresponding eigenvectors are positive. It then can be easily found an
irreducible constant matrixes A± = (μ±

i j) such that ∂Fi/∂u j(0) < μ+
i j , ∂F

i/∂u j(1) < μ−
i j for

all i, j = 1, 2, and its principal eigenvalues are negative. Let p± = (p±1 , p
±
2 ) be the positive

eigenvectors corresponding to the principal eigenvalues of A±. Then, there exist δ0 > 0 and
k > 0 such that

∂Fi

∂u j
(u) � μ+

i j for u ∈ Bδ0 (0) and
∂Fi

∂u j
(u) � μ−

i j for u ∈ Bδ0 (1) and i, j = 1, 2,

(2.2)

and

2∑
j=1

μ±
i j r j � −kri for all r = (r1, r2) ∈ R

2
+ ∩ Bδ0 (p

±). (2.3)

Take a positive constantM and a C2 decreasing function ζ(s) such that

ζ(s) = 1 for s � −M and ζ(s) = 0 for s � M.
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Define

pi(ξ) := ζ(ξ)p−i + (1− ζ(ξ))p+i , for i = 1, 2,

and p(ξ) := (p1(ξ), p2(ξ)). Notice that

pi(ξ) ≡ p−i for ξ � −M and pi(ξ) ≡ p+i for ξ � M. (2.4)

SinceΦ(+∞) = 0,Φ(−∞) = 1, one can take a small positive constant δ and a large positive
constant C � M such that

max
i=1,2

{Diμ
2} � k, max

i=1,2
{δp±i } � δ0

2
for all i = 1, 2, (2.5)

where μ := δ/c and

‖Φ(ξ)‖ � δ min
i=1,2

{p+i } for all ξ � C and ‖Φ(ξ)− 1‖

� δ min
i=1,2

{p−i } for all ξ � −C, (2.6)

where k and δ0 are defined by (2.3) and (2.2) respectively. Let

C1 := max

{
sup
ξ∈R

‖p(ξ)‖, sup
ξ∈R

‖p′(ξ)‖, sup
ξ∈R

‖p′′(ξ)‖
}
, (2.7)

where ‖ · ‖ is the Euclidean norm of R2 and

C2 := sup

⎧⎨
⎩

2∑
i, j=1

∣∣∣∣∂Fi∂u j
(u)

∣∣∣∣ ,
2∑

i, j,l=1

∣∣∣∣ ∂2Fi

∂u j∂ul
(u)

∣∣∣∣ : u ∈ [0, 1]

⎫⎬
⎭ . (2.8)

Since Φ′(ξ) < 0 for all ξ ∈ R, there is C3 > 0 such that

−φ′
i(ξ) � C3 for all |ξ| � C and i = 1, 2. (2.9)

Let α > 0 be a large enough constant such that

C3α � max
i=1,2

(
c+ 1+ Di + 2Diμ+ Diμ

2 + C2
)
C1 eμ(C+1). (2.10)

For (t, x) ∈ R× Ω, define

u−(t, x) :=

{
max

(
Φ(ξ(t, x1))− δp(ξ(t, x1))eμx1 , 0

)
, if x1 � 0

0, if x1 > 0,
(2.11)

where ξ (t, x1) = x1 − ct + α eδt.

Lemma 2.5. There exists T < 0 such that u−(t, x) is a subsolution of (1.1) for all t � T and
x ∈ Ω.

Proof. Take T < 0 such that

αδ eδt � 1 for all t � T and − cT � C.
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Then, ξ(t, x1) � −ct+ α eδt � −cT � C � M for all t � T and x1 � 0. By (2.6) and (2.4),
it follows that ‖Φ(ξ(t, x1))‖ � δmini=1,2{p+i } and pi(ξ(t, x1)) = p+i for all t � T and x1 � 0.
Thus,

max
(
Φ(ξ(t, x1))− δp(ξ(t, x1))eμx1 , 0

)
= 0 for all t � T and x1 � 0.

It means that u−(t, x) is well-defined and continuous for t � T and x ∈ Ω. Since 0 is a solution
of (1.1) and obviously ∂νu−(t, x) = 0 for x ∈ ∂Ω, one only has to check that

Ni[u−](t, x) := (u−i )t − DiΔu
−
i − Fi(u−) � 0,

for i = 1, 2 and (t, x) ∈ (−∞, T]× Ω such that u−(t, x) = Φ(ξ(t, x1))− δp(ξ(t, x1))eμx1 � 0.
After some calculation and by (1.3), one can get that

Ni[u−](t, x) := (u−i )t − DiΔu
−
i − Fi(u−)

= αδ eδtφ′
i(ξ(t, x1))−

(
(−c+ αδ eδt)δp′i(ξ(t, x1))

− Diδp
′′
i (ξ(t, x1))− 2Diδμp

′
i(ξ(t, x1))− Diδμ

2pi(ξ(t, x1))
)
eμx1

+ Fi(Φ(ξ(t, x1)))− Fi(u−(t, x)),

(2.12)

for i = 1, 2. For (t, x) ∈ (−∞, T]× Ω such that |ξ(t, x1)| � C, it follows from the mean-value
theorem that there exist θi(t, x) ∈ (0, 1), i = 1, 2 such that

Fi(Φ(ξ(t, x1)))− Fi(u−(t, x)) =
2∑
j=1

∂

∂u j
Fi

(
Φ(ξ(t, x1))− θi(t, x)

× δp(ξ(t, x1))eμx1
)
δpj(ξ(t, x1))eμx1

� C1C2δ e
μx1 ,

whereC1 andC2 are defined by (2.7) and (2.8). Notice that ξ(t, x) � C implies that x1 � C + ct
and hence eμx1 � eμC ecμt = eμC eδt by cμ = δ. Then, it follows from (2.9), (2.10) and (2.12)
that

Ni[u−](t, x) �− αδ eδtC3 +
(
c+ 1+ Di + 2Diμ+ Diμ

2 + C2
)
C1δ eμx1

�− C3αδ e
δt +

(
c+ 1+ Di + 2Diμ+ Diμ

2 + C2

)
C1 e

μCδ eδt � 0.

On the other hand, for (t, x) ∈ (−∞, T]× Ω such that ξ(t, x1) � C, it follows that pi(ξ(t, x1)) ≡
p+i by C � M and (2.4). Then, by (2.2) and (2.3), one has that

Fi(Φ(ξ(t, x1)))− Fi(u−(t, x)) =
2∑
j=1

∂

∂u j
Fi

(
Φ(ξ(t, x1))− θi(t, x)

× δp(ξ(t, x1))eμx1
)
δp+j eμx1

� −kp+i δ eμx1 ,
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for θi(t, x) ∈ (0, 1) and i = 1, 2. Since Φ′
i(ξ) < 0 for all ξ ∈ R and p′i(ξ) = 0, p′′i (ξ) = 0 for

|ξ| � C and i = 1, 2, it follows from (2.5) and (2.12) that

Ni[u−](t, x) � Diδμ
2p+i eμx1 − kp+i δ e

μx1 � (Diμ
2 − k)p+i δ e

μx1

� 0, for i = 1, 2.

Similarly, one can prove thatNi[u−](t, x) � 0 for (t, x) ∈ (−∞, T]× Ω such that ξ(t, x) � −C.
Consequently, u−(t, x) is a subsolution of (1.1) for (t, x) ∈ (−∞, T]× Ω. �
Let h(x1) be a C

2 nondecreasing function such that

h(x1) =

{
1, if x1 � −1,

eμx1 , if x1 � −3,

where μ = δ/c. Even if it means decreasing δ > 0, assume

Dih
′′(x1) � kh(x1) for − 3 � x1 � −1 and i = 1, 2. (2.13)

Let π(x1) be a C2 nonincreasing function such that

π(x1) =

{
0, if x1 � 0

1, if x1 � −1.

Remember that Φ(+∞) = 0. Then, for any ε > 0, there exists Rε � C large enough such that

C2

∑
j,l=1,2

φl(ξ)φ j(ξ) �
kp+i
2

ε, for all ξ � Rε and i = 1, 2, (2.14)

and

Di

(
2|φ′

i(ξ)|‖π′‖L∞ + |φi(ξ)|‖π′′‖L∞
)
� kp+i

2
ε for all ξ � Rε and i = 1, 2.

(2.15)

For (t, x) ∈ R× Ω, define

u+(t, x) :=π(x1)Φ(ξ(t, x1))+ εp(ξ(t, x1))h(x1), (2.16)

where ξ(t, x1) = x1 − ct − α eδt.

Lemma 2.6. For any 0 < ε � δ, there exists Tε < 0 such that u+(t, x) is a supersolution of
(1.1) for all t � Tε and x ∈ Ω.

Proof. Take Tε < 0 such that

α eδt � 1 for t � Tε and − cTε � Rε + 4. (2.17)

For x ∈ Ω such that x1 � 0, it follows from the definitions of h(x1) and π(x1) that h(x1) = 1
and π(x1) = 0. Notice that ξ(t, x1) � −ct − 1 � Rε � M for all t � Tε and x1 � 0. Thus, by
(2.4), p(ξ(t, x1)) = p+ and u+(t, x) = εp+ for all t � Tε and x1 � 0. In this case, it follows
from (2.3) that

6758



Nonlinearity 34 (2021) 6750 H Guo et al

Ni[u+](t, x) := (u+i )t − DiΔu
+
i − Fi(u+)

=− Fi(εp+) = −
2∑
j=1

∂

∂u j
Fi(θi(t, x)εp+)εp

+
j � kp+i ε � 0,

where θi(t, x) ∈ (0, 1) and i = 1, 2. Also notice that ∂νu+(t, x) = 0 for all x ∈ ∂Ω.
For (t, x) ∈ (−∞, Tε]× Ω such that x1 � 0, it follows from some calculation that

Ni[u+](t, x) = −π(x1)φ
′
i(ξ(t, x))αδ e

δt − (c+ αδ eδt)εp′i(ξ(t, x1))h(x1)

− Di

(
2φ′

i(ξ(t, x1))π
′(x1)+ π′′(x1)φi(ξ(t, x1))

+ εp′′i (ξ(t, x1))h(x1)+ 2εp′i(ξ(t, x1))h
′(x1)

+ εpi(ξ(t, x1))h′′(x1)
)
+ π(x1)Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)).

For −1 � x1 � 0, one has that h(x1) = 1, h′(x1) = 0 and h′′(x1) = 0. Meantime, by (2.17),
ξ(t, x1) � −1− ct − 1 � Rε � C � M for t � Tε and x1 � −1. Then, p(ξ(t, x1)) = p+ and
one has that

Ni[u+](t, x) = −π(x1)φ
′
i(ξ(t, x))αδ e

δt − Di

(
2φ′

i(ξ(t, x1))π
′(x1)

+ π′′(x1)φi(ξ(t, x1))
)
+ π(x1)Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)).

By the mean-value theorem, it follows from (2.3) and (2.14) that

π(x1)Fi(Φ(ξ(t, x1)))− Fi(u+(t, x))

= π(x1)Fi(Φ(ξ(t, x1)))− Fi(π(x1)Φ(ξ(t, x1)))

+ Fi(π(x1)Φ(ξ(t, x1)))− Fi(u+(t, x))

= π(x1)(1− π(x1))
2∑
j=1

2∑
l=1

∂2Fi

∂u j∂ul
(θ2(t, x)π(x1)Φ(ξ(t, x1)))

× θ1(t, x)φl(ξ(t, x1))φ j(ξ(t, x1))

−
2∑
j=1

∂Fi

∂u j
(π(x1)Φ(ξ(t, x1))+ θ3(t, x)εp+)εp

+
j

� −C2

2∑
j=1

2∑
l=1

φl(ξ(t, x1))φ j(ξ(t, x1))+ kεp+i � kp+i
2

ε,

where θi1, θi2, θi3 ∈ (0, 1) and i = 1, 2. Then, by φ′
i < 0 and (2.15), one has that

Ni[u+](t, x) � −kp+i
2

ε+
kp+i
2

ε = 0.

For −3 � x1 � −1, one has that π(x1) = 1, π′(x1) = 0 and π′′(x1) = 0. Meantime, by (2.17),
ξ(t, x1) � −3− ct − 1 � Rε � C � M for t � Tε and x1 � −3. Then, p(ξ(t, x1)) = p+ and
one has that

Ni[u+](t, x) = −φ′
i(ξ(t, x))αδ e

δt − Diεp
+
i h

′′(x1)

+ Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)).
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By the mean-value theorem and (2.3), it follows that

Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)) = Fi(Φ(ξ(t, x1)))− Fi(Φ(ξ(t, x1))+ εp+h(x1))

= −
2∑
j=1

∂Fi

∂u j

(
Φ(ξ(t, x1))

+ θi(t, x)εp+h(x1)
)
εp+j h(x1)

� kεp+i h(x1).

Then, by φ′
i < 0 and (2.13), one has that

N[u+](t, x) � −εkp+i h(x1)+ εkp+i h(x1) = 0.

In the following, we consider for (t, x) ∈ (−∞, Tε]× Ω such that x1 � −3. It means that
π(x1) = 1 and h(x1) = eμx1 . Then, it follows that

Ni[u+](t, x) = −φ′
i(ξ(t, x))αδ e

δt − (c+ αδ eδt)εp′i(ξ(t, x1))e
μx1

− Di

(
εp′′i (ξ(t, x1))+ 2εp′i(ξ(t, x1))μ+ εpi(ξ(t, x1))μ2

)
eμx1

+ Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)).

(2.18)

For (t, x) ∈ (−∞, Tε]× Ω such that |ξ(t, x1)| � C, it follows from themean-value theorem that
there exists θi ∈ (0, 1), i = 1, 2 such that

Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)) = −
2∑
j=1

∂Fi

∂u j

(
Φ(ξ(t, x1))+ θi(t, x)

× εp(ξ(t, x1))eμx1
)
εpj(ξ(t, x1))eμx1

� −C1C2ε eμx1 ,

where C1 and C2 are defined by (2.7) and (2.8). Notice that ξ(t, x1) � C implies that
x1 � C + ct + 1 and hence eμx1 � eμ(C+1)ecμt = eμ(C+1)eδt by cμ = δ. Then, it follows from
(2.9), (2.10), (2.17) and ε � δ that

Ni[u+](t, x) � C3αδ e
δt − (c+ 1)εC1 e

μx1 − Di(εC1 + 2εC1μ+ εC1μ
2)eμx1

− C1C2ε eμx1 � 0.

For (t, x) ∈ (−∞, T]× Ω such that ξ(t, x1) � C, one has that p+i (ξ(t, x1)) = p+i . It follows
from the mean-value theorem that

Fi(Φ(ξ(t, x1)))− Fi(u+(t, x)) � kp+i ε e
μx1 .

Then, by (2.5), one has that

Ni[u+](t, x) � −Diεp
+
i μ

2 eμx1 + kp+i ε e
μx1 � 0.

Similarly, one can prove that Ni[u+](t, x) � 0 for (t, x) such that ξ(t, x1) � −C.
This completes the proof. �
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2.3. Existence,monotonicity and uniqueness of the entire solution

By referring to section 3.1 of [2] and considering a sequence of solutions un of (1.1) for t > −n
with initial value

un(−n, x) = u−(−n, x),

one can easily get the existence of an entire solution u(t, x) of (1.1) satisfying

u−(t, x) � u(t, x) � u+(t, x) for all t ∈ (−∞, T) and x ∈ Ω.

By definition of u−, u+ and remembering that ε can be arbitrary small, one then has that

|u(t, x)− Φ(x1 − ct)| → 0, as t→−∞ uniformly inΩ.

Thereby, we have proved the existence of the entire solution of (1.1) satisfying (1.5).
By proposition 2.3, one can immediately get that 0 � u(t, x) � 1. Since u−(t, x) is increas-

ing in t for t negative enough, it follows from proposition 2.3 that un(t, x) is increasing in
t. Then, letting n→+∞ and by proposition 2.3 together with (1.5), one has that u(t, x) is
increasing in t.

For any a, b ∈ R
2 such that 0 � a � b � 1, define

Ω[a,b](t) := {x ∈ Ω, a � u(t, x) � b}.

By applying the same argument in the proof of [2, lemma 3.1] to every component of u(t, x),
one can get the following lemma. Here, we should notice that the Hopf lemma is still true for
(ui)t(t, x) by assumption (A3).

Lemma 2.7. For any a, b ∈ R
2 such that 0 � a � b � 1, there exist T < 0 and K > 0 such

that

(ui)t(t, x) � K for all i = 1, 2, t ∈ (−∞, T] and x ∈ Ω[a,b](t).

The proof of the uniqueness of the entire solution satisfying (1.5) is basically similar to
section 3.3 of [2] and section 3 of [3]. Only some slight modifications should be made for con-
structing sub- and supersolutions by applying the idea of Tsai [16]. We present the uniqueness
in the following lemma and omit the proof.

Lemma 2.8. If u(t, x) and v(t, x) are two entire solutions of (1.1) satisfying (1.5), then
u(t, x) ≡ v(t, x).

3. Convergence to planar fronts on the right side

In this section, we prove theorem 1.2. We assume that Ω is a bilaterally straight cylinder, that
is, there is L > 0 such that

Ω = {x1 ∈ R; x1 � L} × ω,

where ω ⊂ R
N−1. We first investigate the large time behaviour of the entire solution u(t, x)

satisfying (1.5) on the right side of Ω.

Lemma 3.1. There exist t1 ∈ R, t2 ∈ R, τ1 ∈ R, δ0 > 0, δ > 0 and μ > 0 such that

u(t, x) � Φ(x1 − c(t− t1)+ τ1)+ δ01e−δ(t−t1) + δ01e−μ(x1−L) (3.1)
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for t � t1 and x ∈ Ω such that x1 � L and

u(t, x) � Φ(x1 − c(t− t2)− L)− δ01 e−δ(t−t2) − δ01 e−μ(x1−L) (3.2)

for t � t2 and x ∈ Ω such that x1 � L.

The proof of lemma 3.1 is similar as the proof of lemma 3.1 of [9]. Only some slight mod-
ifications should be made for constructing sub- and supersolutions as we can see in (3.1) and
(3.2). So, we omit the details of the proof.

By similar proofs as of lemma 3.3 and lemma 3.4 of [9] and virtue of lemma 3.1, we have
the following lemmas.

Lemma 3.2. For any ε > 0, there exists tε ∈ R such that

u(t, x) � Φ(x1 − c(t− tε)− L)− ε1 e−δ(t−tε) − ε1 e−μ(x1−L)

for all t � tε and x ∈ Ω such that x1 � L, with the same constants δ > 0 and μ > 0 as in
lemma 3.1.

Lemma 3.3. There is M � 0 such that, if there are ε > 0, t0 ∈ R and τ ∈ R such that

sup
x∈Ω, x1�L

‖u(t0, x)− Φ(x1 − ct0 + τ )‖ � ε

together with ‖1− Φ(L− ct0 + τ )‖ � ε and ‖1− u(t, x)‖ � ε for all t � t0 and x ∈ Ω with
x1 = L, then it holds

sup
x∈Ω, x1�L

‖u(t, x)− Φ(x1 − ct+ τ )‖ � Mε for all t � t0.

Proof of theorem 1.2. Let t1 ∈ R, t2 ∈ R, τ1 ∈ R, δ0 > 0, δ > 0 and μ > 0 be as in lemma
3.1. For t � max(t1, t2) and x ∈ Ω with x � L, one has that

Φ(x1 − c(t − t2)− L)− δ01 e−δ(t−t2) − δ01 e−μ(x1−L)

� u(t, x) � Φ(x1 − c(t − t1)+ τ1)+ δ01 e−δ(t−t1) + δ01 e−μ(x1−L).

(3.3)

Take a sequence {tn}n∈N such that tn →+∞ as n→+∞. LetΩn = Ω− (ctn, 0) and it con-
verges to a straight open cylinder Ω∞ as n→+∞. Let un(t, y) = u(t+ tn, y1 + ctn, y′) which
is defined in R× Ωn. By standard parabolic estimates applied to every component of u(t, x),
up to extraction of a subsequence, un(t, y) converge locally uniformly in (t, y) ∈ R× Ω∞ to a
solution u∞(t, y) of{

(u∞)t −Δu∞ = F(u∞), t ∈ R, y ∈ Ω∞,

(u∞)ν = 0, t ∈ R, y ∈ ∂Ω∞.

It follows from (3.3) that

Φ(y1 − c(t− t2)− L) � u∞(t, y) � Φ(y1 − c(t − t1)+ τ1)

for all (t, y) ∈ R× Ω∞. We need the following claim.
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Claim 3.4. IfΩ is a straight cylinder, that is,Ω = R× ωwhere isω ⊂ R
N−1, and the solution

u(t, x) of (1.1) satisfies

Φ(x1 − ct+ σ1) � u(t, x) � Φ(x1 − ct + σ2),

for some σ1, σ2 ∈ R, then there is σ ∈ R such that u(t, x) ≡ Φ(x1 − ct + σ).

We postpone the proof of this claim at the end of this section.
Therefore, there is τ ∈ R such that

un(t, y) = u(t + tn, y1 + ctn, y′)→ Φ(y1 − ct + τ ) locally uniformly in

× R× Ω∞ as n→+∞.

The rest of the proof can similarly follow that of theorem 1.7 of [9] to get that

u(t, x)→ Φ(x1 − c f t + τ ) uniformly for x ∈ Ω as t→+∞.

This completes the proof. �
Proof of claim 3.4. Consider v(t, z, x′) = u(t, z+ ct, x′) where z = x1 − ct. Then, v(t, z, x′)
satisfies {

vt = DΔv− c∂zv+ F(v), t ∈ R, (z, x′) ∈ Ω

∂νv = 0, (z, x′) ∈ ∂Ω,
(3.4)

and

Φ(z+ σ1) � v(t, z, x′) � Φ(z+ σ2). (3.5)

Notice that Ω is a straight cylinder and it is invariant with shifts in x1-axis.
Define

σ∗ = sup{σ ∈ [σ2, σ1]; v(t, z, x′) � Φ(z+ σ′) inΩ for anyσ′ ∈ [σ2, σ]}.

We prove that v(t, z, x′) ≡ Φ(z+ σ∗).
Assume that v(t, z, x′) < Φ(z+ σ∗) for (z, x′) ∈ Ω such that−C − σ1 � z � C − σ2 where

C is defined by (2.6). Then, σ∗ < σ1 and there is η > 0 such that σ∗ + η � σ1 and

v(t, z, x′) � Φ(z+ σ∗ + η) for (z, x′) ∈ Ω such that − C − σ1 � z � C − σ2. (3.6)

Define

Ω−
t = {(t, z, x′) ∈ R× Ω, z � −C − σ1} and Ω+

t = {(t, z, x′) ∈ R× Ω, z � C − σ2}.

By (3.5), one has that ‖1− v‖ � δ0 for (t, z, x′) ∈ Ω−
t and ‖v‖ � δ0 for (t, z, x′) ∈ Ω+

t . Define

ε∗ = inf{ε > 0, v(t, z, x′) � Φ(z+ σ∗ + η)+ εp− inΩ−
t }.

Since ‖1− Φ(z+ σ∗ + η)‖ � δmini=1,2{p±i } for (t, z, x′) ∈ Ω−
t and v(t, x) � 1, it means that

ε∗ � δ. Assume that ε∗ > 0. Then, there exist sequences εn and (tn, zn, x′n) such that εn
<−→ε∗

as n→+∞ and

v(tn, zn, x′n) > Φ(zn + σ∗ + η)+ εnp− inΩ−
t . (3.7)
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If zn →−∞ as n→+∞, one has that v(tn, zn, x′n)→ 1 and Φ(zn + σ∗ + η)→ 1. By (3.7) and
passing n→+∞, one gets that

1 � 1+ ε∗p−

which is a contradiction. Thus, zn is bounded. Since x′n is also bounded, there are z∗ and x′∗
such that zn → z∗ and x′n → x′∗ as n→+∞. Assume without loss of generality that tn → t∗ as
n→+∞. Otherwise, one can discuss for the limit of v(t+ tn, z, x′). Thus, it follows from (3.7)
and the definition of ε∗

v(t∗, z∗, x′∗) = Φ(z∗ + σ∗ + η)+ ε∗p−.

One can easily check that Φ(z+ σ∗ + η)+ ε∗p− is a supersolution of (3.4) in Ω−
t . By

proposition 2.4, we have that

v(t, z, x′) = Φ(z+ σ∗ + η)+ ε∗p−

which is a contradiction since v(t, z, x′)→ 1 and Φ(z+ σ∗ + η)→ 1 as z→−∞. Therefore,
ε∗ = 0 and v(t, z, x′) � Φ(z+ σ∗ + η) in Ω−

t .

Similarly, one can prove that v(t, z, x′) � Φ(z+ σ∗ + η) in Ω+
t . Then, together with (3.6),

it follows that

v(t, z, x′) � Φ(z+ σ∗ + η) for (t, z, x′) ∈ R× Ω.

It contradicts the definition of σ∗.
Therefore,

inf ‖v(t, z, x′)− Φ(z+ σ∗)‖ = 0 for (z, x′) ∈ Ω such that − C − σ1 � z � C − σ2.

Then, there is (t0, z0, x′0) ∈ R× {(z, x′) ∈ Ω;−C − σ1 � z � C − σ2} such that v(t0, z0, x′0) =
Φ(z0 + σ∗). By proposition 2.4, one has that

v(t, z, x′) ≡ Φ(z+ σ∗).

This completes the proof of claim 3.4. �

4. Some geometrical conditions

In this section, we give some geometrical conditions on Ω such that the propagation of the
entire solution u(t, x) satisfying (1.5) is complete or incomplete, respectively. Since u(t, x) is
increasing in t and by applying parabolic estimates to every component of u(t, x), there exists
a solution u∞(x) of the following system

{
DΔu∞ + F(u∞) = 0, x ∈ Ω

∂νu∞ = 0, x ∈ ∂Ω,

such that limt→+∞ u(t, x) = u∞(x) in C1
loc(Ω). To prove the completeness or incompleteness of

the propagation, one only has to prove whether u ≡ 1 or not.
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4.1. Some geometrical conditions for complete propagation

This subsection is devoted to the proof of theorem 1.4, that is, under every condition (a)–(c),
we prove that u∞(x) ≡ 1. We will need the positive solution of the following problem{

DΔu+ F(u) = 0, inB(0,R),

u = 0, on ∂B(0,R),
(4.1)

which is well known for the scalar case by [4].

Lemma 4.1. There exists a positive constant R0 such that for any R � R0, the system (4.1)
has a positive symmetric solution u(x) = z(|x|) and z(r) is decreasing in r for 0 < r < R.

Proof. This result is equivalent to find a solution for the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D
(
∂2z
∂r2

+
∂z
∂r

N − 1
r

)
+ F(z) = 0, in 0 < r < R,

z′ = 0, on r = 0,

z = 0, on r = R.

(4.2)

Let δ0, k, p(ξ), δ, C, C1, C2 and C3 all be defined as in section 2.2. Even if it means picking δ
smaller, assume additionally that

δ(1+ C1C2) � cC3. (4.3)

Take a constant δ1 � δ small enough such that

δ1(2+ 2C2 + C2 max
i=1,2

{p−i }) � kδ min
i=1,2

{p±i }. (4.4)

Let R1 � C > 0 large enough such that

‖1− Φ(ξ)‖ � δ1 for ξ � −R1. (4.5)

Take an increasing C2 function h1(r) and a constant R2 > 0 such that

h1(r) = 0 for r � 0 and h1(r) = 1 for r � R2.

One can make R2 large enough such that h
′(r) and h′′(r) are small enough satisfying

Di

(
‖h′′1‖L∞ + 2‖h′1‖L∞‖φ′

i‖L∞ + δ1p
−
i ‖h′′1‖L∞

)
� δ1 for all i = 1, 2. (4.6)

Let R3 > 0 large enough such that

Di(‖φ′
i‖L∞ + ‖h′1‖L∞δ1p−i )

N − 1
r

� δ1, for r � R3 and i = 1, 2. (4.7)

Let R0 = C + R1 + R2. Take any R � R0 + R3. Define

h(r) = h1(r − (R− R0)).

For r ∈ B(0,R), define a function z−(r) by

z−(r) := max
(
h(r)Φ(r − R+ C)+ (1− h(r))(1− δ1p−)− δp(r − R+ C), 0

)
.
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Let us check that z−(x) is a subsolution of (4.2). After some computation, one has that

Ni :=Di

(
∂2z−i
∂r2

+
∂z−i
∂r

N − 1
r

)
+ Fi(z−)

= Di

(
h′′(r)φi + 2h′(r)φ′

i + h(r)φ′′
i − h′′(r)δ1p−i + δp′′i (r − R+ C)

− (h′(r)φi + h(r)φ′
i − h′(r)δ1p−i + δp′i(r − R+ C))

N − 1
r

)

+ Fi(h(r)Φ+ (1− h(r))(1− δ1p−)− δp(r − R+ C)).

For 0 � r � R− R0, one has that h(r) = h1(r − (R− R0)) ≡ 0 and r − R+ C � −R1 − R2 �
−M. Then, by (2.4), p(r − R+ C) = p− and z−(r) = 1− (δ1 + δ)p− for 0 � r � R− R0.
Thus, z−(r) satisfies the boundary condition dz−

dr (0) = 0. Notice that

‖1− z−(r)‖ � (δ1 + δ)max
i=1, 2

{p−i } � 2δ max
i=1, 2

{p−i } � δ0

for 0 � r � R− R0 and hence

Fi(z−(r)) = −
2∑
j=1

∂Fi

∂u j
(1− θi(δ1 + δ)p−)(δ1 + δ)p−j � (δ1 + δ)kp−i � 0,

where θi ∈ (0, 1) by (2.3). Then, it follows that

Ni = Fi(z−) � 0 for 0 � r � R− R0.

For R− R0 � r � R− R0 + R2, one has that r − R+ C � −R1 � −M and hence p(r − R+
C) = p−. Moreover, by (4.5), one has ‖1− Φ(r − R+ C)‖ � δ1. Then, if follows from (1.3)
that

Ni = Di

(
h′′(r)φi + 2h′(r)φ′

i + h(r)φ′′
i − h′′(r)δ1p−i

+ (h′(r)φi + h(r)φ′
i − h′(r)δ1p

−
i )
N − 1
r

)

+ Fi(h(r)Φ+ (1− h(r))(1− δ1p−)+ δp−)

� Di

(
−‖h′′‖L∞ − 2‖h′‖L∞‖φ′

i‖L∞ − δ1p
−
i ‖h′′‖L∞

− (‖φ′
i‖L∞ + δ1p

−
i ‖h′‖L∞)

N − 1
r

)

− h(r)cφ′
i − h(r)Fi(Φ)+ Fi (h(r)Φ(r − R+ C)

+ (1− h(r))(1− δ1p−)− δp−
)
.

The mean-value theorem implies that

Fi(Φ) �
2∑
j=1

∂Fi

∂u j
(1− θi(1− Φ))(1− φ j) � C2δ1,
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and

Fi(h(r)Φ+ (1− h(r))(1− δ1p−)− δp−)

= −
2∑
j=1

∂Fi

∂u j
(1− θi(h(r)(1− Φ)− (1− h(r))δ1p− − δp−))

× [h(r)(1− φ j)+ (1− h(r))δ1p−j + δp−j ]

� −C2δ1 − C2δ1 max
j=1,2

{p−j }+ δkp−i .

Since r � R− R0 � R3, it follows from (4.4), (4.6), (4.7) and φ′
i < 0 that

Ni � −δ1 − δ1 − C2δ1 − C2δ1 − C2δ1 max
j=1,2

{p−j }+ δkp−i � 0.

Now, for R− R0 + R2 � r � R− 2C, one has h(r) = 1, r − R+ C � −C � −M and hence
p(r − R+ C) = p−. Thus, z−(r) = Φ(r − R+ C)+ δp−. Then, it follows from (1.3) that

Ni =Di

(
φ′′
i + φ′N − 1

r

)
+ Fi(Φ(r − R+ C)+ δp−)

�− Di‖φ′
i‖L∞

N − 1
r

− cφ′
i + Fi(Φ(r − R+ C)− δp−)− Fi (Φ(r − R+ C).

(4.8)

By the mean-value theory, one has that

Fi(Φ(r − R+ C)− δp−)− Fi(Φ(r − R+ C))

= −
2∑
j=1

∂

∂u j
F(Φ− θiδp−)δp−j � kδp−i ,

where θi ∈ (0, 1). By (4.4), (4.7) and φ′
i < 0, one gets that

Ni � −δ1 + δkp−i � 0.

For R− 2C � r � R, one has that−C � r − R+ C � C and−φ′
i(r − R+ C) � C3. Then, by

(4.3) and (4.8), one has that

Ni �− Di‖φ′
i‖L∞

N − 1
r

− cφ′
i − δC1C2

�− δ1 + cC3 − δC1C2 � 0.

Notice that r − R+ C = C � M for r = R. Hence, Φ(r − R+ C) � δmini=1,2{p+i } and
p(r − R+ C) = p+ for r = R. Therefore, one has that z−(R) = 0. In conclusion, z−(r) is a
subsolution of (4.2).

Now we consider the Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zt − D
(
∂2z
∂r2

+
∂z
∂r

N − 1
r

)
= F(z), in t > 0, 0 < r < R,

z′ = 0, on r = 0,

z = 0, on r = R,

z(0, r) = z−(r).

(4.9)
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Since z−(r) is a subsolution and by proposition 2.3, one has that z(r) is increasing in r.
By parabolic estimates, one has that z∞(r) := z(+∞, r) is a solution of (4.2) and it satisfies
0 � z∞(r) � 1 for 0 < r < R.

Then, we prove that z∞(r) is decreasing in r. We simply denote z∞(r) by z(r). Since
z(R) = 0, it follows from proposition 2.4 that z′i(R) < 0 for i = 1, 2. Therefore, for a ∈ (0,R)
close to R enough, one has that

z(r) � z(2a− r) for a � r � a+min{R− a, a}. (4.10)

For a � R/2, one has that min{R− a, a} = R− a and z(r) = 0 � z(2a− r) for
r = a+ min{R− a, a}. By proposition 2.4, it implies that

z(r) � z(2a− r) for a < r � a+min{R− a, a} and z′i(a) < 0 for i = 1, 2, (4.11)

for a close to R enough. Then, one can decrease a a little such that (4.10) still holds.
By above argument and again by proposition 2.4, one can get that (4.11) still holds for
the decreased a. By iteration, it follows that (4.11) holds for all a � R/2. Then, there
is η > 0 small enough such that (4.10) holds for a = R/2− η. Notice that in this case,
min{R− a, a} = a and z′(2a− r) = z′(0) = 0 for r = a+ min{R− a, a}. While, z′(r) < 0
for r = a+ min{R− a, a} = 2a since a = R/2− η and η is small. Then, by proposition 2.4,
one has that (4.11) holds for a = R/2− η. By similar arguments as above, one can decrease δ
again and finally get that (4.11) holds for all a > 0. Thus, z(r) is decreasing in r for 0 < r < R.

This completes our proof. �
Proof of theorem 1.4.

(a) Let δ0, k, p(ξ) and δ be defined as in section 2.2. Since the entire solution u(t, x) satisfies
(1.5), there is Tδ0 such that

|u(Tδ0 , x)− Φ(x1 − cTδ0 )| � δ0. (4.12)

Define

v(t, x) :=Φ(ξ(t, x))− δp(ξ(t, x))e−δt,

where ξ(t, x) = x1 − c(t+ Tδ0 )+ α(1− e−δt) andα can be taken sufficiently large.Notice
that u(Tδ0 , x) � v(0, x) by (4.12). It can be easily checked that v(t, x) satisfies

vt −Δv− F(v) � 0, for t � 0 and x ∈ Ω.

Since ν1(x) � 0 for any x ∈ ∂Ω, one has that (vi)ν(t, x) = φ′
i(ξ(t, x))ν1(x) � 0 for x ∈ ∂Ω

and i = 1, 2. Therefore,v(t, x) is a subsolution of (1.1). It follows from proposition 2.3 that
u(t+ Tδ0 , x) � v(t, x) for t � 0 and x ∈ Ω. Thus, by Φ(−∞) = 1, one has that

u(t, x)→ 1 locally uniformly inΩ as t→+∞.

(b) Take R0 large enough such that lemma 4.1 holds. Let R× B′
R0

⊂ Ω. Since u(t, x) satisfies
(1.5) and Φ(−∞) = 1 and u(t, x) is increasing in t, there is a0 > 0 large enough such that
for any a � a0,

u∞(x1 − a, x′) � zR0 (|x|) for all x ∈ BR0 .

Let ua :=u∞(x1 − a, x′). We claim that

ua(x) � zR0 (|x|), for any a ∈ R. (4.13)
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Define that

a∗ = inf{a ∈ R; u∞(x1 − a, x′) � zR0 (|x|) inBR0}.

We only have to prove that a∗ = −∞. Assume, by contradiction, that a∗ > −∞. Then,
there exist sequences {an}n∈N of R and {xn}n∈N of BR0 such that an

<−→a∗ and uan(xn) <
zR0 (|xn|). Since xn ∈ BR0 , there is y ∈ BR0 such that xn → y. By the definition of a∗, one
has that ua

∗
(y) = zR0 (|y|). Since ua

∗
(x) � 0 and zR0 (x) = 0 for x ∈ ∂BR0 , one has that

y ∈ BR0 . It then contradicts to the maximum principle. Therefore, claim (4.13) holds.
By claim (4.13) and proposition 2.4, we have

u∞(x1, x′) � zR0 (|x′|) for all x ∈ Ω. (4.14)

For h > 0 and e ∈ S
N−2, define

ψh,e(x
′) := zR0 (|x′ − he|) and ϕh := max

e∈SN−2
ψh,e(x

′).

By (4.14), we know that u∞(x) � ϕ0(x
′). Since Ω is axially star-shaped and by

proposition 2.4 and following the same arguments as in [2, section 7], one can prove that

u∞(x) � ϕh(x
′) for all x ∈ Ω and all h � 0.

Therefore, one has that

u∞(x) � max
e∈SN−2

zR0 (|x′ − he|) for all x ∈ Ω.

By the proof of lemma 4.1, one knows that max zR0 (r) = zR0 (0) � 1− 2δp−. Moreover,
one can easily check that 1− 2δp− e−δt is a subsolution of (1.1) for t � 0. Then, u∞(x) �
1− 2δp− e−δt and hence u∞(x) ≡ 1.

(c) Oncewe have lemma4.1 and proposition 2.4, we can follow the proof of [9, corollary 1.12]
to prove the conclusion. Here, we omit the details. �

4.2. Some geometrical conditions for incomplete propagation

This subsection is devoted to the proof of theorem 1.5. We first announce some notions. By
(2.2) and (2.3), there are p � 0, positive constants h, δ and a region

R := {u ∈ R
2, |u− p| � δ},

such that

Fi(u) � −h, inR for i = 1, 2.

This implies that p is close to 0. LetM > 0 such that

|Fi(u)| � M for u ∈ [0, 1] and i = 1, 2. (4.15)

Let

Bi = 1+
M
Di

for i = 1, 2.
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Take a bistable function g(u) satisfying

g(0) = g(1) = g(θ) = 0, g(s) < 0 for 0 < s < θ, g(s) > 0 for θ

< s < 1 and
∫ 1

0
g(s)ds > 0,

where θ ∈ (0, 1). Take constants −∞ < a < b < +∞ and ε > 0. Let Ω satisfy theorem 1.4.
Define

Ω′ = {x ∈ Ω, x1 > a}.

Then, from [2], one knows that there exists ε > 0 small enough such that the following equation⎧⎪⎪⎨
⎪⎪⎩
Δz+ g(z) = 0, inΩ′,

∂z = 0, on ∂Ω′ \ {x1 = a},

z = 1, on {x1 = a}

(4.16)

has a positive solution z(x) satisfying

lim
x1→+∞

z(x) = 0.

Moreover, z(x) is close to ω0(x) defined by

ω0(x) =

⎧⎨
⎩

|x1 − b|
b− a

for x1 ∈ [a, b) , x ∈ Ω′

0 for x1 ∈ [b,+∞], x ∈ Ω′,

in H1(Ω′) norm. Let Ai := min{2δ, h/Di‖g‖L∞([0,1])} for i = 1, 2. One can make |b− a| small
enough such that

− ∂z
∂x1

� 1
Ai

(
1+

M
Di

)
on x1 = a.

Define functionswi(x) as following

wi(x) =

⎧⎪⎨
⎪⎩
pi + δ − Ai(1− z(x)) if x1 � a,

pi + δ − M
Di

(x1 − a)2 − βi(x1 − a) if x1 < a,

for i = 1, 2 and w := (w1,w2). Obviously, w(x) is well defined and continuous in x1. Then, let

w+(x) =

{
1, for x1 � a− 1,

min{1,w(x)}, for x1 � a− 1.

Notice that for x1 = a− 1,

wi(x) = pi + δ − M
Di

+ Bi = 1+ pi + δ > 1.

Thus, w+(x) is well defined and continuous in x1.
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We then check that w+(x) satisfies

DiΔw+
i + Fi(w+) � 0 for i = 1, 2.

For a− 1 � x1 � a, one has that wi(x) = pi + δ − M
Di
(x1 − a)2 − Bi(x1 − a). It follows from

(4.15) that

DiΔwi + Fi(w) = −2M + Fi(w) � 0 for i = 1, 2.

For x1 � a, one has that wi(x) = pi + δ − Ai(1− z(x)). Since Ai � 2δ and 0 � z(x) � 1,
it means that pi − δ � wi(x) � pi + δ. Hence, Fi(w) � −h. It follows from (4.16) and
Ai � h/Di‖g‖L∞([0,1]) that

DiΔwi + Fi(w) =DiAiΔz+ Fi(w)

=− DiAig(z)+ Fi(w) � h− h = 0.

Finally, we can notice that wi(x) is decreasing in x1 for a− 1 � x1 < a and

lim
x1

>−→a

wi

∂x1
(a) = Ai

∂z
∂x1

(a) � −
(
1+

M
Di

)
and

− lim
x1

<−→a

wi

∂x1
(a) = Bi =

(
1+

M
Di

)
.

By definition 2.2, w+(x) is a supersolution of (1.1). Then, u(t, x) � w+(x) for all t ∈ R and
x ∈ Ω.

Therefore, u∞(x) � w+(x) for all x ∈ Ω. By the definition of w+(x), we then have

lim sup
x1→+∞

u∞(x) � p+ δ1. (4.17)

Take any sequence {x1n}n∈N such that x1n →+∞ as n→+∞. Let vn(x) = u∞(x1 + x1n, x′)
and Ωn = Ω− x1n. Then, there is Ω∞ such that Ωn → Ω∞ as n→+∞ and vn(x) converge to
a solution of {

DΔv∞ + F(v∞) = 0, x ∈ Ω∞

∂νv∞ = 0, x ∈ ∂Ω∞.

By (4.17), we have v∞(x) � p− δ1 which implies that v∞(x) ≡ 0. Therefore, u∞(x)→ 0 as
x1 →+∞. �
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