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Abstract11

A directed acyclic graph G = (V,E) is said to be (e, d)-depth robust if for every subset S ⊆ V of12

|S| ≤ e nodes the graph G− S still contains a directed path of length d. If the graph is (e, d)-depth-13

robust for any e, d such that e+ d ≤ (1− ε)|V | then the graph is said to be ε-extreme depth-robust.14

In the field of cryptography, (extremely) depth-robust graphs with low indegree have found numerous15

applications including the design of side-channel resistant Memory-Hard Functions, Proofs of Space16

and Replication and in the design of Computationally Relaxed Locally Correctable Codes. In these17

applications, it is desirable to ensure the graphs are locally navigable, i.e., there is an efficient18

algorithm GetParents running in time polylog |V | which takes as input a node v ∈ V and returns the19

set of v’s parents. We give the first explicit construction of locally navigable ε-extreme depth-robust20

graphs with indegree O(log |V |). Previous constructions of ε-extreme depth-robust graphs either21

had indegree ω̃(log2 |V |) or were not explicit.22
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12:2 On Explicit Constructions of Extremely Depth Robust Graphs

1 Introduction33

A depth-robust graph G = (V,E) is a directed acyclic graph (DAG) which has the property34

that for any subset S ⊆ V of at most e nodes the graph G− S contains a directed path of35

length d, i.e., there is a directed path P = v0, . . . , vd such that (vi, vi+1) ∈ E for each i < d36

and vi ∈ V \ S for each i ≤ d. As an example the complete DAG KN = (V = [N ], E =37

{(i, j) : 1 ≤ i < j ≤ n} has the property that it is (e, d)-depth-robust for any integers e, d38

such that e+ d ≤ N . Depth-robust graphs have found many applications in cryptography39

including the design of data-independent Memory-Hard Functions (e.g.,[1, 3]), Proofs of40

Space [9], Proofs of Replication [15, 11] and Computationally Relaxed Locally Correctable41

Codes [7]. In many of these applications it is desirable to construct depth-robust graphs with42

low-indegree (e.g., indeg(G) = O(1) or indeg(G) = O(logN)) and we also require that the43

graphs are locally navigable, i.e., given any node v ∈ V = [N ] there is an efficient algorithm44

GetParents(v) which returns the set {u : (u, v) ∈ E} containing all of v’s parent nodes in time45

O(polylogN). It is also desirable that the graph is (e, d)-depth robust for e, d as large as46

possible, e.g., the cumulative pebbling cost of a graph can be lower bounded by the product47

ed and in the context of Memory-Hard Functions we would like to ensure that the cumulative48

pebbling cost is as large as possible [5, 3]. Some cryptographic constructions rely on an even49

stronger notion called ε-extreme depth-robust graphs G = (V,E) which have the property of50

being (e, d)-depth-robust for any integers e, d such that e+ d ≤ (1− ε)N , e.g., see [15, 14].51

Erdös, Graham, and Szemeredi [10] gave a randomized construction of (e, d)-depth-robust52

graphs with e, d = Ω(N) and maximum indegree O(logN). Alwen, Blocki, and Harsha [2]53

modified this construction to obtain a locally navigable construction of (e, d)-depth-robust54

graphs with constant indegree 2 for e = Ω(N/ logN) and d = Ω(N). For any constant55

ε > 0, Schnitger [17] constructed (e = Ω(N), d = Ω(N1−ε))-depth-robust graphs with56

constant indegree — the indegree indeg(G) does increase as ε gets smaller. These results are57

essentially tight as any DAG G which is
(
N ·i·indeg(G)

logN , N2i

)
-reducible1 for any i ≥ 1 [1, 18].58

If indeg(G) = o(logN) then the graph cannot be (e, d)-depth robust with e, d = Ω(N) and59

similarly if indeg(G) = Θ(1) plugging in i = O(log logN) demonstrates that G cannot be60

(e = ω(N log logN/ logN), d = ω(N))-depth-robust.61

Explicit Depth-Robust Graphs.62

All of the above constructions are randomized and do not yield explicit constructions of63

depth-robust graphs. For example, the DRSample construction of [2] actually describes a64

randomized distribution over graphs and proves that a graph sampled from the distribution65

is (e, d)-depth-robust with high probability. Testing whether a graph is actually (e, d)-depth-66

robust is computationally intractable [8, 6] so we cannot say that a particular sampled graph67

is depth-robust with 100% certainty. In fact, it might be possible for a dishonest party to68

build a graph G = (V,E) which looks like an honestly sampled depth-robust graph but69

actually contains a small (secret) depth-reducing set S ⊆ V , i.e., such that G− S does not70

contain any long paths. Thus, in many cryptographic applications one must assume that the71

underlying depth-robust graphs were generated honestly.72

Li [13] recently gave an explicit construction of constant-indegree depth-robust graphs,73

i.e., for any ε > 0, Li constructs a family of graphs {GN,ε} such that each GN,ε has N nodes,74

1 If a DAG G is not (e, d)-depth-robust we say that it is (e, d)-reducible, i.e., there exists some set S ⊆ V
of size e such that G− S contains no directed path of length d.
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constant indegree, and is (Ω(N1−ε),Ω(N1−ε))-depth-robust. The construction of Li [13] is75

also locally navigable, but the graphs are not as depth-robust as we would like. Mahmoody,76

Moran, and Vadhan [14] gave an explicit construction of an ε-extreme depth-robust graph77

for any constant ε > 0 using the Zig-Zag Graph Product constructions of [16]. However, the78

maximum indegree is as large as indeg(G) ≤ log3 N . Alwen, Blocki, and Pietrzak [4] gave a79

tighter analysis of [10] showing that the randomized construction of [10] yields ε-extreme80

depth-robust graphs with indeg(G) = O(logN) although their randomized construction is81

not explicit nor was the graph shown to be locally navigable.82

1.1 Our Contributions83

We give explicit constructions of ε-extreme depth-robust graphs with maximum indegree84

O(logN) for any constant ε > 0 and we also give explicit constructions of (e = Ω(N/ logN),85

d = Ω(N))-depth-robust graphs with maximum indegree 2. Both constructions are explicit86

and locally navigable. In fact, our explicit constructions also satisfy a stronger property87

of being δ-local expanders. A δ-local expander is a directed acyclic graph G which has88

the following property: for any r, v ≥ 0 and any subsets X ⊆ A = [v, v + r − 1] and89

Y ⊆ B = [v+ r, v+ 2r− 1] of at least |X|, |Y | ≥ δr nodes the graph G contains an edge (x, y)90

with x ∈ X and y ∈ Y . We remark that the construction of Computationally Relaxed Locally91

Correctable Codes [7] relies on a family of δ-local expanders which is a strictly stronger92

property than depth-robustness — for any ε > 0, there exists a constant δ > 0 such that any93

δ-local expander automatically becomes ε-extreme depth-robust [4].94

1.2 Our Techniques95

We first provide explicit, locally navigable, constructions of δ-bipartite expander graphs96

with constant indegree for any constant δ > 0. A bipartite graph G = ((A,B), E) with97

|A| = |B| = N is a δ-bipartite expander if for any X ⊆ A and Y ⊆ B of size |X|, |Y | ≥ δN the98

bipartite graph G contains at least one edge (x, y) ∈ E with x ∈ X and y ∈ Y . The notion of99

a δ-bipartite expander is related to, but distinct from, classical notions of a graph expansion,100

e.g., we say that G is an (N, k, d)-expander if indeg(G) ≤ k and for every subset X ⊆ A (resp.101

Y ⊆ B) we have |N(X)| ≥ (1 + d− d|X|/N)|X| (resp. |N(Y )| ≥ (1 + d− d|Y |/N)|Y |), where102

N(X) is defined to be all of the neighbors of X, i.e., N(X) .= {y ∈ B : ∃x ∈ X s.t. (x, y) ∈ E}.103

(Notation: We use N(X) (resp. N) to denote the neighbors of nodes in X (resp. number of104

nodes in a graph/bipartition).) Erdös, Graham, and Szemeredi [10] argued that a random105

degree kδ bipartite graph will be a δ-bipartite expander with non-zero probability where the106

constant kδ depends only on δ. As a building block, we rely on an explicit, locally navigable,107

construction of (n = m2, k = 5, d = (2−
√

3)/4)-expander graphs for any integer m due to108

Gabber and Galil [12]. For any constant δ > 0 we show how any (N, k, d)-expander graph109

G with d < 0.5 and k = Θ(1) can be converted into a δ-bipartite expander graph G′ with110

N nodes and maximum indegree indeg(G′) = Θ(1). Intuitively, the construction works by111

“layering” ` = Θ(1) copies of the (N, k, d)-expander graphs and then “compressing” the layers112

to obtain a bipartite graph G′ with maximum indegree k′ ≤ k` — paths from the bottom113

layer to the top layer are compressed to individual edges.114

The depth-robust graph construction of Erdös et al. [10] uses δ-bipartite expanders as a115

building block. By swapping out the randomized (non-explicit) construction of δ-bipartite116

expanders with our explicit and locally navigable construction, we obtain a family of explicit117

and locally navigable depth-robust graphs. Furthermore, for any ε > 0 we can apply the118

analysis of Alwen et al. [4] to obtain explicit constructions of ε-extreme depth-robust graphs119

STACS 2022
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by selecting the constant δ > 0 accordingly. Finally, we can apply a standard indegree120

reduction gadget of Alwen et al. [3] to obtain an (e = N/ logN, d = Ω(N))-depth-robust121

graph with indegree 2.122

2 Preliminaries123

We use [N ] = {1, . . . , N} to denote the set of all integers between 1 and N and we typically124

use V = [N ] to denote the set of nodes in our graph. It is often convenient to assume that125

N = 2n is a power of 2. Given a graph G = (V = [N ], E) and a subset S ⊆ [N ] we use G−S to126

denote the graph obtained by deleting all nodes in S and removing any incident edges. Fixing127

a directed graph G = (V = [N ], E) and a node v ∈ V , we use parents(v) = {u : (u, v) ∈ E}128

to denote the parents of node v and we let indeg(G) = maxv∈[N ] |parents(v)| denote the129

maximum indegree of any node in G. We say a DAG G is (e, d)-reducible if there exists a130

subset S ⊆ [N ] of |S| ≤ e nodes such that G− S contains no directed path of length d. If G131

is not (e, d)-reducible we say that G is (e, d)-depth-robust.132

We introduce the notion of a δ-bipartite expander graph where the concept was first133

introduced by [10] and used as a building block to construct depth-robust graphs. Note134

that the specific name “δ-bipartite expander” was not used in [10]. We follow the notation135

of [2, 4].136

I Definition 1. A directed bipartite graph G = ((A,B), E) with |A| = |B| = N is called137

a δ-bipartite expander if and only if for any subset X ⊆ A, Y ⊆ B of size |X| ≥ δN and138

|Y | ≥ δN there exists an edge between X and Y .139

I Remark 2. Observe that if G = ((A,B), E) is a δ-bipartite expander then for any subset140

X ⊆ A with |X| ≥ δN we must have |N(X)| > (1 − δ)N where N(X) = {y ∈ B : ∃x ∈141

X s.t. (x, y) ∈ E} denotes the neighbors of X. If this were not the case then we could take142

Y = B \ N(X) and we have |Y | ≥ δN and, by definition of Y , we have no edges between X143

and Y contradicting the assumption that G is a δ-bipartite expander.144

I Definition 3. A directed bipartite graph G = ((A,B), E) with |A| = |B| = N is called145

an (N, k, d)-expander if |E| ≤ kN and for every subset X ⊆ A (resp. Y ⊆ B) we have146

|N(X)| ≥
[
1 + d

(
1− |X|N

)]
|X| (resp. |N(Y )| ≥

[
1 + d

(
1− |Y |N

)]
|Y |) where N(X) = {y ∈147

B : ∃x ∈ X s.t. (x, y) ∈ E} (resp. N(Y ) = {x ∈ A : ∃y ∈ B s.t. (x, y) ∈ E}).148

Gabber and Galil [12] gave explicit constructions of (N = m2, k = 5, d = (2 −
√

3)/5)-149

expanders. Lemma 4 highlights the relationship between δ-bipartite expanders and the more150

classical notion of (N, k, d)-expanders.151

I Lemma 4. Let 0 < d < 1 and let δ = (d+2)−
√
d2+4

2d . If a directed bipartite graph G =152

((A,B), E) with |A| = |B| = N is an (N, k, d)-expander for d < 1 then G is a δ-bipartite153

expander.154

Proof. Consider an arbitrary subset X ⊆ A with |X| ≥ δN and let Y = B \N(X). We want155

to argue that |Y | < δN or equivalently |N(X)| > (1−δ)N . Without loss of generality, we may156

assume that |X| < N (otherwise we have N(X) = B since |N(X)| ≥ (1 + d(1− |X|/N))|X| =157

|X| = N). Since G is an (N, k, d)-expander, we have that |N(X)| ≥
[
1 + d

(
1− |X|N

)]
|X| =158
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− d
N |X|

2 + (d+ 1)|X|. Hence, for N > |X| ≥ δN , we have that159

|N(X)| ≥ − d

N
|X|2 + (d+ 1)|X|160

> − d

N
(δN)2 + (d+ 1)δN161

≥ (1− δ)N,162
163

where the middle inequality follows from the observation that when d < 1, the function164

f(x) = − d
N x

2 + (d+ 1)x is an increasing function over the range 0 ≤ x ≤ N and the last165

inequality follows from the choice of δ = (d+2)−
√
d2+4

2d since d ≥ 1−2δ
δ−δ2 . Now fixing an arbitrary166

subset Y ⊆ B with |Y | ≥ δN and setting X = A \ N(Y ), a symmetric argument shows that167

|X| < δN . Thus, G is a δ-bipartite expander. J168

3 Explicit Constructions of δ-Bipartite Expanders169

In this section, we give an explicit (locally navigable) construction of a δ-bipartite expander170

graph for any constant δ > 0. As a building block, we start with an explicit construction171

of (N = m2, k = 5, d = (2 −
√

3)/4)-expander due to Gabber and Galil [12]. Applying172

Lemma 4 above this gives us a δ-bipartite expander with δ ≈ 0.492 whenever N = m2. To173

construct depth-robust graphs we need to construct δ-bipartite expanders for much smaller174

values of δ and for arbitrary values of N , i.e., not just when N = m2 is a perfect square.175

We overcome the first challenge by layering the (N = m2, k, d)-expanders of [12] to obtain176

δ-bipartite expanders for arbitrary constants δ > 0 — the indegree increases as δ approaches177

0. We overcome the second issues simply by truncating the graph, i.e., if G is a δ/2-bipartite178

expander with 2N nodes then we can discard up to N/2 sources and N/2 sinks and the179

remaining graph will still be a δ-expander.180

3.1 Truncation181

By layering the (N, k, d)-expanders of Gabber and Galil [12] we are able to obtain a family182

{Gm,δ}∞m=1 of δ-bipartite expanders for any constant δ > 0 such that Gm has N = m2
183

nodes on each side of the bipartition and constant indegree. However, our constructions of184

depth-robust graphs will require us to obtain a family {HN,δ}∞N=1 of δ-bipartite expanders185

such that HN,δ has N nodes on each side of the bipartition and constant indegree. In186

this section, we show how the family {HN,δ}∞N=1 can be constructed by truncating graphs187

from the family {Gm,δ}∞m=1. Furthermore, if the construction of Gm,δ is explicit and locally188

navigable then so is HN,δ.189

For each N we define m(N) := minm:m2≥N to be the smallest positive integer m such190

that m2 ≥ N . We first observe that for all integers N ≥ 1 we have m(N)2 ≥ N ≥ m(N)2/2.191

B Claim 5. For all N ≥ 1 we have m(N)2 ≥ N ≥ m(N)2/2.192

Proof. The fact that m(N)2 ≥ N follows immediately from the definition of m(N). For the193

second part it is equivalent to show that m(N)2/N ≤ 2 for all N ≥ 1. The ratio m(N)2/N194

is maximized when N = (m − 1)2 + 1 for some m ≥ 1. Thus, it suffices to show that195

m2

(m−1)2+1 ≤ 2 for all m ≥ 1 or equivalently 1+ 2(m−1)
(m−1)2+1 ≤ 2. The function f(m) = 2(m−1)

(m−1)2+1196

is maximized at m = 2 in which case f(2) = 1. For all m ≥ 2 we have 1 + 2(m−1)
(m−1)2+1 ≤ 2 and197

when m = 1 we have 1 + 2(m−1)
(m−1)2+1 = 1 ≤ 2 so the claim follows. J198

STACS 2022
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Suppose that for any constant δ > 0 we are given an explicit locally navigable fam-199

ily {Gm,δ}∞m=1 of δ-bipartite expanders with Gm,δ = ((Am,δ = {X1, . . . , Xm2}, Bm,δ =200

{Y1, . . . , Ym2}), Em,δ) with edge set Em,δ = {(Xi, Yj) : i ∈ GetParents(m, δ, j) ∧ j ≤ m2}201

defined by an algorithm GetParents(m, δ, j). We now define the algorithm GetParentsTrunc(N, δ, j) =202

GetParents(m(N), δ/2, j) ∩ {1, . . . , N} and we define Hm,δ = ((A′N,δ = {a1, . . . , aN}, B′N,δ =203

{b1, . . . , bN}), E′N,δ) with edge set E′N,δ = {(ai, bj) : i ∈ GetParentsTrunc(N, δ, j) ∧ j ≤ N}.204

Intuitively, we start with a δ/2-bipartite expander Gm,δ/2 with N ′ = m(N)2 nodes on each205

side of the partition and drop N ′−N ≤ N ′/2 nodes from each side of the bipartition to obtain206

Hm,δ. Clearly, if GetParents can be evaluated in time O(polylogm) then GetParentsTrunc207

can be evaluated in time O(polylogN). Thus, the family {HN,δ}∞N=1 is explicit and locally208

navigable. Finally, we claim that Hm,δ is a δ-bipartite expander.209

I Lemma 6. Assuming that Gm,δ is a δ-bipartite expander for each m ≥ 1 and δ > 0, the210

graph Hm,δ is a δ-bipartite expander for each m ≥ 1 and δ > 0.211

Proof. Consider two sets X ⊆ {1, . . . , N} and Y ⊆ {1, . . . , N} and set m = m(N). If212

|X| ≥ δN and |Y | ≥ δN then by Claim 5 we have |X| ≥ (δ/2)m2 and |Y | ≥ (δ/2)m2.213

Thus, since Gm,δ/2 is a δ/2-bipartite expander and X,Y ⊆ {1, . . . ,m2} there must be214

some pair (i, j) ∈ X × Y with i ∈ GetParents(m, δ/2, j). Since i ≤ N we also have i ∈215

GetParentsTrunc(N, δ, j) = [N ] ∩ GetParents(m, δ/2, j). Thus, the edge (ai, bj) still exists in216

the truncated graph Hm,δ. It follows that Hm,δ is a δ-bipartite expander. J217

In the remainder of this section, we will focus on constructing Gm,δ. In the next subsection,218

we first review the construction of (N = m2, k = 5, d = (2−
√

3)/4)-expanders due to Gabber219

and Galil [12].220

3.2 Explicit (N, k, d)-Expander Graphs221

Let Pm
.= {0, 1, . . . ,m − 1} × {0, 1, . . . ,m − 1} be the set of pairs of integers (x, y) with222

0 ≤ x, y ≤ m− 1. We can now define the family of bipartite graphs Gm = ((Am, Bm), Em)223

where Am = {Xi,j = (i, j) : (i, j) ∈ Pm} and B = {Yi,j = (i, j) : (i, j) ∈ Pm}. The edge set224

Em is defined using the following 5 permuatations on Pm:225

σ0(x, y) = (x, y),226

σ1(x, y) = (x, x+ y),227

σ2(x, y) = (x, x+ y + 1),228

σ3(x, y) = (x+ y, y),229

σ4(x, y) = (x+ y + 1, y),230
231

where the operation + is modulo m. Now we can define the edge set Em as232

Em = {(Xi′,j′ , Yi,j) : ∃ 0 ≤ k ≤ 4 such that σk(i′, j′) = (i, j)}.233

Gabber and Galil [12] proved that the graph Gm is a (N, k, d)-expander with N = m2
234

nodes on each side of the biparition (Am / Bm), k = 5, and d = (2−
√

3)/4.235

It will be convenient to encode nodes using integers between 1 and N = m2 instead236

of pairs in Pm. define PairToIntm(x, y) = xm + y + 1, a bijective function mapping237

pairs (x, y) ∈ {0, 1, . . . ,m − 1} × {0, 1, . . . ,m − 1} to integers {1, . . . ,m2} along with the238

inverse mapping IntToPairm(z) =
(
b z−1
m c, (z − 1) mod m

)
. We can then redefine the239

permutations over the set {1, . . . ,m2} as follows σ′j(z) = PairToIntm (σj (IntToPairm(z)))240
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and we can (equivalently) redefine Gm = ((Am, Bm), Em) where Am = {X1, . . . , Xm2},241

Bm = {Y1, . . . , Ym2} and Em = {(Xi, Yj) : 1 ≤ j ≤ m2 ∧ i ∈ GetParentsGG(m, j)}. Here,242

GetParentsGG(m, j) = {σ′0(j), σ′1(j), σ′2(j), σ′3(j), σ′4(j)}.243

3.3 Amplification via Layering244

Given that we have constructed explicit δ-bipartite expanders with constant indegree for245

a fixed δ > 0, we will construct explicit δ-bipartite expanders with constant indegree for246

any arbitrarily small δ > 0. The construction is recursive. As our base case we define247

G0
m = Gm = ((Am, Bm), Em) where Am = {X1, . . . , Xm2}, Bm = {Y1, . . . , Ym2} and248

Em = {(Xi, Yj) : 1 ≤ j ≤ m2 ∧ i ∈ GetParentsGG(m, j)} as the (N = m2, k = 5, d =249

(2 −
√

3)/4)-expander of Gabber and Galil [12] and we define GetParentsLayered1(m, j) =250

GetParentsGG(m, j). We can then defineGi+1
m = ((Am, Bm), Ei+1

m ) whereAm = {X1, . . . , Xm2},251

Bm = {Y1, . . . , Ym2} and Ei+1
m = {(Xi, Yj) : 1 ≤ j ≤ m2 ∧ i ∈ GetParentsLayeredi+1(m, j)}252

where GetParentsLayeredi+1(m, j) =
⋃
j′∈GetParentsGG(m,j) GetParentsLayeredi(m, j′). Intuit-253

ively, we can form the graph Gim by stacking i copies of the graph Gm and forming a new254

bipartite graph by collapsing all of the intermediate layers. See Figure 1 for an illustration.255

· · ·

· · ·

O

I

k edges

(a)

· · ·

· · ·

· · ·

· · ·

· · ·

O`

O`−1 = I`

...

O2 = I3

O1 = I2

I1

(b)

· · ·

· · ·

O`

I1

(c)

Figure 1 (a) One copy of an (N, k, d)-expander. Here, we remark that each input node has
exactly k edges such that the total number of edges is kN . (b) Stack the graph ` times to get a
graph with (` + 1) layers. The snaked edges from the third to `th layer indicates that there are
connected paths between the nodes. (c) Generate a new bipartite graph by collapsing all of the
intermediate layers. A node u on the bottom layer I1 has an edge to a node v on the top layer O` if
and only if there is a path in the original graph.

We note that
∣∣GetParentsLayeredi+1(m, j)

∣∣ ≤ k× ∣∣GetParentsLayeredi(m, j)
∣∣ ≤ ki+1. The-256

orem 7 tells us that amplification by layering yields a δ-bipartite expander. In particular,257

there is a constant Lδ such that Gim is a δ-bipartite expander whenever i ≥ Lδ. By our258

previous observation this graph has indegree at most kLδ which is a constant since k and Lδ259

are both constants.260

I Theorem 7. For any constant δ > 0, there exists a constant Lδ such that for any i ≥ Lδ261

the graph Gim is a δ-bipartite expander with N = m2 nodes on each side of the partition.262

Proof. Fix any subset Y 0 ⊆ [N ] of size |Y 0| ≥ δN . Let Y 1 .=
⋃
j∈Y 0 GetParentsGG(m, j), and263
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recursively define Y i+1 .=
⋃
j∈Y i GetParentsGG(m, j). Since Y i =

⋃
j∈Y 0 GetParentsLayeredi(m, j),264

it suffices to argue that |Y i| > (1− δ)N whenever i ≥ Lδ
.=
⌈

log((1−δ)/δ)
log(1+dδ)

⌉
+ 1. To see this,265

we note that for each i ≥ 0, either266

(1) |Y i| has already reached the target size (1− δ)N , or267

(2) |Y i+1| ≥
[
1 + d

(
1− |Y

i|
N

)]
|Y i| ≥ (1 + dδ)|Y i| since GetParentsGG defines an (N, k, d)-268

expander.269

It follows that |Y i+1| ≥ min{(1 − δ)N, (1 + dδ)iδN}. Now we want to find i such that270

(1 + dδ)iδN = (1− δ)N ; solving the equation we have i = log((1−δ)/δ)
log(1+dδ) . Thus, for i = Lδ − 1271

we have |Y i| ≥ (1− δ)N and for i ≥ Lδ we have |Y i| > (1− δ)N . Thus, for i ≥ Lδ the graph272

Gim is a δ-bipartite expander, i.e., for any subsets X,Y ⊆ [N ] of size |X| ≥ δN = δm2 we273

must have
∣∣∣X ∩⋃j∈Y GetParentsLayeredi(m, j)

∣∣∣ > 0 as long as i ≥ Lδ. J274

3.4 Final Construction of δ-Bipartite Expanders275

Based on the proof of Theorem 7, we can define Lδ
.=
⌈

log((1−δ)/δ)
log(1+dδ)

⌉
+ 1, Gm,δ

.= GLδm , and276

obtain HN,δ by truncating the graph Gm(N),δ/2. The edges are defined by the procedure277

GetParentsBE(N, δ, j) .= [N ]∩GetParentsLayeredLδ/2(m(N), j) — the procedure GetParentsBE278

is short for “Get Parents Bipartite Expander”. Formally, we have HN,δ = ((AN =279

{a1, . . . , aN}, BN = {b1, . . . , bN}), EN,δ) where EN,δ = {(ai, bj) : i ∈ GetParentsBE(N, δ, j)}.280

I Corollary 8. Fix any constant δ > 0 and define Lδ =
⌈

log((1−δ)/δ)
log(1+dδ)

⌉
+ 1. The graph GLδm is281

a δ-bipartite expander and the graph HN,δ is a δ-bipartite expander for any integers m,N ≥ 1.282

Proof. By Theorem 7 GLδm is a δ-bipartite expander. To see that HN,δ is a δ-bipartite283

expander we simply note that Gm(N),δ/2 is a δ/2-bipartite expander and apply Lemma 6. J284

4 Explicit Constructions of Depth Robust Graphs285

We are now ready to present our explicit construction of a depth-robust graph. For any286

N = 2n we define the graph G(δ,N) = ([N ], E(δ,N)) with edge set E(δ,N) = {(u, v) : v ∈287

[N ] ∧ u ∈ GetParentsEGS(δ, v,N)}. The procedure GetParentsEGS(δ, v,N) to compute the288

edges of G(δ,N) relies on the procedure GetParentsBE which computes the edges of our289

underlying bipartite expander graphs. We remark that our construction is virtually identical290

to the construction of [10] except that the underlying bipartite expanders are replaced with291

our explicit constructions from the last section.292

Algorithm 1 GetParentsEGS(δ, v,N)

1: procedure GetParentsEGS(δ, v,N)
2: P = {v − 4n, ..., v − 1}
3: for t = 1 to dlog2 ve do
4: m = bv/2tc
5: x = v mod 2t
6: B = GetParentsBE(2t, Lδ/5, x+ 1)
7: for y ∈ B do
8: P = P ∪ {(m− i)2t + y : 1 ≤ i ≤ min{m, 10}}
9: return P ∩ {1, ..., N}
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Note that for any constant δ > 0 and any integer n ≥ 1, the graph G(δ,N) defined by293

GetParentsEGS(δ, ·, N) has N = 2n nodes and maximum indeg indeg(G(δ,N)) = O(n) =294

O(logN).295

Erdös, Graham, and Szemeredi [10] showed that the graph G(δ,N) is a δ-local expander296

as long as the underlying bipartite graphs are δ/5-bipartite expanders.297

I Theorem 9 ([10]). For any δ > 0 the graph G(δ,N) is a δ-local expander.298

Theorem 10 says that any δ-local expander is also (e, d = N − e 1+γ
1−γ )-depth-robust for299

any constant γ > 2δ. The statement of Theorem 10 is implicit in the analysis of Alwen et al.300

[4]. We include the proof for completeness.301

I Theorem 10. Let 0 < δ < 1/4 be a constant and let γ > 2δ. Any δ-local expander on N302

nodes is (e, d = N − e 1+γ
1−γ )-depth-robust for any e ≤ N .303

Proof. Let G be a δ-local expander with δ < 1/4 and γ > 2δ and let S ⊆ [N ] denote an304

arbitrary subset of size |S| = e. To show that G− S has a path of length d = N − e 1+γ
1−γ we305

rely on two lemmas (Lemma 11, Lemma 12) due to Alwen et al. [4]. We first introduce the306

notion of a γ-good node. A node x ∈ [N ] is γ-good under a subset S ⊆ [N ] if for all r > 0307

we have |Ir(x)\S| ≥ γ|Ir(x)| and |I∗r (x)\S| ≥ γ|I∗r (x)|, where Ir(x) = {x− r − 1, ..., x} and308

I∗r (x) = {x+ 1, ..., x+ r}.309

I Lemma 11 ([4, 10]). Let G = (V = [N ], E) be a δ-local expander and let x < y ∈ [N ] both310

be γ-good under S ⊆ [N ] then if δ < min(γ/2, 1/4) then there is a directed path from node x311

to node y in G− S.312

I Lemma 12 ([4]). For any DAG G = ([N ], E) and any subset S ⊆ [N ] of nodes at least313

N − |S| 1+γ
1−γ of the remaining nodes in G are γ-good with respect to S.314

Applying Lemma 12 at least d = N − e 1+γ
1−γ nodes v1, . . . , vd are γ-good with respect to S.315

Without loss of generality, we can assume that v1 < v2 < . . . < vd. Applying Lemma 11 for316

each i ≤ d, there is a directed path from vi to vi+1 in G − S. Concatenating all of these317

paths we obtain one long directed path containing all of the nodes v1, . . . , vd. Thus, G− S318

contains a directed path of length d = N − e 1+γ
1−γ . J319

As an immediate corollary of Theorem 9 and Theorem 10 we have320

I Corollary 13. Let 0 < δ < 1/4 be a constant and let γ > 2δ then the graph G(δ,N) is321

(e, d = N − e 1+γ
1−γ )-depth-robust for any e ≤ N .322

4.1 Explicit Extreme Depth-Robust Graphs323

We also obtain explicit constructions of ε-extreme depth-robust graphs which have found324

applications in constructing Proofs of Space and Replication [15], Proofs of Sequential325

Work [14], and in constructions of Memory-Hard Functions [4].326

I Definition 14 ([4]). For any constant ε > 0, a DAG G with N nodes is ε-extreme327

depth-robust if and only if G is (e, d)-depth-robust for any e+ d ≤ (1− ε)N .328

When we set δε appropriately the graph G(δε, N = 2n) is ε-extremely depth robust.329

I Corollary 15. Given any constant ε > 0 we define δε to be the unique value such that330

1 + ε = 1+2.1δε
1−2.1δε if ε ≤ 1/3 and δε = δ1/3 for ε > 1/3. For any integer n ≥ 1 the graph331

G(δε, N = 2n) is ε-extreme depth robust.332
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Proof. Set γ = 2.1δε and observe that δ1/3 ≤ 0.07 ≤ 1/4 and for ε < 1/3 we have333

δε ≤ δ1/3 ≤ 1/4 so we can apply Corollary 13 to see thatG(δε, N = 2n) is (e, d = N−e 1+2.1δε
1−2.1δε )-334

depth robust for any e ≤ N . Since 1+2.1δε
1−2.1δε = (1 + ε) it follows that the graph is ε-extreme335

depth robust. J336

4.2 Depth-Robust Graphs with Constant Indegree337

In some applications it is desirable to ensure that our depth-robust graphs have constant338

indegree. We observe that we can apply a result of Alwen et al. [3] to transform the339

DAG G(δ,N) = (V = [N ], E(δ,N)) with maximum indegree β = βδ,N into a new DAG340

Hδ,N = ([N ] × [β], E′(δ,N)) with N ′ = 2Nβ nodes and maximum indegree 2. Intuitively,341

the transformation reduces the indegree by replacing every node v ∈ [N ] from G(δ,N) with a342

path of 2β nodes (v, 1), . . . , (v, 2β) and distributing the incoming edges accross this path. In343

particular, if v has incoming edges from nodes v1, . . . , vβ in G(δ,N) then for each i ≤ β we344

will add an edge from the node (vi, 2β) to the node (v, i). This ensures that each node (v, i)345

has at most two incoming edges. Formally, the algorithm GetParentsLowIndeg(δ, v′, N) takes346

as input a node v′ = (v, i) and (1) initializes P ′ = {(v, i− 1)} if i > 1, P ′ = {(v − 1, 2β)} if347

i = 1 and v > 1 and P ′ = {} otherwise, (2) computes P = GetParentsEGS(δ, v,N), (3) sets348

u = P [i] to be the ith node in the set P , and (4) returns P ′ ∪ {(u, 2β)}. It is easy to verify349

that the algorithm GetParentsLowIndeg runs in time polylogN .350

I Corollary 16. Let 0 < δ < 1/4 be a constant and let γ > 2δ then the graph Hδ,N is351

(e, d = Nβ − eβ 1+γ
1−γ ) depth-robust for any e ≤ N .352

Proof. (Sketch) Alwen et al. [3] showed that applying the indegree reduction procedure above353

to any (e, d)-depth-robust graph with maximum indegree β yields a (e, dβ)-depth-robust354

graph. The claim now follows directly from Theorem 9 and Theorem 10. J355

5 Conclusion356

We give the first explicit construction of ε-extreme depth-robust graphs G = (V = [N ], E)357

with indegree O(logN) which are locally navigable. Applying an indegree reduction gadget358

of Alwen et al. [3] we also obtain the first explicit and locally navigable construction of359

(Ω(N/ logN),Ω(N))-depth-robust graphs with constant indegree. Our current constructions360

are primarily of theoretical interest and we stress that we make no claims about the practicality361

of the constructions as the constants hidden by the asymptotic notation are large. Finding362

explicit and locally navigable constructions of (c1N/ logN, c2N)-depth-robust graphs with363

small indegree for reasonably large constants c1, c2 > 0 is an interesting and open research364

challenge. Similarly, finding explicit and locally navigable constructions of ε-extreme depth-365

robust graphs G = (V = [N ], E) with indegree cε logN for smaller constants cε remains an366

important open challenge.367
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