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Frequency Response Analysis of Parametric Resonance and Vibrational
Stabilization
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Abstract— Periodically time-varying models are found across
nature and engineered systems, from fluid dynamics, structures
and MEMS devices to quantum mechanics and astrophysics.
Such systems are known to exhibit parametric resonance, a
kind of instability caused by fluctuating model parameters.
Under conditions of instability, they can also be vibrationally
stabilized with the right forcing. The question of interest here
is variation in behavior within these two stable regimes, and
whether certain parameter configurations are preferred from
a design perspective. This motivation leads us to consider
Mathieu’s equation with harmonic forcing as a canonical model.
To address these questions, we use a lifting based approach
to obtain a representation of the frequency response operator
that is amenable to methods from LTI systems. We study
the poles of the system as a function of its parameters, and
obtain a description of the free response of Mathieu’s equation
as the product of two simple functions. We also investigate
the dependence of the 7> norm of Mathieu’s equation on its
parameters. A considerable difference in 7/ norm between the
two regimes is found, as well as interesting behavior within
each domain.

I. INTRODUCTION

Systems with periodically time-varying parameters are
widely observed in engineered systems and in nature. In
fluid dynamics, the stability of Faraday waves on the sur-
face of a fluid in an oscillated container is modeled by a
periodic system [1], as is the Kelvin-Helmholtz instability
with time-periodic shear [2]. In structural mechanics, models
of columns loaded axially by time-periodic loads have this
feature [3], as do MEMS devices subjected to alternating
voltage under appropriate conditions [4], [5]. Such models
also describe the behavior of parametric amplifiers and the
dynamics of electrons in Penning traps [6].

Periodic systems display the phenomenon of parametric
instability or resonance for certain parametric forcing fre-
quencies. Parametric resonance is often undesirable, but is
used in a favorable way in low-noise parametric amplifiers
such as Varactors, as well as in MEMS mass-sensing devices
(71, [8].

On the other hand, certain unstable time-periodic systems
can be stabilized by the introduction of parametric forcing, a
technique referred to as Vibrational Control (or Vibrational
Stabilization). While Vibrational Control has traditionally
been thought of as a high frequency phenomenon [9], [10],
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recent work [11] has elucidated that this impression is pri-
marily due to the use of averaging methods to analyze such
systems, and that vibrational stabilization can be achieved
with parametric oscillation at lower frequencies with care-
fully selected amplitudes. This work [11] also clarifies how
vibrational control can be thought of as the “flip side”
of parametric resonance, and is the starting point of our
investigations.

An interesting question is the sensitivity to noise of time
periodic systems as a function of their time-periodic forcing
parameters. For instance, a quantitative description of the
same is useful in the design of devices that use parametric
amplification for sensing. It is also salient to ask how robust
vibrational stabilization schemes are to noise. In order to
address this question, this paper investigates the frequency
response of a linear time-periodic system as applied to
Mathieu’s equation.

In Section II we define the system under consideration
and review the most common solution method and the well-
known results of stability analysis. In Section III we describe
the process of lifting, a method to represent a time-periodic
system as LTI but with higher dimensional input/output
spaces. In Section IV we define the frequency response
operator for this time-periodic system and estimate its sin-
gular values numerically. The Hy norm, another measure of
the action of the system on white noise, is investigated in
Section V. Finally, we make a brief mention of the statistical
properties of the system.

II. PERIODICITY, PARAMETRIC RESONANCE
AND VIBRATIONAL STABILIZATION

The canonical example of a periodic linear system is
Mathieu’s equation,

i(t) + (£w? + ecost)z(t) = 0 (1)

The positive case (+w?) can be thought of an oscillator
with a spring constant that varies periodically. The negative
case (—w?) is exponentially unstable in the absence of
parametric forcing and corresponds to a system like the
Kapitza pendulum, an inverted pendulum with a sinusoidally
vibrating base linearized about its unstable equilibrium [12].
The form is ubiquitous and arises in many systems driven
by periodic forcing, including most phenomena listed in the
previous section.

Mathieu’s equation is a specific case of the more general
Hill ODE,

E(t) + f(O)x(t) = w(t), f(E+T) = f(t) 2)
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in that the periodic forcing f contains only a single
harmonic. In the following sections we focus on Mathieu’s
equation, although qualitatively similar results hold for the
Hill equation.

Mathieu’s equation is formally solved using Floquet theory
[12], a general method for the analysis of linear time periodic
systems developed by Floquet in 1883 [13]. Analyzing the
stability of the system using this method involves looking
at the eigenvalues of the monodromy map ®(7',0), where
®(t,7) is the state transition matrix. In Section III-B we
obtain an equivalent picture using lifting.

'
Vibrational *
Stabilization,
251 5

Parametric resonance/amplification
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Fig. 1: Armold Tongues for Mathieu’s Equation. In the space of
the parameters w and €, we see regions of instability (gray), as well
as a stable region for the nominally unstable system corresponding
to —w?. The two related phenomena are commonly referred to as

parametric resonance and vibrational stabilization, respectively.

The phenomenon of parametric resonance and vibrational
stabilization in Mathieu’s Equation are both illustrated in
Fig. 1. We make two observations:

1) For the +w? equation, we see that a nominally stable
(i.e with € = 0) harmonic oscillator can be destabilized
with parametric forcing of very low amplitude if the
forcing frequency is chosen carefully. This is the
principle behind parametric amplification and sensing.

2) The —w? equation is unstable and exhibits exponential
growth with no forcing. However we see that the
right combination of e and forcing frequency can
stabilize the system. This is the principle of vibrational
stabilization.

Both of these applications lead us to ask questions apropos
of design. For instance, given a viable range of parameters
w and ¢, how do they differ in potential performance? How
robust is the vibrationally stabilized region of parameter
space to disturbances? How sensitive are different possible
operating points of a parametric amplifier to noise? To
illustrate the possible variation in behavior within a single
parametric regime, Fig. 2 shows the trajectories of the
impulse response in state space of Mathieu’s equation at
three different operating points in the vibrationally stabilized

regime from Fig. 1, and there is considerable variation both
in the magnitudes and their qualitative features.
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Fig. 2: Trajectories of the impulse response of vibrationally stabi-
lized Mathieu’s equation at three different operating points. They
are different in both magnitude and qualitative features. The points
are: (w,€) = (0.1,0.25) (0.21,0.44) and

Addressing these questions requires studying the in-
put/output characteristics of the system, which in turn re-
quires us to consider Mathieu’s equation with harmonic
forcing:

#(t) + (£w? + ecost)z(t) = w(t) 3)

Since we cannot readily apply the tools of LTI systems to
this problem, we first apply the technique of lifting to recast
the problem into a more tractable form.

ITI. DESCRIPTION OF THE LIFTING PROCESS

The lifting technique allows us to represent a time-periodic
system as a time-invariant one in a space with higher
dimensional input and output spaces [14]. A brief description
of the procedure is as follows.

Let L’J’\,,E[O, 0), 1 < p < oo be the extended space of con-
tinuous time N —vector signals, henceforth shortened to LP.
For any Banach space X, let [x be the space of sequences
which take values in X, so that [x := {{f;} : N — X}.

Then for each T', we define the lifting operator W :
L7[0,00) —+ L (0.1 by

f is a sequence, each element of which is a function on
[0,T]. The action of Wy can be visualized as breaking up
the signal f € LP[0,00) into an infinite number of pieces,
each of which is a copy of f restricted to an interval of
length T'. W is linear and can be shown to be bijective and
an isometry. W, ! thus glues together the elements of {fi},
fi € LP[0,T) into a function f € LP[0, c0).

Let G : LP[0,00) — LP[0,00) be any linear operator.
With Wz in hand we define the lifting for systems as

0<t<T (&)

G- WrGW; 1, G: lip[oﬂ — lip[O,T] ®)
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G is linear and HG H = ||G|| with appropriate norms.

It can be shown that if G is T-periodic, then G is shift-
invariant. G thus has a convolution representation [14]: If

y = Gw, then ¢; = Z;‘:O Gi,jUA)j.

A. Example of lifting: the product of a periodic and almost-
periodic function

As an illustration of the lifting process, consider a signal
y(t) formed from the product of the copies of any function
p(t) € L2[0,T] (not necessarily continuous) and a complex
exponential that is constant over each period:

(1) = p(t) exp (AL )

The two pieces are illustrated in Fig. 3.

Y daasN

({}H(Fj\_%J) e

p(t+T)=pt) (6

Fig. 3: Pieces of y(¢) in the example in Section III-A. The product
of copies of p(t) and the almost-periodic exponential generates a
function that has a particularly simple form when lifted, and appears
as the free response of the Mathieu’s equation in sec. IV

If 0 is rational, the exponential is a periodic function and
so is y(t), otherwise we refer to the exponential here as
“almost-periodic”. Such a function and its Z-transform will
appear in the frequency response analysis in Section IV.
When lifted, this function has a simple form:

Jr. = pel®* 7
where the implicit dependence of y;, and p on ¢ is suppressed.

Note that § € l1,jo,7) so that for each k, § € L?[0,T]. It
is also instructive to look at the Z-transform Y'(z) of gj:

g = pe® o V(z) = P2 or
— eit
o= pejé(l_l) & Y(z) - ? — (8)
z—edf?

B. Applying lifting to Mathieu’s equation
To apply this to Mathieu’s equation with input, we first
write equation (1) in standard form:
) z(t) + ((1)> u

. 0 1
a(t) = <w2 —ecos(t) —2kw
= A(t)z(t) + Bu
1
)= (g) o) = Catt) ©
This system is 7' = 27 periodic. Let ®(¢,7) be the state
transition (or fundamental) matrix for the system. We define

fk = Q?(kT), UAjk(t) = u(kT + t), gk(t) = y(kT + t)

so that {2} € If,, and {dn}, {x} € ZL2 o.T
Then it follows from the periodicity of <I> t%‘lat

Tht1 ZAZ?k + B@k (10)
g =Cy, + Dy, (11
A R? - R? Aiy =®(T, 0)iy,
T
B:L?[0,T] — R? Wy :/ O(T, s) Bu(s)ds
0

/ CO(t,s)Biug(s)ds
(12)
This system is shift-invariant (in k) and thus has a simple
solution in terms of its Markov parameters:

k—

Z Ak—i= leJ + Dy
§=0

13)

C. Numerical solution through lifting

To apply this method numerically, we begin with the Hill
ODE rewritten as

w0 = (5= |y ofsw+]i]ur  av
y(t)=[1 0]z(t) (15)

and discretize it. The Hill equation is a Hamiltonian system
with H (21, 9;t) = 1 (23+ f(t)x?}). Its flow is thus symplec-
tic and must be discretized symplectically [15] to preserve
the character of the eigenvalues and thus the stability. See
the appendix for details.

The discretized equation is used to estimate ®(¢,0), 0 <
t < T, and then lifted as above, with the modification that
w, 9 € RY instead of L2. The resulting operators B through
D are all matrices instead of operators with L? as their
domain/codomain.

The result is a MIMO system that is equivalent to Math-
ieu’s equation in the sense of the lifting described above and
whose solution 7 is related to the solution y of the discretized
Mathieu’s equation by § = Wry.

IV. FREQUENCY RESPONSE OF MATHIEU’S
EQUATION

LTI systems map complex exponential input signals at a
given frequency to complex exponential outputs at the same
frequency but a different amplitude and phase, which allows
us to define the idea of frequency response. The output of
a linear time periodic (LTP) system to a similar input will
contain a multitude of harmonics, and thus defining a transfer
function in a similar way is difficult. However, the lifting
approach from the previous section allows us to represent it
as a discrete-time infinite-dimensional LTI system.

The poles of the lifted system (10) can be found as the
eigenvalues of the Monodromy map A= ®(T,0). These are
a function of both the system’s natural frequency w and the
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forcing amplitude e. An important property of the Hill ODE
(and thus Mathieu’s equation) is that the dynamics are mea-
sure preserving (appendix), implying that d 7 det ®(£,0) = 0.
It follows that the product of the elgenvalues of ®(T.,0)
is always 1, since det ®(0,0) = 1. So the eigenvalue pair
of the monodromy map for Mathieu’s equation is restricted
to the unit circle (when stable) and the real axis (when
unstable).The argument of the eigenvalues is thus always 0
or 7 at the stability boundaries. In the stable regions the
poles are e7¥, 0 < w < 7.
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(a) Parametric resonance regime +w?. w? varies be-
tween 0.25 and 1.0, i.e. between the first two tongues.
The poles are always at 1 at the boundaries of the
Arnold tongues, but the behavior in the stable region is

not necessarily monotonic with increasing e.
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(b) Vibrationally stabilized —w? regime. At given w,
increasing e monotonically moves the poles from +1 to
—1 along the unit circle. Beyond either of these points
one of the poles is outside the unit circle and the system
is unstable.

Fig. 4: The variation in pole location of the discretized, lifted
Mathieu’s equation as a function of w and e.

Fig. 4 shows the variation of the argument of the poles of
the lifted system on the unit circle as a function of w and e
for both (£w?) regimes.

The first ten singular values of the discretized and lifted
system for both regimes (dw?) are shown in Fig. 5. It is
observed that the lifted system has a single mode that grows
at resonance. The peak location corresponds to w on the unit
circle, and thus changes with (w, €) as indicated in Fig. 4.
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Singular Values (dB)
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Fig. 5: First ten singular values of the transfer function of the
discretized, lifted Mathieu’s equation evaluated for +w?. Red:
(w,€) = (0.2,0.44), Vibrational stabilization (—w?) regime, Blue:
(w,€) = (0.8,0.5), parametric resonance (+w?) regime. Both
systems were discretized with N = 100. In both regimes there is a
single dominant pair of singular values, with resonance correspond-
ing to system poles at e=®. This lets us formulate the form of the
free response of Mathieu’s equation with a low rank approximation.

A. Harmonic resonance in Mathieu’s equation

The single resonant mode in the lifted Mathieu’s equation
suggests that its frequency response close to resonance is
similar to that of a second order system. This line of thinking
is supported by considering the Z —transform of the operator:

G(z)=C(zI-A)'B+D (16)

From (12), we see that the first term has at most rank 2
(since A is always 2 x 2) while Dis potentially infinite-rank
but has fixed, bounded norm. Sufficiently close to resonance,
however, (2] — A) is near-singular and so outstrips D in
magnitude. The behavior of the system near resonance is thus
almost entirely determined by the first term, which depends
on z through factors (z — e*7%) "~

This observation lets us characterize the response of
Mathieu’s equation in terms of the singular functions of G for
any harmonic forcing that has a non-zero Fourier component
near w. Here we consider the free response of the system,
for which we can neglect the contribution of D entirely.

Let Y(2) = Z[f](z), the Z-transform of the free re-
sponse, with W (z) the Z-transform of the input. Let i)
be the first left singular function of the frequency operator
G, which has poles at e¥/%. Since effectively only i, (j@)
(which is function or vector-valued depending on the setting)
features in the output near resonance, we have the free
response

a7)

for some constant c. Following the discussion in Section III-
A, this corresponds to a lifted function ¢ of the form
R [ciy (e7%) exp (jo(k — 1)))]. As a result we get

y(t) ~ R {c iy (e79) exp{ (L J—l) H (18)
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for some constant c. Here ¢ is a discrete or continuous index
depending on the nature of the original system that is lifted.

Thus the free response of Mathieu’s equation can be char-
acterized as the product of copies of a “constant” function @
(in the sense of the lifting) and a complex exponential that
is generally almost-periodic, as in Fig. 3. Some visually rich

0.08 g g g " . + -
008 -006 004 -002 0 002 004 006 008 1 05 0 05 1

(a) Impulse response in the para- (b) Impulse response in the vibra-
metric resonance (+w?) regime, tionally stabilized (—w?) regime,
(w,€) = (0.20,0.44). (w,€) =(0.8,0.5)

Fig. 6: Trajectories (x vs %) of impulse response of Mathieu’s
equation calculated using the discretized, lifted model. The behavior
appears to be non-repeating and also very different in the two
regimes.

behaviors can result from this combination. This essentially
rank-2 approximation to G is pictured in Fig. 7 and should
be compared to the actual impulse response calculated from
the discretization in Fig. 6.
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(a) LSV based estimate in the (b) LSV based estimate in the vi-
parametric resonance (+w?) regime, brationally stabilized (—w?) regime,
(w, €) = (0.20,0.44) (w, €) = (0.8,0.5)

Fig. 7: Approximation to the impulse response trajectories calcu-
lated from the first left singular function of GG. Note that this does
not include the calculation of the scaling factor ¢, following the
argument in sec. IV-A. Compare with the actual impulse response
in Fig. 6

V. Ha, NORM OF MATHIEU’S EQUATION AS A
FUNCTION OF THE SYSTEM PARAMETERS

The Ho norm of a system is a measure of its stability, as
well as the steady-state variance of its output when fed white
noise as input. For a MIMO LTI system the Hy norm can
be interpreted as the the square average of the norms of the
responses to a set of unit inputs that excite all ‘parts’ of the
system. [16]

This interpretation can be used to generalize the definition
of the Hs norm to time-periodic systems. Suppose the kernel
of the T-periodic system G is given by G(t,s). Since the
response to an impulse applied at s is different for each

s (0 < s < T), we can think of these inputs as exciting
different parts of the kernel G(¢,s). We thus define the Ho
norm for a periodic system as

T oo
IG5, == %/ Tr (/ G’(t,s)G(t,s)ds> dt (19
0 0

Following the lifting procedure G — G, this can be rewrit-
ten as HG||3_L2 =330, Ir (G’Zék) where G.(7,s) =
G(T+Tk,s), 0 <7 < T is the k" lifted component of G.

When applied to the lifting of Mathieu’s equation as
described in Section III-B, this leads to the expression

IG|1%, = Tr [OWO* + DD*} (20)
Here W is the infinite time reachability Grammian
S0 AF1BB* A*(=1) for the system and can be found as
the solution to the Lyapunov equation AW A*—W = —BB*
[17].

This calculation is performed for the discretized, lifted
system from Section III-C and the results are displayed in
Fig. 8. We see a minimum in the /2 norm in the center of the
vibrationally stabilized parametric region, as well as a trend
of decreasing norm with increasing w in the stable region.
This lends credence to the hypothesis that viable operating
points differ in their susceptibility to noise.

VI. CONCLUSION

In an effort to understand the properties of linear peri-
odically time-varying systems beyond stability, we consider
Mathieu’s equation with harmonic forcing as a representative
example. The frequency response operator of Mathieu’s
equation obtained via lifting possesses interesting properties.
The poles of the system vary non-monotonically across the
stable parametric regimes of the equation.

From studying its singular values, it is also natural to
approximate the frequency response operator as a rank-2
object, which leads to a description of the free response
of Mathieu’s equation. The free response is shown to have
a simple form as a product of repeated copies of the first
singular function of the operator with an almost-periodic
complex exponential, which can explain visually rich dy-
namical oscillator behaviors that depend qualitatively on the
operating point.

The Ho norm of Mathieu’s equation is computed across
the stable regimes using the discretized, lifted system. It is
seen that the susceptibility to noise across the parametric
space is non-uniform, with a clear local minimum in the
vibrationally stabilized region and a slower variation under
the Arnold tongues in the parametric resonance region.

When fed stochastic stationary signals as input, period-
ically time-varying systems produce cyclostationary output
[18]. The operator-valued object in frequency domain used
to analyze such output is the cyclic spectrum. The spectrum
of the cyclostationary output of Mathieu’s equation can shed
further light on how it amplifies noise, as well as on the
spectral content of the response. Work on this approach is
ongoing.
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(a) Vibrationally stabilized regime, (—w?) case. The Ha
norm has a minimum in the middle of the stabilizable
region in parameter space.

(b) Parametric resonance regime, (4+w?) case. This
image covers the stable region under the first and second
Arnold tongues. The H2 norms in the two sub-regions
differ by factor of 2 or more.

Fig. 8: Contour plot of the H2 norm of Mathieu’s equation in the
vibrationally stabilized and stable regions. The vibrationally stabi-
lized regime is significantly more susceptible to noise. Calculations
were done with a damping coefficient of 0.1.

REFERENCES

[1] Benjamin and Ursell, “The stability of the plane free surface of
a liquid in vertical periodic motion,” Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences,
vol. 225, no. 1163, pp. 505-515, sep 1954. [Online]. Available:
https://doi.org/10.1098%2Frspa.1954.0218

[2] R. E. Kelly, “The stability of an unsteady kelvin—helmholtz flow,”
Journal of Fluid Mechanics, vol. 22, no. 3, p. 547-560, 1965.
[Online]. Available: https://doi.org/10.1017%2Fs0022112065000964

[3] T. Iwatsubo, Y. Sugiyama, and S. Ogino, “Simple and combination
resonances of columns under periodic axial loads,” Journal of Sound
Vibration, vol. 33, pp. 211-221, 1974.

[4] K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald,
S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a
microelectromechanical system,” Nature, vol. 396, no. 6707, p. 149,
1998.

[5] D. I. Caruntu and I. Martinez, “Reduced order model of parametric
resonance of electrostatically actuated MEMS cantilever resonators,”
International Journal of Non-Linear Mechanics, vol. 66, pp.
28-32, nov 2014. [Online]. Available: https://doi.org/10.1016%2F;j.
ijnonlinmec.2014.02.007

[6] J. Tan and G. Gabrielse, “Synchronization of parametrically pumped
electron oscillators with phase bistability,” Physical Review Letters,
vol. 67, no. 22, pp. 3090-3093, nov 1991. [Online]. Available:
https://doi.org/10.1103%2Fphysrevlett.67.3090

[71 W. Zhang and K. L. Turner, “Application of parametric resonance
amplification in a single-crystal silicon micro-oscillator based mass

sensor,” Sensors and Actuators A: Physical, vol. 122, no. 1, pp.

23-30, jul 2005. [Online]. Available: https://doi.org/10.1016%2Fj.sna.

2004.12.033

W. Zhang and G. Meng, “Nonlinear dynamical system of micro-

cantilever under combined parametric and forcing excitations in

MEMS,” Sensors and Actuators A: Physical, vol. 119, no. 2, pp.

291-299, apr 2005. [Online]. Available: https://doi.org/10.1016%2F;j.

sna.2004.09.025

[9] F. Bullo, “Averaging and vibrational control of mechanical systems,”
SIAM Journal on Control and Optimization, vol. 41, no. 2, pp. 542—
562, 2002.

[10] S. Meerkov, “Principle of vibrational control: theory and applications,”
IEEE Transactions on Automatic Control, vol. 25, no. 4, pp. 755-762,
1980.

[11] J. M. Berg and I. M. Wickramasinghe, “Vibrational control without
averaging,” Automatica, vol. 58, pp. 72-81, aug 2015. [Online].
Available: https://doi.org/10.1016%2Fj.automatica.2015.04.028

[12] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. Wiley, may
1995. [Online]. Available: https://doi.org/10.1002%2F9783527617586

[13] G. Floquet, “Sur les équations différentielles linéaires a coefficients
périodiques,” in Annales scientifiques de I’Ecole normale supérieure,
vol. 12, 1883, pp. 47-88.

[14] B. A. Bamieh and J. B. Pearson, “A general framework for linear peri-
odic systems with applications to h/sup infinity/sampled-data control,”
IEEE transactions on automatic control, vol. 37, no. 4, pp. 418-435,
1992.

[15] S.J. M. Sanz-Serna, “Symplectic integrators for hamiltonian problems:
an overview,” Acta Numerica, vol. 1, pp. 243-286, jan 1992. [Online].
Available: https://doi.org/10.1017%2Fs0962492900002282

[16] B. Bamieh and J. B. Pearson, “The h2 problem for sampled-data
systems,” Systems & Control Letters, vol. 19, no. 1, pp. 1-12,
jul 1992. [Online]. Available: https://doi.org/10.1016%2F0167-6911%
2892%2990033-0

[17] J. P. Hespanha, Linear Systems Theory. Princeton University Press,
feb 2018. [Online]. Available: https://doi.org/10.2307%2Fj.ctvc772kp

[18] G. Giannakis, “Cyclostationary signal analysis,” in Digital Signal
Processing Fundamentals. CRC Press, nov 2009, pp. 1-32. [Online].
Available: https://doi.org/10.1201%2F9781420046076-c17

[8

[t

APPENDIX

Hamiltonian systems like the Hill equation are character-
ized by symplectic flows that, in two dimensions, preserve
area [15]. The determinant of the Jacobian of the flow ¢
(¢+(z(0)) = =(t)) should therefore equal 1 identically, for
all ¢t. Since the discretization of such a system approximates
the flow over one time step, we require the scheme to be
symplectic as well.

To discretize the Hill equation (14), let the timestep A
and N € N be chosen such that AN = T, the period of
f(t). Then x and f can be discretized as =, = z(nA),
fn = f(nA), as can w and y.

We use a first order Euler scheme that is backward in time
in the equation for z; and forward in time for z. This gives

T1,k+1 — L1,k

=T2,k+1
T2hil 7 T2k _ frx1p + wi
or
L1 k1 1— feA? Al [z, A?
) — el
|:x2,k+1:| [ —fed 1] T2k A |k
=orTr + Pwg (21)

Where det ¢, = 1. Lifting does not affect this property since
det (@g, Pky Ok - - - Ok, ) = 1 for any set of indices ki . . . k.
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