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Abstract
In this paper, we consider a bistable monotone reaction—diffusion system in
cylindrical domains. We first prove the existence of the entire solution emanat-
ing from a planar front. Then, it is proved that the entire solution converges
to a planar front if the propagation is complete and the domain is bilaterally
straight. Finally, we give some geometrical conditions on the domain such that
the propagation of the entire solution is complete or incomplete, respectively.
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1. Introduction

In this paper, we consider the following reaction—diffusion system

u, = DAu + F(u), teR, xef

(1.1)
o,u =0, x € 09,

where u(z, x) = (u;(t, x), u>(t, x)), 0 = (0, 0) and €2 is an unbounded open connected set of R¥
defined by

Q= {(x,x) eRY;x; € R, ¥ € w(x;) C RV 1}, (1.2)
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where w is independent of x; for x; < 0. Notice that the left side of € is a half straight cylin-
der. Here, v(x) is the unit outward normal on 02 and the homogeneous Neumann boundary
condition J,u = (9,uy, 0,u) = 0 implies that there is no flux cross the boundary 0€).

Let us first clarify some notions. For any two vectors a = (a;, a;) and b = (b1, by), the sym-
bola < bmeans a; < b; fori = 1,2, and a < b means a; < b; fori = 1, 2. The interval [a, b]
denotes the set of q € R? such that a < q < b. Throughout this paper, we assume that

(A1) Dis a2 x 2 diagonal matrix with elements D; > 0, D, > 0.

(A2) F has two stable equilibria0 = (0,0)and 1 = (1, 1), thatis, F(0) = F(1) = 0 and all the
eigenvalues of F'(0) and F'(1) lie in the open left-half complex plane. We also assume
that the matrixes F'(0) and F'(1) are irreducible.

(A3) The reaction term F(u) = (F'(u), F?(u)) is defined on an open domain E of R? and of
class C! in u. Moreover, F satisfies the following conditions

OF!

Buj

(w) >0 forallu €[0,1] C Eandforalli # j.

Actually, the technique used in this paper can be trivially extended to an n-dimensional
system for n > 2. Here, we only deal with n = 2 for convenience. From above assumptions,
one knows that (1.1) is a monotone system. It therefore implies that a comparison principle
holds for system (1.1), see [15, 18].

The system (1.1) arises in various fields of sciences such as mathematical ecology, popula-
tion genetics, chemical reactor theory, etc. Particularly, this system can describe the population
distribution of two species which are interacting with each other in a certain manner and simul-
taneously diffusing over the domain. In the study of the cross-diffusion of two species, the
travelling front plays a key role. For instance, the travelling front can describe the invasion
of the species into a fresh region in the cooperative system or the invasion of one species to
another in the competition system. Some evidence of existence of travelling fronts can be found
in [8] for a competition model and in [6] for a model which describes chemical phenomenon
on isothermal catalyst surface. For the general monotone reaction—diffusion system, we refer
to [17, 18] for some conditions ensuring the existence of travelling fronts and refer to [5] for
some abstract results. It is worth to mention that the authors of [17, 18] used the topologi-
cal methods, while the authors of [5] used the dynamical theory. Since the system (1.1) may
contain stable equilibrium other than 0 and 1, it may not exist travelling fronts connecting 0
and 1 in general. Therefore, in this paper, we always assume that (1.1) in one dimension, that
is, 2 = R, admits a unique (up to shifts) travelling front ®(x — ct) = (¢;(x — ct), P,(x — ct))
satisfying

~Digf| — c¢j = FI(®) =0,
®(+00) =0, O(—o0) =1, (1.3)
¢ <0 onRfori=1, 2.
It is known from [18, chapter 3] that there exist C > 0 and 3 > 0 such that
Gi(§) < Ce ™ for&>0,1-¢i(§) <Ce™ foré <0 and [§)(&)]. ¢ ()]
< celfl for¢ eR.

Indeed, some stability results for the travelling front ®(x —cf) can be referred to
[1, 13, 14, 18, 19]. In the study of travelling fronts, the propagation speed c is also an
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important aspect. For instance, the sign of ¢ represents who is the winner in the competition
system. Some results about the relationship between the parameters and the sign of the speed
can be referred to [11]. Throughout this paper, we assume that

c>0.

Otherwise, we can replace the roles of 0 and 1.
Since we are interested in how the geometry of the domain effects the diffusion, we first
recall some results for the scalar bistable reaction—diffusion equation

u,=Au+ f(u), t>0, x €, (1.4)

where € is a smooth unbounded open connected set of RY and the function f is of bistable,
that is, it satisfies

fO)=f1)=0, f<0on(0,f)andf > 0on(h,1)forsomed € (0, 1),

and f'(0) < 0, f'(1) < 0. From [7], it is known that (1.4) in one dimension admits travelling
fronts ¢(x - e — cf) connecting 0 and 1 and hence, (1.4) in high dimensional space RY (N > 2)
admits planar fronts ¢(x - e — cf) for any e € S¥~!. In [3], Berestycki, Hamel and Matano
have studied the propagation phenomenon when the domain is an exterior domain, that is,
Q= RY \ K where K is a bounded connected open set of RV and K is called an obstacle. They
proved that the planar front ¢(x — cf) can propagate infinitely far from the obstacle, that is,
there is an entire solution u(¢, x) such that

u(t,x) — ¢(x - e —ct) as t — —oo uniformlyin €.

From their work, one knows that if K is star-shaped or directionally convex with respect to
some hyperplane®, then the propagation of u is complete, that is, satisfying

u—1 ast— 4oolocally uniformlyin €.

They also gave an example such that u cannot propagate completely. Such complete and incom-
plete propagation phenomena appear in cylindrical domains too. In [2], Berestycki, Bouhours
and Chapuisat investigated the propagation of a planar front in the domain which is a cylinder
with different kind of cross sections, that is, € is defined by (1.2). They first proved that a pla-
nar front ¢(x; — ct) can propagate from the left side of the cylinder, that is, there is an entire
solution u(t, x) satisfying

u(t,x) = ¢(x; — ct) ast— —oouniformlyin Q.

They also gave some conditions such that the propagation of u is complete or incomplete.

In this paper, we aim to extend the results of [2] to our system (1.1). We emphasize here
that the authors of [2] dealt with a scalar reaction—diffusion equation and we are dealing with
a system of reaction—diffusion equations. Due to this, many modifications and new techniques
are needed. For example, theorem 1.5 and lemma 4.1 in the scalar case are known to be proved

4The obstacle K is called star-shaped if either K = () or there is x in the interior Int(K) of K such that x + 1(y — x) €
Int(K) for all y € OK and ¢ € [0, 1). In the latter case, we say that K is star-shaped with respect to the point x. The
obstacle K is called directionally convex with respect to a hyperplane H = {x € R¥ : x - ¢ = a}, with e € S*! and
a € R, if for every line X parallel to e, the set K N X is either a single line segment or empty and if K N H is equal to
the orthogonal projection of K onto H.
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by the energy functional which is invalid in our case. Indeed, since we assumed the existence of
travelling front ®(x — ct) satisfying (1.3). It means that there exist planar fronts ®(x - e — cr)
of (1.1) with © = RY for any unit vector e € S¥~!. We fist prove the existence and uniqueness
of the entire solution u(¢, x) of (1.1) emanating from the planar front ®(x; — ct).

Theorem 1.1. Let Q C RY satisfying (1.2). Then, system (1.1) admits a unique entire
solution u(t, x) satisfying

u(t,x) = ®(x; —ct) as t — —oo uniformly in Q. (1.5)

Moreover, u(t, x) is increasing in t, 0 < u(t,x) < 1 for all (t,x) € R x Q.

The existence of the entire solution u(f,x) emanating from the planar front ®(x; — cf)
implies that the planar front enters in the left side of the cylinder. We now investigate the large
time behaviour of the entire solution u(z, x). The following theorem shows that if the right side
of (2 is straight, then the entire solution u(z, x) converges to a planar front as t — 4o provided
by the complete propagation.

Theorem 1.2. [f ) is bilaterally straight, that is, w(xy) is independent of x| when x; < 0
and x| > L for some L > 0, and the propagation of u(t, x) is complete, that is, it satisfies

u(t,x) = 1 locally uniformlyinQast — +o0, (1.6)
then there is a constant o such that
u(t,x) = ®(x; —ct+0) ast — +oouniformlyin Q.

Remark 1.3. Theorem 1.2 implies that in the bilaterally straight cylinder, the entire solution
u(t, x) is a transition front connecting 0 and 1 and has a global mean speed equal to ¢, see [10]
for definitions of the transition front and the global mean speed.

The following theorem shows some geometrical conditions of €2 such that u(z, x) can
propagate completely.

Theorem 1.4. The propagation of u(t, x) is complete, if S satisfies one of the following
conditions

(a) Forall x € 092, v1(x) > 0 where v(x) is the first component of the outward unit normal
at x;

(b) For a sufficiently large Ry, R x B}eo C Q where B;eo denotes the ball of RN~! with centre
0 and radius Ry and ) is axially star-shaped, that is, for any x = (x1,x') € 9Q and
v=(,V), v x> 0forall x € OQ;

(¢) Qis a dilated domain with any shift xo € RY by a cylinder ) and a large constant R,
that is, Q = RoY + xo.

Finally, we give some conditions of ) such that the propagation of u(z, x) is incomplete or
blocked.

Theorem 1.5. Let a and b be two constants such that —oo < a < b < +o00. There exists
€ > 0 small enough depending on the distance b — a and

QN{xeRY, b<x; <b+1}
such that if
QN {x eRY, x| € (a,b)}| <&,
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then the propagation of u is blocked, that is,

u(t,x) > uy  inQast— +oowithus(x) — 0asx; — +o0.

We organize this paper as follows. In section 2, we give some comparison principles which
are key tools in the sequel and prove the existence of the entire solution u(z, x) emanating from
a planar front. Section 3 is devoted to the proof of that u(z, x) converges to a planar front when
the right side of 2 is straight and the propagation of u(z, x) is complete. In section 4, we give
some geometrical conditions on €2 such that the propagation of the entire solution u(z, x) is
complete or incomplete, respectively.

2. Existence of front-like solutions

In this section, we prove the existence of the entire solution emanating from a planar front.
The idea of the proof is inspired by [3]. However, since we are dealing with a system, some
adaption should be made upon a system. We will need some comparison principles for our
system (1.1) and prove theorem 1.1 by constructing sub- and supersolutions.

2.1. Comparison principles

In this subsection, we list some comparison principles. We first state the definitions of sub- and
supersolutions.

Definition 2.1. Ifafunctionu = (u;, u») satisfies uy, u, € C'(I' x Q) N C>(T x §2) where
I' C R and that

u, — Au— F(u) > 0, inl" x Q)
2.1)
ou >0, onT x 09,

then uis called a supersolution of (1.1)in I" x €. If u satisfies the reversed differential inequali-
ties, then it is called a subsolution of (1.1) in I" x 2. If u and v are supersolutions (subsolutions)
of (1.1) in I" x €Q, then

min(u, v)(max(u, v)),

(min and max are to be understood componentwise) is still a supersolution (subsolution) of
(1.)in T x Q.

Definition 2.2. Let S be a smooth hypersurface dividing €2 into disjoint regions €2y, (2;
namely, Q = Q; US U Q. Suppose u = (uy, uz) € COT x Q) x CT x Q) is C!' on each
Oy, 0, and C? on each Q, Q,. Suppose further that (2.1) holds except on S and that

8ui_+ 8ui

o6 0
where &,  denote the inner normal on 9€2; N S, 9, N S respectively. Then, u is called a super-
solution of (1.1) in " x . If u satisfies the reversed differential inequalities, then it is called a
subsolution of (1.1) in I" x Q.

<0 ond,

Then, the following proposition follows from [12, 15, 18].

Proposition 2.3. Ifu and U are sub- and supersolutions of (1.1) in R™ x Q and it holds
u(0,x) < WO, x) for x € Q, then we have u(t, x) < U(t, x) for all (t,x) € RT x Q.
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We can also have the following proposition.

Proposition 2.4. Let u and @ be sub and supersolutions of (1.1) in Q where
0 =(0,7)xQ, 7 €(0,400) and u(t,x) < W(t,x) for all (t,x) € Q. If u,(ty, x0) = ui(to, Xo)
for some (ty, xo0) € Q, then u,(t, x) = u(t, x) for all (t,x) € Q, t < to. If u(t, x) # V(t, x) and
u,(to, x0) = u(to, x0) for some (ty, xo) € 00 = (0, 7) x 9, then 0, (u,(to, x0) — u(to, x0)) > 0
where v is the unit outward normal on Of).

Proof. The first part of this proposition can directly follow from [6]. We only prove the last
assert.
Let v(z, x) = u(t, x) — u(z, x). We have

() — Av; — F'(@) + F'(w) > 0, inQ.
By assumption (A3), one has

Fi@ — Flw) =)

j=12

OF' _ OF' _
ou; O, )@ —u;) = a—ui(@(t, )@ — uy),

where u(z, x) < 0(t, x) < (s, x). Then, it follows that

ai(@(t, v 20, inQ.
Bui

Since v;(t, x) > 0 in Q and v;(ty, xo) = O for (9, xo) € OS2 and by Hopf lemma, one has that

(v, — Av; —

0y vi(ty, x0) < 0.

This completes the proof. U

2.2. Construction of sub- and supersolutions

‘We construct sub- and supersolutions for (1.1) by the idea inspired by [16]. By our assumptions
and Perron—Frobenius theorem, one knows that the principal eigenvalues of F'(0) and F'(1)
are negative and the corresponding eigenvectors are positive. It then can be easily found an
irreducible constant matrixes AT = (u:—;) such that OF' /0u(0) < u;;, OF' |0uj(1) < pu; for
all i, j= 1,2, and its principal eigenvalues are negative. Let p* = (p;’, p;) be the positive
eigenvectors corresponding to the principal eigenvalues of A*. Then, there exist §y > 0 and
k > 0 such that

Fi Fi
gw(u) < /J;"} for u € Bs,(0) and gw(u) <y foru e Bs(Dandi, j=1, 2,
J J
2.2)
and
2
Z piir; < —kri for allr = (r1,r2) € R% N By (p*). (2.3)
=1

Take a positive constant M and a C? decreasing function ((s) such that
Cs)y=1 fors<—M and ((s)=0 fors>M.
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Define
P =C©p; + 1= C©)p, fori=1, 2,

and p(§) := (p,(£), p»(£)). Notice that
p&)=p; forE <—M and pi(&) =p" for& =M. (2.4)

Since ®(+00) = 0, P(—o0) = 1, one can take a small positive constant § and a large positive
constant C > M such that

B}
max{Dy’} <k max{6pf} < 50 foralli =1, 2, (2.5)

where p:=4/c and
12 < dmin{p} forall¢ > Cand||®(€) — 1]
<dmin{p} forall £ <—C, (2.6)

where k and ¢ are defined by (2.3) and (2.2) respectively. Let

C) = max {SUPIIP(S)I, Supllp’(é“)ll,supIp”(é“)ll} ; 2.7
¢eR ¢eR ¢eR
where || - || is the Euclidean norm of R? and
2 i 2 i
C, == sup 2_: gzj (w), Z a‘zgul (w|:uef01]y. (2.8)
ij=1 i ji=1
Since ®'(¢) < 0 for all £ € R, there is C3 > 0 such that
—¢i(€) > C3 forall|¢| < Candi =1, 2. (2.9)
Let o > 0 be a large enough constant such that
Ga > ma (c+ 1+ D;+2Dip+ Dipi® + Cy) Cy e, (2.10)

For (¢, x) € R x Q, define

{max (@ x1) — opE(t, x))e™,0),  ifx; <0
u (t,x):= - N

0, ifx; >0,

@2.11)

where £(t,x1) = x; — ct + ave”.

Lemma 2.5. There exists T < 0 such thatw (¢, x) is a subsolution of (1.1) for all t < T and
x € Q.

Proof. Take T < 0 such that

ade” <1 forallt < Tand — T > C.
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Then, £(7, x1) > —ct + ae > —cT>C>M forall t <T and x1 > 0. By (2.6) and (2.4),
it follows that [|®(£(#, x1))|| < d min;— 12{1) }and pi(€(t, x1)) = p, forallt < T and x; > 0.
Thus,

max (D(£(t, x1)) — 6p(E(1,x1))e1,0) =0 forallr < Tandx; >

It means that u™ (z, x) is well-defined and continuous for 7 < T and x € Q. Since 0 is a solution
of (1.1) and obviously d,u (¢, x) = 0 for x € 02, one only has to check that

N;[u™1(t,x) == (u; ), — D;Au; — F'(u) <0
fori=1,2and (1, x) € (—o0, T] x Q such that u™ (¢, x) = P(E(t, x1)) — op(E(t, x1))e > 0.
After some calculation and by (1.3), one can get that
Nilu 1(t, x) = (u; ), — DiAu; — F'(u”)
= ad e Gi(E (1, x1) — ((—c + ad Pt x1)
— Didp|/(E(t,x1)) — 2D, 0 ppl(E(t, x1)) — DS piE (K, x1)) e
+ F(®( (1, x1))) — F'(u™ (£, x)),
(2.12)

fori = 1,2. For (¢, x) € (—oo, T] x § such that |£(t, x1)| < C, it follows from the mean-value
theorem that there exist 8;(¢, x) € (0, 1), i = 1,2 such that

F(®E,x1)) — Fl(u (t,x) = Z —F’ (PET x1)) = 0i(t, x)
X Op(E(r, X)) dpi(E(L, x1))et™
< C1C2(5 e’”“,

where C; and C, are defined by (2.7) and (2.8). Notice that § (t,x) < Cimpliesthatx; < C + ct
and hence /"1 < etC e = eC e’ by cpu = 0. Then, it follows from (2.9), (2.10) and (2.12)
that

Nifu™](t,x) < — ad e Cs + (c+1+D;+2Dipu+ Dyl + Cy) Cro e
— Csade” + (c+ 1+ D;+ 2Dy + Dipi” + C2) € e"“5e” < 0.
On the other hand, for (7, x) € (—oc0, T] x Q such that §(t,x1) = C,itfollows that pi(£(1, x1)) =
pi by C > M and (2.4). Then, by (2.2) and (2.3), one has that

FI(®(E(t,x1)) — Fl(u (1,x)) = Z 7F' (D, x1)) — Oi(1, x)

X Op(E(t, x1))e™) 6p] e

< —kptsem,
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for 0;(t,x) € (0,1) and i = 1,2. Since ®/(£) < 0 for all £ € R and pi(&) = 0, p/'(§) = 0 for
|€] > Candi = 1,2, it follows from (2.5) and (2.12) that

Nilu™1(t,x) < Diop*pi” et — kp o™ < (Dip® — k)p 6 et

<0, fori=1,2.

Similarly, one can prove that N;[u™](¢, x) < O for (¢, x) € (—o0, T] X Q such that § (t,x) < —C.
Consequently, u™(z, x) is a subsolution of (1.1) for (¢, x) € (—o0, T] x Q. O
Let A(x;) be a c? nondecreasing function such that

1, ifx; > —1,
h(xy) =
eh ifx; < =3,
where p = ¢/c. Even if it means decreasing > 0, assume
D;h"(x1) < kh(x;) for —3 <x; < —landi=1, 2. (2.13)
Let 7(x;) be a C* nonincreasing function such that
0, ifx1 2 0
m(xy) =
1, ifx1 < —1.

Remember that ®(4-00) = 0. Then, for any € > 0, there exists R. > C large enough such that

+
G Y 49O < k’; e, forallé >R.andi=1,2, (2.14)
Ji=12
and
/ / 1 kpj_ .

D; (2167 [ + [¢:(©)][| "] ) < 5¢ forallé > Reandi=1,2.

(2.15)
For (¢, x) € R x Q, define
ut(t,x) = 7m(x)PE®R x1)) + ep€(t, x1)h(xy), (2.16)

where (1, x1) = x; — ¢t — ae™.

Lemma 2.6. Forany0 <e< 0, there exists T. < 0 such that ' (t, x) is a supersolution of
(1.1 forallt < T- and x € Q.

Proof. Take 7. < 0 such that
ae” <1 fort<T. and —cT.>R.+4. (2.17)

For x € Q such that x; > 0, it follows from the definitions of i(x;) and 7(x,) that (x;) = 1
and 7(x;) = 0. Notice that £(f,x;) > —ct — 1 > R. > M for all t < T. and x; > 0. Thus, by
(2.4), p(&(t,x1)) = pT and ut(f,x) = ep™ for all t < T. and x; > 0. In this case, it follows
from (2.3) that
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Nilut1(t, x) == "), — DiAu” — F'(u™)

2
. 9
=—F(eph)=-) o PO x)epHepl = kpfe >0,
=1

where 0;(, x) € (0, 1) and i = 1,2. Also notice that 9,u™ (¢, x) = 0 for all x € 9.
For (¢, x) € (—o0, T-] x € such that x; < 0, it follows from some calculation that

Ni[ut1(t, x) = —m(en)@j(Et )ad e” — (¢ + ad epi(E(t, x1)h(x1)
= D; (2¢}(E(t x))7 (xp) + 7" (x)di(E (1, x1))
+ epl (€(t, x1)h(x1) + 2 piE(t, x1)H (x1)
+ epi€(t, x )" (x1)) + T F(@E( 1)) — Fiut (1, x).

For —1 < x; <0, one has that i(x;) = 1, H(x;) =0 and h"(x;) = 0. Meantime, by (2.17),
Etyx)) > —1—ct—1>2R.>C>Mfort<T.and x; > —1. Then, p(&(¢,x;)) = p" and
one has that

Nilut)(t,x) = —m(x)BE(t x)ad e — D; (2611, x1)' (x1)
+ 7" () Gi€(t, x1))) + T)F(RE(, x1)) — Fl(ut (2, x)).
By the mean-value theorem, it follows from (2.3) and (2.14) that
T(e)F(R(E(t, x1)) — Fiu™ (1, x))
= m(x)F (1, x1))) — F'(r(x)P(E(1, x1)))
+ F(r(x)®E1, x1)) — F'(ut (1, x))

2 2 azFi _
= 7)1 — w(xl)); ; P (021, )m(x)PEL, x1)))
x 01(t, X)i(E(t, x1))pE(t, x1))
: aFi v -+ -+
=Y 5 TODPE® X)) + 05, 0)epep)
uj

J=1

kp;
g,
2

2 2
> =0 Y i€t x1)iE x1) + kep >

=1 =1

where 01, 0, 053 € (0,1) and i = 1,2. Then, by ¢; < 0 and (2.15), one has that

kpT kpT

_5hi o EP
2 2

For —3 < x; < —1, one has that w(x;) = 1, 7' (x1) = 0and 7”’(x;) = 0. Meantime, by (2.17),
Etyx)) > -3—ct—1>2R.>C>M fort<T.and x; > —3. Then, p(&(t,x;)) = p" and
one has that

Nilu™](t,x) = e=0.

Ni[uT](t, x) = —i(E(t, x))ad e’ — Diep h'(x1)
+ FI(®(E(t, x1)) — Fi(u™ (£, x)).
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By the mean-value theorem and (2.3), it follows that

F(®E(t, x1)) — Fi(ut (1, x)) = F(E(t, x1)) — F(®E(E, x1)) + epTh(x1))
2 i

OF —
==y o) (®EE x1))

J=1

+ 0,1, x)ep T h(x1)) ep; h(x1)
> kepi h(x)).
Then, by ¢. < 0 and (2.13), one has that
Nlu*(t, x) > —ekp; h(x1) + ekp h(x)) = 0.

In the following, we consider for (#, x) € (—oo, T.] X Q such that x; < —3. It means that
w(x1) = 1 and h(x;) = e**1. Then, it follows that

Ni[uT](t, x) = —i(E€(t, x))ad e — (c + ad e )epi(E(t, x1))e™
— D; (ep!(€(t, x1)) + 2e pi(E(t, x1))p + epi(E(t, x1))p*) e

+ F(®(E(t, x1))) — F'(u™ (1, x)).
(2.18)

For (t, x) € (—oo, T.] x Q such that |£(, x1)| < C, it follows from the mean-value theorem that
there exists 6; € (0, 1), i = 1,2 such that

Fi
Buj

2
FI(®E(t,x)) — Flat (t,x)) = =)

j=1
x ep(&(t, x1))e 1) ep(E(t, x1))et™!
2 —Cl Cz&‘ el .

(D, x1)) + 0:(t, x)

where C; and C, are defined by (2.7) and (2.8). No§ice that E(t,xl) < C implies that
x; < C+ ct+ 1 and hence e/ < e/ (CHDectt = e (CHDed by ¢y = §. Then, it follows from
(2.9), (2.10), (2.17) and € < ¢ that

Ni[ut1(t, x) > Czade” — (¢ + 1)eCy ™' — Di(eCy + 2eCi i+ eCyp*)e!™

— C1C2€e‘”1 > 0.

For (t,x) € (—00,T] x Q such that £(, x;) > C, one has that p;"(£(t, x1)) = p;". It follows
from the mean-value theorem that

F(®Etx1)) — Fiut (1, x)) > kpfee.
Then, by (2.5), one has that
Nilut1(t,x) > —Diep;t 1i* e + kpiTe et > 0.
Similarly, one can prove that N;[u™](z, x) > 0 for (¢, x) such that g(t, x) < —C.

This completes the proof. U
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2.3. Existence, monotonicity and uniqueness of the entire solution

By referring to section 3.1 of [2] and considering a sequence of solutions u,, of (1.1) forz > —n
with initial value

u,(—n,x) =u (—n,x),

one can easily get the existence of an entire solution u(z, x) of (1.1) satisfying
u (1, x) <u(t,x) <ut(r,x) forallt € (—oo,T)andx € Q.

By definition of u~, u™ and remembering that £ can be arbitrary small, one then has that
lu(t, x) — ®(x; — ct)] =0, as t — —oo uniformlyin Q.

Thereby, we have proved the existence of the entire solution of (1.1) satisfying (1.5).

By proposition 2.3, one can immediately get that 0 < u(z, x) < 1. Since u™ (¢, x) is increas-
ing in ¢ for ¢ negative enough, it follows from proposition 2.3 that u,(¢, x) is increasing in
t. Then, letting n — +oco and by proposition 2.3 together with (1.5), one has that u(z, x) is
increasing in z.

For any a, b € R? such that 0 < a < b < 1, define

Qpap @) :={x € Q,a < u(r,x) < b}

By applying the same argument in the proof of [2, lemma 3.1] to every component of u(z, x),
one can get the following lemma. Here, we should notice that the Hopf lemma is still true for
(u;),(t, x) by assumption (A3).

Lemma2.7. Foranya,b € R?suchthat0 < a < b < 1, thereexist T < 0and K > 0 such
that

(u)(t,x) 2 K foralli=1,2, t € (—oo, T]and x € Qpap(?).

The proof of the uniqueness of the entire solution satisfying (1.5) is basically similar to
section 3.3 of [2] and section 3 of [3]. Only some slight modifications should be made for con-
structing sub- and supersolutions by applying the idea of Tsai [16]. We present the uniqueness
in the following lemma and omit the proof.

Lemma 2.8. If u(t,x) and v(t,x) are two entire solutions of (1.1) satisfying (1.5), then
u(z, x) = v(t, x).

3. Convergence to planar fronts on the right side

In this section, we prove theorem 1.2. We assume that € is a bilaterally straight cylinder, that
is, there is L > 0 such that

Q={x €R;x; > L} Xw,

where w C RV"!. We first investigate the large time behaviour of the entire solution u(z, x)
satisfying (1.5) on the right side of 2.

Lemma 3.1. Thereexistt; € R, 1, € R, 4 € R, §9 > 0, > 0 and pp > 0 such that
ut,x) < B(x; —ct — 1) + 11) + dle 2 4 fo1e D (3.1
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fort >t and x € Q such that x, > L and
ut,x) > B(x; —c(t — 1) — L) — Sole 202 — §y1e #o1—D (3.2)

fort >t and x € Q such that x; > L.

The proof of lemma 3.1 is similar as the proof of lemma 3.1 of [9]. Only some slight mod-
ifications should be made for constructing sub- and supersolutions as we can see in (3.1) and
(3.2). So, we omit the details of the proof.

By similar proofs as of lemma 3.3 and lemma 3.4 of [9] and virtue of lemma 3.1, we have
the following lemmas.

Lemma 3.2. Foranye > 0, there exists t. € R such that
u(t,x) = d(x; —c(t —1.) — L) — el e 207 — gle #1—D

for all t > t. and x € ) such that x, > L, with the same constants § > 0 and j. > 0 as in
lemma 3.1.

Lemma 3.3. There is M > 0 such that, if there are € > 0, ty € R and 7 € R such that

sup  [[u(to, x) — ®(x; —cto +7)[| < €
xeﬁ, X]}L

together with |1 — ®(L — cty + 7)|| < € and |1 — u(t,x)|| < € for all t > ty and x € Q with
x1 = L, then it holds

sup |[u(z,x) — ®(x; —ct +7)|| < Me  for allt > 1.
xe?ix12L

Proof of theorem 1.2. Letr ERneR 7 €R, 6 >0,6>0andy > 0beasinlemma
3.1. Fort > max(t,1) and x € 2 with x > L, one has that
B(x; — c(t — 1) — L) — ol e 207 — §ple +1h)
<u(t,x) < O(x; —c(t — 1) +71) + Gole 2 4 fole D),

(3.3)

Take a sequence {1, } ey such that ¢, — +o00 as n — +o00. Let Q, = Q — (ct,, 0) and it con-
verges to a straight open cylinder 2, as n — +o00. Let w,(7,y) = u(r + 1,,, ¥, + ct,,,y') which
is defined in R x (,,. By standard parabolic estimates applied to every component of u(z, x),
up to extraction of a subsequence, u,(z, y) converge locally uniformly in (¢,y) € R x Q0 to a
solution uy(¢,y) of

(ux), — Aty = F(uy), teR, yeQy,
{(uoo)u =0, teR, ye€ 0O.
It follows from (3.3) that
Q(y1 —ct — 1) — L) Sux(t,y) < @y — et — 1) + 71)
for all (¢,y) € R x Q. We need the following claim.
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Claim 3.4. IfQisastraightcylinder, thatis, 2 = R x w whereisw C RY~!, and the solution
u(z, x) of (1.1) satisfies

O(x; —ct+ o)) < ut, x) < P(xy — ct + o),

for some o, 0, € R, then there is ¢ € R such that u(z, x) = ®(x; — ct + o).

We postpone the proof of this claim at the end of this section.
Therefore, there is 7 € R such that

w,(t,y) = u(t + t,,y1 + cty,y) = ®(y; — ¢t + 1) locally uniformly in
x R x Q. asn — +o00.
The rest of the proof can similarly follow that of theorem 1.7 of [9] to get that

u(t,x) = ®(x; — ¢yt +7) uniformly forx Qast — +oo.

This completes the proof. U
Proof of claim 3.4. Consider v(z,z,x') = u(t, z + ct, x') where z = x; — ct. Then, v(t, z, x')
satisfies
v, = DAV — cO.v + F(v), teR, (z,x)eN
(3.4)
o,v=0, (z, x') € 09,
and
Pz 4 01) < V(1,2,x') < P(z + 02). (3.5

Notice that 2 is a straight cylinder and it is invariant with shifts in x-axis.
Define

o = sup{o € [02,01];V(t,2,x") < P(z + ') inQforanyo’ € [02,0]}.

We prove that v(¢, z, x') = ®(z + o). B
Assume that v(z, z, x') < ®(z + o*) for (z, x") € Q such that —C — 0y < z < C — 0, where
C is defined by (2.6). Then, 0* < o and there is 77 > 0 such that 0* + 7 < ¢, and

v(t,2,x) < ®(z+ 0" + 1) for (z,x) € Qsuchthat — C —0; <7< C—o0y. (3.6)
Define
Q ={(t,z;X) ERxQz< —C—01} and QF ={t,z.x) ERxQz>C— 0}
By (3.5), one has that |1 — v|| < 9 for (1,z,x') € Q_,_and Iv|| < & for (1,2, x') € ﬁ Define
e =inf{e > 0,v(t,z,xX) < P(z+ 0" +1n) +ep” inQ_,_}.

Since |1 — ®(z + 0* + n)|| < dmini—,{p;"} for (1,2, x') € Q, and v(z, x) < 1, it means that
€* < 0. Assume that £* > 0. Then, there exist sequences ¢, and (¢, z,, x},) such that ¢, St
as n — +oo and

V(tny 20, X)) > ®(z, + 0" +n) +,p~  inQ; . (3.7)
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If z, — —o0 as n — +00, one has that v(z,, z,, x,) — 1 and ®(z, + 0 + 1) — 1. By (3.7) and
passing n — +00, one gets that

1>21+ep

which is a contradiction. Thus, z, is bounded. Since x/, is also bounded, there are z. and x/,
such that z, — z. and x], — x/, as n — +00. Assume without loss of generality that 7, — . as
n — +o0. Otherwise, one can discuss for the limit of v(z + t,,, z, x). Thus, it follows from (3.7)
and the definition of &*

V(t, 20, X)) = @z + 0" +n) +p .

One can easily check that ®(z+ o +7) 4+ *p~ is a supersolution of (3.4) in 2, . By
proposition 2.4, we have that

vit,z,x) =P+ o +n)+ep

which is a contradiction since v(z,z, x') — 1 and ®(z + o* + 1) — 1 as z — —oo. Therefore,
e*=0and v(t,z,x") < ®(z+ 0" +n)in Q_t_

Similarly, one can prove that v(z,z, ') < ®(z + ¢* + 7) in Qf Then, together with (3.6),
it follows that

v(t,2,X) < ®(z+ 0" +n) for(t,z,x') € R x Q.

It contradicts the definition of o*.
Therefore,

inf ||v(t,z,x') — ®(z+ ¢%)|| =0 for (z,x") € Qsuchthat — C — 0y <7< C — 0n.

Then, there is (fo, 20, X)) € R x {(z,x") € Q; —C — 01 < 7 < C — 05} such that v(t, 29, x})) =
®(z0 4+ o*). By proposition 2.4, one has that

v(t,z,x) = Oz + o).

This completes the proof of claim 3.4. (]

4. Some geometrical conditions

In this section, we give some geometrical conditions on €2 such that the propagation of the
entire solution u(z, x) satisfying (1.5) is complete or incomplete, respectively. Since u(t, x) is
increasing in ¢ and by applying parabolic estimates to every component of u(z, x), there exists
a solution u.,(x) of the following system

DAu, + F(u,) =0, x e

O =0, x €09,

such that lim,, ¢ o u(z, x) = U (x) in CL.(Q2). To prove the completeness or incompleteness of
the propagation, one only has to prove whether u = 1 or not.
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4.1. Some geometrical conditions for complete propagation

This subsection is devoted to the proof of theorem 1.4, that is, under every condition (a)—(c),
we prove that u,(x) = 1. We will need the positive solution of the following problem

DAu + F(u) =0, in B(0, R),
4.1)
u=0, on 9B(0, R),

which is well known for the scalar case by [4].

Lemma 4.1. There exists a positive constant Ry such that for any R > Ry, the system (4.1)
has a positive symmetric solution u(x) = z(|x|) and z(r) is decreasing in r for 0 < r < R.

Proof. This result is equivalent to find a solution for the following problem

0’z 0zN —1 .
D(W—’_E—)—’_F(Z):O’ 1n0<r<R,
7 =0, onr=0, 4.2)
z=0, onr =R.

Let &, k, p(§), 9, C, Cy, C, and Cj all be defined as in section 2.2. Even if it means picking §
smaller, assume additionally that

(1 + C1Cy) < ¢Cs. (4.3)
Take a constant §; < ¢ small enough such that

01(2+2C; + Cymax{p; }) < ké min {p;'}. (4.4)

Let Ry > C > 0 large enough such that

11— ®©)] <& for& < —Ry. 4.5)
Take an increasing C? function &, (r) and a constant R, > 0 such that

h(r)y=0 forr<0 and hi(r)=1 forr=>R,.
One can make R, large enough such that /'(r) and /" (r) are small enough satisfying

D; (18l + 2|1 Aol @fll e + dupi B ll) < &1 foralli=1, 2. (4.6)

Let R3 > 0 large enough such that

N-—1
—— <4y, forr>Rsandi=1,2. “4.7)
,

Let Ry = C+ R; + R;. Take any R > Ry + R3. Define

Di([| @il + |17y ][z01p;)

h(r) = hi(r — (R — Ry)).
For r € B(0, R), define a function z™ (r) by
2 (r):= max (h(r)®(r — R+ C) + (1 — h(r))(1 — 6;p") — 6p(r — R+ C),0) .
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Let us check that z~(x) is a subsolution of (4.2). After some computation, one has that
Pz 0z N—1 .
N,' = D,‘ ! L F'(z~
( or? + or r @)
= D; (W'(r)i + 20 (N} + h(r)¢] — W' (Ndip; + 6p/(r — R+ C)

N—-1
— (W )5+ W), = W (r)dip; +0pl(r — R+ C))r>

+ F'(h(r®+ (1 — h(r))A — 6,p) — 6p(r — R+ O)).
For0 < r < R— Ry, onehas that i(r) = hi(r — (R —Rp)) =0andr — R+ C < —R| — R, <
—M. Then, by 24), pr—R+C)=p and z (r)=1—(§; +)p~ for 0 <r <R —Ry.
Thus, z~ (r) satisfies the boundary condition dj—;(O) = 0. Notice that
1 =2" M < @+ )ymax {pi } < 26 max {p; } < do

for 0 < r < R — Ry and hence

OF'! (
3uj

2
Fi@ () ==Y 51— 6,51+ 6)p )b + )p; = (61 + Skp; >0,
j=1

where 0; € (0, 1) by (2.3). Then, it follows that
Ni=Fi(z )>0 forO<r<R-—Ry
ForR—Ry <r<R—Rp+ Rp,one has that r — R+ C < —R; < —M and hence p(r — R +
C) = p~. Moreover, by (4.5), one has ||[1 — ®(r — R + C)|| < d;. Then, if follows from (1.3)
that
N; = D; (h”(r)qSi + 21 (r)¢: + h(r)¢! — W' (r)6,p;
! / ! _N— 1
+ (W ()i + h(r)g; — K (r)d: p; )T

+ Fi(h(® + (1 — h(r))(1 —6,p ) +6p)
= Dy (=W || = 201 ||| Bl e — 617 || o

, o N—1
— Ul + by )™ )

— h(r)cd, — h(r)F(®) + F' (h(r)®(r — R + C)
+ (I =hr)A—=5p)—6bp ).

The mean-value theorem implies that

i 2 OF
FI@ <Y o (1= 61— ®)(1 = ) < Gy,
J

J=1
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and
F'(h(r)® + (1 — h(r))(1 — 6;p~) — 6p)

2 .

OF'
=25 (1 = 6:(h(n(A — @) — (1 = h(r))o1p~ — op "))

=1

X [h(r)(1 = ¢y + (1 = h(M)d1p; + 0p; ]
> —C0 — Gy m%{P;} + 0kp; .
J=1,

Since r > R — Ry > Rj3, it follows from (4.4), (4.6), (4.7) and d): < 0 that
Ni 2 =61 — 01 — G201 — G261 — Ca6y mﬁl’é{l’;} + 0kp; > 0.
J=1,

Now, for R —Ry+ Ry <r<R—2C,onehas h(r) =1, r — R+ C < —C < —M and hence
p(r =R+ C)=p . Thus,z (r) = ®(r — R+ C) + dp_. Then, it follows from (1.3) that

N; =D; (qs;’ + ¢Nr—l> + Fi(®(r— R+ C)+6p")
(4.8)

> — Di||#}|| — ¢+ F(@(r—R+C)—6p)— F (®(r—R+C).
By the mean-value theory, one has that

Fi(®(r—R+C)—0p ) — F(®(r—R+ C))
)
== 5 F(®—6,6p7)0p; > kép;.
= Buj

where 6; € (0,1). By (4.4), (4.7) and ¢; < 0, one gets that
N; > —0, + 6kp; > 0.

ForR —2C < r < R,onehas that —C < r — R+ C < Cand —¢i(r — R + C) > C;. Then, by
(4.3) and (4.8), one has that
N-—1
r
> — (51 +CC3 — (5C1C2 > 0.

Ni = — Di| |1

— C(ﬁ; — 5C1C2

Notice that r — R+ C = C > M for r = R. Hence, ®(r — R+ C) < §min,—»{p;"} and
p(r — R+ C) = p* for r = R. Therefore, one has that z~(R) = 0. In conclusion, z~(r) is a
subsolution of (4.2).

Now we consider the Cauchy problem

?z  0zN —1 ,
zt—D<ar2—|—arr>=F(z), int>0, 0<r<R,
7 =0, onr =0, 4.9)
z=0, onr =R,
z(0,r) =2z (r).
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Since z(r) is a subsolution and by proposition 2.3, one has that z(r) is increasing in r.
By parabolic estimates, one has that z.(r) :=z(+00, r) is a solution of (4.2) and it satisfies
0z (r)<1for0O<r<R.

Then, we prove that z..(r) is decreasing in r. We simply denote z..(r) by z(r). Since
Z(R) = 0, it follows from proposition 2.4 that z/(R) < 0 for i = 1, 2. Therefore, for a € (0, R)
close to R enough, one has that

2(r) <zRa—r) fora<r<a+min{R—a,a}. (4.10)

For a > R/2, one has that min{R—a,a} =R—a and z(r)=0< zQ2a—r) for
r=a+ min{R — a,a}. By proposition 2.4, it implies that

2(r)<z2a—r) fora<r<a+min{R—aa} and Zia) <0 fori=1,2, (4.11)

for a close to R enough. Then, one can decrease a a little such that (4.10) still holds.
By above argument and again by proposition 2.4, one can get that (4.11) still holds for
the decreased a. By iteration, it follows that (4.11) holds for all a > R/2. Then, there
is 7 > 0 small enough such that (4.10) holds for a = R/2 — 7. Notice that in this case,
min{R — a,a} = a and 2 (2a — r) = 2/(0) = 0 for r = a + min{R — a,a}. While, z'(r) < 0
forr = a+ min{R — a,a} = 2a since a = R/2 — n and 7 is small. Then, by proposition 2.4,
one has that (4.11) holds for a = R/2 — 7. By similar arguments as above, one can decrease §
again and finally get that (4.11) holds for all @ > 0. Thus, z(r) is decreasing in r for0 < r < R.

This completes our proof. (]

Proof of theorem 1.4.

(a) Let o, k, p(§) and 0 be defined as in section 2.2. Since the entire solution u(, x) satisfies
(1.5), there is T}, such that

[u(Ts,, x) — ®(xy — cTy)| < o. (4.12)
Define
v(1, x) = (1, x)) — Op(Et, x))e ™,

where {(t, x) = x| — c(t + T5,) + o1 — e %) and « can be taken sufficiently large. Notice
that u(7;,, x) = v(0, x) by (4.12). It can be easily checked that v(z, x) satisfies

v, — Av—F(v) <0, forsr>0andx € .

Since v1(x) > 0 forany x € 9€2, one has that (v;),(1, x) = ¢:(£(t, x))v1(x) < 0forx € 9N
and i = 1, 2. Therefore, v(, x) is a subsolution of (1.1). It follows from proposition 2.3 that
u(t + Ts,, x) = v(t,x) for t > 0 and x € Q. Thus, by ®(—o00) = 1, one has that

u(t,x) — 1 locally uniformlyin Qasz — +oc.

(b) Take Ry large enough such that lemma 4.1 holds. Let R x B}QO C Q. Since u(z, x) satisfies
(1.5) and ®(—o0) = 1 and u(t, x) is increasing in ¢, there is ap > 0 large enough such that
for any a > ay,

Uy (xy —a,x’) = zg(|x|) forallx € Bg,.
Letu :=u.(x; — a, x"). We claim that
u’(x) > zg,(]x|), foranya € R. (4.13)
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(©)

4.2.

Define that
a* = inf{a € Ryux(x; — a,x") > zg,(|x]) in Bg, }.

We only have to prove that ¢* = —oco. Assume, by contradiction, that a* > —oo. Then,

there exist sequences {a, },eny of R and {x,, },cny of Bg, such that a, =sa* and u(x,) <
Zg,(|x]). Since x,, € Bg,, there is y € By, such that x, — y. By the definition of a*, one
has that u® (y) = zg,(|y]). Since u” (x) > 0 and Zr,(x) = 0 for x € OBg,, one has that
¥ € Bg,. It then contradicts to the maximum principle. Therefore, claim (4.13) holds.

By claim (4.13) and proposition 2.4, we have

Uoo(x1, x') > zg, (]x'])  for allx € Q. (4.14)
Forh > 0 and e € SV2, define

Une(x') =12zg,(|x' — he|) and = max_ . (x).
ecSN-2

By (4.14), we know that u,,(x) > py(x'). Since 2 is axially star-shaped and by
proposition 2.4 and following the same arguments as in [2, section 7], one can prove that

. (x) = p(x") forallx € Qandallh > 0.
Therefore, one has that

Uo(x) > max zg,(|x' — he|) forall x € Q.
ecSN-2

By the proof of lemma 4.1, one knows that max zg,(r) = zg,(0) > 1 — 26p~. Moreover,
one can easily check that 1 — 26p~ e~ is a subsolution of (1.1) for # > 0. Then, u,.(x) >
1—25p~ e % and hence u,.(x) = 1.

Once we have lemma4.1 and proposition 2.4, we can follow the proof of [9, corollary 1.12]
to prove the conclusion. Here, we omit the details. |

Some geometrical conditions for incomplete propagation

This subsection is devoted to the proof of theorem 1.5. We first announce some notions. By
(2.2) and (2.3), there are p > 0, positive constants /, § and a region

R::{ueRz, |lu—p| <0},

such that

Fi(u) < —h, inRfori=1, 2.

This implies that p is close to 0. Let M > 0 such that

Let

|Fi(w)| <M forue [0,1]andi=1,2. (4.15)

M
B,-:1+E fori=1,2.

L
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Take a bistable function g(u) satisfying

g0)=g(l)=gO) =0, g(s)<0forO<s<b, g(s)>0ford
1
<s < land/ g(s)ds > 0,
0

where 0 € (0, 1). Take constants —oo < a < b < 400 and € > 0. Let 2 satisfy theorem 1.4.
Define

O ={xeQx >a}
Then, from [2], one knows that there exists € > 0 small enough such that the following equation
Az+g(x) =0, inQ,
07 =0, on o\ {x; = a}, (4.16)
z7=1, on{x; =a}
has a positive solution z(x) satisfying

li =0.
o, 20

Moreover, z(x) is close to wo(x) defined by
[x1 — b|

wo(x) = b—a
0 forx; € [b,+00], x € U,

forx;, € [a,b), x € ¥

in H'(Q) norm. Let A; := min{28, h/D;||g||z=(0.17} for i = 1,2. One can make |b — a| small
enough such that

0z 1 M
——=>—(1+= =a.
oy Ai( +Di> on xi a

Define functions w;(x) as following

pi+0 —Ai(1 — z(x)) ifx; > a,

wi(x) = M
pitd— 5t = a)? = Bixi1 —a)  ifx <a,

fori = 1,2 and W := (w;, w,). Obviously, W(x) is well defined and continuous in x;. Then, let
1, forx; <a-—1,
wh(x) =
min{1, w(x)}, forx; > a—1.

Notice that for x; = a — 1,

M
@i(X)=pi+5—5+B,-=1+p,»+5>1.

Thus, wT (x) is well defined and continuous in x;.
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We then check that wt(x) satisfies
D;Aw;” + Fi(wt) <0 fori=1,2.

Fora — 1 < x; < a, one has that w;(x) = p; + § — DMi(xl — a)®> — Bi(x; — a). It follows from
(4.15) that

D;AW; + Fi(W) = —2M + Fi(W) <0 fori=1,2.

For x; > a, one has that w;(x) = p; + 6 — A;(1 — z(x)). Since A; < 2§ and 0 < z(x) < 1,
it means that p; — 6 < w;(x) < p; + 6. Hence, F((W) < —h. It follows from (4.16) and
A; < h/DillglL=qo,1 that

DiAT; + F'(W) = D;A;Az + F'(W)
= —DiAig(x) + F(W) <h—h=0.
Finally, we can notice that w;(x) is decreasing in x| fora — 1 < x; < a and

- u
im @y =a, % @< - (1 + ) and
X L)a 6x1 8x1 D,'

- u
— lim (@) =B = <1+>.
X1 éa axl Di

By definition 2.2, wT(x) is a supersolution of (1.1). Then, u(z, x) < w(x) for all € R and
x €.
Therefore, u,.(x) < wt(x) for all x € Q. By the definition of w*(x), we then have

limsup uy(x) < p + 41. 4.17)

xX1—+00

Take any sequence {x, },en such that xj, — +00 as n — 400. Let v,(x) = u(x] + X1, X)
and 0, = Q — xy,,. Then, there is {2, such that Q, — Q. as n — 400 and v, (x) converge to
a solution of

DAv, +F(vy) =0, x € Oy
OyVoo = 0, x € 0.

By (4.17), we have v,(x) < p — 01 which implies that v, (x) = 0. Therefore, u,,(x) — 0 as
x| — +oo. O
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