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a b s t r a c t 

In earlier works, a mathematical procedure for invertible microstructure-property linkages was devel- 

oped using computationally efficient spectral methods for polycrystalline cubic and hexagonal metals. 

This paper formulates such invertible microstructure–property linkages for orthorhombic polycrystalline 

metals relying on the generalized spherical harmonics (GSH) spectral basis. The procedure is used to 

compute property closures of orthorhombic polycrystals. The closures represent the complete set of the- 

oretically possible combinations of effective properties for a selected material. The procedure relies on 

the first-order bounding theories and considers orientation distribution functions (ODFs) as the main 

microstructural descriptor influencing homogenized properties. Numerous examples of these closures in- 

volving second-rank thermal expansion and fourth-rank elastic stiffness tensorial properties over a broad 

range of temperatures are presented for α-uranium ( α-U). In doing so, certain key properties of these 

closures are exploited to facilitate their computation with drastically reduced computational effort. Along 

with the recently developed GSH-based interpolation procedure for ODFs from coarsely spaced exper- 

imental measurement grids to finely spaced finite element mesh resolution grids presented in Barrett 

et al., the developed computationally efficient ODF-effective property linkages are used to establish a 

crystal mechanics-based simulation framework coupled with the finite element method (FEM). The ODF 

dependent thermal expansion and elastic stiffness tensors are efficiently calculated at every integration 

point and used by the FEM to predict the overall distortion of a hemispherical part made of α-U during 

heating. It is shown that the developed framework can be used to simulate microstructurally heteroge- 

neous components under thermo-mechanical loadings in a computationally efficient manner. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Mathematical frameworks are being developed to treat mi- 

rostructure as a variable in engineering design and optimization 

f components [2–5] . Essential for such frameworks is formulat- 

ng invertible, i.e. bi-directional, linkages between microstructure 

nd material properties with such linkages aimed at the identifica- 

ion of microstructures that are theoretically predicted to exhibit a 

esired combination of properties/performances [ 3 , 6 ]. The spectral 

epresentation of material properties and microstructure has been 
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hown to be an effective approach to establish invertible linkages. 

he approach involves constructing a space of all theoretically pos- 

ible microstructures. Specifically, the space that includes all pos- 

ible orientation distribution functions (ODFs) is referred to as the 

exture hull [ 3 , 6–9 ]. Generalized spherical harmonics (GSH) have 

een shown to facilitate the most compact spectral representations 

f ODF dependent material properties, which is attributed to their 

bility to reflect the crystal and sample symmetries [10–12] . Calcu- 

ating material properties corresponding to the texture hull using 

DF-property linkages defines another space, which is the space of 

ll theoretically possible properties for a given material. This space 

as originally referred to as the G-closures [13–16] and later as the 

roperty closures [17] . 

A number of property closures have been presented in the 

iterature for both cubic and hexagonal metals including elastic 

https://doi.org/10.1016/j.jnucmat.2021.153472
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnucmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnucmat.2021.153472&domain=pdf
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 8 , 17–19 ], plastic [20] , and functional properties such as piezoelec-

ric [21] . These closures were based on first-order bounding theo- 

ies [22–26] . The procedure to delineate the property closures be- 

ins with building a database of non-zero GSH expansion coeffi- 

ients for selected properties using integration over the orientation 

pace. Next, expansion coefficients corresponding to the complete 

et of ODFs (the texture hull) are obtained. Finally, the expansion 

oefficients corresponding to the hull and the selected properties 

re linked to obtain the property bounds. Importantly, the spec- 

ral representations facilitate these calculations with dramatic re- 

uction in computational time relative to traditional methods. The 

apid evaluation using databases and spectral linkages is especially 

seful for accelerating the calculations of stress, strain hardening, 

nd texture evolution pertaining to crystal plasticity models be- 

ause iterative solution procedures such as those based on New- 

on’s methods can be circumvented [ 20 , 27 , 28 ]. Having the bounds

or a selected property combination, an optimization procedure is 

sed to find ODFs corresponding to the boundary points in the 

roperty space [ 3 , 17 , 29 , 30 ]. Invariant ODFs corresponding to the

oundary points of the closures for a class of metals facilitate rapid 

elineation of property closures for that class of metals [18] . 

The two essential constructs, the closures and hulls, have been 

sed in the theoretical microstructure sensitive design of compo- 

ents to improve their performances. Microstructures and associ- 

ted properties have been identified to maximize compliant beam 

eflection [3] , flywheel energy storage [31] , the load bearing ca- 

acity of a thin plate with a central hole [6] , and the minimized

riving force of a crack in rotating disks [32] and thin-walled ves- 

els [33] . In these studies, the ODF was the microstructural feature 

overning the relevant properties. However, similar studies exist 

or designing compositional variations of fiber reinforced compos- 

tes [34–36] . A design strategy referred to as topology optimiza- 

ion was developed specifically for designing composite materials 

or extreme mechanical and functional properties [37–40] . 

This paper conceives a computationally efficient procedure 

or the invertible microstructure–property linkages homogenizing 

econd-rank and fourth-rank tensorial properties for orthorhombic 

olycrystalline metals. The development of this new procedure us- 

ng the GSH basis will be described. The procedure is used to com- 

ute property closures of orthorhombic polycrystals. Numerous ex- 

mples of thermal expansion and elastic property closures cover- 

ng a broad range of temperatures are computed and presented for 

-uranium ( α-U). Furthermore, the procedure is coupled with the 

nite element method (FEM) to model anisotropic thermo-elastic 

aterial response of polycrystalline orthorhombic metal compo- 

ents. For such modeling, the spatially resolved distributions of 

icrostructural features is considered over the finely discretized 

omponent geometry, i.e. FE mesh. Considering that experimental 

haracterization of spatial location-dependent microstructural data 

s limited to a finite number of locations, it is necessary to inter- 

olate the data from coarsely spaced experimental grids to finely 

paced finite element mesh grids. A robust interpolation scheme 

as recently been developed to interpolate ODFs. This scheme ex- 

loits the linearity of the GSH space in which the expansion co- 

fficients representing ODFs are interpolated over a given vari- 

ble such as space [1] . These recent advances addressing the inter- 

olation of ODFs and the computationally efficient procedure for 

he ODF-property linkages described here are combined to calcu- 

ate the spatial variation of the ODF-dependent thermal expansion 

nd elastic stiffness. This novel crystal mechanics-based simulation 

ethodology is used to predict the overall distortion of a hemi- 

pherical part made of α-U during heating using the FEM. The 

patial variation of texture data is obtained by neutron diffraction 

easurements and subsequently interpolated to initialize the ma- 

erial points of the FE mesh. Hence, the simulation is carried out 

ith the knowledge of texture and single crystal constants at each 
2 
E integration point. Anisotropic distortion is predicted. This dis- 

ortion is due to the crystallographic texture and highly anisotropic 

lastic stiffness and thermal expansion coefficients of the low sym- 

etry crystal structure of α-U. Results, computational efficiency, 

nd insights of this microstructurally heterogeneous simulation are 

resented and discussed in this paper. 

. Representation of ODF using GSH and texture hull 

An ODF, f (g) , is a statistical density function defining the vol- 

me fraction of crystal lattice orientations, g, in a polycrystalline 

aterial of volume, V . It is mathematically expressed as 

f (g) d g = 

d V 

V 
, 

∫ 
OS 

f (g) d g = 1 (1) 

In this work, the orientation, g , will be described using the set 

f three Bunge-Euler rotation angles ( φ1 , �, φ2 ) . The Bung e-Euler 

rientation space ( OS ) is defined by these three rotation angles. 

n Eq. (1) , dV is the increment in volume containing crystal lat- 

ice orientations within the increment, dg, in the OS [ 10 , 41 ]. Al-

hough f (g) can be expressed in its discrete form [42] , the contin- 

ous form is required for its GSH representation. The development 

f spectral representations of the ODF and material properties us- 

ng GSH has been most successful for the Bunge-Euler OS [4] , in 

omparison with other orientation spaces: Rodriguez vectors [43] , 

ngle-axis pairs [44] , or quaternions [45] . The ODF in a GSH series

s 

f ( g ) = 

∑ ∞ 

l=0 

∑ M ( l ) 

μ=1 

∑ N ( l ) 

n =1 
F 

μn 

l 
˙ T 
μn 

l 
( g ) , (2) 

here ˙ T 
μn 

l 
(g) is the orthorhombic-triclinic GSH function of rele- 

ance to the present work and F 
μn 

l 
are the expansion coefficients. 

he Bunge-Euler angles are contained within the function, ˙ T 
μn 

l 
(g) 

10] . The number of ( l, μ, n ) combinations depends on the symme-

ry (orthorhombic-triclinic) and the chosen rank for l ( L ). The cho- 

en rank is labeled by “L ”, while “l ” continuously enumerates the 

ndices from 0 to L . Each triplet is one expansion coefficient; and 

he number of expansion coefficients is the number of dimensions 

n the expansion space. 

The orthogonality relationship for the GSH functions is used in 

valuating the expansion coefficients as 
 

OS 

˙ T 
μn 

l 
( g ) ̇ T 

μ′ n ′ 
l ′ ( g ) dg = 

1 

2 l + 1 
δl l ′ δμμ′ δnn ′ (3a) 

 

OS 

f (g) ̇ T 
∗μn 

l ( g ) d g = 

∞ ∑ 

l ′ =0 

M(l ′ ) ∑ 

μ′ =1 

N(l ′ ) ∑ 

n ′ =1 

F 
μ′ n ′ 
l ′ 

∫ 
OS 

˙ T 
μ′ n ′ 
l ′ ( g ) ̇ T 

∗μn 

l 
( g ) d g, (3b) 

 l 

μn = ( 2 l + 1 ) 

∫ 
OS 

f ( g ) ˙ T 
∗μn 

l 
( g ) dg. (3c) 

The symbol ( ∗) asterisk in the superscript indicates the complex 

onjugate, while the invariant dg = sin (� ) d φ1 d�d φ2 . The lower 

ase delta, δi j , is Kronecker’s delta. The expansion coefficients cor- 

esponding to an individual crystal orientation, g k , are 

 F 
μn 

l 
= (2 l + 1) ̇ T ∗μn 

l 
(g k ) . (4) 

A given ODF is usually described by a number of discrete ori- 

ntations, N crys , which are weighted by their volume fraction, α. In 

his case, Eq. (3c) is equivalent to 

 l 

μn = 

Ncrys ∑ 

k =1 

k a k F l 
μn 

, 

Ncrys ∑ 

k =1 

ka = 1 , 0 < k a < 1 . (5) 
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Fig. 1. Examples of the GSH-based texture hulls for cubic-triclinic (top row) and orthorhombic-triclinic (bottom row) metals: (a) real and (b) imaginary arbitrarily selected 

projections of F 12 4 , F 
14 
4 , and F 

16 
4 for cubic-triclinic and F 12 2 , F 

14 
2 , and F 

22 
2 for orthorhombic-triclinic are shown. 
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The bar is placed on top of F to indicate the volume average. 

he linearity of the expansion space allows the weighted expres- 

ion. 

The coefficients with the coordinates k F l 
μn for an orienta- 

ion k can be plotted as a point in the expansion space. Creat- 

ng such plot of points for many orientations, N crys , makes up a 

exture hull, M 
k = { k F l μn | k F l μn = ( 2 l + 1 ) ˙ T ∗l μn ( g k ) , g k ∈ OS } . The 

ull is a convex and compact space because any empty space 

an be filled up with points of weighted combinations, M = 

 ̄F 
μn 

l 
| F̄ μn 

l 
= 

∑ 

k 

k α k F l 
μn 

, k F l 
μn ∈ M 

k , k α ≥ 0 , 
∑ 

k 

k α = 1 } . As a result, 
he hull, M, represents the complete set of all physically possible 

DFs. While the hull can be represented to infinity, the number 

f relevant dimensions depends on a selected ODF-property rela- 

ionship represented in a GSH series. As will be described shortly, 

he representation of the ODF-elastic stiffness tensor relationship 

equires only L = 4 [ 18 , 31 ]. The thermal expansion tensor requires

nly L = 2. Fig. 1 shows texture hulls for cubic and orthorhom- 

ic crystal structures with no sample symmetry i.e. triclinic sam- 

le symmetry. In the next sections, we describe the invertible 

DF-property linkages for mapping the hulls in the material prop- 

rty space to delineate property closures. The closures represent 

he complete set of theoretically possible combinations of effective 

roperties for a selected material. 
3 
. Representation of thermo-elastic properties using GSH 

In a first-order approach, the coupled thermo-elastic constitu- 

ive behavior of relevance to the present work is described by 

dding the strains produced by stress and temperature fields. The 

hermo-elastic stress-strain relationship is expressed as 

 = ε 
el + ε 

th = S 
s 
σ + αs 

�T , (6) 

here the first term is the elastic (mechanical) strain and the sec- 

nd term is the strain induced by the thermal field. We will use 

old letters to denote tensors, while italic and non-bold letters de- 

ote tensor components. S 
s 
is a symmetric 4th-rank elastic compli- 

nce tensor describing the elastic material behavior, αs 
is a sym- 

etric 2nd-rank tensor describing the thermal expansion of the 

aterial, σ is the Cauchy stress, and �T is the change in tempera- 

ure from a chosen reference. 

The elastic and thermal expansion tensors in the sample frame, 

 , depend on the crystal orientation and the fundamental crystal 

onstants embedded in the S c , C c ( C c = (S c ) −1 
), and αc tensors in

he crystal frame, c . C c is a symmetric 4th-rank elastic stiffness 

ensor in the crystal frame. Fig. 2 shows the elastic [46] and ther- 

al expansion [47] single crystal coefficients for α-U as a func- 



R.E. Marki, K.A. Brindley, R.J. McCabe et al. Journal of Nuclear Materials 560 (2022) 153472 

Fig. 2. Elastic [46] and thermal expansion [47] single crystal coefficients for α-U as a function of temperature. 
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ion of temperature. The components of the tensors in the sample 

rame can be obtained from those in the crystal frame using 

 
s 
i jkl = Q ip Q jq Q kr Q ls C 

c 
pqrs , (7) 

 
s 
i jkl = Q ip Q jq Q kr Q ls S 

c 
pqrs , (8) 

s 
i j = Q ip Q jq α

c 
pq . (9) 

As an example, the equivalent expression in the compo- 

ent form for the elastic stiffness is C s 
i jkl 

= Q ip Q jq Q kr Q ls C 
c 
pqrs = 

 i jklpqrs C 
c 
pqrs with Q performing the coordinate transformation from 

he crystal frame, e c 
i 
, to the sample frame, e s 

i 
, using Bunge-Euler 

ngles g = ( φ2 , �, φ2 ) as 

 = 

[ 

cos φ1 cos φ2 − sin φ1 cos � sin φ2 − cos φ1 sin φ2 − sin
sin φ1 cos φ2 + cos φ1 cos � sin φ2 − sin φ1 sin φ2 + cos 

sin � sin φ2 sin � cos

Evaluating every component of the stiffness tensor involves 81 

ummations of the products, e.g. C s 
1111 

= Q 1 p Q 1 q Q 1 r Q 1 s C 
c 
pqrs . T i jklpqrs 

re the components of the orientation dependent transformation 

ensor, which when multiplied by C c pqrs , gives the components of 

 
s 
i jkl 

. The tensor in its most general form has 3 8 = 6561 compo-

ents. However, the elastic stiffness has only 21 unique compo- 

ents in its most general form [48] . Taking the advantage of it, 

he tensor T reduces to 21 ×3 ×3 ×3 ×3 = 1701 different compo- 

ents. However, some of these components are equivalent result- 

ng in 441 unique components. Knowing these 441 components, 

he entire T tensor can be populated. The orientation dependent 

ransformation tensor for thermal expansion has 3 4 = 81 compo- 

ents in its most general form. Since the thermal expansion ten- 

or has 6 unique components, the transformation tensor reduces 

o 6 ×3 ×3 = 54 components. After eliminating equivalent compo- 

ents, the tensor has 36 unique components. 

The orientation dependent transformation tensors (e.g. T (g) ) 

an be represented in a GSH series as 

 = 

∑ ∞ 

l=0 

∑ M ( l ) 

μ=1 

∑ N ( l ) 

v =1 
E 

μn 

l 
˙ T 
μn 

l 
( g ) . (11) 

The integration over the orientation space must be per- 

ormed to evaluate the orientation invariant expansion coefficients 

or the components of the thermal expansion and elastic stiff- 

ess/compliance tensors. Specifically, the integration to evaluate 

he coefficients E μn is performed analytically in Matlab given the 
l 

4 
s � sin φ2 sin φ1 sin �
s � cos φ2 − cos φ1 sin �

cos �

] 

(10) 

alues of T (g) , which are obtained using Eqs. (7) –(9) . The integra-

ion also takes advantage of the orthogonality relation, Eq. (3) , as 

 

μn 

l 
= (2 l + 1) 

∫ 
OS 

T (g) ̇ T 
∗μn 

l ( g ) dg. (12) 

This representation is particularly useful because it includes a 

nite number of non-zero expansion coefficients. Without the first 

requency ( Re = 1, Im = 0), the number of complex-value expan- 

ion coefficients is 44 for the elastic properties and 10 for thermal 

xpansion properties. These correspond to L = 4 and L = 2, respec- 

ively. The coefficients corresponding to ranks higher than these 

valuate to zero. The result of the integration will be denoted by 

 l 
μn . Although Eqs. (11) and (12) are specific to T i jklpqrs (g) used 

n the equations for stiffness and compliance tensors, an equiva- 

ent expressions exist for the orientation dependent transforma- 

ion tensor, Q ip Q jq , for the thermal expansion. Since completely 

quivalent, it is not provided. The elastic property coefficients E l 
μn 

441 components) and thermal expansion property coefficients (36 

omponents) for the orientation dependent transformation tensor 

re the database, which can be recursively used to evaluate C s , 

 
s , αs , as will be elaborated shortly. Given the number of com- 

onents and the number of expansion coefficients per component, 

he databases per tensor are regarded as compact. 

We now turn our attention to calculating volume average prop- 

rties. Average mechanical properties of polycrystals like C 
s 
, S 

s 
, and 

s 
tensors can be estimated from those of single crystals by ho- 

ogenization with a weight function, i.e. the ODF, f (g) . For the 

th-rank elastic stiffness tensor, C 
s 
, the formula is [49] 

 

s = 

1 

V 

∫ 
V 

C s ( x ) dx = T C c = 

∫ 
OS 

T ( g ) f ( g ) dg C c 

= 

L =4 ∑ 

l=0 

M ( l ) ∑ 

μ=1 

N ( l ) ∑ 

n =1 

1 

2 l + 1 
E 

μn 

l 
F 

μn 

l C c . (13) 

Calculation of a homogenized elastic stiffness ( Eq. (13) ) requires 

he coefficients of the GSH expansion of the ODF function, F̄ 
μn 

l 
, up 

o fourth order ( L = 4) coefficients for T (g) , and the crystal ten-

or C c . The expression for S 
s 
is the same except S c is used instead



R.E. Marki, K.A. Brindley, R.J. McCabe et al. Journal of Nuclear Materials 560 (2022) 153472 

Fig. 3. Contour plots of the C 1111 elastic stiffness component in the cubic-triclinic (top row) and orthotropic-triclinic (bottom row) fundamental zones of the Bunge-Euler 

space for Cu and α-U, respectively: (a) computed using the GSH method ( Eq. (13) ) and (b) computed directly using Eq. (7) (Q method). The maximum difference between 

the two plots is of the order 10 −13 GPa. 

Fig. 4. Contour plots of the α11 thermal expansion coefficient in the orthotropic-triclinic fundamental zone of the Bunge-Euler space for α-U (a) computed using the GSH 

method (an equivalent of Eq. (13) ) and (b) computed directly using Eq. (9) . The maximum difference between the two plots is of the order 10 −13 K −1 . 
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f C c . Equivalently, for the calculation of αs 
, the equation requires 

 ̄

μn 

l 
, up to second order ( L = 2) expansion coefficients for the ori- 

ntation tensor, and αc crystal tensor. As is evident, the calcula- 

ion only involves summation of 44 numbers for C 
s 
(and S 

s 
) and 

0 numbers for αs 
after the multiplication. As a result, the prop- 

rty calculation in the spectral representation is essentially instan- 

aneous. Note that Eq. (13) can be used to calculate the crystal 

roperty or the volume average property in the sample frame de- 

ending on whether F 
μn 

l 
or F̄ 

μn 

l 
is supplied. Importantly, the num- 

er of calculations (multiplications and summations) remains the 

ame. We emphasize, the databases are compact and the calcula- 

ions are extremely efficient. 

Figs. 3 and 4 show orientation dependent C 1111 (g) elastic stiff- 

ess and α11 (g) thermal expansion components over the cubic- 
5 
riclinic and orthorhombic-triclinic fundamental zones of orien- 

ation space calculated using Eqs. (7) and (13) for C 1111 (g) and 

qs. (9) and (13) for α11 (g) . The calculations are performed for 

u and α-U. The calculations for Cu are included for verification 

ecause a type of the ODF-elastic stiffness spectral representation 

as presented in an earlier work [18] . This earlier work considered 

 compact form of the elastic stiffness available for cubic metals 

48] as opposed to the general form i.e. Eq. (7) . Since the compact 

orm does not exist for orthorhombic metals, the representations 

resented in this paper are done using the general form of Eqs. 

7) –(9) for both cubic and orthorhombic metals. The compact or 

eneral forms works equally well for cubic metals. Since the sub- 

gures (a) and (b) representing the GSH and Q computations are 

dentical within both Figs. 3 and 4 , the GSH representations of the 
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DF-property relationships developed in the present work are val- 

dated. 

In closing this section, we present the property bounds relevant 

o the delineation of property closures and subsequent FEM simu- 

ations. The expressions are given for the elastic stiffness only. The 

rst-order lower and upper bounds for the diagonal components 

f the effective elastic stiffness are [ 22–24 , 50 ]: 

S̄ −1 
)
i ji j 

≤ C ∗i ji j ≤ C̄ i ji j . (14) 

The bounds for the off-diagonal components are 

ax ( ̄C i jkl , 
(
S̄ −1 

)
i jkl 

) −
√ 

�i ji j �klkl ≤ C ∗i jkl ≤ min ( ̄C i jkl , 
(
S̄ −1 

)
i jkl 

) 

+ 

√ 

�i ji j �klkl , (15a) 

i jkl = C̄ i jkl −
(
S̄ −1 

)
i jkl 

. (15b) 

Only in these two equations, no implicit summation on re- 

eated indices is used. Note that for ( S 
−1 

) , an inverse is taken after

he homogenization. 

. Property closures 

The spectral approach based on GSH has been used in prior 

orks to delineate property closures for cubic and hexagonal met- 

ls [ 8 , 17 , 18 ]. These closures rely on the first-order bounding the-

ries and consider ODFs as the main microstructural descriptors 

nfluencing the effective properties. In other works, these closures 

ave been delineated using the spectral approaches based on fast 

ourier transforms (FFTs) [ 42 , 51 ]. The FFT approach facilitates de- 

ineating of closures more efficiently than the GSH approach. As 

n added advantage, the FFT computational methodology is more 

eadily accessible than the GSH codes. However, the GSH repre- 

entation is more compact with fewer necessary expansion coeffi- 

ients and resulting in smaller databases. This work advances the 

SH approach for delineating property closures to orthorhombic 

olycrystals. To this end, the new ODF–property linkages formu- 

ated in the prior section are used to obtain the elastic stiffness 

nd thermal expansion closures. The delineation procedure for clo- 

ures relies on the database of non-zero GSH expansion coefficients 

or each component of the orientation dependent transformation 

ensors for calculating the thermal expansion and elastic stiff- 

ess/compliance tensors (e.g. T i jklpqrs ). Next, the expansion coeffi- 

ients corresponding to a complete set of ODFs (the texture hull) 

ust be calculated. Finally, the expansion coefficients correspond- 

ng to the ODFs and the properties are multiplied and summed 

nd then multiplied with crystal properties to obtain the property 

ounds (i.e. Eq. (13) ). These calculations are performed with a dra- 

atic reduction in computational time relative to traditional meth- 

ds (i.e. Eqs. (7) –(9) ). 

The procedure starts with selecting a set of points in the tex- 

ure hull “eigen textures” [52] . These eigen textures cover the fun- 

amental region of the OS. The property bounds Eqs. (14) and 

15) are then evaluated using the GSH representation of the ODF- 

o-property linkages ( Eq. (13) ) for all relevant properties ( C s , S s ,

nd αs ) for these eigen textures. Of these eigen textures, a set of 

hose producing the boundary points of the property closure are 

elected for making combinations (pairs). These combinations are 

eighted textures corresponding to the boundary points of the clo- 

ures. The weighted pairs are incremented by a 0.2 weighted frac- 

ion, i.e. from (0.2, 0.8) pair to (0.8, 0.2) pair. Calculating the rel- 

vant properties for these pairs ( C 
s 
, S 

s 
, and αs 

) expands the prop- 

rty closures. Next, a new set of textures at the new boundary of 

he current closure are selected to evaluate properties ( C 
s 
, S 

s 
, and 

s 
) corresponding to their weighted combinations. This process is 
6 
epeated until the expansion of closures is saturated. The proce- 

ure follows the ideas underlying genetic algorithms and was used 

n the past for cubic and hexagonal metals [20] . 

This procedure in conjunction with the novel GSH represen- 

ation of properties, Eq. (13) , is used here to obtain the first- 

rder property closures for orthorhombic metals. However, before 

resenting results for orthorhombic metals, we verify the novel 

SH representation of properties using cubic metals. For this pur- 

ose, we use polycrystalline Cu. As mentioned earlier, the com- 

act form corresponding to Eqs. (7) and (8) has been used in 

he past for cubic and hexagonal metals. This is the first report 

sing the most general expressions, Eqs. (7) –(9) . The general ex- 

ressions work for any crystal symmetry but are mandatory for 

rthorhombic symmetry as there is no a corresponding compact 

orm. Fig. 5 presents the results for Cu. These results are identical 

o those presented in earlier works based on the GSH represen- 

ation [18] and the FFTs representation [42] of the compact form 

lastic stiffness/compliance further verifying the spectral represen- 

ation of the general expressions, Eqs. (7) –(9) . The shaded region 

nside the closures denotes the possible property combinations for 

he stiffness components according to the first-order bounding the- 

ries. Any property combination from the closures has correspond- 

ng textures inside the hull. Therefore, the ODF-property linkages 

re invertible. 

Examples of elastic and thermal expansion property closures 

re presented for α-U in Figs. 6 and 7 . These closures cover a broad

ange of temperatures because the crystal constants were available 

 Fig. 2 ). As with Cu, we present three examples of pairs of the ef-

ective properties. The particular property combination for the ef- 

ective axial elastic component and the effective shear component 

lay a role in the design of engineering parts experiencing a si- 

ultaneous axial load and twisting moment. Since the closures re- 

orted here are for triclinic textures, i.e. no sample symmetry as- 

umed, it is possible to couple the additional normal-shear com- 

onents. Note that when the orthotropic sample symmetry is in- 

oked, C̄ 1112 is zero. 

In delineating these closures for orthorhombic metals over the 

ange of temperatures, certain key attributes are observed and ex- 

loited to facilitate their fast computation. Like for cubic met- 

ls [18] , the expansion coefficients for orthorhombic metals corre- 

ponding to the boundary points on the closures are independent 

f the temperature dependent single crystal properties. Therefore, 

fter computing and storing the set of ODF expansion coefficients 

orresponding to the boundary points on the closures at one tem- 

erature, this set of coefficients can be used to quickly produce 

losures at any other temperature. These ODF expansion coeffi- 

ients are another database, which can be repeatedly used with 

ingle crystal properties at different temperature to rapidly delin- 

ate property closures at that temperature. 

. Thermo-elastic simulation of hemispherical part during 

eating 

In this section, we use the elastic stiffness and thermal expan- 

ion tensorial properties obtained based on the crystal mechan- 

cs at every integration point within finite elements in a thermo- 

lastic simulation. To this end, we develop a user material (UMAT) 

ubroutine and combine it with a thermal expansion (UEXPAN) 

ubroutine in Abaqus. A number of UMATs have been developed to 

mbed texture and underlying anisotropy of material response at 

E material points [53–55] . Of these UMATs, the implementation 

f the elasto-plastic self-consistent (FE-EPSC) polycrystal plasticity 

odel is of interest in the present work [ 56 , 57 ] because it is ca-

able of predicting homogenized elasticity, thermal expansion, and 

lasticity [58] . Specifically, the UMAT we develop can calculate the 

lastic stiffness and thermal expansion tensorial properties either 
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Fig. 5. ( C 1111 , C 1122 ), ( C 1111 , C 1212 ), and ( C 1111 , C 1112 ) closures for Cu at room temperature computed using the GSH procedure presented in this paper. 

Fig. 6. ( C 1111 , C 1122 ), ( C 1111 , C 1212 ), and ( C 1111 , C 1112 ) closures for α-U as a function of temperature computed using the GSH procedure presented in this paper. 
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d

ased on the GSH representation Eq. (13) or the conventional cal- 

ulations (Eqs. (7) –(9) ) along with the underlying Jacobian matrix. 

he conventional calculations in the UMAT are used to verify the 

SH calculations from the same UMAT. Moreover, the conventional 

alculations are used as a reference to demonstrate the computa- 

ional efficiency of the GSH representation. Calculations using an- 
7 
ther UMAT, the FE-EPSC UMAT, are used to discuss the effect of 

he homogenization methodologies used in the prediction of the 

hermo-elastic distortion of the part (i.e. SC versus upper bound). 

Fig. 8 shows the FE mesh of half of the hollow hemisphere. 

he hemisphere has an inner radius of 75 mm and an outer ra- 

ius of 80 mm. Note, that the bottom has a small notch for fit- 
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Fig. 7. ( α11 , α12 ), ( α11 , α22 ) and ( α11 , α33 ) closures for α-U as a function of temperature computed using the GSH procedure presented in this paper. 

Fig. 8. FE mesh of half of the hemi. The half is shown to reveal the displacement boundary conditions at the pole cap, where the two nodes are indicated. Displacement 

degrees of freedom are fixed in all three global directions for (node red) and in the global rolling direction (RD) and transverse direction (TD) for the (node gray). The global 

frame and the local frame, θ-azimuthal direction, φ-polar direction, and r -radial direction, are shown. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

8 
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Fig. 9. Representation of the arcs cut from the hemi with the polar ( φ) angles (along arcs) and azimuth ( θ ) angles (along equator of hemi). Measured pole figures are shown 

for a few polar angles along the rolling direction (RD) ( θ = 0 °) and the transverse direction (TD) ( θ = 90 °). The indicated frames are only for pole figures: a) In the local 

frame of reference, the pole figure axes are parallel to the local azimuthal, polar, and radial directions and b) In the global reference frame, the pole figure axis are parallel 

to the global RD, TD, and normal direction (ND) of the prior rolled plate that was formed into the hemisphere. 
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ing in other parts. The mesh consists of 30,096 elements of which 

28 are the coupled temperature-displacement triangular prism el- 

ments meeting at the pole cap (C3D6T) and the rest are full in- 

egration temperature-displacement elements (C3D8T) with 4 ele- 

ents through the thickness. Nodal temperatures are prescribed to 

urface of the hemisphere starting at 25 °C and increased to 250 °C 
n increments of 1 °C. The remaining imposed boundary conditions 

llow for free thermal expansion of the hemisphere since only two 

odes are constrained ( Fig. 8 ). One node has the encastre boundary 

ondition, while the other is allowed only to move in the ND. 
9 
The novel crystal mechanics-based thermo-elastic constitutive 

odeling framework is aimed at modeling the spatial variation of 

nisotropic deformation during heating by accounting for the spa- 

ial variation of crystal lattice orientations of constituent grains 

nd the temperature dependent single crystal properties across FE 

ntegration points. The first task is initialization of the spatial vari- 

tion of texture by embedding the appropriate ODF at each FE in- 

egration point. Figs. 9 and 10 show pole figures of experimentally 

easured, neutron diffraction (NeD) texture data for a hemispher- 

cal part of depleted α-U. NeD is a bulk texture characterization 
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Fig. 10. Projected { 020 } poles on a hemi made of depleted α-U plotted in (a) local moving frame defined by azimuthal direction ( θ ), polar direction ( φ), and radial direction 

( r) and (b) global sample frame defined by RD, TD, and ND. The dashed lines in (b) pass through pole figures shown in Fig. 9 . The intensity scale is the same as in Fig. 9 . 
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echnique over ∼cm 
3 volumes facilitated by the deep penetration 

f thermal neutrons into the material [59] . This measured data for 

alf of the hemisphere is interpolated to the FE mesh resolution 

rid Fig. 8 ). Assuming orthotropic sample symmetry, we rotate the 

ata 180 ° around the ND two fold symmetry axis for each mea- 

ured point to initialize the other half of the hemisphere. A rig- 

rous procedure for the interpolation was presented in [1] . The 

rocedure exploits the linearity of the GSH expansion space in 

he spatial interpolation/weighting of the expansion coefficients of 

easured ODFs. Upon interpolation, a corresponding ODF to the 

nterpolated coefficients can readily be constructed by solving a 

inear programming problem in the expansion space [ 9 , 60 ]. How- 

ver, there is no need for reconstructing ODFs because the coef- 

cients are sufficient for Eq. (13) . Elegantly, the interpolated ex- 

ansion coefficients are directly used in the ODF-property link- 

ges (i.e. Eq. (13) ). Nevertheless, the ODFs are reconstructed with 

he minimal number of 113 weighted orientations at each spatial 

ocation over the hemi to initialize the conventional simulation 
10 
 Eqs. (7) –(9) ) and the FE-EPSC simulation because these simula- 

ions require Bunge-Euler angles for texture at each FE integration 

oint. 113 is the minimum number of weighted crystal orientations 

o facilitate a unique solution to an ODF given the expansion coef- 

cients for orthorhombic-triclinic textures at L = 10. The heating 

imulations of the part can now be carried out taking into account 

he anisotropy because the thermo-elastic properties at each in- 

egration point are based on texture and temperature dependent 

ingle crystal constants. 

Textures are interpolated to the centroid of each finite element 

f the hemisphere and assigned per element. Room temperature 

hermal expansion coefficients based on the interpolated textures 

t the centroids of each finite element are calculated and shown in 

ig. 11 . The coefficients of thermal expansion are calculated using 

he three material models (1) the upper bound GSH representation 

denoted as GSH-UB), (2) the upper bound conventional calcula- 

ions using the coordinate transformation matrix, Q (denoted as 

-UB), and (3) the self-consistent FE-EPSC (denoted as SC). As ex- 
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Fig. 11. Effective thermal expansion coefficients expressed in the local frame (a) ᾱθθ , (b) ᾱrr , and (c) ᾱφφ at room temperature based on ODFs at each integration point of 

the hemisphere after the interpolation. These projections are in the same coordinate system and orientation as those in Fig. 10 a. 
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ected, GSH-UB and Q-UB results are identical. As is evident, the 

hermal expansion contours reveal significant spatial variation in 

ach thermal expansion tensor component over the hemispherical 

-U part. Therefore, the distortion of the part predicted with the 

emperature change should be anisotropic. 

Using the novel approach described here, the thermo-elastic 

eating simulation is performed using Abaqus implicit solver to 

tudy the geometric changes of a depleted α-U hemisphere. The 

imulation is carried out using the three material models (1) GSH- 

B, (2) Q-UB, and (3) SC. Thermal strains are driven by the ther- 

al expansion coefficients allowing Abaqus to define nodal dis- 

lacements based on mechanical constraints. The simulation be- 

ins with a zero deformation step to initialize temperature, load 

nterpolated textures at each integration point, and calculate the 

exture dependent thermal expansion coefficients and elastic con- 

tants within the UMAT. Next, the UEXPAN subroutine is called, 

iven the change in temperature to estimate an increment in the 

hermal strain field ( ε th = αs �T ) based on the thermal expansion 

oefficients (already calculated in the UMAT). Next, Abaqus esti- 
s

11 
ates the mechanical strains ( ε el = S 
s 
σ) given the boundary con- 

itions. Finally, the UMAT subroutine is called to calculate stresses 

iven the strains. The UMAT also recalculates the coefficients of 

hermal expansion and elastic stiffness for the next call to the UEX- 

AN subroutine. 

Fig. 12 shows the predicted displacement fields and Fig. 13 

hown the thermal strains plotted solely at the equator of the 

emisphere after heating from 25 to 250 °C. The fields indicate 
hat the predicted distortion of the hemisphere with temperature 

s anisotropic. The predictions show location and directional de- 

endence, which would not be possible to predict with isotropic 

odels. The material also exhibits highly anisotropic plasticity be- 

avior [ 61 , 62 ]. In closing, Fig. 14 shows the computational time in-

olved and memory requirements for the heating simulation as a 

unction of the number of orientations embedded at each integra- 

ion point for the GSH-UB and Q-UB computational methods. The 

urpose of these simulations was only to demonstrate the superi- 

rity of the GSH method. Simulations were performed on a work- 

tation: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz with 32 cores 
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Fig. 12. Predicted radial displacements (a dot product between displacement vector and radial unit vector) after heating from 25 to 250 °C. 

Fig. 13. Predicted thermal strains along the hemisphere equator vs orientation from 

the RD (i.e. the azimuthal angle measured from a global RD coordinate axis) after 

heating from 25 to 250 °C. 

Fig. 14. Computational time involved and memory requirements in the heating 

simulation as a function of the number of orientations embedded at each integra- 

tion point for two computational methods as defined in the legend. 
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12 
nd 772 GB RAM. 30 cores were used to carry out the heating 

imulations. The time involved and memory required in GSH-UB 

s constant, while these increase approximately linearly with the 

umber of orientations for the Q-UB computational method. Re- 

ults for SC are not shown. The SC simulation is the slowest by far 

ecause it requires the self-consistent iterations. 

. Summary and conclusions 

This work developed the computational procedure for mi- 

rostructure – property linkages for orthorhombic metals us- 

ng GSH base functions. At the core of the procedure are the 

atabases built to capture the spectral representation of each com- 

onent of the orientation dependent transformation tensors. The 

atabases are used recursively and efficiently in calculating the 

ounds of local or homogenized thermal expansion and elastic 

tiffness/compliance tensors. The procedure is used to delineate 

he first-order property closures for polycrystalline microstruc- 

ures of α-U. Numerous examples of thermal expansion and elastic 

roperty closures are computed covering a broad range of tem- 

eratures. In doing so, certain key properties of these closures 

re exploited to facilitate their computation with drastically re- 

uced computational effort. The properties of the closures pertain 

o the invariant texture coefficients corresponding to the bound- 

ry points of the closures. The developed computationally effi- 

ient ODF-effective property linkages, in conjunction with the re- 

ently developed GSH-based interpolation procedure for ODFs from 

oarsely spaced experimental measurement grids to finely spaced 

odeling grids, are used to establish a crystal mechanics-based 

imulation framework coupled with finite elements. The expansion 

oefficients upon the interpolation are used directly in the GSH- 

ased ODF-property linkages without reconstructing ODFs at ev- 

ry FE integration point. As a result, the thermal expansion and 

lastic anisotropy are introduced efficiently and elegantly into the 

umerical FE tool for simulating thermo-mechanical loadings. The 

SH approach is verified by simulating the distortion of a hemi- 

pherical part made of α-U during heating by comparing results 

f the same simulation performed using the upper bound conven- 

ional methodology. Additionally, the same results are presented 

ased on the self-consistent homogenization to appreciate the dif- 

erence between the self-consistent and the upper bound homog- 

nization. The invertible linkages framework can be used to itera- 

ively vary ODFs to design texture in the part for minimized dis- 

ortion. These aspects, in addition to introducing the plasticity and 

exture evolution in the framework, will be subject of future re- 

earch. Additionally, future works will compare predicted displace- 

ent and residual stress fields to experimental data for several 

hermo-mechanically processed parts. 
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