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An Input–Output Approach to Structured
Stochastic Uncertainty
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Abstract—We consider linear time-invariant systems
with exogenous stochastic disturbances, and in feedback
with structured stochastic uncertainties. This setting en-
compasses linear systems with both additive and multi-
plicative noise. Our concern is to characterize second-
order properties such as mean-square stability (MSS) and
performance. A purely input–output treatment of these sys-
tems is given without recourse to state-space models, and,
thus, the results are applicable to certain classes of dis-
tributed systems. We derive necessary and sufficient con-
ditions for MSS in terms of the spectral radius of a linear
matrix operator whose dimension is that of the number of
uncertainties, rather than the dimension of any underlying
state-space models. Our condition is applicable to the case
of correlated uncertainties, and reproduces earlier results
for uncorrelated uncertainties. For cases where state-space
realizations are given, linear matrix inequality equivalents
of the input-output conditions are given.

Index Terms—Loop gain operator, mean-square stability,
stochastic uncertainty.

I. INTRODUCTION

L INEAR time invariant (LTI) systems driven by
second-order stochastic processes are a widely used

and powerful methodology for modeling and control of many
physical systems in the presence of stochastic uncertainty. In
the most well-known models, stochastic uncertainty enters the
model equations additively. Linear systems with both additive
and multiplicative stochastic signals are on the other hand
relatively less studied. This problem setting is important in the
study of system robustness. Although additive disturbances can
represent uncertain forcing or measurement noise in a system,
multiplicative disturbances are necessary to model uncertainty
in system parameters and coefficients. When the multiplicative
uncertainty is of the nonstochastic set-valued type, then the
problem setting is the standard deterministic one of robust
control [1]. The present article is concerned with the stochastic
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Fig. 1. General setting of linear systems with both additive and multi-
plicative stochastic disturbances. M is an LTI system, w is a stationary
stochastic process that enters additively, while the multiplicative dis-
turbances are modeled as a feedback through time-varying stochas-
tic gains γ1, . . . , γn, represented here as a diagonal matrix acting on
vector-valued internal signals u and y. The signal z represents an output
whose variance quantifies a performance measure.

multiplicative uncertainty setting, but the approach will appear
to be closer to that of robust control compared to common
stochastic treatments.

Before commenting on the background for the present article,
a brief statement of the problem is given to allow for a more
precise discussion. Fig. 1 illustrates the setting considered in this
article. An LTI systemM is in feedback with time-varying gains
γ1, . . ., γn. These gains are random processes that are temporally
independent, but possibly mutually correlated. Another set of
stochastic disturbances are represented by the vector-valued
signal w, which enters additively, while the signal z is an output
whose variance quantifies a performance measure. The feedback
term is, then, a diagonal matrix with the individual gains {γi}
appearing on the diagonal. Such gains are commonly referred to
as structured uncertainties. We should emphasize that although
M in Fig. 1 represents a linear model, it can also represent the
linearization of a nonlinear model around a fixed point. In this
case, the analysis carried out in this article leads to local results
(close enough to the fixed point).

We should note the other common and related models in the
literature, which are usually formulated in a state-space setting.
One such model is a linear system with a random “A matrix”
such as

x(t+ 1) = A(t)x(t) +Bw(t) (1)

where A is a matrix-valued random process (with A(t) in-
dependent of {x(τ), τ ≤ t}). Sometimes (1) can be rewritten
in an alternative form using scalar-valued random processes
γ1, . . . , γn (n is not necessarily the dimension of x) as follows:

x(t+ 1) = (Ao +A1γ1(t) + · · ·+Anγn(t))x(t) +Bw(t).
(2)
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Now this form can always be converted [1] to that of Fig. 1. The
simplest case is when the matrices A1, . . . , An are all of rank 1,
then each γi(t) in Fig. 1 is a scalar block, while otherwise, one
would have so-called repeated blocks. We refer the reader to [1]
and [2] for this standard construction.

The literature on systems with multiplicative noise goes
back several decades. Early work considered models like (1)
and (2), but primarily in continuous time and using an Ito
formulation. The primary tool [3] was to derive differential
equations that govern the evolution of second-order moments
when the multiplicative noise is white, and conditions for the
asymptotic convergence of those deterministic equations are
given in terms of solvability of certain Riccati-like equations.
The case of colored multiplicative noise is less tractable since
equations for the second-order moments are not easy to obtain,
although certain special classes have been studied [4], [5]. For
the white noise case, however, more detailed analysis appeared
in later work [6], [7] , which recast mean square stability (MSS)
conditions in terms of linear matrix inequalities (LMIs).

Another trend [8]–[11] appeared in the 90’s when systems
with several sources of multiplicative noise were viewed in a
similar manner to that of structured uncertainty common in
robust control (as in the setting of Fig. 1). The interesting
observation was made that MSS conditions can be given in terms
of the spectral radius of a non-negative matrix of H2 norms (the
matrix ofH2 norms of the individual single-input–single-output
(SISO) subsystems of the multi-input–multi-output (MIMO)
LTI system M). This criterion is analogous to necessary and
sufficient conditions for robust stability to deterministic struc-
tured time-varying uncertainty in both the L2 and L∞-induced
norms [12]–[19] settings.

There are two observations about the existing results [8]–[11]
that motivate the current work. The first is that although the final
MSS conditions are stated in terms of input–output properties
(H2 norms), the arguments and proofs rely on state-space real-
izations, LMIs related to those realizations, and scalings of those
LMIs. Second, the existing results are for multiplicative uncer-
tainties that are mutually uncorrelated, and it is unclear how these
arguments can be generalized to the correlated uncertainties
case. It should be noted that the latter case is important for
several applications, such as spatially distributed systems where
uncertainties enter the dynamics with spatial correlations [20].

The aim of this article is to provide a relatively elementary,
and purely input–output treatment and derivation of the nec-
essary and sufficient conditions for MSS and performance. In
the process, conditions for the mutually correlated uncertainties
case become transparent, as well as how special the uncorrelated
case is. A new mathematical object is uncovered, which can be
termed the “loop gain operator,” which acts on covariances of
signals in the feedback loop. We briefly describe this operator
as a preview of the main result of this article (the following
statement is concerned only with MSS rather than performance,
so the signal w in Fig. 1 is set to zero). Let Γ be the mutual
correlation matrix of the γ’s, i.e., the matrix with ij’th entry
Γij := E[γi(t)γ∗

j (t)]. Let {M22(t)} be the impulse response
matrix sequence of the M22 subsystem in Fig. 1, and define the
matrix-valued linear operator

L(X) := Γ ◦
( ∞∑

t=0

M22(t) X M ∗
22(t)

)

where ◦ is the Hadamard (element by element) product of
matrices. Note that it operates on matrices X whose dimensions

are the number of uncertainties, and not of any underlying
state-space realization. The operator L is called the loop gain
operator because it captures what happens to the covariance
matrix of a signal as one goes “once around the feedback loop”
in Fig. 1 in the statistical steady state. The eigenvalues and
“eigen-matrices” of this operator characterize MSS as well as
the fastest growing second-order statistics of the signals in the
loop when MSS is lost. An examination of this operator shows
that in the more general setting Γ %= I , MSS conditions require
not only calculations ofH2 norms, but also inner products of the
various subsystems’ impulse responses (of which the H2 norms
of subsystems are a special case). The operator L has several nice
properties including monotonicity (preserving the semidefinite
ordering on matrices), and consequently a Perron-Frobenius
theory for its spectral radius and the associated eigen-matrix.
These properties are described and exploited in the sequel.

This article is organized as follows. Section II establishes
preliminary results that are needed for the subsequent structured
uncertainty analysis. One-sided random processes and their
associated covariance sequences are defined. In addition, we
provide a natural input–output definition of MSS in feedback
systems. The main tool we use is to convert the stochastic
feedback system of Fig. 1 to a deterministic feedback system
that operates on matrix-valued signals, namely the covariance
sequences of all the signals in the feedback loop (Fig. 4 provides
a cartoon of this). LTI systems that operate on convariance-
matrix-valued signals have some nice monotone properties that
significantly simplify the proofs. We pay special attention to
establishing these monotone properties. Our main results on
MSS are established in Section III where we begin with the
simple case of SISO unstructured stochastic uncertainty. This
case illustrates how small-gain arguments similar to those used
for deterministic perturbations [21] can be used to establish
necessary and sufficient MSS conditions. We, then, consider the
structured uncertainty case, introduce the loop gain operator,
and show that it captures the exact necessary and sufficient
structured small gain condition for MSS. Section IV examines
this loop gain operator in the general case as well as several
special cases. We reproduce earlier results when the uncer-
tainties are uncorrelated, and derive conditions for repeated
uncertainties. Finally, Section V treats the performance problem
and Section VI translates our conditions to state-space formulae
whenever such realizations are available. These can be useful
for explicit computations, and, in particular, we provide a power
iteration algorithm for calculating the largest eigenvalue and cor-
responding eigen-matrix of the loop gain operator. We close with
some remarks and comments about further research questions
in Section VII.

II. PRELIMINARIES AND BASIC RESULTS

All the signals considered are defined on the half-infinite,
discrete-time interval Z+ := {0, 1, . . .}. The dynamical systems
considered are maps between various signal spaces over the
time interval Z+. This is done in contrast with the standard
stationary stochastic processes setting over Z since stability ar-
guments involve the growth of signals starting from some initial
time.

A stochastic process u is a one-sided sequence of random
variables {ut; t ∈ Z+}. The notation ut := u(t) is used when-
ever no confusion can occur due to the presence of other
indices. Without loss of generality, we assume all processes
to be zero mean. For any process, its instantaneous variance
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sequenceut := E[u∗
tut] is denoted by small bold font, and its

instantaneous covariance matrix sequenceUt = E[utu∗
t ] is de-

noted by capital bold font. The entries of Ut are mutual corre-
lations of the components of the vector ut, and are sometimes
referred to as spatial correlations. Note that ut = tr(Ut).

A process u is termed second order if it has finite covariances
Ut for each t ∈ Z+. A process is termed white if it is uncorre-
lated at any two distinct times, i.e., E[utu∗

τ ] = 0 if t %= τ . Note
that in the present context, a white process u may still have
spatial correlations, i.e., its instantaneous correlation matrix Ut

need not be the identity. A process u is termed temporally inde-
pendent if ut and uτ are independent when t %= τ . Although the
processes considered in this article are technically not stationary
(stationary processes are defined over the doubly infinite time
axis), it can be shown that they are asymptotically stationary in
the sense that their statistics become approximately stationary
in the limit of large time, or quasi-stationary in the terminology
of [22]. This fact is not used in the present treatment and the
preceding comment is only included for clarification.

A. Notation Summary

1) Variance and Covariance Sequences: A stochastic
process is a zero-mean, one-sided sequence of vector-valued
random variables {ut; t ∈ Z+}.

1) The variance sequence of u is

ut := E [u∗
tut] .

2) The covariance sequence of u is

Ut := E [utu
∗
t ] .

3) When it exists, the asymptotic limit of a covariance se-
quence is denoted by an overbar

Ū := lim
t→∞

Ut (3)

with similar notation for variances ū := limt→∞ ut.
We use calligraphic letters M to denote LTI systems as

operators, and capital letters {Mt} to denote elements of their
matrix-valued impulse response sequences, i.e., y = Mu is
operator notation for yt =

∑t
l=0 Mt−τuτ .

1) If M has finite H2 norm, then the limit of the output
covariance Ȳwhen the input is white and has a covariance
sequence with a limit Ū is denoted by

Ȳ = M
{
Ū
}

‖̈ ‖̈

lim
t→∞

Yt

∞∑

τ=0

MτŪM ∗
τ = lim

t→∞

t∑

τ=0

MτUt−τM
∗
τ .

Note that M{.} is a matrix-valued linear operator.
2) The response to spatially uncorrelated white noise is

denoted by

M{I} =
∑∞

τ=0 MτM ∗
τ =: M̄.

2) Hadamard Product: For any vector v (resp. square ma-
trix V ), Diag(v) (resp. Diag(V )) denotes the diagonal matrix
with diagonal entries equal to those of v (resp. V ). For any
square matrix V , diag(V ) is the vector with entries equal to the
diagonal entries of V .

The Hadamard, or element-by-element product of two matri-
ces A and B is denoted by A ◦B. We will use the notation

A◦2 := A ◦A
for the element-by-element matrix square. Note that with this
notation, for any matrix V

I ◦ V = Diag(V ).

A matrix-valued operator which will be needed is

F (V ) := I ◦ (AV A∗) = Diag (AV A∗) . (4)

In particular, we will need to characterize its action on diagonal
matrices, which is easily shown to be

Diag (ADiag(v)A∗) = Diag
(
A◦2v

)
. (5)

In other words, if V = Diag(v) is diagonal, then the diagonal
part of AV A∗ as a vector is simply the matrix-vector product of
A◦2 with v.

B. Input–Output Formulation of MSS

Let M be a causal LTI (MIMO) system. The system M is
completely characterized by its impulse response, which is a
matrix valued sequence {Mt; t ∈ Z+}. The action of M on
an input signal u to produce an output signal y is given by the
convolution sum

yt =
t∑

τ=0

Mt−τ uτ (6)

where without loss of generality, zero initial conditions are
assumed.

If the input u is a zero-mean, second-order stochastic process,
then it is clear from (6) that yt has finite covariance for any t,
even in the cases where this covariance may grow unboundedly
in time. If u is, in addition, white, then the following calculation
is standard:

Yt = E

[(
t∑

τ=0

Mt−τuτ

)(
t∑

r=0

u∗
rM

∗
t−r

)]

=
t∑

τ=0

t∑

r=0

Mt−τ E [uτu
∗
r]M

∗
t−r

Yt =
t∑

τ=0

Mt−τ Uτ M ∗
t−τ . (7)

Note that this is a matrix convolution, which relates the instan-
taneous covariance sequences of the output and white input. For
SISO systems, this relation simplifies to

yt =
t∑

τ=0

M2
t−τ uτ . (8)

For systems with a finite number of inputs and outputs, taking
the trace of (7) gives

yt = tr (Yt) =
t∑

τ=0

tr
(
Mt−τ Uτ M

∗
t−τ

)
(9)

=
t∑

τ=0

tr
(
M ∗

t−τMt−τ Uτ

)
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≤
t∑

τ=0

tr
(
M ∗

t−τMt−τ

)
tr (Uτ )

yt ≤
( ∞∑

τ=0

tr
(
M ∗

t−τMt−τ

)
)(

sup
0≤t<∞

ut

)
(10)

where the first inequality holds because for any two positive
semidefinite matrices A and B, we have tr(AB) ≤ tr(A)tr(B)
[23]. The above calculation motivates the following input–
output definition of MSS.

Definition 1: A causal LTI system M is called mean-square
stable (MSS) if for each white, second-order input process u
with uniformly bounded variance, the output process y = Mu
has uniformly bounded variance

yt := E [y∗tyt] ≤ c

(
sup
τ

uτ

)
(11)

with c a constant independent of t and the process u.
Note that the first term in (10) is just the H2 norm of M

‖M‖22 :=
∞∑

t=0

tr (MtM
∗
t ) .

The second term is an #∞ norm on the variance sequence, and,
thus, the bound in (10) can be compactly rewritten as

‖y‖∞ ≤ ‖M‖22 ‖u‖∞. (12)

From (9), it is easy to see that equality in (12) holds when u
has constant identity covariance (Uτ = I). Conversely, if M
does not have finite H2 norm, this input causes yt to grow
unboundedly. Thus, a system is MSS if and only if it has finite
H2 norm.1

For systems that have a finite H2 norm, the output covariance
sequence has a steady-state limit when the input covariance
sequence does. More precisely let y = Mu, and the input u
be such that

lim
t→∞

Ut =: Ū

exists. Then, if M has finite H2 norm, it follows that the output
covariance has the limit

Ȳ := lim
t→∞

Yt =
∞∑

τ=0

Mτ ŪM ∗
τ =: M

{
Ū
}
. (13)

For covariance sequences with a well-defined limit, the overbar
bold capital notation is used for the limit value as above. Also
as above, the notation M{Ū} is used for the steady-state output
covariance of an LTI system M with input that has steady-state
covariance of Ū. When Ū = I , the following compact notation
is used:

M̄ := M{I} .

1It must be emphasized that this conclusion holds only if MSS is defined with
as boundedness of variance sequences when the input is white. As is well-known
from the theory of stationary stochastic processes, the instantaneous variance
of a signal is the integral of its power spectral density (PSD). The integrability
of the output PSD cannot be concluded from the integrability of the system’s
magnitude squared response unless the input has a flat PSD (i.e., white). Thus
for colored inputs, the boundedness of the output variance sequence cannot be
concluded from only the H2 norm.

Fig. 2. Definition of MSS for a feedback interconnection. The exoge-
nous disturbance signals are white random processes, and the require-
ment is that all signals in the loop have uniformly bounded variance
sequences.

Thus, M̄ is the steady-state covariance of the output of an
LTI system M when the input is white and has a steady-state
covariance of identity.

C. MSS of Feedback Interconnections

The input–output setting for MSS of a feedback interconnec-
tion can be motivated using the conventional scheme [21] of
injecting exogenous disturbance signals into all loops.

Definition 2: Consider the feedback system of Fig. 2 with
d and w being white second-order processes, and M and G
causal LTI systems. The feedback system in Fig. 2 is called MSS
if all signals u, y, v, and r have uniformly bounded variance
sequences, i.e., if there exists a constant c such that

max {‖u‖∞, ‖y‖∞, ‖v‖∞, ‖r‖∞}
≤ c min {‖d‖∞, ‖w‖∞} .

Remark 1: A standard argument implies that the feedback
interconnection is MSS iff the four mappings (I −MG)−1,
G(I −MG)−1, (I −MG)−1M, and MG(I −MG)−1 have
finite H2 norms. In general, it is not possible to bound those
closed-loop norms in terms of only the H2 norms of M and
G. In other words, it is not generally possible to carry out a
small-gain type analysis of the feedback system of Fig. 2 using
only H2 norms. Another way to see this is that bounds like (12)
are not directly applicable to Fig. 2 since the signals u and v will
not in general be white.

Despite the above remark, in the present article, the concept of
feedback stability is used when one of the subsystems is a tem-
porally independent multiplicative uncertainty. As will be seen,
this has the effect of “whitening” (temporally de-correlating)
the signal going through it, thus enabling a type of small-gain
analysis.

D. Stochastic Multiplicative Gains

The MSS problem considered in this article is for systems of
the structure depicted in Fig. 3, where

Γ(t) := Diag (γ1(t), . . . , γn(t))

is a diagonal matrix of time-varying scalar stochastic gains
acting on the vector signal v

rt = Γt vt

andM is a strictly causal LTI system. Without loss of generality,
Γ can be assumed to be a zero mean process as the mean
value can be absorbed into the known part of the dynamics.
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Fig. 3. Strictly causal LTI system M in feedback with multiplicative
stochastic gains γi’s. The exogenous stochastic signals d and w are
injected to test MSS of the feedback system, which holds when all
internal loop signals u, y, v, and r have bounded variance sequences.

Fig. 4. Deterministic feedback system detailing how the dynamics
of the stochastic feedback system in Fig. 3 operates on covariance
sequences. Each signal in this diagram is positive semidefinite matrix
valued. The forward block is an LTI matrix convolution, and the feedback
block is the Hadamard matrix product. It is notable that all input–output
mappings of this feedback system are monotone even if the original
system is not. This implies in particular that all covariance sequences in
the loop are nondecreasing if the exogenous inputs are nondecreasing
(in the semidefinite ordering on matrices).

The assumptions we make on the additive and multiplicative
uncertain signals are as follows.

Assumptions on d, w, and Γ
1) The random variables {dt}, {wt}, and {Γt} are all mu-

tually independent.
2) Both d and w have nondecreasing covariance sequences,

i.e.,

t2 ≥ t1 =⇒ Dt2 ≥ Dt1 , Wt2 ≥ Wt1 .

The first assumption on the mutual independence of the Γ’s
is crucial to the techniques used in this article. Note, however,
that for any one time t, individual components of Γt maybe
correlated, and that is referred to as spatial correlations, which
can be characterized as follows. Let γ(t) denote the vector

γ(t) :=
[
γ1(t) · · · γn(t)

]∗
.

The instantaneous correlations of the γi’s can be expressed with
the matrix

Γ := E [γ(t) γ∗(t)] (14)

which is assumed to be independent of t.
The mutual independence (in time) of the perturbations Γ and

the strict causality of M have an implication for the dependen-
cies of the various signals in the loop on theΓ s. This is expressed
in the following lemma whose proof is found in the appendix.

Lemma 2.1: In the feedback diagram of Fig. 3, assume M
is strictly causal, and that Γt and Γτ are independent for t %= τ .
Then, we have the following.

1) Past and present values of v and y are independent of
present and future values of Γ, i.e.,

Γt, yτ , τ ≤ t, are independent

Γt, vτ , τ ≤ t, are independent. (15)

2) Past values of r and u are independent of present and
future values of Γ, i.e.,

Γt, rτ , τ < t, are independent

Γt, uτ , τ < t, are independent. (16)

An important consequence of these relations is that even if
the input signal v may, in general, be colored, multiplication by
the Γ s will cause the output r to be white. This can be seen from

E [rtr
∗
τ ] = E [Γtvtv

∗
τΓ

∗
τ ]

= E [Γt] E [vtv
∗
τΓ

∗
τ ] = 0, τ < t

where the second equality follows from (15), i.e., the indepen-
dence ofΓt from vt, vτ , andΓτ , respectively. A similar argument
shows that r is uncorrelated with present and past values of v
and y, and uncorrelated with past values of u, but we will not
need these facts in the sequel.

To calculate the instantaneous spatial correlations of r

E [rtr
∗
t ] = E [Γtvtv

∗
tΓ

∗
t ]

= E [Γt (E [vtv
∗
t ]) Γ

∗
t ] (17)

where the last equality follows from the independence of vt
and Γt and formula (57) in Appendix A. It is, thus, required to
calculate quantities like E[ΓMΓ] for some constant matrix M .
The case of diagonal Γ reduces to

E [ΓMΓ∗] = E








γ1

. . .
γn



M




γ1

. . .
γn









= [mij E [γiγj ]] = Γ ◦M

which is the Hadamard (element-by-element) product of Γ and
M . Applying this to (17), the above arguments lead to the
following conclusion.

Lemma 2.2: Consider the feedback system of Fig. 3 with
M a strictly causal LTI system, and Γ diagonal stochastic
perturbations with spatial correlations (14). If the perturbations
Γ are temporally independent, then the output r is a white process
with instantaneous spatial correlations given by

Rt = Γ ◦Vt (18)

the Hadamard (element by element) product of Γ and Vt.
Two special cases are worth noting. If Γ = γ is a scalar

perturbation, then (18) reduces to

rt = Γvt. (19)

Thus, the multiplication by a scalar perturbation simply scales
the variance of the input signal and “whitens” it. In the special
case where the perturbations are uncorrelated and all have unit
variance, i.e., Γ = I , a simple expression results

Rt = diag (Vt)
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where diag(Vt) is a diagonal matrix made up of the diagonal
entries of the matrix Vt. Thus, if the γi’s are white and mutu-
ally uncorrelated, then the vector output signal r is temporally
and spatially uncorrelated even though v may have both types
of correlations. In other words, a structured perturbation with
uncorrelated components will spatially and temporally whiten
its input.

E. Covariance Feedback System

An important tool used in this article is to replace the analysis
of the original stochastic system of Fig. 3 with an equivalent
system that operates on the respective signals’ instantaneous
covariance matrices. This deterministic system is depicted in
Fig. 4. Each signal in this feedback system is matrix-valued.
The mathematical operations on each of the signals depicted in
the individual blocks follow from (7) and (18) and the following
observations.

1) u is a white process.
2) For each t

Ut = Rt +Wt. (20)

3) For each t

Vt = Yt +Dt. (21)

Observations 1 and 2 follow from

E [utu
∗
τ ] = E [(rt + wt)(r

∗
τ + w∗

τ )]

= E [rtr
∗
τ ] + E [rtw

∗
τ ] + E [wtr

∗
τ ] + E [wtw

∗
τ ]

=

{
0 + 0 + 0 + 0 = 0, τ < t

E [rtrt] + 0 + 0 + E [wtw∗
t ] = Rt +Wt, τ = t

where E[wtr∗τ ] = 0 since w is uncorrelated with past system
signals, and E[rtw∗

τ ] = 0 follows from Lemma 2.1 because
E[rtw∗

τ ] = E[Γtvtw∗
τ ] = E[Γt]E[vtw∗

τ ] = 0. For the case τ <
t, E[wtw∗

τ ] = 0 and E[rtr∗τ ] = 0 since w (by assumption) and
r (Lemma 2.2) are white respectively. Observation 3 follows
immediately from

Vt = E [(yt + dt)(y
∗
t + d∗t)] = Yt +Dt

since yt is a function of w, Γ, and past d’s, and, thus, is
independent of dt. Note that v may in general be colored.

Observation 1 implies that the forward block can indeed be
written using (7) (the input needs to be white for its validity).
Observations 2 and 3 imply that the summing junctions in
Fig. 3 can indeed be replaced by summing junctions on the
corresponding covariance sequences in Fig. 4.

F. Monotonicity

Although it is not standard to consider systems operating on
matrix-valued signals, it is rather advantageous in the current set-
ting. In this article, the order relation used on matrices is always
the positive semidefinite ordering (i.e., A ≥ B means (A−B)
is positive semidefinite). The statements in this section apply to
orderings with other positive cones, although this generality is
not needed here.

1) Monotone Operators:
Definition 3: A matrix-valued linear operator L : Rn×n →

Rm×m is called monotone (in the terminology of [24], or cone

invariant in the terminology of [25] and [26]) if

X ≥ 0 ⇒ L(X) ≥ 0.

In other words, if it preserves the semidefinite ordering on
matrices (this definition is equivalent to the statement X ≤
Y ⇒ L(X) ≤ L(Y )). There is a Perron-Frobenius theory for
such operators, which gives them nice properties, some of which
are now summarized.

Theorem 2.3: For a matrix-valued monotone operator L
1) ∃ a real, largest eigenvalue: ρ(L) is an eigenvalue of L.
2) ∃ an eigen-matrix X ≥ 0 for the largest eigenvalue, i.e.,

L(X) = ρ (L) X. (22)

3) Sums and compositions of monotone operators are mono-
tone. For ρ(L) < α, the operator (I − L/α)−1 exists and
is monotone.

Proof: The first two statements are from [26, Theorem 2]
or [25, Theorem 3.2]. That sums and compositions of mono-
tone operators are monotone is immediate from the definition.
Furthermore, note that the Neuman series

(I − L/α)−1 =
∞∑

k=0

(L/α)k

is made up of sums of compositions of a monotone operator L/α.
This series converges in any operator norm since ρ(L/α) < 1
(this follows from Gelfand’s formula, which implies that for any
operator norm, there is some k such that ‖(L/α)k‖ < 1). !

Note that the “eigen-matrix” X in (22) is the counterpart of
the Perron-Frobenius eigenvector for matrices with non-negative
entries. Such eigenmatrices will play an important role in the
sequel as a sort of worst-case covariance matrices.

2) Monotone Systems and Signals: The positive semidef-
inite ordering on matrices induces a natural ordering on matrix-
valued signals, as well as a notion of monotonicity on sys-
tems [27]. For two matrix-valued signals U and W, the fol-
lowing point-wise order relation can be defined

(U ≤ W) ⇐⇒ ∀t ∈ Z+, U(t) ≤ W(t). (23)

For systems, the following is a restatement of the definition
from [27] when the initial conditions are zero.

Definition 4: An input–output system M mapping on
matrix-valued signals is said to be monotone if whenever

Y = M(U)

Z = M(W),
then U ≤ W ⇒ Y ≤ Z. (24)

In other words, if M preserves the positive semidefinite
ordering on matrix-valued signals. There is a further notion of
monotonicity of an individual signal in the sense of mapping the
time-axis ordering to that of the matrix ordering.

Definition 5: A matrix-valued signal {U(t)} is said to be
monotone (or nondecreasing) if

t1 ≤ t2 ⇒ U(t1) ≤ U(t2).

It is simple to show (Appendix B2) that a time-invariant
monotone system maps nondecreasing signals to nondecreasing
signals.

3) Monotonicity of Covariance Feedback Systems: That
the forward loop in Fig. 4 is monotone is immediate since

∀t ∈ Z+, Ut ≤ Wt =⇒ ∀t ∈ Z+
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Fig. 5. (Left) LTI system M in feedback with a time-varying stochastic
uncertainty {γt}, and with additive exogenous stochastic disturbances
w and d. (Right) Equivalent LTI systems (28) operating on the variance
sequences of all respective signals. M is replaced by convolution with
the sequence {Mt}, while the stochastic gain γ is replaced by multipli-
cation with Γ, its variance.

(
t∑

τ=0

Mt−τ Uτ M
∗
t−τ

)
≤
(

t∑

τ=0

Mt−τ Wτ M
∗
t−τ

)
.

Note that this is always the case even when the original LTI
system M is not monotone! It is also true that the Hadamard
product is monotone. This follows from the Schur Product
Theorem [28, Th. 2.1], which states that for any matrices

A1 ≤ A2 andB ≥ 0 ⇒ B ◦A1 ≤ B ◦A2. (25)

Thus, each of the two systems in the feedback loop of Fig. 4 is
monotone.

When monotone systems are connected together with pos-
itive feedback, then all input–output mappings in the result-
ing feedback system are also monotone (see Theorem 7.1 in
Appendix B). It, then, follows (Appendix B2) that if the co-
variance signals D and W are nondecreasing, then all other
covariance signals in feedback system are also nondecreas-
ing. These nondecreasing covariance sequences are depicted
in Fig. 4.

III. MSS CONDITIONS

This section contains the main result of this article charac-
terizing MSS in terms of the spectral radius of a matrix-valued
operator. MSS stability arguments in the literature are typically
done with state-space models, and the present article develops an
alternative input–output approach more akin to small-gain type
analysis. This technique is most easily demonstrated with the
SISO case, which, for clarity of exposition, is treated separately
first. The MIMO structured case is, then, developed with a
similar small-gain analysis. However, additional issues of spatial
correlations appear in the structured case, and those are treated in
detail. The section ends by demonstrating how known conditions
for uncorrelated uncertainties can be derived as a special case
of the general result presented here, as well as some comments
about which system metrics characterize MSS in the general
case of correlated uncertainties.

A. SISO Unstructured Uncertainty

Consider the simplest case of uncertainty analysis depicted
in Fig. 5 (Left). M is a strictly causal LTI system, d and w are
exogenous white processes with uniform variance, and γ is a
white process with uniform variance Γ and independent of the
signals d and w. M is assumed to have finite H2 norm.

A small-gain stability analysis in the spirit of [21] can be
accomplished by deriving the equivalent relations between the
variance sequences of the various signals in the loop [see
Fig. 5 (Right)]. To begin with, recall the observations made in

Section II-E that u is white, and for the SISO case, the variance
sequences satisfy

ut = rt +wt (26)

vt = yt + dt. (27)

Since u is white, the formulas for the variances sequences are
particularly simple according to (8) and (19), the equivalent
relations are

yt =
t∑

τ=0

M2
t−τ uτ , rt = Γvt. (28)

The main stability result for unstructured stochastic perturba-
tions can now be stated.

Lemma 3.1: Consider the system in Fig. 5 with M a strictly
causal, stable LTI system, and γ a temporally independent
process with variance Γ. The feedback system is MSS if and
only if

‖M‖22 < 1/Γ.

Proof: (“if”) This is similar to standard sufficiency small gain
arguments, but using variances rather than signal norms. Starting
from u, going backwards through the loop yields

‖u‖∞ ≤ ‖r‖∞ + ‖w‖∞
≤ Γ ‖v‖∞ + ‖w‖∞
≤ Γ (‖y‖∞ + ‖d‖∞) + ‖w‖∞

≤ Γ ‖M‖22 ‖u‖∞ + Γ‖d‖∞ + ‖w‖∞ (29)

where subsequent steps follow from the triangle inequality and
using (12) and (19). This bound together with the assumption
Γ ‖M‖22 < 1 gives a bound for the internal signals u in terms
of the exogenous signals d and w

‖u‖∞ ≤ 1

1− Γ‖M‖22
(Γ‖d‖∞ + ‖w‖∞) .

In addition, this bound gives bounds on variances of the remain-
ing internal signals y, v, and r as follows from (12), (27), and
(19), respectively.

(“only if”) See Appendix E. !
Two remarks are in order regarding the necessity part of the

previous proof. First, there was no need to construct a so-called
“destabilizing” perturbation as is typical in worst-case perturba-
tion analysis. Perturbations here are described statistically rather
than members of sets, and variances will always grow when the
stability condition is violated. Second, the necessity argument
can be interpreted as showing that ‖M‖2 ≥ 1 implies that the
transfer function (1−M(z)) has a zero in the interval [0,∞),
and, thus, (1−M(z))−1 has an unstable pole. The argument
presented above, however, is more easily generalizable to the
structured MIMO case considered next.

B. Structured Uncertainty

In the analysis of MIMO structured uncertainty, a certain
matrix-valued operator will play a central role, and, therefore,
it is first introduced and some of its properties investigated. The
main result on MSS for the structured case is, then, stated and
proved.
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1) The Loop Gain Operator: Consider the matrix-valued
operator

L(X) := Γ ◦
( ∞∑

t=0

Mt XM ∗
t

)
(30)

where Γ is the correlation matrix of the uncertainties (14), and
{Mt} is the matrix-valued impulse response sequence of a stable
(finite H2 norm), causal, LTI system M. This is termed the loop
gain operator since it is how the covariance matrix of stationary
white noise input u is mapped to the covariance of the signal
r (which will also be white) in Fig. 4, i.e., it describes what
happens to the instantaneous covariance matrix of white noise
as it goes once around the loop.

The loop gain operator is monotone since it is the composition
of two monotone operators. There will also be a need to consider
finite-horizon truncations of it

LT (X) := Γ ◦
(

T∑

t=0

MtXM ∗
t

)
. (31)

If M has finite H2 norm, then it is immediate that

lim
T→∞

LT = L

in any (finite-dimensional) operator norm.
It turns out that the spectral radius of the loop gain operator

is the exact condition for MSS. This is stated next.
Theorem 3.2: Consider the system in Fig. 3 where w is a

white process, bothd andw have bounded, monotone covariance
sequences, Γ is temporally independent multiplicative noise
with instantaneous correlations Γ, and M is a stable (finite H2

norm), strictly-causal, LTI system. The feedback system is MSS
if and only if

ρ (L) < 1

where L is the matrix-valued “loop gain operator” defined
in (30).

Proof: (“if”) Recalling the observations made in
Section II-E, an expression for Ut can be derived by following
signals backwards through the loop in Fig. 4

Ut = Rt +Wt = Γ ◦Vt +Wt

= Γ ◦ (Yt +Dt) +Wt

Ut = Γ ◦
(

t∑

τ=0

MτUt−τM
∗
τ +Dt

)
+Wt (32)

which follow from (18), (20), and (21), the fact that u is white,
and (7), respectively. The monotonicity (see Section II-F) of the
feedback system in Fig. 4 relating covariance sequences implies
that U is a nondecreasing sequence. This gives the following
bound:

t∑

τ=0

MτUt−τM
∗
τ ≤

t∑

τ=0

MτUtM
∗
τ

which together with Schur’s theorem (25) allows for replac-
ing (32) with the bounds

Ut ≤ Γ ◦
(

t∑

τ=0

MτUtM
∗
τ

)
+ Γ ◦Dt +Wt

≤ Γ ◦
( ∞∑

τ=0

MτUtM
∗
τ

)
+ Γ ◦Dt +Wt.

To see how this inequality gives a uniform bound on the sequence
U, rewrite it using the definition of L as

(I − L) (Ut) ≤ Γ ◦Dt +Wt

where (I − L) is a linear operator acting on Ut. Now ρ(L) < 1
implies [by Theorem 2.3 (3)] that (I − L)−1 exists and is a
monotone operator, and, therefore,

Ut ≤ (I − L)−1 (Γ ◦Dt +Wt)

≤ (I − L)−1 (Γ ◦ D̄+ W̄
)

where the first inequality follows from the monotonicity of
(I − L)−1, and the second inequality follows from its linearity,
Schur’s theorem, and replacing Dt and Wt by their steady-state
limits. This provides a uniform upper bound on the sequence U,
and note that the stability of M, then, implies in addition that
all other signals in Fig. 4 are uniformly bounded.

(“only if”) In a similar manner to the necessity proof of
Lemma 3.1, it is shown that ρ(L) ≥ 1 implies that U has an un-
bounded subsequence. First, observe that by settingDt = 0, (32)
gives the following bounds:

UTk = Γ ◦
(

Tk∑

τ=0

MTk−τUτM
∗
Tk−τ

)
+WTk

≥ Γ ◦




Tk∑

τ=T (k−1)

MTk−τUτM
∗
Tk−τ



+WTk

≥ LT

(
UT (k−1)

)
+WTk (33)

where the first inequality follows from Schur’s theorem (25),
and the second inequality follows from the monotonicity of the
sequence U and the monotonicity of the operator LT .

A simple induction argument exploiting the monotonicity of
LT yields

UTk ≥ Lk
T (U0) +

k−1∑

r=0

Lr
T

(
WT (k−r)

)
. (34)

Now, set the exogenous covariance WTk = Û, where Û (the
Perron–Frobenius eigen-matrix) is the nonzero semidefinite
eigen-matrix such that L(Û) = ρ(L) Û [see Theorem 2.3 (2)].
Note that the initial covariance is, thus, U0 = D0 = Û. Substi-
tuting in (34) yields

UTk ≥
k∑

r=0

Lr
T

(
Û
)
. (35)

Since limT→∞ LT (Û) = L(Û) = ρ(L)Û, then for any ε > 0,
∃T > 0 such that ||ρ(L)Û− LT (Û)|| ≤ ε||Û||. This inequal-
ity coupled with the fact that 0 ≤ LT (Û) ≤ ρ(L)Û allows us
to apply Lemma 7.3 to obtain

LT (Û) ≥ (ρ (L)− εc) Û =: α Û (36)

where c is a positive constant that only depends on Û
(Lemma 7.3). Then, by (35), the one-step lower bound (36)
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becomes

UTk ≥
(

k∑

r=0

αr

)
Û =

αk+1 − 1

α− 1
Û. (37)

First consider the case when ρ(L) > 1, then ε can be chosen
small enough so that α > 1 and, therefore, U is a geometrically
growing sequence.

The case ρ(L) = 1 can be treated in exactly the same
manner as in the proof of Lemma 3.1 to conclude that U
has a (not necessarily geometrically) unboundedly growing
subsequence. !

2) Worst Case Covariance Matrix: An interesting contrast
between the SISO and MIMO cases appears in the necessity
argument above. Comparing the expressions for the unbounded
sequences (62) and (37), it appears that the Perron–Frobenius
eigen-matrix Û of L represents a sort of worst case growth
covariance matrix. In other words, to achieve the highest rate of
covariance growth in the feedback system, one needs the input
w to have spatial correlations such that Wt = Û. In an analysis
where there are no exogenous inputs and one only considers
growth of initial state covariances, there is a similar worst-case
initial state covariance that corresponds to Û. Section VI elab-
orates on this point.

IV. SPECIAL STRUCTURES AND REPRESENTATIONS

We consider first the special case of uncorrelated uncertain-
ties, and show how the well-known result follows as a special
case. We, then, look at a Kronecker product representation of the
general case, which clarifies the role played by system metrics
other than H2 norms in MSS conditions. These metrics involve
what might be termed as autocorrelations between subsystems
impulse responses. Finally, we consider the case of circulant
systems in which the presence of spatial symmetries provides
conditions of intermediate difficulty between the uncorrelated
and the general case.

A. Uncorrelated Uncertainties

A well-known result in the literature [8]–[11] is the case of
uncorrelated uncertainties {γi}, where the MSS condition is
known to be given by the spectral radius of the matrix of H2

norms of subsystems ofM. We now demonstrate how this result
follows directly as a special case of Theorem 3.2.

For uncorrelated uncertainties, Γ = I , and the loop gain op-
erator (30) becomes

L(X) := Diag

( ∞∑

t=0

Mt XM ∗
t

)
(38)

where Diag(Y ) is a diagonal matrix made up of the diagonal
part of Y . In this case, any eigen-matrix of L (corresponding
to a nonzero eigenvalue) must clearly be a diagonal matrix, so
it suffices to consider how L acts on diagonal matrices. Let
V := Diag(v) be a diagonal matrix, and recall the character-
ization (4) and (5) of terms like Diag(HVH∗) on diagonal
matrices. Applying this term by term to the sum in (38) gives

V = Diag(v), ⇒ L(V ) = Diag

( ∞∑

t=0

M ◦2
t v

)

=: Diag (M◦v) (39)

where M ◦2 is the Hadamard (element by element) square of the
matrix M , and we use the notation M◦ to denote the matrix of
squared H2 norms of subsystems of M

M◦ :=
∞∑

t=0

M ◦2
t =




‖M11‖22 · · · ‖M1n‖22

...
...

‖Mn1‖22 · · · ‖Mnn‖22



 . (40)

We, therefore, conclude that the nonzero eigenvalues of L are
precisely the eigenvalues of M◦, and, in particular, their spectral
radii are equal. This is summarized in the following corollary.

Corollary 4.1: For the uncertain system of Fig. 3 with un-
correlated uncertainties, the MSS condition of Theorem 3.2
becomes

ρ (M◦) ≤ 1/γ

where γ := E[γ2
i ] is the uncertainties’ variance (assumed equal

for all i) and M◦ is the matrix (40) of squared H2 norms of M’s
subsystems.

B. Repeated Perturbations

This case represents the opposite extreme to the uncorrelated
perturbations case. Here, we have all the perturbations identical,
i.e.,

Γ(t) := Diag (γ(t), . . . , γ(t)) = I γ(t)

where {γ(t)} is a scalar-valued iid random process and I is
the n× n identify matrix. In this case, all entries of the uncer-
tainty correlation matrix are equal, i.e., E[γi(t)γj(t)] = γ, and,
therefore

Γ = γ 11∗

where 1 is the vector of all entries equal to 1. Now the loop gain
operator (30) takes on a particularly simple form

L(X) = (γ 11∗) ◦
( ∞∑

t=0

MtXM ∗
t

)
= γ

∞∑

t=0

MtXM ∗
t

= γM{X} .

The interpretation of L in this case is simple. Referring to
(13), we see that L(X) is the steady-state covariance matrix of
the output of the LTI system M when its input is white noise
with covariance matrix γX . In particular, let the systemM have
a state-space realization (A,B,C), then for an eigen-matrix X
of L with eigenvalue λ

γM{X} = L(X) = λX ⇐⇒ M{X} =
λ

γ
X (41)

which implies that X satisfies the matrix equation

Y − AY A∗ = BXB∗

λ

γ
X = CY C∗.

Equivalently, a single equation for Y can be written

Y − AY A∗ =
γ

λ
BC Y C∗B∗. (42)

This is not a standard Lyapunov equation, but it can always
be thought of as a generalized eigenvalue problem as follows.
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Define the linear operators L1 and L2 by

L1(Y ) := γ BC Y C∗B∗

L2(Y ) := Y − AY A′.

Then, (42) can be rewritten as the generalized eigenvalue
problem

L1(Y ) = λ L2(Y ). (43)

Finally, we note an interesting interpretation of covariance ma-
trices that arise as eignmatrices of L in the repeated perturbation
case. As (41) shows, these eigenmatrices are exactly those
covariances of input processes to an LTI system M with the
property that the steady-state output covariance is a scalar mul-
tiple of the input covariance. These are very special processes,
but there dynamical significance is not yet clear.

C. Kronecker Product Representation of the
General Case

For the general case of correlated uncertainties Γ %= I , and it
turns out that entries of the matrix (40) alone are insufficient
to characterize ρ(L) (and, thus, the MSS) condition. In the
absence of any spatial structure in M and Γ, one can always use
a Kronecker product representation of L. This representation
gives some insight into the general case.

Let vec(X) denote the “vectorization” operation of convert-
ing a matrixX into a vector by stacking up its columns. It is, then,
standard to show that the loop gain operator (30) can equivalently
be written as

vec (L(X))

=

(
Diag (vec (Γ))

∞∑

t=0

M(t)⊗M(t)

)

︸ ︷︷ ︸
matrix representation of L

vec(X). (44)

Therefore, the eigenvalues (and corresponding eigenmatrices)
of L can be found by calculating the eigenvalues/vectors of
this n2 × n2 representation using standard matrix methods.
This is clearly not a desirable method even for only moder-
ately large-scale systems. An alternative computational method
for large systems based on the power iteration is presented
in Section VI-A.

The formula (44), however, provides some insight into the
general case when Γ is not diagonal. In that case, entries of the
matrix representation will involve sums of the form

∞∑

t=0

Mij(t)Mkl(t). (45)

These are inner products of impulse responses of different SISO
subsystems of M. They can be thought of as autocorrela-
tions of the MIMO system M’s responses. In the special case
of uncorrelated uncertainties Γ = I , only terms for identical
subsystems ((i, j) = (k, l)) appear, resulting in H2 norms of
subsystems. Thus, it is seen that a condition involving only H2

norms like (40) is a highly special case. To characterize MSS in
correlated uncertainty cases, one needs in addition other system
metrics, like the inner product between different subsystems’
impulse responses (45).

Fig. 6. (Left) Mean-square performance problem setting with additive
noise w as an exogenous signal and multiplicative noise γi’s as struc-
tured stochastic uncertainty. (Right) Details of the various signal paths.
The variance of z is finite iff the feedback loop (M22,Γ) is MSS.

V. MEAN-SQUARE PERFORMANCE

The mean-square performance problem is a general formu-
lation for linear systems with both additive and multiplicative
noise. It is straightforward to show that any LTI system with
both additive and multiplicative noise can be redrawn in the
form shown in Fig. 6(Left), where M is LTI, w is the additive
white noise, and the multiplicative perturbations are grouped
together in the diagonal matrix gain Γ := diag(γ1, . . . , γn).
The assumption of whiteness of w is made without any loss
in generality. If the additive noise is colored, then the coloring
filter can be absorbed in the LTI dynamics of M in the standard
manner.

The mean-square performance problem is to find conditions
for MSS stability of the feedback system, and to calculate the
steady-state covariance of the output z. It is clear from Fig. 6
(Right) that z has finite covariance iff the feedback subsystem
(M22,Γ) is MSS. The exact condition for this is that the spectral
radius of the loop gain operator (30) for M22 and Γ

L22(X) := Γ ◦
( ∞∑

t=0

M22(t)XM ∗
22(t)

)
= Γ ◦M22 {X}

(46)
has spectral radius less than 1.

The calculation of the covarianceZ proceeds similarly to (32)
where the first steps are to relate the covariances of the signals
in the lower feedback loop. It is first noted that with assumption
of MSS, all covariance sequences are bounded and have steady-
state limits, so the following relations are written directly for
those limits

R = Γ ◦V

= Γ ◦
( ∞∑

t=0

[
M21 M22

]
t

[
W 0
0 R

] [
M ∗

21

M ∗
22

]

t

)

= Γ ◦
( ∞∑

t=0

M22(t)RM ∗
22(t) +M21(t)WM ∗

21(t)

)

where for simplicity, we have dropped the “overbar” notation (3)
for the covariance limit (e.g., in this section, R stands for
limt→∞ Rt). The expression for V follows from (13) and the
fact that both w and r are mutually uncorrelated and white.
The last equation can be rewritten in operator form using the
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definition (46) and the notation of (13)

(I − L22) (R) = Γ ◦M21 {W}

R = (I − L22)
−1 (Γ ◦M21 {W}) .

Finally, to calculate the covariance of the output, note that

Z =
∞∑

t=0

[
M11 M12

]
t

[
W 0
0 R

] [
M ∗

11

M ∗
12

]

t

= M11 {W}+M12 {R}

= M11 {W}+M12

{
(I − L22)

−1 (Γ ◦M21 {W})
}
.

Note how this formula has a familiar feel to the linear fractional
transformations (LFT) from standard transfer function block
diagram manipulations. The difference being that these are
operators on matrices rather than vector signals. It is instructive
to compare the above formula with that of the transfer functions
operating on the vector signals w and z

z =
(
M11 +M12 (I − ΓM22)

−1 ΓM21

)
w.

This resemblance is more immediate in the SISO case (single
SISO Γ and w a scalar), where the expression simplifies to

z =

(
‖M11‖22 +

Γ ‖M12‖22‖M12]‖22
1 − Γ‖M22‖22

)
w.

The expression for Z above is written to highlight the analogy
with LFT of transfer functions. For computations, it is more
convenient to write it in the following form of a system of two
equations:

R− Γ ◦M22 {R} = Γ ◦M21 {W} (47)

Z = M11 {W}+M12 {R} (48)

which indicates that in solving for Z, one has to go through the
intermediate step of solving for R from (47).

A. Uncorrelated Uncertainties Case

In this case, we assume the uncertainties to have correlations
Γ = γI . The case when different uncertainties have different
variances can be accommodated through adding the appropriate
multipliers in the system M. In this case, it follows that the
matrix R in (47) is diagonal. If we assume in addition that W
is diagonal, and we are only interested in the diagonal part of
Z, then (47)–(48) can be rewritten in terms of matrix-vector
multiplication using the notation of (39)–(40) where the vectors
are the diagonal entries of the respective covariance matrices

diag (R)− γM◦
22 diag (R) = γM◦

21 diag (W)

diag (Z) = M◦
11 diag (W) +M◦

12 diag (R) .

Putting these two equations together by eliminating R gives

diag (Z) =
(
M◦

11 + γM◦
12 (I − γM◦

22)
−1 M◦

21

)
diag (W) .

Without loss of generality, we can, in addition, assume W =
I , for which there is an even simpler expression for the total
variance of z

tr (Z) =
∣∣∣M◦

11 + γM◦
12 (I − γM◦

22)
−1 M◦

21

∣∣∣ (49)

where |M | stands for the sum of all the elements of a non-
negative matrix M .

In the literature on robust stability analysis, there is often
an equivalence between a robust performance condition and
a robust stability condition on an augmented system with an
additional uncertainty. The uncorrelated case here provides a
version of such a correspondence, and we will state it without
loss of generality for the case of γ = 1.

Corollary 5.1: Consider the system of Fig. 6 with uncor-
related uncertainties with variances E[γ2

i (t)] = 1, and scalar
inputs and outputs w and z, respectively. Then

E
[
z2(t)

]

E [w2(t)]
< 1 ⇐⇒ ρ

([
M◦

11 M◦
12

M◦
21 M◦

22

])
< 1.

The proof is a simple application of the Schur complement
on the 2× 2 block matrix, which implies that the spectral radius
condition is equivalent to the right-hand side of (49) being less
than 1. Note that the variance ratio condition is a performance
condition, while the spectral radius condition is an MSS stability
condition for a system with an additional (fictitious) uncertainty
in a feedback loop between z and w.

VI. STATE-SPACE METHODS AND COMPUTATIONS

Although the input–output setting presented in this article ap-
pears to be more expedient for analysis and statement of results,
it is often (though not always) the case that actual computations
are more conveniently carried out using state-space representa-
tions. From one point of view, this results in LMI conditions. For
large-scale system applications, we write out a power iteration
type algorithm that involves solving Lyapunov equations at each
step of the iteration. Finally, we give a state-space interpretation
of the “worst-case covariance” in the case where there are no
exogenous inputs. This turns out to be a worst-case covariance
of a random initial state.

A. MSS Conditions

Begin with the MSS problem of Theorem 3.2. Let the strictly
causal LTI system M have the following realization:

xt+1 = Axt +But

yt = Cxt

from which it follows that a corresponding realization for the
covariance feedback system is

Xt+1 = AXtA
∗ +BUtB

∗

Yt = CXtC
∗

Ut = Γ ◦Yt.

Taking the steady-state limit produces the following representa-
tion of the loop gain operator R̄ = L(Ū):

X̄−AX̄A∗ = BŪB∗ (50)

R̄ = Γ ◦
(
CX̄C∗) . (51)

Thus, one method of computing the action of L is to solve the
Lyapunov equation (50) for X̄ given the input covariance Ū,
and, then, calculate R̄ from (51).
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1) Power Iteration Algorithm: The above procedure for
calculating the action of L can now be used as follows in a
power iteration method for calculating ρ(L) as recommended
in [26]. Starting from an arbitrary initial matrix P0 ≥ 0

Pk+1 = L (Pk) / ‖Pk‖.

At each step, the calculation of L(Pk) involves (50) and (51) as
follows:

Xk+1 −AXk+1 A
∗ = BPkB

∗

Pk+1 =
1

‖Pk‖
(Γ ◦ (CXk+1C

∗)) . (52)

The major computational burden in each step is solving the Lya-
punov equation (52). However, this power iteration algorithm is
well-suited for use with sparse methods for solving Lyapunov
equations, which are themselves iterative procedures.

2) As an LMI: To calculate the spectral radius ρ(L), one can
set R̄ = λŪ in the above and find the largest real number λ such
that

λ
(
X̄−AX̄A∗)−B

(
Γ ◦

(
CX̄C∗))B∗ = 0

X̄ ≥ 0.

B. Mean Square Performance

For the mean square performance problem, begin with the
following realization for the stable, strictly causal system M

xt+1 = Axt +B1wt +B2rt

zt = C1xt

vt = C2xt.

Since w and r are mutually uncorrelated and white, the corre-
sponding realization for the covariance feedback system is

Xt+1 = AXtA
∗ +B1WtB

∗
1 +B2RtB

∗
2

Zt = C1XtC
∗
1

Vt = C2XtC
∗
2

Rt = Γ ◦Vt.

The corresponding steady-state equations are

X̄−AX̄A∗ −B2

(
Γ ◦

(
C2X̄C∗

2

))
B∗

2 = B1W̄B∗
1 (53)

Z̄ = C1X̄C∗
1. (54)

Therefore, the main step in evaluation the covariance of the
output is solving the matrix equation (53) for the state covari-
ance. This is not a standard Lyapunov equation, but iterative
algorithms, akin to those designed for large-scale Lyapunov
equations, can be used to tackle it.

C. Worst Case Covariances

The “Perron eigen-matrix” Û of the loop gain operator L (30)
is by definition the matrix that achieves the spectral radius of L,
i.e.,

L
(
Û
)
= ρ(L) Û. (55)

In the necessity proof of Theorem 3.2 (and the comment there-
after), it was shown that this matrix has an interpretation as a

sort of worst-case covariance matrix. To recap, assume MSS
is lost, so ρ(L) > 1, and let the exogenous disturbances be
such that d = 0, and w has covariance E[wtw∗

t ] = Û. Then,
a consequence of inequality (37) is that the covariance of the
signal u will grow at a geometric rate of

E [utu
∗
t ] ≥ cαt Û

where for any ε > 0, we can choose α = ρ(L)− ε, and c > 0 is
some constant.

An alternative interpretation, which does not require exoge-
nous inputs, can also be given. In this scenario, the exogenous
inputs w and d are set to zero, but the system M has some
nonzero random initial statex0 with covariance E[x0x∗

0] =: X0.
In this case, the evolution of the state covariance has the follow-
ing dynamics:

Xt+1 = AXtA
∗ +BUtB

∗, X0 = E [x0x
∗
0]

Ut = Γ ◦ (CXtC
∗) .

(56)

Now let Û be an eigenmatrix of L as (55). Then

Û =
1

ρ(L)
L
(
Û
)
=

1

ρ(L)
Γ ◦

( ∞∑

τ=0

MtÛM ∗
t

)

=
1

ρ(L)
Γ ◦

(
C

∞∑

t=0

AtBÛB∗A∗tC∗

)

=: Γ ◦
(
CX̂C∗

)

where X̂ := 1
ρ(L)

∑∞
t=0 A

tBÛB∗A∗t is the worst-case covari-

ance of the state. It can be calculated from Û using the following
algebraic Lyapunov equation:

X̂−AX̂A∗ =
1

ρ(L)
BÛB∗.

Note that setting X0 = X̂ yields U0 = Û. By substituting
Wt = 0 in (34) and carrying out the same argument in the
necessity proof of Theorem 3.2, we obtain

UTk ≥ Lk
T (Û) ≥ (ρ(L)− εc)kÛ =: αkÛ.

This calculation shows that {UTk} is a geometrically growing
sequence since ε can be chosen small enough so that α > 1.
Consequently, by (56), we have

XTk+1 = AXTkA
∗ +BUTkB

∗ ≥ αkBÛB∗

and, therefore, {XTk+1} is also a geometrically growing se-
quence.

VII. CONCLUSION AND DISCUSSION

In this article, we study the MSS and performance of LTI
systems in feedback with stochastic disturbances. We derive the
necessary and sufficient conditions of MSS by adopting a purely
input/output approach, and, thus, state-space realizations are
treated as a special case. Our treatment leads to uncover a linear
operator whose 1) spectral radius fully characterizes the con-
ditions of MSS, and whose 2) “Perron–Frobenius Eigenmatrix”
characterizes the fastest growing modes of the covariances when
MSS is lost. The input–output approach adopted in this article
has the advantages of unifying the proofs and extending the
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results for a broader class of linear systems that are not limited
to state-space realizations only, but also distributed systems and
systems with irrational transfer functions (including delays).

This article treats the discrete-time setting where the stochas-
tic disturbances are all white in time but are allowed to have “spa-
tial correlations.” Future work in this line of research includes
addressing the continuous-time setting [29] and generalizing the
analysis for stochastic disturbances that are correlated in time
as well.

APPENDIX

A. Independence

For any two independent random variables a and b, E[ab] =
E[a]E[b]. Let X , Y , and Z be (possibly matrix-valued) random
variables. Assume Y is independent of X and Z. Then

E [XY Z] = E




∑

j,k

xijyjkzkl



 =
∑

j,k

E [xijyjkzkl]

=
∑

j,k

E [xijzkl] E [yjk]

=
∑

j,k

E [xij E [yjk] zkl]

= E [X E [Y ] Z] . (57)

B. Monotone Systems and Signals

For linear monotone systems, it is first shown that positive
feedback interconnections are also monotone. It is, then, shown
that a time-invariant monotone system preserves signals’ tem-
poral order.

Begin with general comments about causal discrete-time sys-
tems. Signals are identified with #, the set of vector-valued se-
quences over Z+. A causal linear system G : # → # is a mapping
on #, and it can be identified with a lower-triangular semi-infinite
matrix. A (possibly unstable) positive feedback system is well
posed if (I − G)−1 : # → # is well defined.

Let PT : # → #T be the “projection”

(PT f)(t) := f(t), t ≤ T

where #T := {f : {0, . . . , T} → Rn} is the space of finite se-
quences of length T + 1. With a slight abuse of notation, define
the “injection” P †

T : #T → # by
(
P †
T f
)
(t) :=

{
f(t) t ≤ T
0 t > T.

Clearly, PTP
†
T = I , and for any system G, PtGP †

T is the finite
matrix “upper left block” of its semi-infinite matrix representa-
tion. It can be thought of as a finite time-horizon restriction of
G. Causality of G implies that

PTGnP †
T =

(
PTGP †

T

)n

for any power n, and if G−1 exists, then

PTG−1P †
T =

(
PTGP †

T

)−1
.

We finally note that while P †
TPT %= I , for any causal system G,

and any time T , we have

PT G P †
TPT = PT G.

1) Feedback Interconnections:
Theorem A.1: The sum, cascade, and positive feedback in-

terconnections of causal monotone linear systems are monotone.
Proof: Closure under sums and cascades is obvious from the

definition (24). This, in particular, implies that powers Mn of
any monotone system M are also monotone. Therefore, if the
Neuman series

(I −M)−1 =
∞∑

n=0

Mn

can be shown to converge in an appropriate sense, then positive
feedback interconnections are also monotone. A convergence
argument is now given. It is similar to successive iteration
schemes for Volterra operators [30] (see also [31, Appendix]).

Consider the partial series product

PT (I −M)P †
TPT

(
N∑

n=0

Mn

)
P †
T

= PT (I −M)

(
N∑

n=0

Mn

)
P †
T = I − PTMN+1P †

T

= I −
(
PTMP †

T

)N+1
(58)

where the last equality follows from the causality of M. Strict
causality of M means PTMP †

T is just a (T + 1)× (T + 1)
strictly lower-triangular matrix. It is, therefore, nilpotent and

(
PTMP †

T

)N+1
= 0, N ≥ T.

The conclusion is, then, that

PT (I −M)−1P †
T =

(
PT (I −M)P †

T

)−1

= PT

(
T∑

n=0

Mn

)
P †
T .

This means that for each T , the finite horizon restriction PT (I −
M)−1P †

T is monotone, and, therefore, the system (I −M)−1

itself must be monotone. !
2) Preserving Monotonicity of Signals: For time invariant

systems, the above definition of monotonicity has an additional
implication in that nondecreasing input sequences produce non-
decreasing output sequences. Consider the input–output pair
Y = M(U). Let S be the right shift operator on sequences

(SU) (t) :=

{
U(t− 1), t ≥ 1
0, t = 0.

The time invariance of M means that MSn = SnM for all
powers n ≥ 1. Recall that a signal is said to be monotone
(or nondecreasing) if

t1 ≤ t2 =⇒ U(t1) ≤ U(t2).
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An equivalent condition for a signal to be monotone is

∀n ≥ 1, SnU ≤ U

where the relation ≤ is the pointwise ordering on signals (23).
Now calculate that for any n ≥ 1

SnY = SnM(U) = M(SnU) ≤ M(U) = Y

where the inequality follows from M being monotone together
with U being nondecreasing. One can then conclude that time-
invariant monotone systems preserve monotonicity of signals.

C. Proof of Lemma 2.1

First, observe that the mappings from the exogenous inputs
to all signals in the loop are




u

y

v

r




=





(I − ΓM)−1 Γ(I −MΓ)−1

(I −MΓ)−1M MΓ(I −MΓ)−1

(I −MΓ)−1M (I −MΓ)−1

Γ(I −MΓ)−1M Γ(I −MΓ)−1





[
w

d

]
. (59)

Thus, one needs to investigate the causal dependencies of all
four mappings in the matrix of (59). Consider first the mapping
(I −MΓ)−1. Over the time horizon [0, t], this operator can be
written in partitioned matrix form as





I

−M1Γ0 I
. . .

. . .

−MtΓ0 · · · −M1Γt−1 I





−1

=





I
. . .

∗ I



 .

Note the strictly block lower-triangular structure of MΓ, which
is a consequence of the strict causality of M. The ∗ blocks are
functions of Γ0, . . . ,Γt−1, and are independent of Γτ , τ ≥ t.

Using this, we write the equation for u over the time horizon




u0

...
ut



 =





I
. . .

∗ I









w0

...
wt





+





Γ0

. . .

Γt









I
. . .

∗ I









d0
...
dt



 .

Now recall that all noise terms {Γt}, {dt}, and {wt} are as-
sumed mutually independent. The equation above shows that
{u0, . . . , ut} are a function of only past and present values of
{Γt}, {dt}, and {wt}.

It is now clear that by repeating the above argument for each
of the signals that whenever Γ is preceded by the operator M,
the dependence on the present value of Γ is killed by the strict
causality of M. Therefore, the following conclusion can be
stated: the present values of y and v (M precedes Γ in their
expression) are independent of the present and future values of
Γ. In contrast, the present values of u and r are independent of
future values of Γ only.

D. Some Properties of the Hadamard Product

Let π be a permutation matrix, this means each row and each
column contains exactly one nonzero element equal to 1. A
nonzero element in location ij implies that the j’th component of
a vector is mapped to the i’th component of the vector. Thinking
of the inverse operation, clearly π−1 = π∗. There are, in general,
no simple relations between the regular matrix product and the
Hadamard product. However, for permutation matrices, we have
the simple relation

π1 (A ◦B)π2 = (π1 Aπ2) ◦ (π1Bπ2) (60)

which is obviously true since for any matrix M , the matrix
π1 Mπ2 is simply a rearrangement of its entries.

E. Proof of Necessity in Lemma 3.1

(“only if”). To simplify notation, assume Γ = 1. The general
case follows by scaling. It will be shown next that if ‖M‖22 ≥ 1,
w is a white, constant variance process and d = 0, then u is an
unbounded sequence.

From (8), (19), (26), and (27), the sequence u satisfies the
following recursion:

ut = yt +wt =
t∑

τ=0

M2
t−τ uτ +wt. (61)

This recursion may not be of finite order (e.g., if {Mt} is not
FIR) and it is, therefore, not clear how to use it to estimate the
growth of u. However, it can be replaced with a simple recursive
inequality for a subsequence of u, for which a growth estimate
is immediately obtained. This is the essence of the remainder of
the proof.

Note that the quantityα :=
∑T

τ=0 M
2
τ can be made arbitrarily

close to ‖M‖22 ≥ 1 by choosing the time horizon T sufficiently
large. It will now be shown that the subsequence{uTk; k ∈ Z+}
is unbounded. First, the non-negativity of all sequences in (61)
gives a recursive inequality for the subsequence {uTk}

uTk =
Tk∑

τ=0

M2
Tk−τ uτ +wTk

≥
Tk∑

τ=T (k−1)

M2
Tk−τ uτ +wTk

≥
(

T∑

τ=0

M2
τ

)
min

T (k−1)≤τ≤Tk
uτ +wTk

= αuT (k−1) +wTk

where the last equality follows from the monotonicity of the
sequence u. The above is a difference inequality, which has the
initial condition u0 = r0 +w0 = w0 (r0 = 0 since d = 0 and
M is strictly causal). A simple induction argument gives

uTk ≥
k∑

r=0

αr wT (k−r) (62)
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which is a convolution of {αk} with the subsequence {wTk}.
Now if ‖M‖2 > 1, then a time horizon T can be chosen such
that

∑T
τ=0 M

2
τ =: α > 1. The monotonicity of the sequence d

and (62) implies that {uTk} (and, thus, u) is a geometrically
increasing sequence.

The case ‖M‖2 = 1 is slightly more delicate.T can be chosen
such that α is as close to 1 as desired. For α < 1, one also has

lim
k→∞

(
αk + · · ·+ α+ 1

)
=

1

1− α
.

For any ε > 0, k can be chosen such that2

uTk ≥ w0

1− α
− ε.

Now given any lower bound B, choose T and k such that α is
sufficiently close to 1 and ε is sufficiently small so that

uTt ≥ w0

1− α
− ε > B.

This proves thatu is an unbounded sequence even though it may
not have geometric growth in the case ‖M‖2 = 1.

F. Lemmas Used in the Proof of Necessity in
Theorem 3.2

Throughout this appendix, let λmax(A), λmin(A), and ||A||
denote the largest eigenvalue, smallest eigenvalue, and the
spectral norm of any matrix A, respectively. As the rest of
the article, matrix inequalities are understood as semidefinite
ordering on matrices. Note that if A ≥ 0, then ||A|| = λmax(A).
Furthermore, let N (A) and R(A) denote the null space and
range space of A, respectively. We now present two lemmas that
are required for the proof of necessity for Theorem 3.2.

Lemma A.2: LetA,B ∈ Rn×n, such that 0 ≤ B ≤ A. Then,
N (A) ⊆ N (B).

Proof: Since 0 ≤ B ≤ A, then ∀v ∈ Rn, we have
0 ≤ v∗Bv ≤ v∗Av. Particularly, let v ∈ N (A), then v∗Av = 0,
which implies that v∗Bv = 0 as well. We are now left with
proving that Bv = 0.

Let B = UΣU ∗ be the eigendecomposition of B, then
v∗UΣU ∗v = 0. Setting w := U ∗v yields w∗Σw = 0, which
implies that Σw = 0 (because Σ is diagonal with nonnegative
entries). Finally, we have Bv = UΣU ∗v = UΣw = 0, which
completes the proof. !

Lemma A.3: Let A,B ∈ Rn×n, and ρ, ε > 0 such that
0 ≤ B ≤ ρA and ||ρA−B|| ≤ ε||A||. Then, ∃c > 0 such that
B ≥ (ρ− εc)A.

Proof: The proof is carried out for the case where A > 0
first. Then, the result is exploited to prove the more general case
where A ≥ 0.

(“A > 0”) ∀v ∈ Rn, we have

v∗(ρA−B)v ≤ ||ρA−B|| ||v||2 ≤ ε||A|| ||v||2

where the first inequality follows by noting that ρA−
B ≥ 0 and, thus, λmax(ρA−B) = ||ρA−B||. Recalling that

2d0 is chosen as a simple lower bound on the entire sequenced. Other choices
can produce better lower bounds on u.

v∗Av ≥ λmin(A)||v||2 and A > 0 (i.e., λmin(A) > 0), we obtain
the following upper bound:

ε||A|| ||v||2 ≤ ε||A|| 1

λmin(A)
v∗Av =: εc v∗Av

where c := λmax(A)/λmin(A) is the condition number of A.
Now, ∀v ∈ Rn, v∗(ρA−B)v ≤ εc v∗Av, which implies that
ρA−B ≤ εcA. Finally, rearranging the last inequality com-
pletes the proof.

(“A ≥ 0”). Let r < n denote the rank of A so that its eigen-
decomposition can be written as

A = UΣU ∗ =




U1 U2




[
Σr 0
0 0

] [
U ∗
1

U ∗
2

]

where U is a unitary matrix and Σr is a diagonal matrix with
strictly positive entries. Before we continue the proof, observe
that this matrix partitioning indicates that

1) N (A) = R(U2), and thus AU2 = 0.
2) A = U1ΣrU ∗

1 and thus U ∗
1 AU1 > 0 (since U ∗

1U1 = I).
3) Lemma A.2 guarantees that N (A) ⊆ N (B), and thus

AU2 = BU2 = 0.
Multiplying all sides of the inequality 0 ≤ B ≤ ρA by U ∗

from the left and U from the right preserves its ordering, then
0 ≤ U ∗BU ≤ ρU ∗AU , which implies

0 ≤
[
U ∗
1BU1 0
0 0

]
≤
[
ρU ∗

1AU1 0
0 0

]
.

This is a consequence of AU2 = BU2 = 0 and U ∗
2A = U ∗

2B =
0. Define A11 := U ∗

1AU1 and B11 := U ∗
1BU1, then we have

0 ≤ B11 ≤ ρA11. (63)

Furthermore, recalling that ||ρA−B|| ≤ ε||A||, and
knowing that the spectral norm of a matrix is preserved
under multiplications by unitary matrices, we obtain
||U ∗(ρA−B)U || ≤ ε||U ∗AU ||, which implies

||ρA11 −B11|| ≤ ε||A11||. (64)

Since A11 > 0, the first part of the proof (“A > 0”) can
be invoked here by exploiting (63) and (64) to obtain
B11 ≥ (ρ− εc)A11 where c := λmax(A11)/λmin(A11). This im-
plies that

[
U ∗
1BU1 0
0 0

]
≥ (ρ− εc)

[
U ∗
1AU1 0
0 0

]
.

Finally, multiplying both sides of the inequality by U from the
left and U ∗ from the right completes the proof because

U ∗AU =

[
U ∗
1AU1 0
0 0

]
⇒ U

[
U ∗
1AU1 0
0 0

]
U ∗ = A

and the same reasoning holds for B. !
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