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Time evolution of quantum many-body systems typically leads to a state with maximal entanglement
allowed by symmetries. Two distinct routes to impede entanglement growth are inducing localization via
spatial disorder, or subjecting the system to nonunitary evolution, e.g., via projective measurements. Here
we employ the idea of spacetime rotation of a circuit to explore the relation between systems that fall into
these two classes. In particular, by spacetime rotating unitary Floquet circuits that display a localization
transition, we construct nonunitary circuits that display a rich variety of entanglement scaling and phase
transitions. One outcome of our approach is a nonunitary circuit for free fermions in one dimension that
exhibits an entanglement transition from logarithmic scaling to volume-law scaling. This transition is
accompanied by a “purification transition” analogous to that seen in hybrid projective-unitary circuits.
We follow a similar strategy to construct a nonunitary two-dimensional (2D) Clifford circuit that shows a
transition from area to volume-law entanglement scaling. Similarly, we spacetime rotate a 1D spin chain
that hosts many-body localization to obtain a nonunitary circuit that exhibits an entanglement transition.
Finally, we introduce an unconventional correlator and argue that if a unitary circuit hosts a many-body
localization transition then the correlator is expected to be singular in its nonunitary counterpart as well.
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I. INTRODUCTION

Generic isolated quantum systems typically thermalize
via the interaction between their constituents [1–5]. One
exception to this is the phenomenon of many-body local-
ization (MBL) [6–16] where strong disorder causes the
system to develop signatures of nonergodicity such as
subthermal entanglement under quantum quenches. More
recently, it has been realized that new dynamical phases
can also emerge in quantum systems subjected to pro-
jective measurements [17–48] due to the “quantum Zeno
effect” [49]. Relatedly, one can consider evolution with
more general nonunitary circuits [50–54], which typically
exhibit nonergodic behavior as well. It is natural to wonder
if there is any relation between these two classes of sys-
tems, namely, unitarily evolved systems that show single-
particle or many-body localization, and systems where
nonunitarity plays a crucial role in suppressing ergodic
behavior. In this work we explore such a connection using
the idea of the spacetime rotation of a circuit [55–63].
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For a unitarily evolved system to exhibit localization,
spatial disorder of course plays a central role. Evidence
suggests that time translation invariance, whether con-
tinuous or discrete, is also crucial. For example, Flo-
quet (i.e., time-periodic) circuits with spatial disorder can
exhibit MBL phenomena [64–66], while unitary circuits
that have randomness both in space and time tend to dis-
play ergodic behavior [67–74]. On the other hand, for
the aforementioned nonunitary circuits displaying subther-
mal entanglement [17–48], translation invariance in the
time or the space direction is not crucial. This is demon-
strated by explicit construction of circuits consisting of
projective measurements dispersed randomly in space-
time that host a transition from an area-law entanglement
regime to a volume-law entanglement regime (see, e.g.,
Refs. [18–20]). A subclass of such nonunitary circuits has
translation invariance in the space direction but lacks trans-
lation invariance in the time direction. Such circuits will be
the focus of this work for reasons we discuss next.

The main idea we explore is the “spacetime rotation”
of a quantum circuit [55–63] with a focus on unitary
circuits that host a localization-delocalization transition.
To set the stage, consider a general unitary circuit U
that acts for time Lt on a d-dimensional system of spa-
tial size L1 × L2 × · · · × Ld. From this, one can define
a “partition function” Z = tr(U). Denoting the underly-
ing degrees of freedom schematically by the symbol φ,
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FIG. 1. The geometry of circuit rotation employed in this work
illustrated for a 1D system. Given a unitary circuit U that acts on
a system of spatial size Lx, the wavefunction evolved for time
Lt is schematically given by 〈φt|U|φ0〉 = ∫

Dφ(x, t)eiS(φ), where
the fields labeled φ′

0,φx at the boundaries are also being inte-
grated over in Dφ(x, t), while φ0,φt act as boundary conditions.
Using the same bulk action S, one may then define a rotated cir-
cuit V that acts on a system with spatial extent Lt, such that the
wavefunction at time Lx is 〈φx|V|φ′

0〉 = ∫
Dφ(x, t)eiS(φ). In this

rotated circuit, the fields labeled φ0,φt are being integrated over
in Dφ(x, t), while φ′

0,φx act as boundary conditions.

one may represent Z as a path integral in spacetime,
Z = ∫

Dφ(t, {x})eiS[φ], where S[φ(t, {x})] = ∫
dtd�x L

(φ, t, �x) is the spacetime action and L(φ, t, x1, x2, . . . , xd)

is the corresponding Lagrangian. Let us now define
a new Lagrangian L̃ by interchanging t and x1:
L̃(φ, t, x1, x2, . . . , xd) = L(φ, x1, t, x2, . . . , xd). For exam-
ple, if L(φ, t, x1, x2) = (∂tφ)

2 − [(∂x1φ)
4 + (∂x2φ)

6 + φ4]
then L̃ = −(∂tφ)

4 + (∂x1φ)
2 − [(∂x2φ)

6 + φ4]. Since the
original circuit U is local, it implies that both L and L̃ are
also local. We use L̃ to define a new “spacetime-rotated”
circuit V: tr(V) = Z = ∫

Dφ(t, {x})ei
∫

dtd�x L̃. See Fig. 1 for
an illustration, and Sec. II below for details. By design, the
circuit V acts for time L1 on a system of spatial size Lt ×
L2 × · · · × Ld. Crucially, V is not guaranteed to be uni-
tary [56]. This point was recently employed in Ref. [63] to
design a method for emulating certain nonunitary circuits
and their associated measurement-induced phase transi-
tions without requiring extensive postselection. We note
that in the context of imaginary time evolution, the idea of
spacetime rotation to obtain a dual quantum Hamiltonian
was first employed in Ref. [75].

In this work, we perform the aforementioned spacetime
rotation on lattice models of Floquet circuits that are made
out of unitaries with spatial disorder, and which display
entanglement transitions due to the physics of localization.
The rotated circuit V will be generically nonunitary and, by
construction, will possess translational invariance along a

space direction, and disorder (randomness) along the time
direction. A motivation for our study is that the rotated
and unrotated circuits have the same partition function Z,
which is closely related to the spectral form factor [76,77]
(= |Z|2). Since the spectral form factor in a Hamiltonian
(or Floquet) system is expected to show singular behavior
across a localization transition [78,79], one may wonder if
this fact has any consequence for the rotated circuit. In the
special case when the rotation results in a unitary circuit,
it was shown in Ref. [56] that the (unrotated) Floquet cir-
cuit is chaotic. Here we instead start from Floquet circuits
that can be argued to display a localization transition (and
therefore not always chaotic), and study the nonunitary
circuits that result from their rotation.

The first example we study corresponds to a Floquet
circuit that displays an Anderson localization transition
due to quasiperiodic disorder. Rotating this circuit results
in a one-dimensional (1D) free-fermion nonunitary circuit
that exhibits a transition from a volume-law entanglement
regime, S ∼ L (L is the spatial size), to a regime with entan-
glement characteristic of critical ground states: S ∼ log(L).
This is interesting because the known examples of nonuni-
tary theories with free fermions have hitherto found only
subextensive entanglement [50–52,54]. The fact that our
nonunitary circuit is obtained from rotation of a unitary cir-
cuit plays a crucial role in its ability to support volume-law
entanglement.

Next, we construct a 2D model where the unitary cor-
responds to a Floquet Clifford circuit and which displays
a localization transition. Interestingly, spacetime rotating
this circuit results in a nonunitary circuit consisting of only
unitaries and “forced” projective measurements. We find
that both the rotated and the unrotated circuits display an
entanglement phase transition from a volume-law regime
to an area-law regime.

The last example we study corresponds to a Floquet uni-
tary circuit that displays a MBL transition [64–66]. The
rotated, nonunitary counterpart again shows two distinct
regimes, one where the entanglement scales as a volume
law, and another where entanglement shows subextensive
behavior.

Finally, we introduce an unconventional correlator that
can be interpreted both within a unitary circuit and its
nonunitary counterpart. We briefly discuss its measure-
ment without employing any postselection. Using the
‘�-bit’ picture of MBL [9,10], we provide a heuristic argu-
ment that this correlator exhibits singular behavior across
a MBL transition.

The paper is organized as follows. In Sec. II, we provide
a brief overview of the idea of spacetime rotating a circuit.
In Sec. III, we discuss a Floquet model of noninteracting
fermions in one dimension that displays a localization-
delocalization transition due to quasiperiodicity. We then
study the phase diagram of the nonunitary circuit that
results from its spacetime rotation. In Sec. IV we discuss
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a two-dimensional Clifford Floquet circuit that displays
a localization-delocalization transition, and then study its
spacetime-rotated version that turns out to be a hybrid
circuit consisting of only unitaries and forced projective
measurements. In Sec. V, we discuss a 1D interacting Flo-
quet model that displays many-body localization transition
and study the phase diagram of its rotated counterpart. In
Sec. VI we introduce an unconventional correlator and dis-
cuss its physical consequences. Finally, in Sec. VII, we
conclude with a discussion of our results.

II. BRIEF OVERVIEW OF THE SPACETIME
ROTATION OF A CIRCUIT

Here we briefly review the idea of the spacetime rotation
of a circuit using a 1D lattice model [56]. Although we
specialize to one dimension for now, the discussion can
be straightforwardly generalized to higher dimensions, as
we do in Sec. IV. We begin by considering the following
unitary Floquet circuit for a system of spatial size Lx:

UF = ei
∑Lx

r=1 JX ,rXrei
∑Lx

r=1 JZ,rZrZr+1+i
∑Lx

r=1 hrZr . (1)

As discussed in the Introduction, a spacetime-rotated map-
ping is constructed by investigating the “partition func-
tion” Z = tr[(UF)

Lt]. Using the standard quantum-classical
mapping, Z can be expressed as a partition function of
Lx × Lt classical variables {sr,t} in two dimensions with
complex Gibbs weight: Z ∝ ∑

{sr,t} e−S. Here the action S
reads

−S =
∑

r,t

(iJ̃Z,rsr,tsr,t+1 + iJZ,rsr,tsr+1,t + ihrsr,t). (2)

The coupling between neighboring spins J̃Z,rsr,tsr,t+1 along
the time direction results from eiJX ,rXr in the Floquet
unitary UF , and the coupling constant J̃Z,r is deter-
mined as J̃Z,r = −π/4 + (i/2) log

(
tan JX ,r

)
. To obtain the

spacetime-rotated circuit, one can now define a Hilbert
space for Lt spins on a given fixed-r timelike slice (Fig. 1).
Correspondingly, the partition function can be written as
Z ∝ tr[

∏Lx
r=1 Vr], where Vr acts on a Hilbert space of

Lt spins: Vr = eiJ̃X ,r
∑

t XteiJ̃Z,r
∑

t ZtZt+1+ihr
∑

t Zt with J̃X ,r =
tan−1(−ie−2iJZ,r). Altogether, eiJX ,rXr in UF is mapped to
eiJ̃Z,rZtZt+1 in Vr, and eiJZ,rZrZr+1 in UF is mapped to eiJ̃X ,rXt

in Vr.
Finally, by exchanging the labels of spacetime coordi-

nates r ↔ t, one can construct the spacetime-rotated circuit
V(T) that evolves the system for a time T and acts on a
Hilbert space of size L, V(T) = ∏T

t=1 Vt, where

Vt = eiJ̃X (t)
∑L

r=1 XreiJ̃Z (t)
∑L

r=1 ZrZr+1+ih(t)
∑L

r=1 Zr . (3)

A few remarks are in order. First, V(T) has the space
translational invariance resulting from the time translation

invariance in the unrotated Floquet circuit UF . Second,
V(T) is generically nonunitary except for the self-dual
points |JX ,r| = |JZ,r| = π/4 [56]. Third, in the special case
when JX ,r, JZ,r, and hr are restricted to {0, ±π/4}, V(T)
corresponds to a hybrid quantum circuit with only unitary
gates and forced projective measurements. While a π/4
coupling gives unitary operation as just mentioned, JX ,r =
0 implies that the spin at site r is frozen in the unrotated
circuit, and, hence, in the rotated circuit, this corresponds
to a forced projective measurement of (1 + ZiZi+1)/2 on
two neighboring spins. Similarly, Jz,r = 0 corresponds to
a forced projective measurement of (1 + X )/2 on a sin-
gle site. The fact that a forced projective measurement can
arise from the spacetime rotation of a unitary gate has also
been previously noted in Ref. [63]. Finally, once we have
obtained the form of V, we let the corresponding system
size L and the evolution time T [Eq. (3)] be free parameters
that are independent of the system size and evolution time
of the Floquet unitary UF from which it was obtained. That
is, we do not impose the conditions T = Lx, L = Lt when
we compare various properties of V with UF .

Having reviewed the mapping between a unitary and
its “spacetime dual,” in the rest of the paper we consider
several Floquet unitary circuits that exhibit entanglement
transitions due to the physics of localization, and explore
the phase diagrams of their spacetime duals.

III. SPACETIME ROTATION AND
ENTANGLEMENT TRANSITION IN A

QUASIPERIODIC CIRCUIT

As a first example, we consider a Floquet circuit in
one space dimension hosting a localization-delocalization
transition. We recall that models with quasiperiodic ran-
domness, such as the Aubry-André-Harper (AAH) model
[81–83], can evade Anderson localization [84] in
one dimension. The AAH model is given by H =
−t

∑
r(c

†
r cr+1 + H.c.)− 2λ

∑
r cos(2πQr + δ)c†

r cr, where
cr and c†

r are the fermion creation and annihilation opera-
tors. When the on-site potential is incommensurate, i.e., the
wavenumber Q is irrational, all single-particle eigenstates
are delocalized (localized) for |t| > |λ| (|t| < |λ|) and arbi-
trary offset δ. Motivated by this, we consider a Floquet
circuit model with the unitary

UF = eiJ
∑

r XrXr+1ei
∑

r hrZr (4)

for a spin-1/2 chain of size L with periodic boundary con-
ditions. We choose J = 1, and hr to be quasiperiodic: hr =
h + λ cos(2πQr + δ), where Q is set to 2/(1 + √

5) (the
inverse Golden ratio) and h = 2.5. We note that Chandran
and Laumann [85] studied the incommensurate AAH mod-
ulation in the transverse field Ising model, and found that,
due to the interplay between symmetry and incommensu-
rate modulation, it exhibits a rich phase diagram, including
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phases with delocalized, localized, and critical states that
sometimes also break the Ising symmetry spontaneously.

Using the above Floquet unitary UF , we construct the
corresponding spacetime-rotated circuit V as discussed
above in Sec. II:

V(T) =
T∏

t=1

eih̃
∑

r Zrei
∑

r J̃ (t)XrXr+1 (5)

with J̃ (a) = −π/4 + (i/2) log(tan ha) and h̃ = tan−1

(−ie−2iJ ). Note that the circuit V is translationally invari-
ant in space at each fixed time slice, but quasiperiodic in
time.

Now we discuss the entanglement structure of long-
time-evolved states (T 
 L) from a product state |ψ0〉:

|ψ(T)〉 = U |ψ0〉√
〈ψ0| U†U |ψ0〉

. (6)

Here U is chosen as (UF)
T and V(T) for the Floquet

circuit and its spacetime dual, respectively. Using the
Jordan-Wigner transformation, we map these circuits to
a problem involving free fermions, and numerically com-
pute the entanglement entropy using the correlation matrix
technique [86–88] (see Appendix A 1 for the details).

For the unrotated circuit UF , we find that the entan-
glement entropy exhibits a volume-law scaling for λ �
0.64 and an area-law scaling for λ � 0.81 [Fig. 2(a)].
In the intermediate regime, 0.64 � λ � 0.81 [Fig. 2(b)],
we find that SA ∼ O(Lγ ) with 0 < γ < 1. Notably, deep
in the volume-law phase, the entanglement entropy den-
sity SA/LA ≈ 0.386 regardless of λ, which is very close
to the average value predicted for random quadratic
Hamiltonians of free fermions derived in Ref. [80]: sr =
log 2 − [1 + f −1(1 − f ) log(1 − f )] ≈ 0.386 at f = 1/2.
We also explore delocalization properties of the single-
particle eigenfuntions of the circuit UF in terms of free

fermions and find three distinct phases (see Appendix A 2),
in line with the late-time entanglement entropy studied
here.

We now discuss the spacetime-rotated circuit V. We find
that it also exhibits a transition in the entanglement entropy
of long-time-evolved states. Figure 2(c) indicates that there
is a transition in the entanglement entropy density SA/LA
at λ ≈ 0.64: SA follows a volume law for λ � 0.64, and
obeys a subvolume scaling for λ � 0.64. We also note that
in the volume-law regime, the coefficient of the volume
law varies continuously, in strong contrast to the volume-
law phase of the unrotated unitary circuit. To elucidate the
nature of the subvolume-law regime, we study SA versus L,
and find that it scales logarithmically with the system size
L: SA ∼ α log(L) [see Fig. 2(d)] with α being a number that
depends on λ. We also attempted a scaling collapse for the
entanglement close to the critical point in the nonunitary
circuit; see Appendix A 3. The collapse is reasonably good
in the volume-law regime, while it does not work well in
the subvolume-law regime. We suspect that this may be
related to the fact that the coefficient α in the logarithmic
scaling of entanglement varies continuously with λ.

A heuristic argument relates the physics of localiza-
tion in the unitary circuit to the physics of the quantum
Zeno effect [49] in the rotated nonunitary circuit, and
also suggests that the aforementioned entanglement tran-
sition is likely to occur at λc = π − h ≈ 0.64, in line with
our numerical observations. For the unrotated circuit UF ,
the condition λ > λc implies that some hr in the term
eihrZr is arbitrarily close to π . Mapping the spin chain to
Majorana fermions using the Jordan-Wigner transition, the
corresponding location r then has a broken bond between
two neighboring sites of the Majorana fermions, thereby
impeding their propagation. In contrast, from the point
of view of the rotated circuit V, the spacetime rotation
of the term eihrZr at hr = π corresponds to the two-spin
gate eiJ̃ Xj Xj +1 with J̃ = −π/4 + (i/2) log tan(π), which
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FIG. 2. Entanglement entropy SA of long-time-evolved states [evolution time up to O(L2)] at the subsystem size fraction LA/L =
1/2. (a) Entanglement for the Floquet circuit, Eq. (4). The dashed gray line marks the entanglement entropy density averaged over
all eigenstates of random quadratic Hamiltonians [80]. (b) Scaling of SA with L in a narrower range of λ for the same Floquet circuit
as in (a). Here SA scales linearly with L (i.e., volume law) for λ � 0.64 and follows an area law for λ � 0.81. For 0.64 � λ � 0.81,
SA ∼ O(Lγ ) with 0 < γ < 1. (c) Entanglement entropy density SA/LA for the spacetime-rotated nonunitary circuit in Eq. (5). Here
SA/LA is nonzero for small modulation strength λ, while it vanishes for large λ. (d) Entanglement scaling in the regime 1.5 � λ � 1
for the same circuit as in (c). One finds that SA ∼ log(L).
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therefore acts as a projector 1
2 (1 + Xj Xj +1). Crucially, such

a two-site projection occurs uniformly in space (due to
the space translational symmetry of the rotated circuit),
leading to the absence of volume-law entanglement for
time-evolved states.

Perhaps the most surprising aspect of our result is the
presence of a volume-law phase since the previous works
on nonunitary free-fermion circuits found phases only with
subextensive entanglement [50–52,54]. For hybrid circuits
consisting of unitary evolution interspersed with projective
measurements, it was found in Ref. [17] that volume-law
entanglement in a free-fermion chain is destroyed by the
presence of arbitrarily weak measurement. Fidkowski et al.
[46] argued for similar results. However, these results do
not contradict ours since in the volume-law phase, our
nonunitary circuit does not specifically correspond to uni-
tary evolution interspersed with projective measurements
but instead corresponds to more general evolution with a
non-Hermitian Hamiltonian [see Eq. (5)].

To gain intuition for the origin of the volume-law
phase, we consider a simplified circuit that has trans-
lation symmetry in both space and time, i.e., V0 =
eiJ

∑
j Xj Xj +1eih

∑
j Zj , and allow J and h to be complex num-

bers. If V0 is obtained from the spacetime rotation of a
unitary circuit, a key feature is that the real parts of both J
and h will be π/4. Writing J = π/4 + iαJ and h = π/4 +
iαh, we find analytically that such a circuit leads to volume-
law entanglement at long times for any αJ and αh (see
Appendix B). The volume-law phase originates from the
fact that, when Re(J ) = Re(h) = π/4, an extensive num-
ber of single-particle eigenvalues of the Floquet unitary are
real. Setting αJ = αh = α, and using a simple quasiparti-
cle picture [89], we find that the volume-law coefficient of
entanglement decays exponentially with α: SA/LA ∼ e−cα

for c > 0. Therefore, there is no area-law phase in this
simplified, translationally invariant model. We numerically
verified these results as well. Although we do not have sim-
ilar analytical results for the circuit V [Eq. (5)], we verified
numerically that Re(J̃ ) = Re(h̃) = π/4 (due to the cir-
cuit being obtained from the rotation of a unitary, namely
UF ) is again essential to obtain a volume-law phase. In
this sense, the volume-law phase of the nonunitary circuit
is “symmetry protected” by the unitarity of the unrotated
circuit.

One may also inquire about the role played by the time
translation symmetry of the unitary circuit. If one chooses
a different unitary circuit for each time slice then the local-
ization is lost at any λ and one only obtains a volume-law
phase in the corresponding unitary circuit. We verified that
the rotated circuit, which now lacks spatial translational
symmetry, does not exhibit a phase transition. Therefore,
at least for this specific problem, both the unitarity and the
translation symmetry play a crucial role in obtaining the
entanglement transition.
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FIG. 3. The late-time entropy density S/L for a density matrix
that is initially in a completely mixed state [i.e., ρ(t = 0) ∝ I ]
and is evolved with the nonunitary circuit defined in Eq. (5).
Inset: time evolution of S/L.

It was argued in Refs. [21,22] that a stable volume-
law entangled phase of pure states in a hybrid unitary-
projective circuit is a consequence of the robust error-
correcting properties of the circuit against environmental
monitoring. Consequently, a maximally mixed state ρ =
I/2L evolved by the circuit will retain a finite residual
entropy density up to an extremely long time, indicating
stability against purification by monitoring. Motivated by
these results, we studied the purification dynamics of a
maximally mixed state evolved under our nonunitary cir-
cuit and investigated its von Neumann entropy density as
a function of time. Remarkably, we found a sharp tran-
sition in the entropy density, where, for λ < 0.64 (i.e.,
the volume-law entanglement phase), the system has a
nonzero entropy density even at times t 
 L, and for λ >
0.64, the system is purified with a vanishing entropy den-
sity in a time that is independent of the system size L (see
Fig. 3 and Appendix A 4).

IV. SPACETIME ROTATION AND
ENTANGLEMENT TRANSITION IN A 2D

CLIFFORD CIRCUIT

We next explore entanglement transitions in a two-
dimensional Floquet model and its spacetime dual. We
consider the following Floquet unitary on a square lattice
of size L × L:

UF = e−i(π/4)
∑

〈ij 〉 Jij ZiZj e−i(π/4)
∑

i hiXi . (7)

Here each Jij , hi is chosen to be 0 or 1 with prob-
abilities p and 1 − p , respectively. This is a Clifford
circuit since it maps a Pauli string to another Pauli
string: ei(π/4)Z1Z2Xj e−i(π/4)Z1Z2 = iZ1Z2Xj for j = 1, 2 and
ei(π/4)Xj Zj e−i(π/4)Xj = iXj Zj . Therefore, it can be effi-
ciently simulated based on the Gottesman-Knill theorem
[90–92]. The construction of the circuit UF is motivated
from Ref. [93], although it differs from the precise circuit
discussed in that work.
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To construct the spacetime-rotated circuit, we inter-
change the time coordinate t and one of the space
coordinates x while leaving the other space coordinate
y unchanged. This results in the mapping as follows.
Since y coordinates are unchanged, the gate e−i(π/4)Jij ZiZj ,
with 〈ij 〉 being a y-directed bond, is invariant under the
spacetime-rotated mapping. The gate e−i(π/4)Jij ZiZj along
the x direction in the unrotated circuit is mapped to a
single-site gate ei(π/4)X , (1 + X )/2 in the rotated circuit
for Jij = 1, 0, respectively. Finally, the single-site gate
e−i(π/4)hiX in the unitary circuit maps to the two-site
gate ei(π/4)ZiZj , (1 + ZiZj )/2 on an x-directed bond in the
nonunitary circuit for hi = 1, 0, respectively. Therefore,
the rotated circuit consists of unitary evolution interspersed
with forced projective measurements, and is given by

V(T) =
T∏

t=1

{ Ly∏

y=1

[VX (y, t)VZZ,|(y, t)VZZ,−(y, t)]
}

, (8)

where, for each y and t, VX (y, t) = ∏Lx
x=1(1 + Xx,y)/2

or
∏Lx

x=1 ei(π/4)Xx,y with probabilities p and 1 − p ,
VZZ,|(y, t) = 1 or

∏Lx
x=1 ei(π/4)Zx,y Zx,y+1 with probabilities

p and 1 − p , and VZZ,−(y) = ∏Lx
x=1(1 + Zx,yZx+1,y)/2 or

∏Lx
x=1 ei(π/4)Zx,y Zx+1,y with probabilities p and 1 − p . Note

that V has translation symmetry along x inherited from the
time translation symmetry in the unrotated Floquet circuit.

Now we discuss the entanglement structure of long-
time-evolved states. For both the unrotated and rotated
circuits, we find an entanglement transition between a
volume-law phase and an area-law phase at the same
finite critical probability p = pc ≈ 0.28 (see Fig. 4).
Assuming the scaling form of entanglement entropy
|SA(p)− SA(pc)| = F[(p − pc)L1/ν], we find that the cor-
relation length exponent ν however differs in the two cir-
cuits (ν ≈ 0.38 for the unrotated circuit and ν ≈ 0.49 for

the rotated one). The coefficient of the volume-law entan-
glement varies continuously in both circuits and vanishes
continuously across the phase transition.

We also analyzed entanglement scaling at the critical
point, and found that both in the rotated and unrotated cir-
cuits, the data are indicative of the scaling S ∼ L log L,
which is reminiscent of results in Refs. [34,40,51]; see
Appendix C. However, as pointed out in Ref. [42], on
small system sizes, a slight error in the location of the crit-
ical point can make an area-law scaling, S ∼ L, appear as
a S ∼ L log L scaling. Therefore, one may need to study
larger system sizes to be conclusive. As an aside, we note
that the scaling form S ∼ L log L is not allowed for a sys-
tem described by a unitary, Lorentz invariant field theory
at low energies due to the constraint d2S/dL2 ≤ 0 [94].

One may ask whether the time translation symmetry is
crucial to obtain the observed transitions. Specifically, con-
sider a circuit where independent unitaries of the form
in Eq. (7) are applied at each time slice. In the (unro-
tated) unitary circuit, as one might expect, breaking time
translational invariance always leads to volume-law entan-
glement [67–74]. We confirmed that rotating such a circuit
leads to a hybrid projective-unitary circuit that also always
exhibits a volume-law scaling. This is because the problem
now essentially corresponds to anisotropic bond perco-
lation in three dimensions where no bonds are removed
along one of the directions (namely y) and are removed
with probability p along the other two directions (x and t).
Such a model is known to not exhibit a percolation transi-
tion for any p [95].

One may also consider the Floquet circuit [Eq. (7)] and
its spacetime dual [Eq. (8)] in one dimension. In this case,
however, both the unitary circuit and its rotated counter-
part are in the area-law phase for any nonzero p . To see
this, let us consider the unitary circuit and note that, when
p = 0, the spatial support of a single-site Pauli operator
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FIG. 4. (a) Long-time entanglement entropy SA of a subregion A of size L/2 × L averaged over O(103) random realizations of the
unitary circuit defined in Eq. (7) as a function of the probability p . The inset shows the scaling collapse across the critical point between
a volume-law regime and an area-law regime with (pc, ν) ≈ (0.28, 0.38). (b) SA/L for the same system as in (a) as a function of L for
various values of p . For small p , SA/L ∼ L, i.e., SA ∼ L2, while for large values of p , SA/L is independent of L, signifying area-law
scaling. (c) Long-time entanglement entropy of a subregion of size L/2 × L averaged over O(104) random realizations of the rotated
nonunitary circuit [Eq. (8)]. The inset shows the scaling collapse with (pc, ν) ≈ (0.28, 0.49). (d) Plot of SA/L for the same system
as in (c) as a function of L for various values of p . Again, for small p , SA/L ∼ L, i.e., SA ∼ L2, while for large values of p , SA/L is
independent of L.
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grows with time, leading to volume-law entanglement at
long times. On the other hand, when p 
= 0, there is a finite
density of locations [of O(1/p)] where the ZZ or the X
gates are absent. These locations impose a “wall” such that
the end of a stabilizer string cannot grow beyond these
walls. This leads to area-law entanglement SA � O(1/p).
In contrast, the 2D circuit discussed above allows for a
volume-law phase for small nonzero p since a local Pauli
stabilizer spreads as a membrane that can bypass the points
corresponding to the absent ZZ or X gates. Such a picture
suggests that the entanglement transition may be related to
a percolation transition, similar to Ref. [93]. However, the
correlation length exponent we numerically obtain differs
from the prediction of percolation in two dimensions. It
would be worthwhile to revisit this question in more detail
in the future.

V. SPACETIME ROTATION OF AN INTERACTING
FLOQUET MBL CIRCUIT

Finally, we present numerical results on an interacting
Floquet model of the form in Eq. (1), i.e.,

UF = eiJx
∑

r Xre−iτ
∑

r ZrZr+1−iτ
∑

r hrZr , (9)

where τ = 0.8, and hr is a Gaussian random variable with
mean h = 0.8090 and variance W = 1.421. As shown in
Ref. [66], tuning Jx induces a transition from a MBL to
an ergodic phase, where the Floquet eigenstates exhibit
area-law entanglement for small Jx and volume-law entan-
glement for large Jx. Here we study the corresponding
spacetime dual nonunitary circuit.

As a benchmark, we first confirm the MBL-ergodic tran-
sition found in Ref. [66] for the Floquet unitary circuit.
Using exact diagonalization (ED), we study the half-chain
entanglement entropy SA averaged over all eigenstates
of UF , and average the data from 200 random realiza-
tions of UF . We find clear signatures of a transition from

a subextensive regime to a volume-law regime at finite
Jx = Jx,c. Since eigenstates are localized for Jx < Jx,c and
are expected to resemble an infinite-temperature pure state
[i.e., a random pure (Page) state [96] with entanglement
entropy SR = 0.5(L log 2 − 1)] for any Jx > Jx,c, we per-
form a data collapse, assuming the scaling form SA/SR =
F[(Jx − Jx,c)L1/ν], and find the critical point Jx,c ≈ 0.23
with the correlation length exponent ν = 1.09 [Fig. 5(a)
inset].

The spacetime-rotated circuit corresponding to UF is

V(T) =
T∏

t=1

Vt, Vt = eiJ̃x
∑

r XreiJ̃z
∑

r ZrZr+1−iτh(t)
∑

r Zr ,

(10)

where the field h is now random in the time direction due to
the spacetime rotation, and the couplings J̃x, J̃z are defined
in Sec. II. We first analyze the entanglement structure of
states evolved via V for times T ∼ L. We find signatures of
a transition by tuning Jx [see Fig. 5(b)]. In particular, when
one plots entanglement entropy density, one finds a cross-
ing at Jx ≈ 0.6 [see Fig. 5(c)], which separates a regime
with volume-law entanglement from a regime where the
entanglement is subextensive.

Finally, we study the entanglement dynamics of an
ancilla qubit that is initially maximally entangled with
the system, following the protocol in Refs. [21,22]. We
evolve the system for time T ∼ L, and find a crossing
around Jx ≈ 0.4 [see Fig. 5(d)]. In addition, the entan-
glement S of the ancilla qubit shows distinct features on
two sides of this crossing (see Appendix D for numeri-
cal data). For Jx � 0.4, the entanglement entropy of the
ancilla qubit decays from its initial value (= log 2) expo-
nentially with time, while for Jx � 0.4, it remains at its
initial value for a while (i.e., exhibits a ‘plateau’), followed
by an exponential decay. To quantify the plateau interval,
we define a “purification time” tp as the time after which
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FIG. 5. (a) Half-chain entanglement entropy averaged over all eigenstates and 200 random realizations of the Floquet unitary
UF defined in Eq. (9). The inset presents the data collapse based on the scaling ansatz: SA/SR = F[(Jx − Jx,c)L1/ν] with (Jx,c, ν) =
(0.23, 1.09) and SR = 0.5(L log 2 − 1) being the entanglement entropy of a random pure state. (b) Entanglement entropy of long-
time-evolved states averaged over 150 random realizations of the spacetime-rotated nonunitary circuit [Eq. (10)]. (c) Entanglement
entropy density of the same circuit as in (b). (d) The entanglement entropy of an ancilla qubit that is initially prepared in the maximally
entangled state with the system, and then evolved for time t ∼ L with the nonunitary circuit in Eq. (10). Averaging is done over 2000
realizations of the disorder. Inset: time scale tp that measures the persistence of the entanglement of the ancilla qubit.
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the entanglement of the ancilla qubit has dropped below
0.65 [approximately 0.94 log(2)]. We find that tp ≈ O(1)
for Jx � 0.4, while it increases with system size L for Jx �
0.4 (Fig. 5 inset). Notably, for large enough Jx(� 0.7), we
find that tp grows superlinearly with L, and therefore the
nonunitary circuit may potentially serve as a good quantum
error-correcting code.

Finally, we note that different values of the crossing
points in different measures suggest that the finite size
effects are likely strong at these system sizes. However, at
the very least, the trends strongly indicate a stable volume-
law phase at Jx � 0.6 [see Fig. 5(c)], and a phase with
subextensive entanglement at small but nonzero Jx.

VI. SPACETIME-ROTATED CORRELATORS:
POSTSELECTION-FREE MEASUREMENT AND

PHYSICAL CONSEQUENCES

Since the circuits related by spacetime rotation have
the same bulk action S (see the Introduction and Fig. 1),
it is natural to seek a relation between their physical
observables. At the outset, one notes that conventional
correlation functions such as 〈ψ0|U†OU|ψ0〉 in the uni-
tary circuit are not related to similarly defined correlations
functions in its spacetime-rotated nonunitary V, such as
〈ψ ′

0|V†OV|ψ ′
0〉/〈ψ ′

0|V†V|ψ ′
0〉. Referring to Fig. 1, this is

because in the former case, the fields φ0 and φt are held
fixed to define the wavefunction, and the fields φ′

0 and φx
are being summed over, while in the latter case, it is the
other way around. However, consider the following object
(see Fig. 6):

C(x1, t1; x2, t2) =
∫

Dφ φ1(x1, t1)φ2(x2, t2)eiS({φ})
∫

Dφ eiS({φ}) . (11)

V

U

̂ϕ1

̂ϕ2

(x1, t1)

(x2, t2)

x
t

Lt

Lx

FIG. 6. Geometry for the correlation function C(x1, t1; x2, t2)
defined in the main text [Eq. (11)]. It can be interpreted in
two different ways: either as a correlation function for a sys-
tem evolving unitarily with circuit U, or as a correlation function
for a system evolving with the rotated nonunitary circuit V; see
Eq. (12).

Since the action S is invariant under spacetime rotation and
one is summing over all fields in the above integral, C has
a well-defined meaning in both the rotated and unrotated
circuits:

C(x1, t1; x2, t2) = tr[U(t2, t1)φ̂1U(t1, t2)φ̂2]
tr[U(t2, t1)U(t1, t2)]

= tr[V(x2, x1)φ̂1V(x1, x2)φ̂2]
tr[V(x2, x1)V(x1, x2)]

. (12)

Here U(a, b) and V(a, b) are evolution operators from
time a to b when a < b, while when a > b, U(a, b) =
U(a, Lt)U(0, b) and V(a, b) = V(a, Lx)V(0, b) (see Fig. 6
for definitions of Lt, Lx); φ̂1, φ̂2 are operators corresponding
to the fields φ1,φ2 in Eq. (11), whose spacetime insertion
locations are shown in Fig. 6.

The correlation functions in Eqs. (11) and (12) are rather
unconventional since there is no “backward trajectory”
as in the standard Keldysh expression [97,98] for con-
ventional correlation functions such as 〈ψ0|U†OU|ψ0〉. To
measure such correlators experimentally, one may employ
the idea of a control qubit that generates two branches
of a many-body state [99–101]. For example, to mea-
sure 〈ψ0|U1φ̂1U2φ̂2|ψ0〉 for some U1, U2 and a product
state |ψ0〉, the total system is initially prepared in a
state |ψ0〉 ⊗ (| ↑〉 + | ↓〉), where the expression after “⊗”
denotes the state of the control qubit. Using standard tech-
niques [99–101], one then applies the operator U2φ̂2 on the
“up branch” of this initial state, i.e., the state |ψ0〉 ⊗ | ↑〉,
and similarly, one applies the operator φ̂†

1U†
1 on the down

branch. Finally, one measures the expectation value of the
σ x and the σ y operators that act on the control qubit, which
yields the object of interest, namely, the real and imag-
inary parts of 〈ψ0|U1φ̂1U2φ̂2|ψ0〉. The trace in Eq. (12)
would then need to be approximated by sampling over sev-
eral such expressions, although even a single or few such
expressions may sometime capture the qualitative aspects
of interest (see below).

Because of the unconventional nature of the correlator
C, it is not obvious if it captures universal physics. We
now provide a heuristic argument that C is singular across
the MBL transition. We recall that a MBL system hosts
emergent “�-bit” degrees of freedom [9,10] {τ z} that have
a nonzero overlap with the local σ z operators, i.e., σ z

i =
Zτ z

i + · · · , where Z 
= 0 denotes the overlap between σ z
i

and τ z
i (“quasiparticle residue”). In particular, this implies

that at long times σ z
i (t) = Zσ z

i (0)+ · · · , i.e., σ z
i (t) has a

nonzero overlap with σ z
i (0). Let us use this fact to simplify

the numerator of C in Eq. (12): tr[U(0, T/2)σ z
r U(T/2, 0)

σ z
r ] = tr[σ z

r (T/2)U(0, T/2)U(T/2, 0)σ z
r ] = Ztr[U(0, T/2)

U(T/2, 0)] + · · · with the three center dots denoting terms
that are expected to vanish at long times after aver-
aging over time and disorder. This suggests that in a
MBL phase, C(r, 0; r, T/2) simply equals Z at large T,
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FIG. 7. Correlation function C(r, 0; r, T/2) for T � O(L) in the
circuit UF defined in Eq. (9). The data presented are obtained
by averaging over 2560 random realizations of UF for L =
4, 6, 8, 10, and 512 random realizations of UF for L = 12.

and therefore vanishes as one approaches the delocaliza-
tion transition. We verified this expectation numerically
using ED for the Floquet model studied in Sec. V; see
Fig. 7. We also calculated a simpler correlator, namely,
〈ψ0|U(0, T/2)σ z

r U(T/2, 0)σ z
r |ψ0〉, where |ψ0〉 is a product

state, and found that it behaves quite similarly to C.
We also studied the correlator in the 1D free-fermion

circuit discussed in Sec. III as well as the 2D Clifford cir-
cuit discussed in Sec. IV. We found that the correlator fails
to distinguish between the localized phase and the delo-
calized phase in either of these circuits for distinct reasons.
For a localized free-fermion circuit, the time-evolved oper-
ator σ z

i (t) continues to have a nonzero overlap Z with σ z
i

at arbitrarily long times, i.e., σ z
i (t) = Zσi + · · · . However,

due to the lack of dephasing in free-fermion circuits (see,
e.g., Ref. [102]), the terms under the three center dots do
not vanish even at long times despite averaging over dis-
order, and their contribution fluctuates in time significantly
at all times. Consequently, the spacetime-rotated correlator
does not provide a clear signature across the localization
transition.

On the other hand, for a Clifford circuit, the corre-
lator C does not differentiate between a localized phase
and a delocalized phase due to the absence of the “�-bit”
picture σ z

i (t) = Zσ z
i + · · · . Specifically, σ z

i (t) will always
be a single product of Pauli operators over various sites,
and the localization (delocalization) phase manifests in the
bounded (un-bounded) spatial support of σ z

i (t), instead of
the relative weight of various operators. Therefore, our
aforementioned argument in the context of generic MBL
systems does not apply.

We note that Ippoliti and Khemani [63] discussed an
alternative method to relate quantities between a unitary
circuit and its rotated nonunitary counterpart. In particu-
lar, Ippoliti and Khemani [63] considered a protocol where
the purification dynamics in the nonunitary circuit can
be obtained by a combination of unitary dynamics and
projective measurements.

VII. SUMMARY AND DISCUSSION

In this work, we employ the idea of the spacetime rota-
tion of unitary circuits to construct nonunitary circuits
that display entanglement phase transitions. We focus on
specific Floquet unitary circuits that display localization-
delocalization transitions of various kinds (free fermion,
Clifford, many body). We find that the delocalized (local-
ized) regime of the unitary circuit maps to a regime with
volume-law (area-law or critical) entanglement in the cor-
responding nonunitary circuit. Therefore, the spacetime
rotation maps the physics of localization to the physics of
the quantum Zeno effect. We also find that the entangle-
ment transitions in the nonunitary circuits are accompa-
nied by purification transitions of the kind introduced in
Refs. [21,22]. We introduce an unconventional correlator
in the nonunitary theory that can in principle be measured
without requiring any postselection, and provide a heuris-
tic argument that this correlator is singular across a MBL
transition.

Our procedure leads to the construction of a nonunitary
free-fermion circuit that supports volume-law entangle-
ment, which has hitherto been elusive [50–52,54]. As
discussed in Sec. III, we find that a nonunitary circuit
obtained by the rotation of a free-fermion unitary circuit
has the special property that the real parts of certain hop-
ping elements are automatically pinned to π/4. This leads
to volume-law entanglement when the nonunitary circuit
has translational symmetry in both space and time, and the
possibility of a volume-law to area-law transition when
disorder is introduced in the nonunitary circuit along the
time direction.

Given our results, it is natural to ask if the spacetime
rotation of a unitary circuit U hosting a localization-
delocalization transition always leads to a nonunitary cir-
cuit V that also shows an entanglement transition. Firstly,
we note that a localization-delocalization transition in a
unitary system will induce a singularity in the spectral
form factor since the spectral form factor is well known
to be sensitive to quantum chaos. Because of our mapping,
the spectral form factor for the nonunitary theory will also
be singular across the transition (since = |trU|2 = |trV|2).
Recent progress [103] shows that, at least for a class of
nonunitary evolution, the spectral form factor continues
to encode features of quantum chaos. Furthermore, as dis-
cussed in Sec. VI, a correlator that is well defined in both
the unitary and the nonunitary theory can be argued to be
singular across a MBL transition. However, this correlator
is a bit hard to interpret physically within the nonunitary
theory. It will be worthwhile to pursue a physical under-
standing of the spectral form factor and the correlator in
Sec. VI for the nonunitary theories studied in this paper.

We also explore the role played by the time translation
symmetry of the unitary circuit. In the examples we study,
breaking of time translation symmetry also leads to the
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absence of entanglement transition in the rotated nonuni-
tary circuit. We suspect that the entanglement transitions
in nonunitary circuits that are spacetime dual of time trans-
lationally invariant unitary circuits belong to a different
universality class compared to those hosted by nonunitary
circuits where such a symmetry is absent.

As argued in Ref. [63], if a nonunitary circuit is related
to a unitary circuit via spacetime rotation then at least
some of its properties (such as the purification rate) may
be obtained purely via unitary evolution combined with
a small number of projective measurements. Furthermore,
as discussed in Sec. VI, an unconventional correlator in
the nonunitary theory can be measured using only uni-
tary operations. Applying these results to the examples
discussed in this work would potentially allow one to
access the physics of entanglement transitions in hybrid
projective-unitary circuits without postselection.

We note that Jian et al. [52] introduced an inter-
esting relation between nonunitary circuits of free
fermions in d + 1 spacetime dimensions and the Ander-
son localization-delocalization transition for Hermitian
Hamiltonians in d + 1 space dimensions. The basic idea
employed is to relate the circuit in d + 1 spacetime dimen-
sions to the scattering matrix that describes the Chalker-
Coddington model [104] in (d + 1)-dimensional space. In
contrast, our work focuses on relating a unitary and a
nonunitary system that live in the same number of space-
time dimensions. It might be worthwhile to understand
the volume-law phase in our nonunitary circuit of free
fermions (Sec. III) and its higher-dimensional generaliza-
tions from the perspective in Ref. [52].
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APPENDIX A: ADDITIONAL DETAILS ON 1 + 1D
FLOQUET QUASIPERIODIC CIRCUIT

1. Entanglement entropy

Here we outline the calculation of entanglement entropy
of time-evolved states in the 1 + 1D circuit [Eq. (4)]

UF = eiJ
∑

j Xj Xj +1ei
∑

j hj Zj , (A1)

where hj = h + λ cos(2πQj + δ) and Q = 2/(1 + √
5).

We first map the circuit to a fermionic model using the
Jordan-Wigner transformation:

Zi = 1 − 2c†
i ci, c+

i =
( i−1∏

j =1

Zj

)

σ−
i , c−

i =
( i−1∏

j =1

Zj

)

σ+
i .

(A2)

Correspondingly, Xi = σ−
i + σ+

i = [
∏i−1

j =1(1 − 2c†
j cj )]

(ci + c+
i ), and

L∑

i=1

XiXi+1 =
L−1∑

i=1

(c†
i − ci)(c

†
i+1 + ci+1)

− eiπN (c†
L − cL)(c

†
1 + c1)

=
L∑

i=1

(c†
i − ci)(c

†
i+1 + ci+1), (A3)

where eiπN measures the total fermion number par-
ity: eiπN = eiπ

∑
i c†

i ci = ∏L
i=1(1 − 2c†

i ci). We impose the
antiperiodic boundary condition cL+1 = −c1 for the even
fermion parity sector and the periodic boundary condition
cL+1 = c1 for the odd fermion parity sector.

Since the Floquet dynamics does not conserve the
total fermion number, it is more convenient to employ
the Majorana fermions by defining a2j −1 = cj + c†

j and
a2j = i(cj − c†

j ), which satisfy {ai, aj } = 2δij . The Floquet
unitary defined in Eq. (A1) then reads

UF = UXX UZ = e−J
∑L

j =1 a2j a2j +1e
∑L

j =1 hj a2j −1a2j . (A4)

Since UF is Gaussian in Majorana fermions, the Majoranas
evolve under UF as

U†
FaiUF = U†

ZU†
XX aiUXX UZ =

∑

k

Oikak, (A5)

where O is an orthogonal matrix. Correspondingly, the
Majoranas at time t can be obtained by repeatedly applying
the orthogonal transformation on {ai}: ai(t) = ∑

j (O
t)ij aj .

Using this formalism, we can calculate the correlation
matrix at time t, i.e., �ij (t) = 〈ai(t)aj (t)〉 − δij , from which
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FIG. 8. Inverse participation ratio (I ) averaged over all eigenstates of the orthogonal matrix O that governs the dynamics of Majorana
fermions up to the total system size L = 7556. In the left panel, the black and gray dashed lines serve as references for the scaling laws
I ∼ L and I ∼ √

L, respectively.

the entanglement entropy between a region A and its
compliment can be found by diagonalizing �A(t), the
restriction of the correlation matrix to the region A
(Refs. [86–88]):

SA = −
LA∑

i=1

[
1 − νi

2
log

(
1 − νi

2

)

+ 1 + νi

2
log

(
1 + νi

2

)]

(A6)

with {±νi} being the 2LA eigenvalues of �A(t).

2. Single-particle eigenfunctions of the Floquet unitary

Here we discuss the properties of the single-particle
eigenfunctions of UF in terms of the Majorana fermions.
We find signatures of three distinct phases, in line with the
results from entanglement entropy of long-time-evolved
states (Sec. III in the main text). Specifically, we study the
inverse participation ratio (I )

I = 1
∑

i |ψi|4 , (A7)

where ψi is an eigenfunction of O at the ith Majorana site.
We recall that the I is a conventional tool to quantify the
localization-delocalization property of wavefunctions. In
one spatial dimension, an extended (delocalized) wave-
function has |ψi| ∼ O(1/

√
L), implying that I ∼ O(L). On

the other hand, a localized wavefunction is mainly sup-
ported on a finite number of lattice sites, yielding I ∼
O(1). Here we study the I averaged over all eigenstates
of O, and find that the averaged I (denoted as 〈I〉) exhibits
three different scalings with the system size L as the mod-
ulation strength λ is varied, similar to the entanglement
entropy of long-time-evolved many-body states. For small
λ, 〈I〉 scales as O(L), a signature of a delocalized phase,
while for large λ, 〈I〉 ∼ O(1), corresponding to a local-
ized phase. In addition, there is an intermediate regime

(0.64 � λ � 0.8), where 〈I〉 scales as O(Lγ ) with γ ∼ 0.5
(see Fig. 8).

3. Scaling collapse of entanglement entropy

Here we provide numerical data for the scaling collapse
of the late-time entanglement entropy for the rotated circuit
[Eq. (5)] (Fig. 9).

4. Purification dynamics

Here we present additional numerical results on the
purification dynamics of a density matrix that is initially
in a completely mixed state [i.e., ρ(t = 0) ∝ I ] and is
evolved with the nonunitary circuit defined in Eq. (5) (see
Fig. 10). At λ = 0.2 (i.e., in the volume-law phase), the
entropy density S/L decreases at short times and remains
nonzero for the longest observed time (t ∼ 2L). At λ = 1.2
(i.e., in the critical phase), the entropy density decreases
exponentially to zero within a characteristic time scale that
is independent of L.

−500 0 500 1000
(λ − λc)L1/ν

10−2

10−1

100

101

102

|S
A
(λ

)−
S

A
(λ

c)
|

L = 150
L = 250
L = 350
L = 450
L = 710
L = 1022
L = 1470

FIG. 9. Scaling collapse of the late-time entanglement entropy
for the rotated circuit defined in Eq. (5). We use the scal-
ing ansatz |SA(λ)− SA(λc)| = F[(λ− λc)L1/ν], where (λc, ν) ≈
(0.64, 1.0).
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FIG. 10. Time evolution of entropy
density for the nonunitary circuit defined
in Eq. (5). The density matrix is pre-
pared at t = 0 in a completely mixed state,
ρ(t = 0) ∝ I .

APPENDIX B: 1 + 1D NONUNITARY CIRCUITS
WITH SPACETIME TRANSLATIONAL

INVARIANCE

Given the Floquet unitary

UF = eiJ
∑

j Xj Xj +1eih
∑

j Zj , (B1)

we show that, when the real parts of both J and h are
π/4, a time-evolved state at a typical long time exhibits
volume-law entanglement. We solve the model using the
standard Jordan-Wigner transformation, where we first
introduce the complex fermions cj in real space, and then
Fourier transform the fermions to momentum space ck =
(1/

√
L)

∑
j e−ikj cj . It follows that UF can be written as

UF =
∏

k>0

exp
{

2iJ
(
c†

k c−k

) (
cos k i sin k

−i sin k − cos k

) (
ck

c†
−k

)}

× exp{−2ih(c†
kck + c†

−kc−k)}. (B2)

By introducing the Majorana fermions ak = ck + c†
k , bk =

i(ck − c†
k), UF reads

UF =
∏

k>0

eJ[cos k(akbk+a−kb−k)−sin k(aka−k−bkb−k)]

× e−h(akbk+a−kb−k). (B3)

Defining Ak = (ak, bk, a−k, b−k)
T, one finds that UF =

∏
k>0 eAT

k WXX ,kAk/4eAT
k WZ,kAk/4, where

WXX ,k =

⎛

⎜
⎝

0 2J cos k −2J sin k 0
−2J cos k 0 0 2J sin k
2J sin k 0 0 2J cos k

0 −2J sin k −2J cos k 0

⎞

⎟
⎠ ,

WZ,k =

⎛

⎜
⎝

0 −2h 0 0
2h 0 0 0
0 0 0 −2h
0 0 2h 0

⎞

⎟
⎠ . (B4)

Since the product of two Gaussian states remains a Gaus-
sian, UF can be simplified as

UF =
∏

k>0

eAT
k WkAk/4, (B5)

where

eWk = eWXX ,k eWZ ,k. (B6)

One can introduce a Floquet Hamiltonian −iHk =
AT

k WkAk/4 so that UF = ∏
k>0 e−iHk . Being quadratic in

Majoranas, Hk can be diagonalized using an orthogo-
nal transformation on Ak as Hk = (i/2)εk(γ

′
kγ

′′
k + γ ′

−kγ
′′
−k),

where εk is the corresponding energy. In particular, εk can
be obtained from wk (eigenvalues of Wk) through

εk = ±
√

−w2
k . (B7)

After some algebra, one finds the eigenvalues of eWk :

ewk = x
4

±
√(

x
4

)2

− 1 (B8)

with x = 2(1 + cos k) cos(2h − 2J )+ 2(1 − cos k) cos
(2h + 2J ). Below we find that the number of k modes
with purely real energy εk is extensive in the system size
L when the real parts of both J and h are π/4, which is
ultimately responsible for the volume-law bipartite entan-
glement of long-time-evolved states. To analyze this case,
we take h = π/4 + iαh and J = π/4 + iαJ , where αh,αJ
are real, and find that

x = 2(1 + cos k) cosh(2αh − 2αJ )

− 2(1 − cos k) cosh(2αh + 2αJ ). (B9)

For |x/4| < 1, we find that ewk = x/4 ± i
√

1 − (x/4)2, and

the corresponding energy εk = ±
√

−w2
k is real.

Now let us solve for the inequality |x/4| < 1 analyti-
cally for certain simple cases to identify the k modes with
purely real single-particle energy εk. For αJ = 0, one has
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FIG. 11. Imaginary part of the single-particle energy spectrum {εk}. Left: J = π/4, h = π/4 + iαh. There exists a finite interval of
k modes with real energy [Eq. (B10)] for any noninfinite αh. Middle: J = π/4 − 0.1, h = π/4 + iαh. Any nonzero αh results in the
absence of k modes with purely real energy. Right: J = π/4, h = π/4 − 0.1 + iαh. Only the k mode with k = π/2 supports purely
real energy at any nonzero αh.

|cos k| < 1/cosh(2αh), and for any finite (i.e., noninfinite)
αh, there is a finite interval of k with purely real energy (see
also the left plot of Fig. 11):

k ∈ Ik =
(
π

2
− sin−1

[
1

cosh(2αh)

]

,
π

2

+ sin−1
[

1
cosh(2αh)

])

. (B10)

Within the quasiparticle picture [89], since only those
quasiparticle pairs with purely real energy have an infinite
lifetime, Eq. (B10) implies the existence of finite density
of such quasiparticle pairs, resulting in the volume-law
entanglement in long-time-evolved states at any noninfi-
nite αh. In particular, the volume-law coefficient of entan-
glement entropy follows SA/LA ∼ ∫

k∈Ik
dk s(k), where Ik

[defined in Eq. (B10)] specifies the interval of k modes
with purely real energy; s(k) is the entanglement con-
tributed from the quasiparticle pair with momentum k, and
is a nonuniversal function determined from the initial state.
For large αh, since the length of interval Ik decays exponen-
tially as e−2αh , the volume-law coefficient SA/LA decays

exponentially as well:

SA

LA
∼ e−bαh (B11)

with b > 0 a nonuniversal number that depends on the
initial state.

Another simple case is α = αJ = αh, where the corre-
sponding k modes with real energy satisfy 0 < k < k1 =
cos−1{[cosh(4α)− 3]/[cosh(4α)+ 1]}. For large α, one
finds that k1 ∼ e−2α , implying the volume-law coefficient

SA

LA
∼ e−cα , (B12)

where c > 0 is a nonuniversal number that depends on the
initial state.

Although here we only discuss two cases (varying αh
at fixed αJ = 0 and varying α = αh = αJ ), we checked
that the condition Re(J ) = Re(h) = π/4 always gives an
extensive number of k modes with purely real energy, indi-
cating volume-law entanglement. In strong contrast, any
deviation from Re(J ) = Re(h) = π/4 gives an O(1) num-
ber of k modes with purely real energy, resulting in the
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FIG. 12. Left: long-time entanglement entropy SA of a subregion of size L/2 × L averaged over O(103) random realizations of the
unitary circuit defined in Eq. (7). Right: long-time entanglement entropy of a subregion of size L/2 × L averaged over O(104) random
realizations of the rotated nonunitary circuit [Eq. (8)]. The critical point is at pc ≈ 0.28 for both circuits.
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FIG. 13. The entanglement
entropy of an ancilla qubit that
is initially prepared in the max-
imally entangled state with a
system of size L = 14, and then
evolved with the nonunitary
circuit in Eq. (10). Averaging is
done over 2000 realizations of
the disorder.

absence of volume-law entanglement (see the middle and
right plots of Fig. 11).

APPENDIX C: ADDITIONAL DATA FOR THE 2D
CLIFFORD CIRCUIT

Here we present additional data (Fig. 12) on the scaling
of entanglement entropy for the late-time states evolved
by the unitary circuit [Eq. (7)] and the nonunitary cir-
cuit [Eq. (8)]. At the critical point pc ≈ 0.28, the data are
indicative of the scaling S ∼ L log L.

APPENDIX D: PURIFICATION DYNAMICS
FOR THE ROTATED MBL CIRCUIT DEFINED

IN EQ. (10)

Here we present additional data for the entanglement
dynamics of an ancilla qubit that is initially maximally
entangled with the system, and then evolved with the
nonunitary circuit [Eq. (10)]. For Jx � 0.4 (left plot of
Fig. 13), the entanglement S of the ancilla qubit decays
exponentially with time from its initial value, while for
Jx � 0.4 (right plot of Fig. 13), S remains at its initial value
for a time that is superlinear in L [see the inset of Fig. 5(d)
for scaling with L], followed by an exponential decay.
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