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Alkali-activated system is an environment-friendly, sustainable construction material utilized to replace ordinary
Portland cement (OPC) that contributes to 9% of the global carbon footprint. Moreover, the alkali-activated
system has exhibited superior strength at early ages and better corrosion resistance compared to OPC. The
current state of analytical and machine learning models cannot produce highly reliable predictions of the
compressive strength of alkali-activated systems made from different types of aluminosilicate-rich precursors
owing to substantive variation in the chemical compositions and reactivity of these precursors. In this study, a
random forest model with two constraints (i.e., topological network and thermodynamic constraints) is
employed to predict the compressive strength of alkali-activated systems made from 26 aluminosilicate-rich
precursors and distinct processing parameters. Results show that once the model is rigorously trained and
optimized, the RF model can yield a priori, high-fidelity predictions of the compressive strength in relation to the
physicochemical properties of aluminosilicate-rich precursors; processing parameters; and constraints. The to-
pological network constraint provides the chemostructural properties and reactivity of the aluminosilicate-rich
precursors. Whereas the thermodynamic constraint estimates the phase assemblages at different degrees of re-
action of the aluminosilicate-rich precursors. Finally, the correlations between topological network constraint;
phase assemblage; and compressive strength are demonstrated. When the topological network constraint equals
3.4, the alkali-activated systems can achieve their optimal compressive strength.

1. Introduction repair and reconstruction. With the increasing demand of in-

frastructures, an alternative cementitious material — more sustainable

Ordinary Portland cement (OPC) is a fundamental material for
infrastructure development. The global production of OPC is 4 billion
tons per year with a growth rate of 80 million tons per year [1]. This
gigantic production presents a tremendous energy consumption (11
exajoule per year [2]) and 9% of the global CO5 emission [3]. Calcina-
tion of limestone above 1450 °C contributes at least 50% of CO5 release
in OPC manufacture, where sustainability cannot be improved through
clean energy [4]. Another shortcoming faced by OPC is susceptibility to
degradation, which results in additional OPC consumption in the form of

and durable than OPC - is urgently needed. Alkali-activated system
(including binder; mortar; and concrete) — also named as geopolymer
system - is a rising candidate to replace OPC [5,6]. The alkali-activated
system can be made from aluminosilicate-rich precursors such as fly ash;
ground granulated blast-furnace slag; rice husk ash; and other urban
waste ashes [6,7]. Although they are made from recycled materials, the
alkali-activated systems exhibit stronger strength at early ages and
better corrosion resistance than OPC [7-9]. The replacement of OPC by
the alkali-activated system would reduce 73% of CO, emission and 43%
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of energy consumption in the cement and construction industry [10].

Alkali-activated systems are made from amorphous aluminosilicate-
rich precursors and alkali activators (e.g., sodium silicate; sodium hy-
droxide; potassium silicate; etc.) through a geopolymerization reaction
[5,8]. The alkali activator significantly increases the concentration of
cations and OH™ in the solution, resulting in an acceleration of leaching
of aluminate and silicate ions from surfaces of aluminosilicate-rich
precursors. After this, sodium aluminosilicate hydrate (N-A-S-H) and
calcium sodium aluminosilicate hydrate (C-N-A-S-H) gels are precipi-
tated as a result of the geopolymerization reaction. (N.B.: N = Nay0; A =
Al;O3 C = CaO; S = SiOy; H = H30). The dominant product of Ca-rich
precursor is C-N-A-S-H; otherwise, the dominant product is N-A-S-H.
Conventional (two-part) alkali-activated systems are produced by mix-
ing aluminosilicate-rich precursors; alkali activator solutions; and
additional water [11]. Due to the danger of handling large amounts of
the viscous and corrosive alkali activator solutions, one-part alkali-
activated systems have been widely researched upon. One-part alkali-
activated systems are synthesized by the addition of water to dry pre-
mixture, prepared from aluminosilicate-rich precursors and solid alkali-
activators with or without calcination [8].

Reactivity of aluminosilicate-rich precursors is a vital parameter that
affects fresh and hardened properties of alkali-activated systems
[12,13]. The highly reactive aluminosilicate-rich precursors set in a
short time and yield high compressive strength. The reactivity of the
aluminosilicate-rich precursors is associated with chemostructural
properties of precursors, especially the amorphous phases accounting
for almost 50-90% in aluminosilicate-rich precursors [14,15]. Previous
studies [15,16] have shown that the topological constraint theory (TCT)
is the key enabler to evaluate the reactivity of aluminosilicate-rich
precursors. The TCT is developed based on the topology of the atomic
structure of amorphous materials and their macroscopic properties [17].
To be specific, TCT reduces the complexity of chemostructural proper-
ties of amorphous materials into a singular constraint [number of con-
straints (n)] [18]. This parameter quantitatively evaluates the reactivity
of aluminosilicate-rich precursors by solely relying on the major com-
ponents (i.e., CaO; SiOy; and Al;03).

Compressive strength is one of the most important mechanical
properties of alkali-activated systems, giving a general idea about the
performance regarding the quality of alkali-activated systems [19,20].
For alkali-activated systems to achieve the targeted compressive
strength as well as other mechanical properties, researchers must invest
a significant amount of time in exploring mixture design and processing
parameters [21]. The laboratory exploring work, however, is costly and
labor-intensive. Thus, being able to predict the compressive strength is
essential especially in saving time and cost. Consequently, many re-
searchers have worked on various analytical models to predict the
compressive strength of alkali-activated systems. Le et al. [22] have
developed a modified Feret’s model based on the mixture design of
alkali-activated systems and standard compressive strength at 28-day.
This model, however, cannot properly predict the compressive
strength of the systems without aggregate [23]. An analytical model for
compressive strength of alkali-activated systems made from a fly ash has
been developed by Beluah et al. [24]. However, the shortcoming is that a
calibration is required when the model is applied to a new database due
to a limited number of data-records used for the model development.
Jonbi and Fulazzaky [25] have related compressive strength with the
age of alkali-activated systems. This study cannot produce reliable
predictions of compressive because of exclusion of some influential
variables. This study also reinforces that analytical models cannot ac-
count for all influential variables and variables without understanding
their contributions on properties.

Machine learning (ML), a data-driven artificial intelligence, can
overcome the abovementioned shortcomings of current analytical
models. In the past decades, many studies [19,26-30] have applied
machine learning models to predict different properties of alkali-
activated systems. Zhang et al. [29] have shown regression- and tree-
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based ML models to produce reliable predictions of compressive
strength of alkali-activated systems in relation to mixture design and
chemistry of precursors. Gomma et al. [28] have demonstrated the
reliable performance of random forest (RF) model on predicting fresh
and hardened properties of alkali-activated systems related to mixture
design and various processing conditions. Lahoti et al. [30] have used
RF, Naive Bayes, and k-nearest neighbor models to predict mechanical
properties of alkali-activated systems with a small database. Although
previous studies have shown that machine learning is a promising tool to
predict properties of alkali-activated systems, some knowledge gaps still
exist. First, previous studies only include one or two types of
aluminosilicate-rich precursors in their databases. The performance of
ML models on multiple (more than two) aluminosilicate-rich precursors
has not been valid. Next, as aforesaid, the reactivity of the
aluminosilicate-rich precursors is a critical parameter that influences the
properties of the alkali-activated systems. The parameter related to the
reactivity has not been included in previous studies. Finally, ML models
find the underlying structure between the mixture design and proper-
ties, all without understanding mechanisms. This leads to a critical
problem that predictions as produced by ML may violate fundamental
material laws. Such violation significantly undermines the credibility of
results from ML. However, this problem can be solved by applying
thermodynamic constraints to ML models. Han et al. [31] have shown
that the thermodynamic constraint regulates the RF model to predict
properties of OPC systems, where the accuracy is better than models
without constraints.

Gibbs Energy Minimization Software (GEMS) is a tool for
geochemical modeling [32,33], which can be employed to conduct
thermodynamic simulations of alkali-activated systems. More specif-
ically, GEMS simulations and the degree of reaction of the
aluminosilicate-rich precursors can produce equilibrium phase assem-
blages and microstructure for alkali-activated systems. Several studies
[34,35] have shown that the phase assemblages from GEMS simulations
accurately replicate phases appearing in real alkali-activated systems. In
the thermodynamic simulations, the expected products for alkali-
activated systems are: C-N-A-S-H; N-A-S-H; stratlingite; gibbsite; mon-
ocarboaluminate hydrate; hydrogarnet; and amorphous zeolites. With
the understanding of phase assemblages at different degrees of reaction
of aluminosilicate-rich precursors, microstructures and properties of the
alkali-activated systems can be correlated. This would help researchers
understand the mechanisms behind properties of alkali-activated
systems.

The study presented here aims to overcome the abovementioned
limitations of current analytical and ML models by advancing network
and thermodynamic constraints that enhance the prediction perfor-
mance of ML models on the compressive strength of alkali-activated
systems. Herein, the RF model is employed to find correlations be-
tween compressive strength and inputs (i.e., mixture design and pro-
cessing parameters of alkali-activated systems). Such correlations are
utilized to produce a priori, reliable predictions of compressive strength
in new alkali-activated systems. The network constraint (developed
from chemostructural properties of aluminosilicate-rich precursors
based on the topological constraint theory) and thermodynamic
constraint (obtained from thermodynamic simulations) are employed to
regulate the RF model, which ensures that predictions do not violate
fundamental material laws. Furthermore, the RF model links the
compressive strength with phase assemblages of alkali-activated sys-
tems. This leads to an investigation of compressive strength behavior in
relation to microstructures reacted from aluminosilicate-rich precursors
with different chemostructural properties.

2. Modeling method
In this study, a RF model is employed to predict the compressive

strength of alkali-activated systems. First, the model is trained and
tested without any constraints. Second, a network constraint (i.e.,
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number of constraints; described in Section 2.1) is applied to the model to
produce more accurate predictions. Third, an additional thermodynamic
constraint (volume fraction of products; described in Section 2.2) regu-
lates the network-constrained model to ensure non-violation of funda-
mental material laws. Prediction performances of three stages are
rigorously appraised by comparing their prediction against measured
values. Fig. 1 demonstrates the framework of the RF model with con-
straints. As can be seen, the model used in this study unites the network
and thermodynamic constraints with the RF model to achieve optimal
predictions of compressive strength of alkali-activated systems. The
purpose of using three parallel predictions is to investigate the optimal
prediction strategy (one that treads the balance between ease-of-use/
simplicity and accuracy) for alkali-activated systems. The optimal
strategy can be directly applied to the database without other two
stages. A detailed description of the RF model can be found in Section
2.3.

2.1. Network constraint

Herein, a brief description of TCT is given below, and details can be
found elsewhere [16]. The major components (i.e., SiO3, CaO, and
Aly03) of the aluminosilicate-rich precursors are utilized to derive the
number of constraints based on the topological constraint theory (TCT).
The compositions of the aluminosilicate-rich precursors are considered
as (Ca0)x(Al203)y(SiO2)1.x.y, where x and y are normalized molar frac-
tions. Aluminosilicate-rich precursors contain radial bonding-stretching
(BS) and angular bond-bending (BB) constraints [16,18,36]. BS exists
between two bonded atoms. BB exists when atoms have fixed inter-
atomic angles. There are six types of atoms that have constraints: Si
atom; Al atom (four-fold and five-fold); tricluster oxygen atom (TO); free
oxygen atoms (FO); bridging atom (BO); and non-bridging atom (NBO).

In the aluminosilicate-rich precursors, Si and Al atoms are the
network formers, forming tetrahedral structures. O atoms acting as a
bridge to connect Si/Al tetrahedrons are BOs [37,38]. The Ca atom is the
network modifier existing between Si/Al tetrahedral molecular as the

Database Collection

RF Predictions w/o
Constraints

RF Predictions w/
Network Constraint

Topological
Constraint Theory

A4
RF Predictions w/
Network
+Thermodynamic
Constraints

Thermodynamic
Simulations

Fig. 1. Schematic of the RF model to predict the compressive strength of alkali-
activated systems by incorporating network and thermodynamic constraints.
Network constraint is developed from the topological constraint theory. Ther-
modynamic constraint is acquired from phase assemblages of alkali-
activated systems.
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interstitial site [37,38]. The O atom connected with Ca atom and Si/Al
tetrahedral molecular is NBO. FO is an O atom that only connects with a
Ca atom. TO is the O atom acting as the charge compensating atom for
the Al tetrahedron. Depending on the CaO and Al;Os contents, the
network structure of aluminosilicate materials can be divided into three
regimes: fully depolymerized (y—x <-2); partially depolymerized
(7% <y—x <0); and fully polymerized (0 <y—x) [16]. In the fully
depolymerized regime, Ca atom is the dominant composition. All Si and
Al tetrahedrons isolate from each other. The excess Ca atoms result in
the formation of NBOs and FOs. In the partially depolymerized regime,
Si atom is the dominant composition. The Ca atoms connect with Si/Al
tetrahedrons and compensate charge of Al tetrahedrons. This regime
includes both BOs and NBOs. In fully polymerized regime, Al atom is the
dominant composition. Due to insufficient Ca atoms, the charge of Al
atoms cannot be compensated to form four-fold tetrahedral units, where
over-coordinated Al atoms (five-fold) are formed. This regime includes
both BOs and TOs.

Ca atom is the charge-compensating ion; thus, it is excluded from
topological constraints. But it creates 1 BS constrain with a connected
NBO [39]. Ca atom connected to a FO can form 1 BS constraint. Previous
studies [16,36,39-41] have shown that Si atoms form tetrahedral
structure at five fixed angles in the amorphous phases, which contains 4
BS and 5 BB constraints. Additionally, Si tetrahedron creates 1 BB
constraint with BO. Four-fold Al atom has 4 BS constraints and 5 BB
constraints. Five-fold atom only has 5 BS constraints. TO has 3 BB
constraints. The number of constraints (n.) corresponding to each regime
is shown in Eq. 1. Additional emphasis is given to that the
aluminosilicate-rich precursors in this study fall into partially depoly-
merized and fully polymerized regimes.

114y —10.
. = % (Fully depolymerized) (1a)
—2x+2y
11 4+ 10y — 10
e = = = (Partially depolymerized) ()
- y
11+ 13y — 13
.= 3_'—27);2){ (Fully polymerized) (1)
—2x+2y

2.2. Thermodynamic modeling

GEMS [32,33] is employed to produce thermodynamic simulations
and phase assemblages of alkali-activated systems in relation to their
mixture design [i.e., chemical composition of binders (aluminosilicate-
rich precursors; alkali-activators; and water)] and processing conditions
(i.e., temperature). The quality of the thermodynamic simulation results
is dependent upon the accuracy and completeness of the input properties
of the substances and phases, which can typically be found within
literature and thermodynamic databases. The thermodynamic data for
aqueous species and numerous solids are acquired from the PSI-GEMS
thermodynamic database, while solubility products for relevant phases
are extracted from the Cemdata 18 [42,43] and zeolite 20 [44]. An
extended Debye-Huckel calculation is utilized by the software to esti-
mate the activity coefficients of the aqueous species. The assumption
that the aqueous phase is dominated by NaOH is made. The average ion
size and parameter for common short-range interactions of charged are
3.31 A and 0.098 kg/mol, respectively. All phase assemblages are
simulated at 1 atm and 20-to-85 °C.

Phase assemblages obtained from the thermodynamic simulations
are shown in Fig. 2. The figure reveals volume of all reactants and
products at increasing degrees of reaction of the aluminosilicate-rich
precursors. In Fig. 2, it has been observed that GEMS can estimate
phase assemblages of alkali-activated systems made from multiple
aluminosilicate-rich precursors at different water-to-solid ratio. The
phases shown herein are in agreement with previous studies [20,34,45].
The main phases of alkali-activated systems include: C-N-A-S-H; N-A-S-
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Fig. 2. Equilibrium phase assemblage, simulated using GEMS, of alkali-activated systems made from (a) fly ash and ground granulated blast-furnace slag (GGBS);
and (b) red mud and ground granulated blast-furnace slag (GGBS). The vertical dashed line presents the phase assemblage at the targeted degree of reaction of
aluminosilicate-rich precursors estimated from the compressive strength. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

H (Na-chabazite; zeolite 4A; hydroxysodalite; and natrolite); amorphous
Si; Ca-chabazite; Gibbsite; straetlingite; and C3AHg. The phase assem-
blage is an important outcome because researchers can use it to estimate
the volume fraction of products and porosity in any given
aluminosilicate-rich precursor at the targeted degree of reaction. The
compressive strength can be roughly estimated from porosity and vol-
ume fraction of products because they provide a basic solid-to-solid
connectivity within the alkali-activated systems [46-48]. In order to
obtain accurate phase assemblages, it is essential to identify the degree
of reaction of the aluminosilicate-rich precursors, which can be esti-
mated directly from compressive strength at any given age. The method
to determine the degree of reaction is explained in Section 3.0. The
volume fraction of products is employed as the thermodynamic
constraint to regulate the RF model.

2.3. Random forest (RF) model

RF model is a tree-structure model developed from the classification-
and-regression trees (CARTs) model with bagging technique [49,50].
During the training, the model parallelly constructs hundreds of inde-
pendent CARTSs from bootstraps. Each tree grows through binary splits
in a recursive fashion until the terminal nodes reach a “near-homoge-
nous” state. The model allows each CART to grow to its maximum size
without pruning and smoothing. When new data is applied to the RF
model, the model averages the predictions from all trees to produce the
final output. Compared to other ML models, the RF model is different in
the sense that two-stage randomization [50,51] is employed during the
growth of CARTSs. The first randomization is that the bootstrap used to
construct a tree randomly selects data from the original dataset. The
second stage involves that a randomly chosen subset of variables,
instead of using all variables, is utilized to ascertain the best scenario for
each split. Due to the two-stage randomization, trees in the forest
decorrelate with each other, resulting in a reduction of variance errors
[52,53]. To achieve the RF model’s best performance, 10-fold cross-
validation (CV) method [54,55] and the grid-search method [28,56]
are employed to determine the optimal hyperparameters for the RF
model. In this study, 300 trees and 4 splits at each node are for all
predictions.

To train and validate the RF model, the database (shown in Section
3.0) is split into two non-overlapping datasets: training dataset and
testing dataset. The training dataset contain 75% of randomly selected

data-records form the parent database, and the remaining 25% data-
records form the testing dataset. The training dataset is used to train
the RF model rigorously. The testing dataset is used to quantitatively
evaluate the prediction performance of the RF model through 5 statis-
tical parameters — Pearson correlation coefficient (R); coefficient of
determination (RZ); mean absolute percentage error (MAPE); root mean
squared error (RMSE); and mean absolute error (MAE). Mathematical
functions for these statistical parameters were detailed in our previous
studies [54,57,58].

2.4. Database Collection

Data pertaining to compressive strength in 520 alkali-activated sys-
tems [including pure binder (aluminosilicate-rich precursors + alkali
activator + water); mortar (binder + fine aggregate); and concrete
(binder + fine aggregate + coarse aggregate)] were collected from 15
studies [59-73]. Majority of the alkali-activated systems were synthe-
sized by fly ash and ground granulated blast furnace slag, and the
remaining systems were synthesized from fly ash sinking spherical
beads, red mud, metakaolin, silica fume, and rice husk ash. An alkali-
activated system can contain at the most three different
aluminosilicate-rich precursors. Not all the densities of the
aluminosilicate-rich precursors were illustrated in previous studies. In
our database, densities of the aluminosilicate-rich precursors are
calculated based on the density of CaO (3.34 g/cm3); NayO (2.27 g/
em®); Si0, (amorphous, 2.20 g/cm3) [74]; and Aly03 (amorphous, 2.32
g/em®) [75,76] with respect to their normalized mass fractions. Other
compositions (e.g., MgO; K50; etc.) are minor, and their products have
negligible contribution to the compressive strength [7]. Therefore, they
are excluded from the density calculations and thermodynamic simu-
lations. It is worth noting that this database includes not only two-part
(aluminosilicate-rich precursors mixed with an alkali-activator solu-
tion) but also one-part (aluminosilicate-rich precursors and solid alkali-
activator mixed with water) alkali-activated systems.

Here, compressive strength is used as a direct indicator to calculate
the degree of reaction of the aluminosilicate-rich precursors. Previous
studies [77,78] have demonstrated that compressive strength of
cementitious materials and the degree of reaction of binder exhibits a
linear correlation. The degree of reaction of the aluminosilicate-rich
precursors is employed to locate the phase assemblage of the binder in
thermodynamic simulations. The volume fraction of products obtained
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from the phase assemblages act as a thermodynamic constraint to
regulate and improve predictions as produced by the RF model. A pre-
processing is required before the degree of reaction is correlated with
the compressive strength. In this database, the compressive strength was
tested from binder; mortar; and concrete. Fu et al. [79] have demon-
strated that compressive strength is improved by increasing binder
content and decreasing aggregate content. To unify the degree of reac-
tion for all specimens in our database, it is important to normalize
measured compressive strength by a standard specimen composition (i.
e., a standard binder-to-aggregate ratio in volume). This is because
inconsistent binder-to-aggregate ratios result in inaccurate correlations
between compressive strength and the degrees of reaction of the
aluminosilicate-rich precursors. The compressive strength of pure
binder systems is directly used to determine the degree of reaction. For
the remaining alkali-activated systems, the volume ratio of binder-to-
aggregate is calculated, and most systems fall into the 0.4-t0-0.6
range. Thus, 0.5 of binder-to-aggregate ratio is selected as the stan-
dard composition to normalize compressive strength. Here, the
normalized compressive strength (CSpormaiized) i calculated on the basis
of EqQ. (2). CSmeasured is compressive strength measured from experiment;
Tmeasured 1S the volume ratio of binder-to-aggregate of each specimen; and
Tstandard 1S the volume ratio of binder-to-aggregate of the standard
specimen, which is 0.5. The reactivity (maximum degree of reaction) of
the aluminosilicate-rich precursors depends on the crystallinity, where a
highly-crystalline aluminosilicate-rich precursors results in a low reac-
tivity and thus yielding a low compressive strength in the alkali-
activated systems [12]. Previous studies [14,15,80] have revealed that
the amorphous content of the aluminosilicate-rich precursors ranges
from 40% to 90%. This indicates that the maximum degree of reaction of
the aluminosilicate-rich precursors cannot exceed 90%. In our study, we
assume that 80% of the aluminosilicate-rich precursors have reacted in
the specimen with the highest compressive strength (80 MPa). The de-
gree of reaction of the aluminosilicate-rich precursors for the remaining
specimens is computed as the proportion of 80% based on the fraction of
the compressive strength to maximum compressive strength.

CS measured

Fucared (2)

CSnm'malized =

Tstandard

The database used for ML models contains 10 inputs and 1 output.
The inputs include: normalized mass of aluminosilicate material; solid
NaOH; solid NaySiOs; fine aggregate; coarse aggregate; and water
(Ymass); curing temperature (°C); age (days); type (unitless; 1 = one-part
and 2 = two-part). The output is compressive strength (MPa), which is
the measured value obtained from the literature. It is worth noting that
NaOH and NajSiOs are alkali activators. The number of constraints of the
aluminosilicate-rich precursors (unitless) and volume fraction of prod-
ucts (unitless) are applied to the model as additional inputs when the
network and thermodynamic constraints are applied. It should be noted
that the number of constraints of the aluminosilicate-rich precursors is
calculated by adding up the number of constraints of each
aluminosilicate-rich precursor with respect to its mass fraction in all
aluminosilicate-rich precursors. Statistical parameters pertaining to in-
puts and output are itemized in Table 1. The database used in this study
is provided in Supplementary Information.

3. Results and discussion
3.1. Thermodynamic simulations

Based on GEMS simulations, we find that across all alkali-activated
systems resulted in a near-linear correlation (Fig. 3) with the compres-
sive strength against the volume fraction of products. The reason to
evaluate this relationship is that the compressive strength of any alkali-
activated system is correlated with the extent of reaction of the
aluminosilicate-rich precursors, which, in turn, dictates the volume
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Table 1
Statistical parameters pertaining to 10 inputs; 2 constraints; and 1 output (bold)
of 520 alkali activated systems in the compressive strength database.

Attribute Unit Min. Max. Mean Std.
Dev.
Aluminosilicate Material Yomass 9.451 73.76 26.25 16.64
Content
Fine Aggregate Content Yomass 0 66.67 32.33 16.99
Coarse Aggregate Content Yomass 0 79.55 27.33 23.07
Na,SiO3 Content Yomass 0 17.243 4.420 3.600
NaOH Content Yomass 0 3.194 0.857 0.821
Superplasticizer Content Yomass 0 0.427 0.075 0.141
Water Content Yomass 2.685 25.92 8.395 4.073
Curing Temperature °C 20 85 36.47 22.94
Curing time Days 1 28 12.84 10.75
Type unitless 1 2 - -
Number of Constraints unitless  3.092 4.155 3.634 0.297
Volume Fraction of Product unitless  0.023 0.6921 0.214 0.136
Compressive Strength MPa 5.152  79.82 27.16 16.80
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Fig. 3. A linear correlation between compressive strength and volume fraction
of products in 520 alkali-activated systems used in this study. A mathematical
function qualitatively estimating this correlation is shown in the legend.

fraction of the products. It should be noted that a mathematical function
that interprets the correlation between compressive strength and vol-
ume fraction of products in 520 alkali-activated systems is shown in the
legend. This mathematical function allows scientists to promptly
examine the compressive strength of any given alkali-activated system
by using its volume fraction of products as the sole input.

It is worth pointing out that the RF model can directly produce
predictions of the volume fraction of products in alkali-activated sys-
tems, without calculating them based on phase assemblages from ther-
modynamic simulations. This requires the RF model to be trained with a
new output, which consists of the same input variables shown in Section
3.0, but the volume of products as the output. Once the RF model is
trained, it can predict the volume fraction of products (Fig. 4) in new
alkali-activated systems with respect to their mixture design. The pre-
dicted volume fraction of products can also be used as the thermody-
namic constraint (the same constraint obtained from the phase
assemblage) to regulate the RF model to predict the compressive
strength. However, in this study, all thermodynamic constraints are
derived from the GEMS simulations.

3.2. Machine learning predictions

Fig. 5 demonstrates the predictions of the compressive strength of
alkali-activated systems produced by the RF model without constraints
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coefficient (R) of predicted results is shown in the legend. The dash line in-
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Fig. 5. Predictions of compressive strength of alkali activated systems as pro-
duced by the RF model without any constraints compared against measured
compressive strength. Pearson correlation coefficient (R) of predicted results is
shown in the legend. The dash line indicates ideal prediction, and solid lines
represent a = 10% error bound.

against the measured compressive strength. Predictions for both training
and testing datasets are shown in the figure. The five statistical pa-
rameters (mentioned in Section 2.3) pertaining to the performance of
the RF model on the testing dataset are itemized in Table 2.

As shown in Fig. 5 and Table 2, the accuracy of predictions produced
by the RF model is moderate. R?is 0.63 and RMSE is 9.752 MPa.
Although previous studies [19,26,28,81,82] have demonstrated that

Table 2

The statistical parameters pertaining the performance of the RF model with or
without network and thermodynamic constraints on predictions of alkali-
activated systems’ compressive strength against the testing dataset.

Model Name R R? MAE MAPE RMSE
Unitless ~ Unitless  MPa % MPa
RF 0.8095 0.6553 6.854 29.39 9.433
RF + Network Constraint 0.8841 0.7816 5.956  24.56 7.868
RF + Network Constraint + 0.9619 0.9253 3.649 13.45 4.865

Thermodynamic Constraint
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standalone ML models can yield accurate predictions of compressive
strength of alkali-activated systems, it is expected that a standalone
model cannot produce highly accurate predictions for the database used
in this study. This is because our database is much more complex than
databases used in previous studies [19,26,28,81,82]. First, both one-part
and two-part alkali-activated systems are included in the database. In
general, due to heat generated from the dissolution of solid activators,
one-part alkali-activated systems are more reactive than two-part sys-
tems [83]. Therefore, one-part alkali-activated systems demonstrate
higher compressive strength at early ages and a shorter setting time
compared to two-part systems. Second, the chemical composition of the
aluminosilicate-rich precursors in previous studies were simple, only
containing a few different compositions. However, there are 26 different
compositions of the aluminosilicate-rich precursors in this study. Liter-
ature [9,20,84] has shown that chemical compositions of the
aluminosilicate-rich precursors significantly affects the compressive
strength of alkali-activated systems, where high Al;03 and SiO5 contents
lead to binders with high compressive strength. Third, the database in
this study contains a large-scale of water-to-solid ratio from 0.18-to-
0.50. The geopolymerization reaction is incomplete without sufficient
water; in contrast, excessive water creates an additional porosity that
can reduce compressive strength. Finally, the database consists of a large
range of curing temperatures, from 20-to-85 °C. Elevating the curing
temperature increases the extent and rate of the reaction through
escalating mesopore volume and surface area for nuclei of geo-
polymerization reaction [85]. This accelerates setting time accompanied
by higher compressive strength at early ages.

As abovementioned, due to the complexity of the database used in
this study, it is important to further calibrate the RF model to obtain
better predictions of compressive strength. Towards this, the topological
network constraint (described in Section 2.1) and volume fraction of
products from thermodynamic simulations (described in Section 2.2)
are used to provide information of fundamental material laws to guide
the RF model. Fig. 6a demonstrates the predictions of compressive
strength of alkali-activated systems produced by the RF model with the
network constraint. Fig. 6b shows the predictions of compressive
strength of alkali-activated systems produced by the RF model with the
network and thermodynamic constraints. Predictions for both training
and testing datasets are shown in the figures. The corresponding pre-
diction errors of the testing datasets are summarized in Table 2.

As can be seen in Fig. 6 and Table 2, the RF model produces accurate
predictions for alkali-activated systems’ compressive strength with
network and thermodynamic constraints. R? and RMSE of the pre-
dictions with the network constraint are 0.78 and 7.868 MPa, respec-
tively. R?> and RMSE of the predictions with the network and
thermodynamic constraints are 0.93 and 4.865 MPa, respectively. The
prediction error is even smaller than the standard deviation (5 MPa) of
the compressive strength measurement [86]. Based on these values, it is
clear that the predictions with constraints are superior compared to
predictions produced by the standalone RF model, which is expected.
Unlike the standalone model without knowing the chemical composition
of the aluminosilicate-rich precursors, the network constraint provides
chemostructural properties (e.g., the quantities of NBOs; BOs; FOs; and
TOs and strength of chemical bonds) of aluminosilicate-rich precursors
to guide the RF model. This information can serve as the proxy for the
reactivity of aluminosilicate-rich precursors. The highly reactive
aluminosilicate-rich precursors react fast with the alkali activators and
water resulting in higher compressive strength at early ages and an
overall higher degree of reaction. Thus, critical information from the
network constraint helps the RF model to catch the trend between inputs
and compressive strength. The thermodynamic constraint refines pre-
dictions of compressive strength further. As shown in Fig. 3, compressive
strength exhibits a strong correlation with the thermodynamic
constraint (volume fraction of products). Therefore, the thermodynamic
constraint restricts predictions produced by the RF model in a small and
reliable range. Furthermore, the thermodynamic constraint prohibits
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Fig. 6. Predictions of compressive strength of alkali activated systems as produced by the RF model with (a) network constraint and (b) network + thermodynamic
constraints compared against measured compressive strength. Pearson correlation coefficient (R) of predicted results is shown in the legend. The dash line indicates

ideal prediction and solid lines represent a + 10% error bound.
the RF model from violating fundamental material laws.
3.3. The role of chemical compositions of aluminosilicate materials

Previous sections have shown that the RF model with constraints can
produce reliable predictions of compressive strength. However, because
machine learning models are a “black-box”, they cannot interpret
mechanisms behind compressive strength and mixture design. This
section reveals the influence of the chemical composition of the
aluminosilicate-rich precursors and the microstructure of alkali-
activated systems on the compressive strength through a relationship
between the number of constraints, phase assemblages, and compressive
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strength. The simulations are conducted with 0.35 of water-to-solid
ratio; 0.14 of alkali-to-fly ash ratio; 0.27 of NaOH-to-NaSiO, ratio; and
20 °C. The fly ash composition is (Ca0)g.4-x(Al203)x(SiO2)9.6, and the
degree of reaction is 60%. Such parameters are chosen because most
data-records in the database have similar parameters. The simulated
results for fully polymerized and partially depolymerized are shown in
Fig. 7. As expected, the main phases are C-N-A-S-H and N-A-S-H (Na-
Chabazite) [9,45]. For both regimes, at n, = 3.4, the compressive
strength has the highest value. This is because the trade-off between C-
N-A-S-H and N-A-S-H phases reaches the optimal state. Specifically,
before n. = 3.4, alkali-activated systems do not contain enough network
forming atoms to form a high strength gel-like polymeric structure.
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Fig. 7. Phase assemblages (bottom) of alkali-activated systems simulated from thermodynamic modeling and compressive strength (top) predicted from the RF
model corresponding to network structure (number of constraints) of (a) fully polymerized fly ash; and (b) partially depolymerized fly ash. The parameters for

thermodynamic simulations are shown in the legend.
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However, after n, = 3.4, the reactivity of fly ash diminishes due to excess
network former atoms.

Fig. 7a demonstrates the phase assemblage and compressive strength
for fully polymerized fly ash. The Al,O3 varies from 0.2 (n. = 3.23) to 0.4
(n. = 4.00). With increasing Al;03 and decreasing CaO, it can be
observed that the volume of C-N-A-S-H decrease monotonically. At n, =
3.7, Ca-chabazite starts forming. Most of the NayO has formed stable
phases (Na-Chabazite) with AlyO3, and insufficient CaO forces more
Al;,O3to get into a Ca-rich structure, where producing 1 mol Ca-
chabazite consumes 2 mol of Al,O3. Later CaO is too low to form a Ca-
rich structure, thus gibbsite starts forming. With decreasing volume of
C-N-A-S-H, the compressive strength values tend to plummet. This re-
inforces that C-N-A-S-H is the major component to provide strength in
alkali-activate systems [7,8,20]. Ca-chabazite and gibbsite barely
contribute to compressive strength. Fig. 7b shows phase assemblage and
compressive strength for partially depolymerized fly ash. The AlyO3
varies from 0.19 (n, = 3.23) to 0.08 (n, = 4.00). It is clearly observed
that volume of C-N-A-S-H decrease with increasing number of constraints.
Compared to fully polymerized fly ash, partially depolymerized fly ash
produces more C-N-A-S-H. Therefore, the compressive strength of
partially depolymerized fly ash is higher, even though there is more
porosity in the structure. Partially depolymerized fly ashes also form
lesser amorphous Si phase because they have sufficient CaO and Al;03 to
form C-N-A-S-H and N-A-S-H phases.

4. Conclusions

This paper employed the RF model to predict the compressive
strength of alkali-activated systems made from seven types (26 different
compositions) of aluminosilicate-rich precursors. In order to improve
prediction performances, thermodynamic (volume fraction of products
of alkali-activated systems) and network (number of constraints of the
aluminosilicate-rich precursors) constraints were utilized to regulate the
RF model. The correlations between the phase assemblages, number of
constraints, and compressive strength were revealed and explained. It is
worthwhile to point out that this is the first study that employs ML
models with constraints to predict the compressive strength of alkali-
activated systems in relation to complex compositions of the
aluminosilicate-rich precursors and wide processing parameters.

The database for alkali-activated systems contained 520 unique data-
records with 10 inputs variables. The parent database was split into
training and testing datasets to train the model and evaluate the per-
formance. The prediction accuracy (R = 0.81) of RF model without any
constraint is acceptable. The prediction accuracy (R = 0.88) of RF model
with network constraint is moderate. The prediction accuracy (R = 0.96)
of RF model with network and thermodynamic constraints is highly
reliable. Results sufficiently reveal that the network and thermodynamic
constraints provide necessary chemostructural information and material
laws to enhance the performance of the RF model. The well-trained RF
model with constraints was used to establish correlations between
microstructure of alkali-activated systems; reactivity of aluminosilicate-
rich precursors; and compressive strength. When the number of con-
straints was equal to 3.4, the alkali-activated systems achieved the
optimal compressive strength. The C-N-A-S-H phase is the major phase
that provide this high compressive strength.

In conclusion, the predictions shown in this study can still be
improved with a larger and more diverse database. In the future, except
for Al,03, CaO, SiO;, other chemical compositions of the
aluminosilicate-rich precursors can be accounted in the phase assem-
blage. This is towards understanding the influence of minor components
and their products on compressive strength. However, this paper pre-
sents a new pathway to understanding microstructure-property corre-
lations. Meanwhile, the ML models can provide a preview of properties
of alkali-activated systems made from new aluminosilicate-rich pre-
cursors without performing experiments.
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