
Construction and Building Materials 336 (2022) 127557

0950-0618/© 2022 Elsevier Ltd. All rights reserved.

Predicting compressive strength of alkali-activated systems based on the 
network topology and phase assemblages using tree-structure 
computing algorithms 

Rohan Bhat a, Taihao Han a, Sai Akshay Ponduru a, Arianit Reka a,b, Jie Huang c, Gaurav Sant d, 
Aditya Kumar a,* 

a Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA 
b Faculty of Natural Sciences and Mathematics, University of Tetova, Tetovo, Republic of North Macedonia 
c Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA 
d Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA   

A R T I C L E  I N F O   

Keywords: 
Alkali-activated system 
Compressive strength 
Topological constraint theory 
Thermodynamic simulation 
Machine learning 

A B S T R A C T   

Alkali-activated system is an environment-friendly, sustainable construction material utilized to replace ordinary 
Portland cement (OPC) that contributes to 9% of the global carbon footprint. Moreover, the alkali-activated 
system has exhibited superior strength at early ages and better corrosion resistance compared to OPC. The 
current state of analytical and machine learning models cannot produce highly reliable predictions of the 
compressive strength of alkali-activated systems made from different types of aluminosilicate-rich precursors 
owing to substantive variation in the chemical compositions and reactivity of these precursors. In this study, a 
random forest model with two constraints (i.e., topological network and thermodynamic constraints) is 
employed to predict the compressive strength of alkali-activated systems made from 26 aluminosilicate-rich 
precursors and distinct processing parameters. Results show that once the model is rigorously trained and 
optimized, the RF model can yield a priori, high-fidelity predictions of the compressive strength in relation to the 
physicochemical properties of aluminosilicate-rich precursors; processing parameters; and constraints. The to
pological network constraint provides the chemostructural properties and reactivity of the aluminosilicate-rich 
precursors. Whereas the thermodynamic constraint estimates the phase assemblages at different degrees of re
action of the aluminosilicate-rich precursors. Finally, the correlations between topological network constraint; 
phase assemblage; and compressive strength are demonstrated. When the topological network constraint equals 
3.4, the alkali-activated systems can achieve their optimal compressive strength.   

1. Introduction 

Ordinary Portland cement (OPC) is a fundamental material for 
infrastructure development. The global production of OPC is 4 billion 
tons per year with a growth rate of 80 million tons per year [1]. This 
gigantic production presents a tremendous energy consumption (11 
exajoule per year [2]) and 9% of the global CO2 emission [3]. Calcina
tion of limestone above 1450 ◦C contributes at least 50% of CO2 release 
in OPC manufacture, where sustainability cannot be improved through 
clean energy [4]. Another shortcoming faced by OPC is susceptibility to 
degradation, which results in additional OPC consumption in the form of 

repair and reconstruction. With the increasing demand of in
frastructures, an alternative cementitious material – more sustainable 
and durable than OPC – is urgently needed. Alkali-activated system 
(including binder; mortar; and concrete) – also named as geopolymer 
system – is a rising candidate to replace OPC [5,6]. The alkali-activated 
system can be made from aluminosilicate-rich precursors such as fly ash; 
ground granulated blast-furnace slag; rice husk ash; and other urban 
waste ashes [6,7]. Although they are made from recycled materials, the 
alkali-activated systems exhibit stronger strength at early ages and 
better corrosion resistance than OPC [7–9]. The replacement of OPC by 
the alkali-activated system would reduce 73% of CO2 emission and 43% 
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of energy consumption in the cement and construction industry [10]. 
Alkali-activated systems are made from amorphous aluminosilicate- 

rich precursors and alkali activators (e.g., sodium silicate; sodium hy
droxide; potassium silicate; etc.) through a geopolymerization reaction 
[5,8]. The alkali activator significantly increases the concentration of 
cations and OH– in the solution, resulting in an acceleration of leaching 
of aluminate and silicate ions from surfaces of aluminosilicate-rich 
precursors. After this, sodium aluminosilicate hydrate (N-A-S-H) and 
calcium sodium aluminosilicate hydrate (C-N-A-S-H) gels are precipi
tated as a result of the geopolymerization reaction. (N.B.: N = Na2O; A =
Al2O3; C = CaO; S = SiO2; H = H2O). The dominant product of Ca-rich 
precursor is C-N-A-S-H; otherwise, the dominant product is N-A-S-H. 
Conventional (two-part) alkali-activated systems are produced by mix
ing aluminosilicate-rich precursors; alkali activator solutions; and 
additional water [11]. Due to the danger of handling large amounts of 
the viscous and corrosive alkali activator solutions, one-part alkali- 
activated systems have been widely researched upon. One-part alkali- 
activated systems are synthesized by the addition of water to dry pre
mixture, prepared from aluminosilicate-rich precursors and solid alkali- 
activators with or without calcination [8]. 

Reactivity of aluminosilicate-rich precursors is a vital parameter that 
affects fresh and hardened properties of alkali-activated systems 
[12,13]. The highly reactive aluminosilicate-rich precursors set in a 
short time and yield high compressive strength. The reactivity of the 
aluminosilicate-rich precursors is associated with chemostructural 
properties of precursors, especially the amorphous phases accounting 
for almost 50–90% in aluminosilicate-rich precursors [14,15]. Previous 
studies [15,16] have shown that the topological constraint theory (TCT) 
is the key enabler to evaluate the reactivity of aluminosilicate-rich 
precursors. The TCT is developed based on the topology of the atomic 
structure of amorphous materials and their macroscopic properties [17]. 
To be specific, TCT reduces the complexity of chemostructural proper
ties of amorphous materials into a singular constraint [number of con
straints (nc)] [18]. This parameter quantitatively evaluates the reactivity 
of aluminosilicate-rich precursors by solely relying on the major com
ponents (i.e., CaO; SiO2; and Al2O3). 

Compressive strength is one of the most important mechanical 
properties of alkali-activated systems, giving a general idea about the 
performance regarding the quality of alkali-activated systems [19,20]. 
For alkali-activated systems to achieve the targeted compressive 
strength as well as other mechanical properties, researchers must invest 
a significant amount of time in exploring mixture design and processing 
parameters [21]. The laboratory exploring work, however, is costly and 
labor-intensive. Thus, being able to predict the compressive strength is 
essential especially in saving time and cost. Consequently, many re
searchers have worked on various analytical models to predict the 
compressive strength of alkali-activated systems. Le et al. [22] have 
developed a modified Feret’s model based on the mixture design of 
alkali-activated systems and standard compressive strength at 28-day. 
This model, however, cannot properly predict the compressive 
strength of the systems without aggregate [23]. An analytical model for 
compressive strength of alkali-activated systems made from a fly ash has 
been developed by Beluah et al. [24]. However, the shortcoming is that a 
calibration is required when the model is applied to a new database due 
to a limited number of data-records used for the model development. 
Jonbi and Fulazzaky [25] have related compressive strength with the 
age of alkali-activated systems. This study cannot produce reliable 
predictions of compressive because of exclusion of some influential 
variables. This study also reinforces that analytical models cannot ac
count for all influential variables and variables without understanding 
their contributions on properties. 

Machine learning (ML), a data-driven artificial intelligence, can 
overcome the abovementioned shortcomings of current analytical 
models. In the past decades, many studies [19,26–30] have applied 
machine learning models to predict different properties of alkali- 
activated systems. Zhang et al. [29] have shown regression- and tree- 

based ML models to produce reliable predictions of compressive 
strength of alkali-activated systems in relation to mixture design and 
chemistry of precursors. Gomma et al. [28] have demonstrated the 
reliable performance of random forest (RF) model on predicting fresh 
and hardened properties of alkali-activated systems related to mixture 
design and various processing conditions. Lahoti et al. [30] have used 
RF, Naïve Bayes, and k-nearest neighbor models to predict mechanical 
properties of alkali-activated systems with a small database. Although 
previous studies have shown that machine learning is a promising tool to 
predict properties of alkali-activated systems, some knowledge gaps still 
exist. First, previous studies only include one or two types of 
aluminosilicate-rich precursors in their databases. The performance of 
ML models on multiple (more than two) aluminosilicate-rich precursors 
has not been valid. Next, as aforesaid, the reactivity of the 
aluminosilicate-rich precursors is a critical parameter that influences the 
properties of the alkali-activated systems. The parameter related to the 
reactivity has not been included in previous studies. Finally, ML models 
find the underlying structure between the mixture design and proper
ties, all without understanding mechanisms. This leads to a critical 
problem that predictions as produced by ML may violate fundamental 
material laws. Such violation significantly undermines the credibility of 
results from ML. However, this problem can be solved by applying 
thermodynamic constraints to ML models. Han et al. [31] have shown 
that the thermodynamic constraint regulates the RF model to predict 
properties of OPC systems, where the accuracy is better than models 
without constraints. 

Gibbs Energy Minimization Software (GEMS) is a tool for 
geochemical modeling [32,33], which can be employed to conduct 
thermodynamic simulations of alkali-activated systems. More specif
ically, GEMS simulations and the degree of reaction of the 
aluminosilicate-rich precursors can produce equilibrium phase assem
blages and microstructure for alkali-activated systems. Several studies 
[34,35] have shown that the phase assemblages from GEMS simulations 
accurately replicate phases appearing in real alkali-activated systems. In 
the thermodynamic simulations, the expected products for alkali- 
activated systems are: C-N-A-S-H; N-A-S-H; stratlingite; gibbsite; mon
ocarboaluminate hydrate; hydrogarnet; and amorphous zeolites. With 
the understanding of phase assemblages at different degrees of reaction 
of aluminosilicate-rich precursors, microstructures and properties of the 
alkali-activated systems can be correlated. This would help researchers 
understand the mechanisms behind properties of alkali-activated 
systems. 

The study presented here aims to overcome the abovementioned 
limitations of current analytical and ML models by advancing network 
and thermodynamic constraints that enhance the prediction perfor
mance of ML models on the compressive strength of alkali-activated 
systems. Herein, the RF model is employed to find correlations be
tween compressive strength and inputs (i.e., mixture design and pro
cessing parameters of alkali-activated systems). Such correlations are 
utilized to produce a priori, reliable predictions of compressive strength 
in new alkali-activated systems. The network constraint (developed 
from chemostructural properties of aluminosilicate-rich precursors 
based on the topological constraint theory) and thermodynamic 
constraint (obtained from thermodynamic simulations) are employed to 
regulate the RF model, which ensures that predictions do not violate 
fundamental material laws. Furthermore, the RF model links the 
compressive strength with phase assemblages of alkali-activated sys
tems. This leads to an investigation of compressive strength behavior in 
relation to microstructures reacted from aluminosilicate-rich precursors 
with different chemostructural properties. 

2. Modeling method 

In this study, a RF model is employed to predict the compressive 
strength of alkali-activated systems. First, the model is trained and 
tested without any constraints. Second, a network constraint (i.e., 
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number of constraints; described in Section 2.1) is applied to the model to 
produce more accurate predictions. Third, an additional thermodynamic 
constraint (volume fraction of products; described in Section 2.2) regu
lates the network-constrained model to ensure non-violation of funda
mental material laws. Prediction performances of three stages are 
rigorously appraised by comparing their prediction against measured 
values. Fig. 1 demonstrates the framework of the RF model with con
straints. As can be seen, the model used in this study unites the network 
and thermodynamic constraints with the RF model to achieve optimal 
predictions of compressive strength of alkali-activated systems. The 
purpose of using three parallel predictions is to investigate the optimal 
prediction strategy (one that treads the balance between ease-of-use/ 
simplicity and accuracy) for alkali-activated systems. The optimal 
strategy can be directly applied to the database without other two 
stages. A detailed description of the RF model can be found in Section 
2.3. 

2.1. Network constraint 

Herein, a brief description of TCT is given below, and details can be 
found elsewhere [16]. The major components (i.e., SiO2, CaO, and 
Al2O3) of the aluminosilicate-rich precursors are utilized to derive the 
number of constraints based on the topological constraint theory (TCT). 
The compositions of the aluminosilicate-rich precursors are considered 
as (CaO)x(Al2O3)y(SiO2)1-x-y, where x and y are normalized molar frac
tions. Aluminosilicate-rich precursors contain radial bonding-stretching 
(BS) and angular bond-bending (BB) constraints [16,18,36]. BS exists 
between two bonded atoms. BB exists when atoms have fixed inter
atomic angles. There are six types of atoms that have constraints: Si 
atom; Al atom (four-fold and five-fold); tricluster oxygen atom (TO); free 
oxygen atoms (FO); bridging atom (BO); and non-bridging atom (NBO). 

In the aluminosilicate-rich precursors, Si and Al atoms are the 
network formers, forming tetrahedral structures. O atoms acting as a 
bridge to connect Si/Al tetrahedrons are BOs [37,38]. The Ca atom is the 
network modifier existing between Si/Al tetrahedral molecular as the 

interstitial site [37,38]. The O atom connected with Ca atom and Si/Al 
tetrahedral molecular is NBO. FO is an O atom that only connects with a 
Ca atom. TO is the O atom acting as the charge compensating atom for 
the Al tetrahedron. Depending on the CaO and Al2O3 contents, the 
network structure of aluminosilicate materials can be divided into three 
regimes: fully depolymerized (y − x ≤ − 2

3); partially depolymerized 
( − 2

3 ≤ y − x ≤ 0); and fully polymerized (0 ≤ y − x) [16]. In the fully 
depolymerized regime, Ca atom is the dominant composition. All Si and 
Al tetrahedrons isolate from each other. The excess Ca atoms result in 
the formation of NBOs and FOs. In the partially depolymerized regime, 
Si atom is the dominant composition. The Ca atoms connect with Si/Al 
tetrahedrons and compensate charge of Al tetrahedrons. This regime 
includes both BOs and NBOs. In fully polymerized regime, Al atom is the 
dominant composition. Due to insufficient Ca atoms, the charge of Al 
atoms cannot be compensated to form four-fold tetrahedral units, where 
over-coordinated Al atoms (five-fold) are formed. This regime includes 
both BOs and TOs. 

Ca atom is the charge-compensating ion; thus, it is excluded from 
topological constraints. But it creates 1 BS constrain with a connected 
NBO [39]. Ca atom connected to a FO can form 1 BS constraint. Previous 
studies [16,36,39–41] have shown that Si atoms form tetrahedral 
structure at five fixed angles in the amorphous phases, which contains 4 
BS and 5 BB constraints. Additionally, Si tetrahedron creates 1 BB 
constraint with BO. Four-fold Al atom has 4 BS constraints and 5 BB 
constraints. Five-fold atom only has 5 BS constraints. TO has 3 BB 
constraints. The number of constraints (nc) corresponding to each regime 
is shown in Eq. 1. Additional emphasis is given to that the 
aluminosilicate-rich precursors in this study fall into partially depoly
merized and fully polymerized regimes. 

nc =
11 + y − 10x
3 − 2x + 2y

(Fully depolymerized) (1a)  

nc =
11 + 10y − 10x

3 − 2x + 2y
(Partially depolymerized) (1b)  

nc =
11 + 13y − 13x

3 − 2x + 2y
(Fully polymerized) (1c)  

2.2. Thermodynamic modeling 

GEMS [32,33] is employed to produce thermodynamic simulations 
and phase assemblages of alkali-activated systems in relation to their 
mixture design [i.e., chemical composition of binders (aluminosilicate- 
rich precursors; alkali-activators; and water)] and processing conditions 
(i.e., temperature). The quality of the thermodynamic simulation results 
is dependent upon the accuracy and completeness of the input properties 
of the substances and phases, which can typically be found within 
literature and thermodynamic databases. The thermodynamic data for 
aqueous species and numerous solids are acquired from the PSI-GEMS 
thermodynamic database, while solubility products for relevant phases 
are extracted from the Cemdata 18 [42,43] and zeolite 20 [44]. An 
extended Debye-Huckel calculation is utilized by the software to esti
mate the activity coefficients of the aqueous species. The assumption 
that the aqueous phase is dominated by NaOH is made. The average ion 
size and parameter for common short-range interactions of charged are 
3.31 A and 0.098 kg/mol, respectively. All phase assemblages are 
simulated at 1 atm and 20-to-85 ◦C. 

Phase assemblages obtained from the thermodynamic simulations 
are shown in Fig. 2. The figure reveals volume of all reactants and 
products at increasing degrees of reaction of the aluminosilicate-rich 
precursors. In Fig. 2, it has been observed that GEMS can estimate 
phase assemblages of alkali-activated systems made from multiple 
aluminosilicate-rich precursors at different water-to-solid ratio. The 
phases shown herein are in agreement with previous studies [20,34,45]. 
The main phases of alkali-activated systems include: C-N-A-S-H; N-A-S- 

Fig. 1. Schematic of the RF model to predict the compressive strength of alkali- 
activated systems by incorporating network and thermodynamic constraints. 
Network constraint is developed from the topological constraint theory. Ther
modynamic constraint is acquired from phase assemblages of alkali- 
activated systems. 
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H (Na-chabazite; zeolite 4A; hydroxysodalite; and natrolite); amorphous 
Si; Ca-chabazite; Gibbsite; straetlingite; and C3AH6. The phase assem
blage is an important outcome because researchers can use it to estimate 
the volume fraction of products and porosity in any given 
aluminosilicate-rich precursor at the targeted degree of reaction. The 
compressive strength can be roughly estimated from porosity and vol
ume fraction of products because they provide a basic solid-to-solid 
connectivity within the alkali-activated systems [46–48]. In order to 
obtain accurate phase assemblages, it is essential to identify the degree 
of reaction of the aluminosilicate-rich precursors, which can be esti
mated directly from compressive strength at any given age. The method 
to determine the degree of reaction is explained in Section 3.0. The 
volume fraction of products is employed as the thermodynamic 
constraint to regulate the RF model. 

2.3. Random forest (RF) model 

RF model is a tree-structure model developed from the classification- 
and-regression trees (CARTs) model with bagging technique [49,50]. 
During the training, the model parallelly constructs hundreds of inde
pendent CARTs from bootstraps. Each tree grows through binary splits 
in a recursive fashion until the terminal nodes reach a “near-homoge
nous” state. The model allows each CART to grow to its maximum size 
without pruning and smoothing. When new data is applied to the RF 
model, the model averages the predictions from all trees to produce the 
final output. Compared to other ML models, the RF model is different in 
the sense that two-stage randomization [50,51] is employed during the 
growth of CARTs. The first randomization is that the bootstrap used to 
construct a tree randomly selects data from the original dataset. The 
second stage involves that a randomly chosen subset of variables, 
instead of using all variables, is utilized to ascertain the best scenario for 
each split. Due to the two-stage randomization, trees in the forest 
decorrelate with each other, resulting in a reduction of variance errors 
[52,53]. To achieve the RF model’s best performance, 10-fold cross- 
validation (CV) method [54,55] and the grid-search method [28,56] 
are employed to determine the optimal hyperparameters for the RF 
model. In this study, 300 trees and 4 splits at each node are for all 
predictions. 

To train and validate the RF model, the database (shown in Section 
3.0) is split into two non-overlapping datasets: training dataset and 
testing dataset. The training dataset contain 75% of randomly selected 

data-records form the parent database, and the remaining 25% data- 
records form the testing dataset. The training dataset is used to train 
the RF model rigorously. The testing dataset is used to quantitatively 
evaluate the prediction performance of the RF model through 5 statis
tical parameters – Pearson correlation coefficient (R); coefficient of 
determination (R2); mean absolute percentage error (MAPE); root mean 
squared error (RMSE); and mean absolute error (MAE). Mathematical 
functions for these statistical parameters were detailed in our previous 
studies [54,57,58]. 

2.4. Database Collection 

Data pertaining to compressive strength in 520 alkali-activated sys
tems [including pure binder (aluminosilicate-rich precursors + alkali 
activator + water); mortar (binder + fine aggregate); and concrete 
(binder + fine aggregate + coarse aggregate)] were collected from 15 
studies [59–73]. Majority of the alkali-activated systems were synthe
sized by fly ash and ground granulated blast furnace slag, and the 
remaining systems were synthesized from fly ash sinking spherical 
beads, red mud, metakaolin, silica fume, and rice husk ash. An alkali- 
activated system can contain at the most three different 
aluminosilicate-rich precursors. Not all the densities of the 
aluminosilicate-rich precursors were illustrated in previous studies. In 
our database, densities of the aluminosilicate-rich precursors are 
calculated based on the density of CaO (3.34 g/cm3); Na2O (2.27 g/ 
cm3); SiO2 (amorphous, 2.20 g/cm3) [74]; and Al2O3 (amorphous, 2.32 
g/cm3) [75,76] with respect to their normalized mass fractions. Other 
compositions (e.g., MgO; K2O; etc.) are minor, and their products have 
negligible contribution to the compressive strength [7]. Therefore, they 
are excluded from the density calculations and thermodynamic simu
lations. It is worth noting that this database includes not only two-part 
(aluminosilicate-rich precursors mixed with an alkali-activator solu
tion) but also one-part (aluminosilicate-rich precursors and solid alkali- 
activator mixed with water) alkali-activated systems. 

Here, compressive strength is used as a direct indicator to calculate 
the degree of reaction of the aluminosilicate-rich precursors. Previous 
studies [77,78] have demonstrated that compressive strength of 
cementitious materials and the degree of reaction of binder exhibits a 
linear correlation. The degree of reaction of the aluminosilicate-rich 
precursors is employed to locate the phase assemblage of the binder in 
thermodynamic simulations. The volume fraction of products obtained 

Fig. 2. Equilibrium phase assemblage, simulated using GEMS, of alkali-activated systems made from (a) fly ash and ground granulated blast-furnace slag (GGBS); 
and (b) red mud and ground granulated blast-furnace slag (GGBS). The vertical dashed line presents the phase assemblage at the targeted degree of reaction of 
aluminosilicate-rich precursors estimated from the compressive strength. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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from the phase assemblages act as a thermodynamic constraint to 
regulate and improve predictions as produced by the RF model. A pre- 
processing is required before the degree of reaction is correlated with 
the compressive strength. In this database, the compressive strength was 
tested from binder; mortar; and concrete. Fu et al. [79] have demon
strated that compressive strength is improved by increasing binder 
content and decreasing aggregate content. To unify the degree of reac
tion for all specimens in our database, it is important to normalize 
measured compressive strength by a standard specimen composition (i. 
e., a standard binder-to-aggregate ratio in volume). This is because 
inconsistent binder-to-aggregate ratios result in inaccurate correlations 
between compressive strength and the degrees of reaction of the 
aluminosilicate-rich precursors. The compressive strength of pure 
binder systems is directly used to determine the degree of reaction. For 
the remaining alkali-activated systems, the volume ratio of binder-to- 
aggregate is calculated, and most systems fall into the 0.4-to-0.6 
range. Thus, 0.5 of binder-to-aggregate ratio is selected as the stan
dard composition to normalize compressive strength. Here, the 
normalized compressive strength (CSnormalized) is calculated on the basis 
of Eq. (2). CSmeasured is compressive strength measured from experiment; 
rmeasured is the volume ratio of binder-to-aggregate of each specimen; and 
rstandard is the volume ratio of binder-to-aggregate of the standard 
specimen, which is 0.5. The reactivity (maximum degree of reaction) of 
the aluminosilicate-rich precursors depends on the crystallinity, where a 
highly-crystalline aluminosilicate-rich precursors results in a low reac
tivity and thus yielding a low compressive strength in the alkali- 
activated systems [12]. Previous studies [14,15,80] have revealed that 
the amorphous content of the aluminosilicate-rich precursors ranges 
from 40% to 90%. This indicates that the maximum degree of reaction of 
the aluminosilicate-rich precursors cannot exceed 90%. In our study, we 
assume that 80% of the aluminosilicate-rich precursors have reacted in 
the specimen with the highest compressive strength (80 MPa). The de
gree of reaction of the aluminosilicate-rich precursors for the remaining 
specimens is computed as the proportion of 80% based on the fraction of 
the compressive strength to maximum compressive strength. 

CSnormalized =
CSmeasured

rmeasured
rstandard

(2) 

The database used for ML models contains 10 inputs and 1 output. 
The inputs include: normalized mass of aluminosilicate material; solid 
NaOH; solid Na2SiO3; fine aggregate; coarse aggregate; and water 
(%mass); curing temperature (◦C); age (days); type (unitless; 1 = one-part 
and 2 = two-part). The output is compressive strength (MPa), which is 
the measured value obtained from the literature. It is worth noting that 
NaOH and Na2SiO3 are alkali activators. The number of constraints of the 
aluminosilicate-rich precursors (unitless) and volume fraction of prod
ucts (unitless) are applied to the model as additional inputs when the 
network and thermodynamic constraints are applied. It should be noted 
that the number of constraints of the aluminosilicate-rich precursors is 
calculated by adding up the number of constraints of each 
aluminosilicate-rich precursor with respect to its mass fraction in all 
aluminosilicate-rich precursors. Statistical parameters pertaining to in
puts and output are itemized in Table 1. The database used in this study 
is provided in Supplementary Information. 

3. Results and discussion 

3.1. Thermodynamic simulations 

Based on GEMS simulations, we find that across all alkali-activated 
systems resulted in a near-linear correlation (Fig. 3) with the compres
sive strength against the volume fraction of products. The reason to 
evaluate this relationship is that the compressive strength of any alkali- 
activated system is correlated with the extent of reaction of the 
aluminosilicate-rich precursors, which, in turn, dictates the volume 

fraction of the products. It should be noted that a mathematical function 
that interprets the correlation between compressive strength and vol
ume fraction of products in 520 alkali-activated systems is shown in the 
legend. This mathematical function allows scientists to promptly 
examine the compressive strength of any given alkali-activated system 
by using its volume fraction of products as the sole input. 

It is worth pointing out that the RF model can directly produce 
predictions of the volume fraction of products in alkali-activated sys
tems, without calculating them based on phase assemblages from ther
modynamic simulations. This requires the RF model to be trained with a 
new output, which consists of the same input variables shown in Section 
3.0, but the volume of products as the output. Once the RF model is 
trained, it can predict the volume fraction of products (Fig. 4) in new 
alkali-activated systems with respect to their mixture design. The pre
dicted volume fraction of products can also be used as the thermody
namic constraint (the same constraint obtained from the phase 
assemblage) to regulate the RF model to predict the compressive 
strength. However, in this study, all thermodynamic constraints are 
derived from the GEMS simulations. 

3.2. Machine learning predictions 

Fig. 5 demonstrates the predictions of the compressive strength of 
alkali-activated systems produced by the RF model without constraints 

Table 1 
Statistical parameters pertaining to 10 inputs; 2 constraints; and 1 output (bold) 
of 520 alkali activated systems in the compressive strength database.  

Attribute Unit Min. Max. Mean Std. 
Dev. 

Aluminosilicate Material 
Content 

%mass 9.451 73.76  26.25  16.64 

Fine Aggregate Content %mass 0 66.67  32.33  16.99 
Coarse Aggregate Content %mass 0 79.55  27.33  23.07 
Na2SiO3 Content %mass 0 17.243  4.420  3.600 
NaOH Content %mass 0 3.194  0.857  0.821 
Superplasticizer Content %mass 0 0.427  0.075  0.141 
Water Content %mass 2.685 25.92  8.395  4.073 
Curing Temperature ◦C 20 85  36.47  22.94 
Curing time Days 1 28  12.84  10.75 
Type unitless 1 2  –  – 
Number of Constraints unitless 3.092 4.155  3.634  0.297 
Volume Fraction of Product unitless 0.023 0.6921  0.214  0.136 
Compressive Strength MPa 5.152 79.82  27.16  16.80  

Fig. 3. A linear correlation between compressive strength and volume fraction 
of products in 520 alkali-activated systems used in this study. A mathematical 
function qualitatively estimating this correlation is shown in the legend. 
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against the measured compressive strength. Predictions for both training 
and testing datasets are shown in the figure. The five statistical pa
rameters (mentioned in Section 2.3) pertaining to the performance of 
the RF model on the testing dataset are itemized in Table 2. 

As shown in Fig. 5 and Table 2, the accuracy of predictions produced 
by the RF model is moderate. R2 is 0.63 and RMSE is 9.752 MPa. 
Although previous studies [19,26,28,81,82] have demonstrated that 

standalone ML models can yield accurate predictions of compressive 
strength of alkali-activated systems, it is expected that a standalone 
model cannot produce highly accurate predictions for the database used 
in this study. This is because our database is much more complex than 
databases used in previous studies [19,26,28,81,82]. First, both one-part 
and two-part alkali-activated systems are included in the database. In 
general, due to heat generated from the dissolution of solid activators, 
one-part alkali-activated systems are more reactive than two-part sys
tems [83]. Therefore, one-part alkali-activated systems demonstrate 
higher compressive strength at early ages and a shorter setting time 
compared to two-part systems. Second, the chemical composition of the 
aluminosilicate-rich precursors in previous studies were simple, only 
containing a few different compositions. However, there are 26 different 
compositions of the aluminosilicate-rich precursors in this study. Liter
ature [9,20,84] has shown that chemical compositions of the 
aluminosilicate-rich precursors significantly affects the compressive 
strength of alkali-activated systems, where high Al2O3 and SiO2 contents 
lead to binders with high compressive strength. Third, the database in 
this study contains a large-scale of water-to-solid ratio from 0.18-to- 
0.50. The geopolymerization reaction is incomplete without sufficient 
water; in contrast, excessive water creates an additional porosity that 
can reduce compressive strength. Finally, the database consists of a large 
range of curing temperatures, from 20-to-85 ◦C. Elevating the curing 
temperature increases the extent and rate of the reaction through 
escalating mesopore volume and surface area for nuclei of geo
polymerization reaction [85]. This accelerates setting time accompanied 
by higher compressive strength at early ages. 

As abovementioned, due to the complexity of the database used in 
this study, it is important to further calibrate the RF model to obtain 
better predictions of compressive strength. Towards this, the topological 
network constraint (described in Section 2.1) and volume fraction of 
products from thermodynamic simulations (described in Section 2.2) 
are used to provide information of fundamental material laws to guide 
the RF model. Fig. 6a demonstrates the predictions of compressive 
strength of alkali-activated systems produced by the RF model with the 
network constraint. Fig. 6b shows the predictions of compressive 
strength of alkali-activated systems produced by the RF model with the 
network and thermodynamic constraints. Predictions for both training 
and testing datasets are shown in the figures. The corresponding pre
diction errors of the testing datasets are summarized in Table 2. 

As can be seen in Fig. 6 and Table 2, the RF model produces accurate 
predictions for alkali-activated systems’ compressive strength with 
network and thermodynamic constraints. R2 and RMSE of the pre
dictions with the network constraint are 0.78 and 7.868 MPa, respec
tively. R2 and RMSE of the predictions with the network and 
thermodynamic constraints are 0.93 and 4.865 MPa, respectively. The 
prediction error is even smaller than the standard deviation (5 MPa) of 
the compressive strength measurement [86]. Based on these values, it is 
clear that the predictions with constraints are superior compared to 
predictions produced by the standalone RF model, which is expected. 
Unlike the standalone model without knowing the chemical composition 
of the aluminosilicate-rich precursors, the network constraint provides 
chemostructural properties (e.g., the quantities of NBOs; BOs; FOs; and 
TOs and strength of chemical bonds) of aluminosilicate-rich precursors 
to guide the RF model. This information can serve as the proxy for the 
reactivity of aluminosilicate-rich precursors. The highly reactive 
aluminosilicate-rich precursors react fast with the alkali activators and 
water resulting in higher compressive strength at early ages and an 
overall higher degree of reaction. Thus, critical information from the 
network constraint helps the RF model to catch the trend between inputs 
and compressive strength. The thermodynamic constraint refines pre
dictions of compressive strength further. As shown in Fig. 3, compressive 
strength exhibits a strong correlation with the thermodynamic 
constraint (volume fraction of products). Therefore, the thermodynamic 
constraint restricts predictions produced by the RF model in a small and 
reliable range. Furthermore, the thermodynamic constraint prohibits 

Fig. 4. Predictions of volume fraction of products as produced by the RF model 
against values obtained from thermodynamic simulations. Pearson correlation 
coefficient (R) of predicted results is shown in the legend. The dash line in
dicates ideal prediction, and solid lines represent a ± 10% error bound. 

Fig. 5. Predictions of compressive strength of alkali activated systems as pro
duced by the RF model without any constraints compared against measured 
compressive strength. Pearson correlation coefficient (R) of predicted results is 
shown in the legend. The dash line indicates ideal prediction, and solid lines 
represent a ± 10% error bound. 

Table 2 
The statistical parameters pertaining the performance of the RF model with or 
without network and thermodynamic constraints on predictions of alkali- 
activated systems’ compressive strength against the testing dataset.  

Model Name R R2 MAE MAPE RMSE  
Unitless Unitless MPa % MPa 

RF 0.8095 0.6553 6.854 29.39 9.433 
RF + Network Constraint 0.8841 0.7816 5.956 24.56 7.868 
RF + Network Constraint +

Thermodynamic Constraint 
0.9619 0.9253 3.649 13.45 4.865  
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the RF model from violating fundamental material laws. 

3.3. The role of chemical compositions of aluminosilicate materials 

Previous sections have shown that the RF model with constraints can 
produce reliable predictions of compressive strength. However, because 
machine learning models are a “black-box”, they cannot interpret 
mechanisms behind compressive strength and mixture design. This 
section reveals the influence of the chemical composition of the 
aluminosilicate-rich precursors and the microstructure of alkali- 
activated systems on the compressive strength through a relationship 
between the number of constraints, phase assemblages, and compressive 

strength. The simulations are conducted with 0.35 of water-to-solid 
ratio; 0.14 of alkali-to-fly ash ratio; 0.27 of NaOH-to-NaSiO2 ratio; and 
20 ◦C. The fly ash composition is (CaO)0.4-x(Al2O3)x(SiO2)0.6, and the 
degree of reaction is 60%. Such parameters are chosen because most 
data-records in the database have similar parameters. The simulated 
results for fully polymerized and partially depolymerized are shown in 
Fig. 7. As expected, the main phases are C-N-A-S-H and N-A-S-H (Na- 
Chabazite) [9,45]. For both regimes, at nc = 3.4, the compressive 
strength has the highest value. This is because the trade-off between C- 
N-A-S-H and N-A-S-H phases reaches the optimal state. Specifically, 
before nc = 3.4, alkali-activated systems do not contain enough network 
forming atoms to form a high strength gel-like polymeric structure. 

Fig. 6. Predictions of compressive strength of alkali activated systems as produced by the RF model with (a) network constraint and (b) network + thermodynamic 
constraints compared against measured compressive strength. Pearson correlation coefficient (R) of predicted results is shown in the legend. The dash line indicates 
ideal prediction and solid lines represent a ± 10% error bound. 

Fig. 7. Phase assemblages (bottom) of alkali-activated systems simulated from thermodynamic modeling and compressive strength (top) predicted from the RF 
model corresponding to network structure (number of constraints) of (a) fully polymerized fly ash; and (b) partially depolymerized fly ash. The parameters for 
thermodynamic simulations are shown in the legend. 
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However, after nc = 3.4, the reactivity of fly ash diminishes due to excess 
network former atoms. 

Fig. 7a demonstrates the phase assemblage and compressive strength 
for fully polymerized fly ash. The Al2O3 varies from 0.2 (nc = 3.23) to 0.4 
(nc = 4.00). With increasing Al2O3 and decreasing CaO, it can be 
observed that the volume of C-N-A-S-H decrease monotonically. At nc =

3.7, Ca-chabazite starts forming. Most of the Na2O has formed stable 
phases (Na-Chabazite) with Al2O3, and insufficient CaO forces more 
Al2O3 to get into a Ca-rich structure, where producing 1 mol Ca- 
chabazite consumes 2 mol of Al2O3. Later CaO is too low to form a Ca- 
rich structure, thus gibbsite starts forming. With decreasing volume of 
C-N-A-S-H, the compressive strength values tend to plummet. This re
inforces that C-N-A-S-H is the major component to provide strength in 
alkali-activate systems [7,8,20]. Ca-chabazite and gibbsite barely 
contribute to compressive strength. Fig. 7b shows phase assemblage and 
compressive strength for partially depolymerized fly ash. The Al2O3 
varies from 0.19 (nc = 3.23) to 0.08 (nc = 4.00). It is clearly observed 
that volume of C-N-A-S-H decrease with increasing number of constraints. 
Compared to fully polymerized fly ash, partially depolymerized fly ash 
produces more C-N-A-S-H. Therefore, the compressive strength of 
partially depolymerized fly ash is higher, even though there is more 
porosity in the structure. Partially depolymerized fly ashes also form 
lesser amorphous Si phase because they have sufficient CaO and Al2O3 to 
form C-N-A-S-H and N-A-S-H phases. 

4. Conclusions 

This paper employed the RF model to predict the compressive 
strength of alkali-activated systems made from seven types (26 different 
compositions) of aluminosilicate-rich precursors. In order to improve 
prediction performances, thermodynamic (volume fraction of products 
of alkali-activated systems) and network (number of constraints of the 
aluminosilicate-rich precursors) constraints were utilized to regulate the 
RF model. The correlations between the phase assemblages, number of 
constraints, and compressive strength were revealed and explained. It is 
worthwhile to point out that this is the first study that employs ML 
models with constraints to predict the compressive strength of alkali- 
activated systems in relation to complex compositions of the 
aluminosilicate-rich precursors and wide processing parameters. 

The database for alkali-activated systems contained 520 unique data- 
records with 10 inputs variables. The parent database was split into 
training and testing datasets to train the model and evaluate the per
formance. The prediction accuracy (R = 0.81) of RF model without any 
constraint is acceptable. The prediction accuracy (R = 0.88) of RF model 
with network constraint is moderate. The prediction accuracy (R = 0.96) 
of RF model with network and thermodynamic constraints is highly 
reliable. Results sufficiently reveal that the network and thermodynamic 
constraints provide necessary chemostructural information and material 
laws to enhance the performance of the RF model. The well-trained RF 
model with constraints was used to establish correlations between 
microstructure of alkali-activated systems; reactivity of aluminosilicate- 
rich precursors; and compressive strength. When the number of con
straints was equal to 3.4, the alkali-activated systems achieved the 
optimal compressive strength. The C-N-A-S-H phase is the major phase 
that provide this high compressive strength. 

In conclusion, the predictions shown in this study can still be 
improved with a larger and more diverse database. In the future, except 
for Al2O3, CaO, SiO2, other chemical compositions of the 
aluminosilicate-rich precursors can be accounted in the phase assem
blage. This is towards understanding the influence of minor components 
and their products on compressive strength. However, this paper pre
sents a new pathway to understanding microstructure-property corre
lations. Meanwhile, the ML models can provide a preview of properties 
of alkali-activated systems made from new aluminosilicate-rich pre
cursors without performing experiments. 
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