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THE BIGGER PICTURE Large-scale ab initio calculations combined with advances in structure prediction
have been instrumental in inorganic functional materials discovery. Currently, only a small fraction of the
vast chemical space of inorganic materials has been discovered. The need for accelerated exploration of
uncharted chemical spaces is shared by experimental and computational researchers. However, structure
prediction and evaluation of phase stability using ab initio methods is intractable to explore vast search
spaces. Here, we demonstrate the importance of a balanced training dataset of ground-state (GS) and
higher-energy structures to accurately predict their total energies using a generic graph neural network.
We demonstrate that the model satisfactorily ranks the structures in the correct order of their energies
for a given composition. Together, these capabilities allow the model to be used for fast prediction of GS
structures and phase stability and for the facilitation of new materials discovery.

0:000

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

The discovery of new inorganic materials in unexplored chemical spaces necessitates calculating total en-
ergy quickly and with sufficient accuracy. Machine learning models that provide such a capability for both
ground-state (GS) and higher-energy structures would be instrumental in accelerated screening. Here,
we demonstrate the importance of a balanced training dataset of GS and higher-energy structures to
accurately predict total energies using a generic graph neural network architecture. Using ~16,500 density
functional theory calculations from the National Renewable Energy Laboratory (NREL) Materials Database
and ~11,000 calculations for hypothetical structures as our training database, we demonstrate that our
model satisfactorily ranks the structures in the correct order of total energies for a given composition.
Furthermore, we present a thorough error analysis to explain failure modes of the model, including both pre-
diction outliers and occasional inconsistencies in the training data. By examining intermediate layers of the
model, we analyze how the model represents learned structures and properties.

INTRODUCTION inorganic functional materials discovery.®>”” However, compu-

tational searches have largely focused on known materials

With the advances in computing power and methodologies,
computational chemistry and materials science have made
great strides in accelerating discovery of molecules and
materials with tailored properties.”? The ability to perform
large-scale ab initio calculations, in particular those based
on density functional theory (DFT), has been instrumental in

documented in crystallographic databases. Currently, there
are ~200,000 entries in the Inorganic Crystal Structure
Database (ICSD),® which represents only a small part (>10'2
plausible compositions considering up to quaternary
compounds)® of the vast chemical phase space of inorganic
materials. The need for accelerated exploration of uncharted
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Figure 1. Model trained on ICSD structures
GNN model developed in this work trained on DFT
total energy of ICSD structures from NREL Materials
Database.®'

(A) The model predicts DFT total energy of 500 held-
out crystal structures with a MAE of 0.041 eV/atom
(0.95 kcal/mol).

(B) Histogram of prediction errors (relative to DFT
total energy) for the 500 test set structures; 82% of
the structures are predicted within an error of +0.05
eV/atom.

(C) Learning curve shows that >10* training struc-
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chemical spaces is shared by experimental and computa-
tional researchers.

The discovery of new inorganic compositions necessitates ac-
curate structure prediction methods, which is a burgeoning field in
itself. The general approach involves navigating the configuration
space defined by the structural parameters, using a rapidly
computable cost function such as total energy. The navigation
of configuration space can use a variety of techniques, including
simulated annealing,’® genetic algorithms,*'" random structure
searching,'®'® structure prototyping,’*'® and data mining.'®"”
In these techniques, total energy is often predicted with DFT,
although force-field methods have also been used.'®'® Thermo-
dynamic phase stability, i.e. stability against decomposition, is
another prerequisite in the search for new compositions. Forma-
tion enthalpy, calculated from DFT total energy, has proved
immensely useful in assessing phase stability.”>>* However,
DFT total energy calculations are still computationally expensive
to survey large chemical spaces with >10° compounds. Machine
learning (ML) models have emerged as a surrogate for fast predic-
tion of total energy, formation enthalpy, and phase stability.>*~>°
Here, we develop a graph neural network (GNN) built upon exist-
ing architectures to predict the total energy of ground-state (GS)
as well as hypothetical higher-energy structures generated for
structure prediction.’® In particular, we show that the effective-
ness of any generic GNN to simultaneously predict the total en-
ergy of GS and higher-energy structures depends on the choice
of training data. While most of the present literature on ML for pre-
dicting thermodynamic stability of materials is “model-centric”
(i.e., focuses on improvements in model architecture), we show
that the choice of training data is equally important.
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Crystal graph convolutional neural net-
works (CGCNNSs) have been developed to
predict DFT total energy and formation
enthalpy.””° These deep learning models
outperform traditional ML models with
expert-designed feature representations.
In a crystal graph, the atoms are repre-
sented by nodes and bonding interactions
as edges connecting the nodes, which natu-
rally takes into account the periodicity of
crystal structures. Xie et al.®’ trained a
CGCNN model on DFT-computed forma-
tion enthalpy of 46,744 crystal structures
(predominantly from the ICSD) available in
the Materials Project (MP) database.?”

Chen et al. proposed a generalized MatErials Graph Network
(MEGNet) for molecules and materials that was trained on
60,000 crystal structures from MP.° Park et al. developed an
improved-CGCNN (iCGCNN)?® with an alternative edge update
method and trained on DFT formation enthalpy of 450,000 crystal
structures in the Open Quantum Materials Database (OQMD).?
The CGCNN and its variants exhibit similar accuracy in predicting
formation enthalpy, with mean absolute error (MAE) of 0.03-0.04
eV/atom.?"*°

For structure and stability predictions, it is imperative that the
model is able to (1) predict the total energy of both GS and
higher-energy structures with similar accuracy and (2) distin-
guish energetically favorable (low-energy) structures from those
with higher energy. The CGCNN models discussed above are
trained primarily on ICSD structures that are GS or near-GS
structures. As we show in section “results and discussion,”
these models are likely to be biased toward GS structures and,
therefore, inaccurate in predicting total energies of higher-en-
ergy structures. While the iCGCNN model*® is trained on both
GS and higher-energy structures, an explicit demonstration of
the model performance for GS and higher-energy structures is
missing. Since the focus of that study was to improve the overall
prediction accuracy, it is not clear if the resulting model can, for a
given composition, correctly rank the different structures based
on their total energy.

In this work, we train our GNN model on a combined dataset
consisting of both GS and higher-energy structures in a
balanced fashion to accurately predict their total energy. We
use DFT total energy of ~16,500 ICSD structures from the
National Renewable Energy Laboratory (NREL) Materials
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Figure 2. Energy underprediction of hypothetical structures

Total energy of hypothetical structures (see section “model trained on ICSD
structures” for details) predicted with the ICSD model. The total energy is
systematically underpredicted for the high-energy hypothetical structures
suggesting model bias toward lower-energy structures.

We further confirm this bias by using the ICSD model to predict the total energy
of ~5,800 hypothetical structures. As described in section “data and prepa-
ration” (experimental procedures), the dataset of hypothetical structures
contains, in addition to the GS structures, a number of higher-energy hypo-
thetical structures for a given composition. The ICSD model severely under-
predicts the total energy of the higher-energy hypothetical structures but
accurately predicts the energy of the corresponding GS structures (Figure 2),
which highlights the model bias toward GS structures. For structure and sta-
bility predictions, a model that is accurate for both GS and higher-energy
structures is desired.

Database®' and ~11,000 hypothetical structures generated by
the ionic substitution method.***> While the overall prediction
accuracy of our model is at par with other graph-based models
(MAE = 0.04 eV/atom), with similar accuracy in predicting the
total energy of GS and higher-energy hypothetical structures.
We demonstrate the model’s capability to satisfactorily distin-
guish low- and higher-energy structures for a given composition.
Finally, we investigate the prediction outliers and find that, in
some cases, the source of the error can be traced back to the in-
accuracies in the DFT total energy.

RESULTS AND DISCUSSION

Model trained on ICSD structures

Previously reported GNN models for predicting total energy and
formation enthalpy®”*° were trained primarily on ICSD crystal
structures with DFT total energy and formation enthalpy taken
from the MP.?° For benchmarking, we train a CGCNN model
(Figure 9) on the DFT total energy of ICSD structures from the
NREL Materials Database (NRELMatDB).*" The model is trained
on 15,500 crystal structures with 500 structures each withheld
for validation and testing. We find that the prediction accuracy,
gauged by the MAE, is 0.041 eV/atom (Figure 1A). The standard
deviation in the MAE is +0.005 eV/atom, which is obtained by
training four different models and calculating the corresponding

¢ CellP’ress

MAE on test sets each containing 500 crystal structures, with no
overlap of structures between the test sets (Figure S1). The opti-
mized hyperparameters for the model are provided in Table S1 of
the supplemental information. Hereafter, we reference this
model as the “ICSD model”. The learning curve is presented in
Figure 1C, which shows that at least 10 crystal structures are
required to achieve a test MAE of <0.05 eV/atom, consistent
with previous models.?”

The formation enthalpy (AH;s) of a crystal structure with a
chemical composition AxB,,C, can be calculated from the DFT
total energy as, AH; = Eotal — Xug — yu3 — zud, where Eiga is
DFT total energy of A,B,C, with AH; and Eota €Xpressed per
formula unit and u? are the reference chemical potentials of
elements, typically under standard conditions. Since u® are
reference values, AHs is linearly dependent on Eiu, . By design,
the error in predicting AH; is the same as in predicting total en-
ergy. The ICSD model has an MAE of 0.041 eV/atom for predict-
ing DFT total energy. As such, AH; can be predicted with the
same accuracy, which is at par with other CGCNN models re-
ported in the literature.?”2° Furthermore, the typical experi-
mental error in measuring formation enthalpy is the “chemical
accuracy,” which is on the order of 1 kcal/mol (0.043 eV/atom).?*
Assuming DFT calculated AH; are reliable, the prediction error of
the ICSD model is comparable with the chemical accuracy.

Figure 1B shows a histogram of the prediction errors relative to
the DFT values, with 82% crystal structures (410 out of 500) pre-
dicted within an error of +0.05 eV/atom. Of the remaining 90
structures lying outside the +0.05 eV/atom error range, 51 struc-
tures are underpredicted, including PdN (space group #221) and
CoMnP (space group #62), which are underpredicted by —0.733
eV/atom and —0.397 eV/atom, respectively. We find that these
are higher-energy structures of those compositions reported in
the ICSD, with PdN (space group #221) 0.459 eV/atom and
CoMnP (space group #1) 0.400 eV/atom above the respective
GS structures PdN (space group #225) and CoMnP (space group
#62). Other underpredicted structures such as SiCN (space
group #216) and AuN (space group #225) are highly unstable
structures that lie above their respective convex hulls by 2.168
eV/atom and 1.897 eV/atom, respectively. The vast majority of
ICSD structures have been determined through X-ray diffraction
refinement of experimentally grown crystal structures with some
metastable and computationally predicted hypothetical struc-
tures. As such, ICSD is biased toward stable, GS structures;
the underprediction of the high-energy/unstable structures is a
testament to this inherent bias, which so far has not been
acknowledged in previous studies.?’°

Model trained on ICSD and hypothetical structures

To address the underestimation of the total energy of the hypo-
thetical structures with the ICSD model, we first train a GNN
model on the hypothetical structures separately (i.e., not
including the ICSD structures). The training, validation, and test
sets are chosen in a way to avoid overlap of compositions across
them. For instance, all the hypothetical structures associated
with the composition KGeP (ABX composition) appear only in
the test set (Figure 3A) but not in the training or validation set.
By avoiding overlap of compositions across the sets, we can
eventually test the true performance of the model in energetically
ranking the different structures associated with a given
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Figure 3. Model trained on combined dataset
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composition. In addition, at least one composition type (ABX,
ABX4, ...) is present in each of the sets.

First, the overall performance of this model with MAE = 0.055
eV/atom (Figure 3A) is significantly better than the performance
of the ICSD model on the same structures (Figure 2). We find
that the total energy of certain composition types, e.g., AX>
(6 out of 191 compositions), that are under-represented in the
hypothetical dataset are predicted with lower accuracy. In Fig-
ure 3A, the prediction outliers are predominantly of the AX»
composition. Nonetheless, the overall performance is compara-
ble with the ICSD model. However, when we use this model,
trained on hypothetical structures only, to predict the total
energy of 1,065 ICSD structures, we again find that the model
performs poorly with an MAE = 0.424 eV/atom (Figure S2). As
with the ICSD model (see section “model trained on ICSD
structures”), this model again appears to be biased toward the
hypothetical structures used in the training. To overcome this
systematic bias, we find that it is practical to train a model on a
combined dataset consisting of a balance between ICSD and hy-
pothetical structures.

A GNN model is trained on a combined dataset of DFT total
energy of 14,845 ICSD and 9,980 hypothetical structures (in
171 compositions) and validated and tested on 800 ICSD and
~600 hypothetical structures in 10 different compositions. An
overall MAE of 0.04 eV/atom is achieved across ICSD and hypo-
thetical structures (Figure 3B), which is comparable with the pre-
diction accuracy of the ICSD model. The standard deviation in
the MAE (0.005 eV/atom) is determined by training four different
models and calculating the corresponding MAE on test sets
each containing 800 ICSD and ~600 hypothetical structures
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(10 compositions each) with no overlap in
the structures (Figure S3). The learning
curve is presented in Figure S4, which
shows that at least 2 x 10* crystal struc-
tures (twice as many as are required for
the ICSD model) are required to achieve
test MAE of <0.05 eV/atom. Figure 3C
shows the individual MAEs for the ICSD
and hypothetical structures. For compari-
son, the predicted MAE of the ICSD model (see section “model
trained on ICSD structures”) and the model trained on the hypo-
thetical structures alone are provided. It is evident from Figure 3C
that the model trained on the combined dataset improves the
prediction accuracy for both ICSD and hypothetical structures
and overcomes the model bias when each dataset is used sepa-
rately to train a total energy model. We also train the MEGNet*®
and CGCNN?’ models on an identical combined dataset to
demonstrate the generality of our choice of training data to alter-
native models. A comparison of the predicted MAE on ICSD and
hypothetical structures is shown in Figure S5.

Energy ranking of structures

While it is crucial to have a high-accuracy model for predicting
total energy, it remains to be seen whether the model can
rank the different structures of a given composition in the
correct order of their energies. As mentioned in section “intro-
duction,” this energy ranking is desired for distinguishing
energetically favorable (low-energy) structures from the
higher-energy unfavorable structures. Figure 4 shows the
comparison between DFT and model-predicted relative total
energy (E— Emin) of all the hypothetical structures for each
of the 10 compositions present in the test set (Figure 3B). In
general, our model-predicted energy rankings are in fair
agreement with DFT, although there are noticeable differ-
ences depending on the composition type.

The rankings for the ABX type compositions (e.g., KGeP,
KZnSb, and NaBeAs) are the most accurate: i.e., the model
correctly identifies the GS structure and does not incorrectly
misassign a higher-energy structure as low energy (Figure 4).
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Figure 4. Energy ranking of hypothetical structures

Predicted relative energy (E — Emin) of hypothetical structures of 10 different
compositions from the test set in Figure 3B compared with DFT. The x axes
represent polymorphic structures, which are generated through ionic substi-
tution.*?*® For nine out of 10 compositions, the predicted GS either matches or
is within 0.025 eV/atom of the DFT GS structure.

The good ranking of ABX composition type can be attributed to
the fact that ABX comprises the largest fraction of the training
dataset of hypothetical structures (139 out of 191 compositions).
The ranking for CsAs (AX type composition) is satisfactory, with
DFT GS structure predicted to be only 0.007 eV/atom higher than
the GS structure predicted by the model. Moreover, none of the
higher-energy structures are misassigned as low-energy struc-

¢ CellP’ress

tures. In the case of KGaAs,, a ABX,-type composition, the
model correctly identifies the GS structure and also does not
misassign any of the higher-energy structures as the GS.

On the other hand, for the AX, type compositions (e.g., ZnAs,,
CdSb,, CdBiy), the energy ranking of the structures requires a
more detailed examination. The model correctly identifies the GS
structure of ZnAs,; however, a few high-energy structures are
also identified as low energy. This energy ranking can be consid-
ered satisfactory because, in practical structure prediction imple-
mentations, one would consider a few lowest-energy structures as
candidates for the GS structure. Similarly, the DFT GS structure of
CdSb, is predicted to be only 0.009 eV/atom above the model-pre-
dicted GS, which will qualify the true GS structure as one of the
lowest-energy structures. The model-predicted GS structure has
a DFT relative energy (E — Emjin) of 0.007 eV/atom. Finally, the en-
ergy ranking for CdBis is inaccurate since the DFT GS structure
is predicted to be 0.171 eV/atom above the model-predicted GS
structure. It is evident from Figure 4 that the relative energies of
all the CdBi, structures lie in a limited window of ~0.25 eV/atom,
unlike the ABX-, AX-, and ABX,-type compositions. It is a more
challenging to rank the structure in the correct order of their en-
ergies when all or a large fraction of the structures have similar en-
ergies: i.e., the energy differences cannot be sufficiently resolved.

For AX4-type compositions, the energy rankings are similar to
ZnAs, and CdSb,, wherein the GS structures of ZnAs, and
MgAs, are among the lowest-energy structures predicted by
the model, with their DFT relative energies 0.023 eV/atom and
0.036 eV/atom, respectively. At the same time, a few high-en-
ergy structures are also identified as low energy.

While the model satisfactorily ranks the energies of hypothet-
ical structures, we also inspect the rankings of known structures
to establish the robustness of the model. We chose the known
polymorphs of MgO and ZnO from the ICSD database as repre-
sentative examples. Figure S6 shows the comparison between
DFT and model (trained on combined dataset) predicted energy
rankings. Out of the nine reported polymorphs of MgO, the
model correctly labels the GS rock salt structure and also does
not misassign the higher-energy structures as low energy. Simi-
larly, out of the five reported polymorphs of ZnO, the model
correctly labels the GS wurtzite structure and accurately ranks
the higher-energy structures. In summary, the model satisfacto-
rily ranks the energy of the structures for most of composition
types. For nine out of 10 hypothetical compositions (Figure 4),
the predicted GS structure either exactly matches or is within
0.025 eV/atom of the DFT GS structure.

We show the generality of our choice of training data to GNN
models with similar architecture by training MEGNet*® and
CGCNN?" models on identical training, validation, and test
sets. The models trained on only ICSD structures consistently
fail to rank the structures of a given composition in the correct
order of their energies (Figure S7). The total energy of higher-en-
ergy structures is severely underestimated, which is expected
due to the model bias toward low-energy structures (Figure S7),
as discussed in section “model trained on ICSD and hypothetical
structures.” The models trained on a balanced combined data-
set of GS and hypothetical structures overcome this limitation.
Overall, the energy rankings predicted with our GNN model are
similar to those predicted by MEGNet and CGCNN (Figure 4),
when trained on the identical combined dataset.
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models

Comparison of KRCC, averaged over the 10 test compositions in Figure 4. Our
GNN model, MEGNet, and CGCNN models, when trained on the identical
combined dataset, perform similarly but significantly better than the same
models trained on ICSD structures alone.

We use the Kendall rank correlation coefficient (KRCC) as a
metric to compare the accuracy of the predicted energy rankings
between different models and datasets. Higher accuracy in en-
ergy rankings corresponds to correlation coefficients close
to +1. The KRCCs, averaged over the 10 test compositions (Fig-
ure 4), are compared in Figure 5. When trained on the identical
combined dataset, our GNN model, MEGNet, and CGCNN
models have similar average KRCCs. This is a significant
improvement in KRCC compared with when the same models
are trained on only ICSD structures (ICSD dataset versus com-
bined dataset in Figure 5). Therefore, the choice of training
data plays a more crucial role while the actual model architecture
has a minor effect on the performance of the models in energy
ranking of structures.

ML models based on kernel ridge regression®* and random
forest®® methods have previously been trained on GS and
high-energy structures to predict formation energy. Faber et al.
developed a kernel ridge regression model to predict the forma-
tion energy of elpasolite ABC,Dg crystals, achieving an MAE of
0.1 eV/atom,*" which is 2X-3X larger error compared with GNN
models (0.03-0.04 eV/atom).?”*° In the absence of an explicit
demonstration, it is not clear whether this KRR model can accu-
rately rank the polymorphic structures of a compound in the cor-
rect order of their energies. In contrast, the random forest model
developed by Kim et al.*® predicts the formation energy of
quaternary XX'YZ Heusler compounds with an MAE of 0.039
eV/atom. More importantly, they demonstrate a KRCC of 0.68,
which is similar to the average KRCC with our GNN, MEGNet,
and CGCNN models (Figure 5). The kernel ridge and random for-
est models were both trained for specific material families
(ABC2Dg, XX'YZ), which might limit their general applicability to
other compositions. Perhaps, training these models on the com-
bined dataset used in our work might result in similar perfor-
mance across different compositions, but may require tedious
feature engineering by hand, unlike in GNN models.

Analysis of prediction errors
We perform a thorough analysis of the large prediction errors in
Figure 3B. Such an analysis is useful in attributing the error to
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either prediction outlier or inconsistency in the training data.
The model trained on the combined dataset, presented in Fig-
ure 3B, predicts the total energy of ~79% (1,105 out of 1,405)
structures with <0.05 eV/atom error. However, seven crystal
structures (labeled in the figure) are either over- or underpre-
dicted by 0.500 eV/atom, which are, interestingly, all ICSD struc-
tures. We analyze each of these structures on a case-by-case
basis to understand the source of the error.

Fe13Ges (space group #221, ICSD: 150584) is severely under-
predicted by 1.039 eV/atom relative to the DFT total energy. In
this case, our analysis reveals that the DFT total energy is inac-
curate. In magnetic compounds containing transition metals,
the total energy is sensitive to the configuration of the magnetic
moments.*® Fe,3Ge; has a ferromagnetic GS; however, the DFT
total energy in NRELMatDB is for the non-magnetic configura-
tion. Upon recalculating the DFT total energy with ferromagnetic
configuration, the prediction error is reduced to +0.08 eV/atom.
This example highlights that DFT materials databases may
contain occasional inconsistencies that can be flagged through
ML regression.

The total energy of BaSiC (space group #107, ICSD:
168413) and CdC (space group #225, ICSD: 183177) are
underpredicted by 0.651 eV/atom and 0.582 eV/atom, respec-
tively. We find that both are hypothetical structures that were
proposed in computational studies but not experimentally
realized (ICSD contains a small fraction of hypothetical struc-
tures). These specific structures of BaSiC and CdC lie 0.795
eV/atom and 1.706 eV/atom above their respective convex
hulls, which indicates that these high-energy structures are
likely unstable. While the model is trained to predict the total
energy of both GS and higher-energy structures, the training
dataset of hypothetical structures spans 24 elements (see
section “experimental procedures”), including Ba, Cd, and
Si, but not C. The underprediction in the case of BaSiC and
CdC is indicative of the remnant bias in the model toward
lower-energy structures for compounds containing elements
that are not in the hypothetical structure dataset.

The total energy for Ca;Ge (space group #225, ICSD: 43321) is
underpredicted by 0.545 eV/atom. Upon analyzing the crystal
structure of this intermetallic compound, we find that the Ca-
Ge bond lengths associated with the Ca(4b) Wyckoff site is
34 A (Figure S8), which is significantly longer than typical Ca-
Ge bond length (3 A) in other Ca-Ge compounds (e.g., CaGe,
CayGe, and CasGez). We perform a k-nearest neighbor (kNN)
analysis on the penultimate site embeddings (see section
“experimental procedures”) to identify other structures in the
training set with embeddings that resemble Ca;Ge. The purpose
of the kNN is to find a number of training samples closest in dis-
tance to a point in the test set. Principal component analysis
(PCA) is first used to reduce the embedding space to 10 dimen-
sions, and the 10 nearest neighbors for each site in Ca;Ge are
found from embeddings for sites in the training dataset. There
are two unique Wyckoff sites of Ca (4b, 24d) in Ca;Ge; their 10
nearest neighbors are shown in Figure S8, which suggests that
the 4b site more resembles Sr and Ba (larger ionic radius than
Ca), consistent with the long Ca—Ge bond lengths. This could
also explain why Ca;Ge is furthest from the convex hull (0.093
eV/atom) compared with other Ca-Ge structures.
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Figure 6. Elemental site energy distribution
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Another outlier, Nb3Si, (space group #127, ICSD: 645431), is
overpredicted by 1.163 eV/atom. In training the model, we
directly use ICSD structures rather than DFT-relaxed structures.
While, in most cases, the DFT-relaxed structures are not far from
the ICSD structures, there are exceptions where this is not the
case, such as for NbzSi,. Using the DFT-relaxed structure
instead of the ICSD structure reduces the error to 0.054 eV/atom.

Not all prediction errors are easily explainable as arising from
the underlying DFT database. The source of error for ScFegSng
(space group #191), which is overpredicted by 0.470 eV/atom,
could not be identified and we believe that it is a case of predic-
tion outlier. We thus have identified several causes of prediction
errors, ranging from inconsistency in DFT data to simply model
inaccuracy.

Chemical trends

Interpretability of predictive neural network models remains
intrinsically challenging. While direct physical interpretation of
the CGCNN model in this work may not be possible, we compare
trends in the model predictions with general chemical principles.
Specifically, we identify trends in the learned elemental site en-
ergies (see section “experimental procedures”) through dimen-
sionality reduction techniques such as PCA and t-distributed
stochastic neighbor embedding (t-SNE). In conjunction, we
also analyze the probability density of the elemental site
energies.

We chose electropositive elements from group 1 (Na, K) and
group 2 (Sr, Ba) as representative examples to identify trends
in the learned elemental site energies. Figure 6 shows the prob-
ability density as a function of the elemental site energy for these
elements. Figure 7 presents the corresponding two-dimensional
t-SNE projections performed on the elemental embeddings. The
site energy distributions in Figure 6 are calculated for all the sites

ions: tetrels (C, Si, Ge, Sn, Pb) or pnicto-
gens (N, P, As, Sb, Bi). For example, out
of 7,056 sites for Na, 3,458 sites bonded only to either halogens,
O, or chalcogens span an energy range of [-4.36, —1.97] eV,
whereas the 1,134 sites bonded only to tetrels or pnictogens
span a lower energy range of [-3.17, —1.06] eV.

Notably the energy distributions for oxides span a wider en-
ergy range, overlapping with other anion types, which can be
attributed to the large variety of oxide compositions and struc-
tures and the different cation coordinations. Generally, Na, K,
Sr, and Ba prefer octahedral coordination (6-fold coordination)
when bonded to O (e.g., rock salt Na,O, BaO) but there can be
a departure from this typical behavior depending on the pres-
ence of other cations. For instance, Na sites in Na;;AlsO0+¢
(space group #8) and Na44Al,O+3 (space group #14) are 3-fold,
4-fold, and 5-fold coordinated with some of the elemental site
energies lying in the “tail” of the oxides’ (near the peak of pnic-
tides) energy distribution (Figure S9). As such, some of the Na
sites in these compounds behave as if they are bonded to pnic-
togens rather than O. The presence of Al, which generally prefers
tetrahedral coordination, causes this departure from the typical
behavior.

The t-SNE projections in Figure 7 offer an additional dimen-
sion (compared with the 1-D site energy distribution in Figure 6)
to visualize the learned elemental distributions. The t-SNE pro-
jections reveal distinct clusters depending on the anion type,
consistent with the observation of peaks in the probability
density energy distributions (Figure 6). The separation into
different clusters suggests that the chemical identity of the
cation-anions bonds, at least for the four representative ele-
ments considered here, governs the learned elemental
embedding. Consistent with the elemental site energy distribu-
tion, some Na sites in Na;7AlsO4¢ (space group #8) and
Na;4Al4013 (space group #14) lie in the cluster of pnictide em-
beddings (Figure S9).
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Assessment of thermodynamic stability

Thermodynamic phase stability against decomposition into
competing phases is a prerequisite for searching new materials
and can be assessed through a convex hull construction.?® Ma-
terials that lie on the convex hull are considered stable: i.e., the
energy above the hull (AEy) is zero. Materials lying above the
hull (AEny>0) are either unstable or metastable. The convex
hull is defined as a convex envelope connecting the GS struc-
tures in a given chemical space and can be computed from
DFT total energy by calculating formation enthalpy. For instance,
in the binary Li-P chemical space, the convex hull connects
elemental Li and P, and stable phases LizP, LiP, LiP7, LiPs,
and LizP-.

To demonstrate the accuracy of our GNN model in predicting
thermodynamic phase stability, we perform convex hull analysis
onaset of 1,794 ICSD compounds by using the model-predicted
total energy of all the competing phases. Here, we consider all
the competing phases documented in the ICSD. The ICSD com-
pounds are chosen in the following way: all unique compounds
present in NRELMatDB®' formed by the 24 elements spanning
group 1 (Li, Na), group 2 (Mg, Ca), group 3 (Sc), group 4 (Ti),
group 5 (V), group 6 (Cr), group 7 (Mn), group 8 (Fe), group 9
(Co), group 10 (Ni), group 11 (Cu), group 12 (Zn), group 13
(B, Al), group 14 (C, Si), group 15 (N, P), group 16 (O, S), and
group 17 (F, Cl). A total of 1,794 unique compounds (513 binary,
987 ternary, 288 quaternary, and 6 quinary) with 2-86 competing
phases are identified.
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within the typical DFT error. Overall, our
GNN-predicted phase stability is in fair
agreement with DFT.

A precision-recall curve (PRC) provides
a quantitative measure of the model’s ac-
curacy to classify a material as stable or
unstable. Precision is defined as the ratio
between the number of correctly classified stable materials
(true-positive) and all materials classified as stable (true-
positive + false-positive). Recall is the ratio between the number
of correctly classified stable materials (true-positive) and all ma-
terials that are actually stable (true-positive + false-negative). We
use the decomposition energies instead of AEy, to determine
the precision and recall scores for varying thresholds of decom-
position energy. Here, decomposition energy is the minimum en-
ergy that the formation energy of an unstable material has to be
lowered (more negative) before it becomes stable. Similarly, for a
stable compound, we define the decomposition energy as the
maximum energy that the formation energy can be increased
(less negative) before it becomes unstable.”* In this way, the
decomposition energies of stable compounds are <0 eV/atom
and for unstable compounds >0 eV/atom. The area under the
PRC (AU-PRC) is 1 for perfect classification and 0 for
random guess.

The AU-PRC of our GNN combined model tested on the 1,794
ICSD compounds is 0.98 (Figure S11). We find that the CGCNN
model, when re-trained on our combined dataset, performs simi-
larly in predicting thermodynamic stability (Figure S11B). We also
perform phase stability analysis on the hypothetical structures to
compare the performance of the ICSD and combined models.
For this purpose, we consider the 10 hypothetical compositions
(690 structures) from the test set of the combined model (Fig-
ure 4). Figure S12 shows a comparison of the predicted energy
above the hull (AEn) with the ICSD only and combined models
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Figure 8. Prediction of thermodynamic stability

Comparison of energy above the convex hull (AEn,) predicted with our GNN
model (trained on the combined dataset) and with DFT for 1,794 ICSD com-
pounds. The color scheme corresponds to the number of competing phases
for each compound.

relative to the DFT calculated AEy,. As expected, the ICSD
model, which is biased toward GS structures, underpredicts
AEny and, therefore, has a higher rate of false-positives (53%)
in predicting thermodynamic stability. In contrast, the combined
model has a much lower false-positive rate (1.5%). Conse-
quently, the AU-PRC for the ICSD model (0.60) is much lower
than for the combined model (0.99).

We also compare the stability predictions by our GNN model
with those from simple composition-based models.?* We train
the Magpie model®” on the lowest-energy structures for each
composition in our dataset using 145 composition-based
features. We test this model to predict the stability of a subset
of 1,794 ICSD compounds (above); an AU-PRC of 0.78 (Fig-
ure S13) is obtained, which is significantly lower compared
with our GNN model. The composition-based Magpie model
is, as expected, biased toward GS structures and results in
significantly more false-positives (36%) than the GNN model
(8% false-positives).

Conclusions
In summary, we have developed a GNN model capable of reli-
ably predicting DFT total energy of both GS and higher-energy
structures. A model trained on a combined dataset consisting
of a balance between both GS and higher-energy structures
achieves a lower error than models trained on either GS or hypo-
thetical structures alone. The accuracy of the resulting model is
sufficient to rank the small differences in energy typically
encountered between structures with the same composition.
The model can, therefore, serve the purpose of rapidly screening
the energetics of different configurations for a given composi-
tion, a critical step in elucidating the structure and stability of
new chemistries.

Some of the large errors in energy predictions are explained by
identifying their source of error as inconsistencies in the underly-
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ing training data. In small-scale DFT studies, each calculation
can be carefully examined by the researcher to ensure conver-
gence. In high-throughput DFT databases, however, manual
analysis must be replaced with automatic convergence criteria
that can occasionally miss peculiar cases. Therefore, the training
and analysis of ML models is one way that the consistency of
high-throughput DFT databases can be rapidly verified. ML pre-
dictions fail where the data are poorly explained by neighboring
trends, either because insufficient similar examples exist, there
are inconsistencies in the data, or there is extreme sensitivity
of the regressed variable with respect to structure. In addition
to highlighting data inconsistencies and where additional data
should be collected, prediction outliers can highlight interesting
and unique chemical functionality that might otherwise go unno-
ticed in large databases.

There are a few limitations to the model, which remain to be
addressed. The hypothetical structures used for training the
model span only 24 elements, and their total energy is confined
to a small range, in contrast to the wide range in the total energy
of ICSD structures. To overcome this limitation, generation of
additional DFT data for hypothetical structures will be done in
a future work. Additionally, the current model was trained on hy-
pothetical structures after DFT relaxations, which limits its use-
fulness in the forward screening of new hypothetical structures,
where relaxed coordinates are not available. Generating accu-
rate predictions with unrelaxed structures remains an unresolved
problem in the field of structure prediction.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact is Prashun Gorai (pgorai@mines.edu).

Materials availability

There are no physical samples generated in this work.

Data and code availability

A frozen version of the code is available on Zenodo (https://doi.org/10.5281/
zenodo.5484194) and in a GitHub repository (https://github.com/
prashungorai/combined-gnn).

GNN architecture

A CGCNN was constructed as depicted in Figure 9. Crystal structures are first
converted to a graph using pymatgen,® using atomic sites as the graph nodes
and distances between sites as the graph edges. Each node in the graph has
exactly 12 edges, corresponding to the 12 nearest neighbor sites in the crystal
while accounting for periodic boundaries. Node features include only the iden-
tity of the element at the atomic site, and edge features only included the raw
distances (in angstroms) between the two sites. This is in contrast to other
CGCNN models®”2° that use several additional node and edge features:
e.g., group and period number, electronegativity. An embedding layer is
used to convert the discrete element type of each atomic site into a 256-
parameter vector, functioning similarly to a one-hot encoding of the atom
type followed by a dense layer of dimension 256. Edge features are initialized
from the raw distances through a radial basis function expansion,
ri(d) =exp[ —n(d —c;)] for ie[1,...,10], where d is the edge distance and 7,c;
are learned parameters initialized to 7 and [0,0.7,1.4,2.1,...,6.3], respectively.
In the CGCNN, the node and edge features are updated by passing them
through a series of message layers, in which the nodes exchange information
with their neighboring edges.

The structure of the message-passing layers is adapted from Jorgensen
et al.*° First, for each edge, the source and target site features are concat-
enated with the edge’s features, passed through a series of dense layers,
and added to the input edge features in a residual fashion. Next, node
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Figure 9. GNN model architecture

Schematic of the neural network architecture. Node (atomic sites) and edge
features (interatomic distances) output from each message block are fed as
inputs into the subsequent block. The model predicts energy per site for all the
sites in a given structure, which are averaged to get the total energy.

features are updated using the features of the neighboring sites and those
of the connecting edges. For each of the 12 edges pointing into a given site,
the feature vectors of the source sites are multiplied by features of the cor-
responding edge before all 12 vectors are summed together. The resulting
feature vector is then passed through a series of dense layers before being
added to the original site feature vector in a residual fashion. Outputs from
each message block are then fed as inputs into a subsequent message
block for a total of six message layers. Final total energy predictions are
produced by feeding the final site features into a 1-D output layer, produc-
ing a single energy prediction for each site. These predictions are added to
a learnable mean energy for each element before being averaged over all
sites in the crystal to produce a mean energy prediction.’® Site-level contri-
butions to the total predicted energy can therefore be extracted from this
penultimate layer.
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CGCNNS s are trained for 500 epochs over the training data with a batch size
of 64 crystals using the Adam optimizer with weight decay. The learning rate
was decayed starting from an initial value of 1e3, according to
1e~3/(1 +epoch /50), and the weight decay was similarly decayed according
to 1e=5/(1 + epoch /50). The loss function minimized was the MAE between
predicted and DFT total energy.

Data and preparation

Three distinct datasets of DFT-computed total energy are used in training
the CGCNN models. First, we use DFT total energy of ~14,000 ordered and
stoichiometric crystal structures from the ICSD? that are available in the
NREL Materials Database (NRELMatDB).®" The DFT calculations are per-
formed with VASP*'; details of the calculations are available from Stevanovié
etal.”®

During data cleanup, we identified that the DFT calculations for 1,677 struc-
tures containing fluorine were insufficiently converged. We recalculated the
DFT total energy of 874 (out of the 1,677) structures with a recommended
larger plane-wave energy cutoff of 540 eV. The remaining 803 structures
contain transition elements that require an exhaustive search of the different
magnetic configurations to determine the GS structure. Given the high compu-
tational cost associated with the search for the magnetic GS configurations,
these 803 structures were not recalculated and also not included in the training
data. With future applications of our CGCNN model in mind, we expanded the
dataset to including DFT total energy of ~3,900 ICSD structures containing
mixed anions (e.g., ZrOS), which are not currently in NRELMatDB. The DFT
methodology (GGA-PBE)** and calculation parameters for the mixed-anion
compounds are consistent with those used in NRELMatDB. Combined, we
use DFT total energy of ~16,500 ICSD structures to train, validate, and test
the CGCNN models. The ICSD collection identifiers along with their total en-
ergy are made available through a public GitHub repository.*® This dataset
of ICSD structures spans 60 elements and 12,760 unique compositions, with
2,113 compositions existing in more than one structure.

We also leverage a dataset of ~11,000 hypothetical structures that were
created by ionic substitutions in known prototype structures from the
ICSD.***? Upon ionic substitution, the decorated structures are relaxed and
their total energy is calculated with DFT. The relaxed structures (as VASP POS-
CAR files) and the total energy are available through the GitHub repository.**
The dataset is created for the purpose of discovering new Zintl phases.®***
As such, it spans 24 elements in 191 unique compositions of the type ABX
(139, 6,087), AX, (18, 318), AX (15, 3,775), ABX4 (13, 410), and AX> (6, 444),
where the first number in parentheses is the number of compositions and
the second number is the number of structures. Here, element A includes Li,
Na, K, Rb, Cs, Ba, Mg, Sr, Zn, Cd; element B are Si, Ge, Sn, Pb, Zn, Cd,
and Be; and X are group 15 elements (pnictogens) such as P, As, Sb, and
Bi. KSnSb, MgAs,, CdSb, KGaSb,, and ZnAs, are representative composi-
tions from this hypothetical structure dataset.

Analysis of atomic site energy

The learned elemental site energies (Figure 6), which are the site-level contri-
butions to the total energy, are analyzed to identify chemical trends. For spe-
cific elements, we calculate the probability density of the atomic site energies
from all the ICSD structures in the dataset. We do not include the hypothetical
high-energy structures in the analysis of the site energies to avoid biasing the
chemical trends toward unstable structures. The distribution of pairwise dis-
tances between the learned elemental embeddings (Figure 7) will encode
the relation between materials. We utilize common dimensionality reduction
techniques such as PCA** and t-SNE,*® as implemented in scikit-learn,*® to
analyze the multi-dimensional elemental embeddings.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2021.100361.
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