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ABSTRACT

In earlier works, a mathematical procedure for invertible microstructure-property linkages was devel-
oped using computationally efficient spectral methods for polycrystalline cubic and hexagonal metals.
This paper formulates such invertible microstructure-property linkages for orthorhombic polycrystalline
metals relying on the generalized spherical harmonics (GSH) spectral basis. The procedure is used to
compute property closures of orthorhombic polycrystals. The closures represent the complete set of the-
oretically possible combinations of effective properties for a selected material. The procedure relies on
the first-order bounding theories and considers orientation distribution functions (ODFs) as the main
microstructural descriptor influencing homogenized properties. Numerous examples of these closures in-
volving second-rank thermal expansion and fourth-rank elastic stiffness tensorial properties over a broad
range of temperatures are presented for o-uranium («-U). In doing so, certain key properties of these
closures are exploited to facilitate their computation with drastically reduced computational effort. Along
with the recently developed GSH-based interpolation procedure for ODFs from coarsely spaced exper-
imental measurement grids to finely spaced finite element mesh resolution grids presented in Barrett
et al, the developed computationally efficient ODF-effective property linkages are used to establish a
crystal mechanics-based simulation framework coupled with the finite element method (FEM). The ODF
dependent thermal expansion and elastic stiffness tensors are efficiently calculated at every integration
point and used by the FEM to predict the overall distortion of a hemispherical part made of o-U during
heating. It is shown that the developed framework can be used to simulate microstructurally heteroge-
neous components under thermo-mechanical loadings in a computationally efficient manner.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

shown to be an effective approach to establish invertible linkages.
The approach involves constructing a space of all theoretically pos-

Mathematical frameworks are being developed to treat mi-
crostructure as a variable in engineering design and optimization
of components [2-5]. Essential for such frameworks is formulat-
ing invertible, i.e. bi-directional, linkages between microstructure
and material properties with such linkages aimed at the identifica-
tion of microstructures that are theoretically predicted to exhibit a
desired combination of properties/performances [3,6]. The spectral
representation of material properties and microstructure has been
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sible microstructures. Specifically, the space that includes all pos-
sible orientation distribution functions (ODFs) is referred to as the
texture hull [3,6-9]. Generalized spherical harmonics (GSH) have
been shown to facilitate the most compact spectral representations
of ODF dependent material properties, which is attributed to their
ability to reflect the crystal and sample symmetries [10-12]. Calcu-
lating material properties corresponding to the texture hull using
ODEF-property linkages defines another space, which is the space of
all theoretically possible properties for a given material. This space
was originally referred to as the G-closures [13-16] and later as the
property closures [17].

A number of property closures have been presented in the
literature for both cubic and hexagonal metals including elastic
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[8,17-19], plastic [20], and functional properties such as piezoelec-
tric [21]. These closures were based on first-order bounding theo-
ries [22-26]. The procedure to delineate the property closures be-
gins with building a database of non-zero GSH expansion coeffi-
cients for selected properties using integration over the orientation
space. Next, expansion coefficients corresponding to the complete
set of ODFs (the texture hull) are obtained. Finally, the expansion
coefficients corresponding to the hull and the selected properties
are linked to obtain the property bounds. Importantly, the spec-
tral representations facilitate these calculations with dramatic re-
duction in computational time relative to traditional methods. The
rapid evaluation using databases and spectral linkages is especially
useful for accelerating the calculations of stress, strain hardening,
and texture evolution pertaining to crystal plasticity models be-
cause iterative solution procedures such as those based on New-
ton’s methods can be circumvented [20,27,28]. Having the bounds
for a selected property combination, an optimization procedure is
used to find ODFs corresponding to the boundary points in the
property space [3,17,29,30]. Invariant ODFs corresponding to the
boundary points of the closures for a class of metals facilitate rapid
delineation of property closures for that class of metals [18].

The two essential constructs, the closures and hulls, have been
used in the theoretical microstructure sensitive design of compo-
nents to improve their performances. Microstructures and associ-
ated properties have been identified to maximize compliant beam
deflection [3], flywheel energy storage [31], the load bearing ca-
pacity of a thin plate with a central hole [6], and the minimized
driving force of a crack in rotating disks [32] and thin-walled ves-
sels [33]. In these studies, the ODF was the microstructural feature
governing the relevant properties. However, similar studies exist
for designing compositional variations of fiber reinforced compos-
ites [34-36]. A design strategy referred to as topology optimiza-
tion was developed specifically for designing composite materials
for extreme mechanical and functional properties [37-40].

This paper conceives a computationally efficient procedure
for the invertible microstructure-property linkages homogenizing
second-rank and fourth-rank tensorial properties for orthorhombic
polycrystalline metals. The development of this new procedure us-
ing the GSH basis will be described. The procedure is used to com-
pute property closures of orthorhombic polycrystals. Numerous ex-
amples of thermal expansion and elastic property closures cover-
ing a broad range of temperatures are computed and presented for
o-uranium («-U). Furthermore, the procedure is coupled with the
finite element method (FEM) to model anisotropic thermo-elastic
material response of polycrystalline orthorhombic metal compo-
nents. For such modeling, the spatially resolved distributions of
microstructural features is considered over the finely discretized
component geometry, i.e. FE mesh. Considering that experimental
characterization of spatial location-dependent microstructural data
is limited to a finite number of locations, it is necessary to inter-
polate the data from coarsely spaced experimental grids to finely
spaced finite element mesh grids. A robust interpolation scheme
has recently been developed to interpolate ODFs. This scheme ex-
ploits the linearity of the GSH space in which the expansion co-
efficients representing ODFs are interpolated over a given vari-
able such as space [1]. These recent advances addressing the inter-
polation of ODFs and the computationally efficient procedure for
the ODF-property linkages described here are combined to calcu-
late the spatial variation of the ODF-dependent thermal expansion
and elastic stiffness. This novel crystal mechanics-based simulation
methodology is used to predict the overall distortion of a hemi-
spherical part made of «-U during heating using the FEM. The
spatial variation of texture data is obtained by neutron diffraction
measurements and subsequently interpolated to initialize the ma-
terial points of the FE mesh. Hence, the simulation is carried out
with the knowledge of texture and single crystal constants at each
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FE integration point. Anisotropic distortion is predicted. This dis-
tortion is due to the crystallographic texture and highly anisotropic
elastic stiffness and thermal expansion coefficients of the low sym-
metry crystal structure of «a-U. Results, computational efficiency,
and insights of this microstructurally heterogeneous simulation are
presented and discussed in this paper.

2. Representation of ODF using GSH and texture hull

An ODF, f(g), is a statistical density function defining the vol-
ume fraction of crystal lattice orientations, g in a polycrystalline
material of volume, V. It is mathematically expressed as

f@dg= . [ redg=1 M)
0s

In this work, the orientation, g, will be described using the set
of three Bunge-Euler rotation angles (¢, @, ¢,). The Bunge-Euler
orientation space (0S) is defined by these three rotation angles.
In Eq. (1), dV is the increment in volume containing crystal lat-
tice orientations within the increment, dg, in the OS [10,41]. Al-
though f(g) can be expressed in its discrete form [42], the contin-
uous form is required for its GSH representation. The development
of spectral representations of the ODF and material properties us-
ing GSH has been most successful for the Bunge-Euler OS [4], in
comparison with other orientation spaces: Rodriguez vectors [43],
angle-axis pairs [44], or quaternions [45]. The ODF in a GSH series
is

M)

TTEED DA DI B i rl ) 2)

where Tl“"(g) is the orthorhombic-triclinic GSH function of rele-
vance to the present work and Fl"” are the expansion coefficients.
The Bunge-Euler angles are contained within the function, 7" (g)
[10]. The number of (I, i, n) combinations depends on the symme-
try (orthorhombic-triclinic) and the chosen rank for [ (L). The cho-
sen rank is labeled by “L”, while “I” continuously enumerates the
indices from 0 to L. Each triplet is one expansion coefficient; and
the number of expansion coefficients is the number of dimensions
in the expansion space.

The orthogonality relationship for the GSH functions is used in
evaluating the expansion coefficients as

. o 1
/Tlﬂn (g)Tlf}' ! (g)dg = m‘sll’suu’ann’ (3a)
[0
apn oo M(I')N(") o o )

/ f@T (@dg=>_>" > E*" / " (g)1""(g)dg.  (3b)
0S =0 pw'=1n'=1 0s

R =@+ [ feT @ (30)

[0

The symbol (*) asterisk in the superscript indicates the complex
conjugate, while the invariant dg = sin(® ) d¢,d® d¢,. The lower
case delta, §;;, is Kronecker’s delta. The expansion coefficients cor-
responding to an individual crystal orientation, g, are

R = 2L+ DT (). (4)

A given ODF is usually described by a number of discrete ori-
entations, N¢rys, which are weighted by their volume fraction, «. In
this case, Eq. (3c) is equivalent to

—un Ncrys Ncrys
F =Y ka*Rr" Y ka=1,0<ka <1. (5)
k=1 k=1
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Fig. 1. Examples of the GSH-based texture hulls for cubic-triclinic (top row) and orthorhombic-triclinic (bottom row) metals: (a) real and (b) imaginary arbitrarily selected
projections of F}2, F}4, and F}® for cubic-triclinic and E'2, E}, and F?? for orthorhombic-triclinic are shown.

The bar is placed on top of F to indicate the volume average.
The linearity of the expansion space allows the weighted expres-
sion.

The coefficients with the coordinates XF#" for an orienta-
tion k can be plotted as a point in the expansion space. Creat-
ing such plot of points for many orientations, Ncys, makes up a
texture hull, Mk = {kKEA" | KRAY = (21 4 1) T* 41 (gk), gk € 0S). The
hull is a convex and compact space because any empty space
can be filled up with points of weighted combinations, M =
{EM" | B = Y kar kR#T KR € MK, ko > 0, 3" ko = 1}. As a result,

k

k

the hull, M, represents the complete set of all physically possible
ODFs. While the hull can be represented to infinity, the number
of relevant dimensions depends on a selected ODF-property rela-
tionship represented in a GSH series. As will be described shortly,
the representation of the ODF-elastic stiffness tensor relationship
requires only L = 4 [18,31]. The thermal expansion tensor requires
only L = 2. Fig. 1 shows texture hulls for cubic and orthorhom-
bic crystal structures with no sample symmetry i.e. triclinic sam-
ple symmetry. In the next sections, we describe the invertible
ODF-property linkages for mapping the hulls in the material prop-
erty space to delineate property closures. The closures represent
the complete set of theoretically possible combinations of effective
properties for a selected material.

3. Representation of thermo-elastic properties using GSH

In a first-order approach, the coupled thermo-elastic constitu-
tive behavior of relevance to the present work is described by
adding the strains produced by stress and temperature fields. The
thermo-elastic stress-strain relationship is expressed as

e=¢1eh —Sog L a@AT, (6)

where the first term is the elastic (mechanical) strain and the sec-
ond term is the strain induced by the thermal field. We will use
bold letters to denote tensors, while italic and non-bold letters de-
note tensor components. Sisa symmetric 4th-rank elastic compli-
ance tensor describing the elastic material behavior, &’ is a sym-
metric 2nd-rank tensor describing the thermal expansion of the
material, o is the Cauchy stress, and AT is the change in tempera-
ture from a chosen reference.

The elastic and thermal expansion tensors in the sample frame,
s, depend on the crystal orientation and the fundamental crystal
constants embedded in the S¢, C° (C¢ = (SC)‘1), and «f tensors in
the crystal frame, c. C¢ is a symmetric 4th-rank elastic stiffness
tensor in the crystal frame. Fig. 2 shows the elastic [46] and ther-
mal expansion [47] single crystal coefficients for «-U as a func-
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Fig. 2. Elastic [46] and thermal expansion [47] single crystal coefficients for «-U as a function of temperature.

tion of temperature. The components of the tensors in the sample
frame can be obtained from those in the crystal frame using

C,'Sjk[ = QinijerlS C;C;qrsv (7)
?jkl = Qinijerls S;qrsv (8)
o = QipQjgQpg- (9)

As an example, the equivalent expression in the compo-
nent form for the elastic stiffness is Cl.sjk, = QipQiqQurQis Cpgrs =
TijkipgrsCpgrs With Q performing the coordinate transformation from
the crystal frame, ef, to the sample frame, e}, using Bunge-Euler

angles g = (¢, ©, ¢;) as

€OS ¢h1 oS ¢, — sin ¢ cos D sin ¢,
sin ¢, cos ¢, + cos ¢ cos P sin ¢,
sin @ sin ¢,

Q=

Evaluating every component of the stiffness tensor involves 81
summations of the products, e.g. Gi; = Q1pQ1qQ1rQuis Cogrs- Tijiipgrs
are the components of the orientation dependent transformation
tensor, which when multiplied by Cj,, gives the components of
ijkl. The tensor in its most general form has 3% = 6561 compo-
nents. However, the elastic stiffness has only 21 unique compo-
nents in its most general form [48]. Taking the advantage of it,
the tensor T reduces to 21x3x3x3x3 = 1701 different compo-
nents. However, some of these components are equivalent result-
ing in 441 unique components. Knowing these 441 components,
the entire T tensor can be populated. The orientation dependent
transformation tensor for thermal expansion has 34 = 81 compo-
nents in its most general form. Since the thermal expansion ten-
sor has 6 unique components, the transformation tensor reduces
to 6x3x3 = 54 components. After eliminating equivalent compo-
nents, the tensor has 36 unique components.

The orientation dependent transformation tensors (e.g. T(g))
can be represented in a GSH series as

M(l)

o0 N(l)
T= Zl:o Zu:l v=1

The integration over the orientation space must be per-
formed to evaluate the orientation invariant expansion coefficients
for the components of the thermal expansion and elastic stiff-
ness/compliance tensors. Specifically, the integration to evaluate
the coefficients E;*" is performed analytically in Matlab given the

E/MTH(g). (11)

—COoS ¢ sin ¢, — sin¢q cos P sin g,
—sin ¢4 sing, + cos ¢ cos P cos ¢,
sin @ cos ¢,

values of T(g), which are obtained using Egs. (7)-(9). The integra-
tion also takes advantage of the orthogonality relation, Eq. (3), as

B = @+ 1) [T @) (12)
[0

This representation is particularly useful because it includes a
finite number of non-zero expansion coefficients. Without the first
frequency (Re = 1, Im = 0), the number of complex-value expan-
sion coefficients is 44 for the elastic properties and 10 for thermal
expansion properties. These correspond to L = 4 and L = 2, respec-
tively. The coefficients corresponding to ranks higher than these
evaluate to zero. The result of the integration will be denoted by

sin ¢ sin ®
—cos ¢ sin @
cos

(10)

E/#". Although Eqgs. (11) and (12) are specific to Tjjypgrs(g) used
in the equations for stiffness and compliance tensors, an equiva-
lent expressions exist for the orientation dependent transforma-
tion tensor, Q;)Qjq, for the thermal expansion. Since completely
equivalent, it is not provided. The elastic property coefficients E;*"
(441 components) and thermal expansion property coefficients (36
components) for the orientation dependent transformation tensor
are the database, which can be recursively used to evaluate C5,
S%, o5, as will be elaborated shortly. Given the number of com-
ponents and the number of expansion coefficients per component,
the databases per tensor are regarded as compact.

We now turn our attention to calculating volume average prop-
erties. Average mechanical properties of polycrystals like C', S', and
o tensors can be estimated from those of single crystals by ho-
mogenization with a weight function, i.e. the ODF, f(g). For the
4th-rank elastic stiffness tensor, C', the formula is [49]

S

C =y [Coix=Tc = [T@)f@ dsc
v os
1 1
g 2l +1

Calculation of a homogenized elastic stiffness (Eq. (13)) requires
the coefficients of the GSH expansion of the ODF function, F_,’“', up
to fourth order (L = 4) coefficients for T(g), and the crystal ten-
sor C¢. The expression for S’ is the same except S¢ is used instead
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Fig. 3. Contour plots of the Cy;; elastic stiffness component in the cubic-triclinic (top row) and orthotropic-triclinic (bottom row) fundamental zones of the Bunge-Euler
space for Cu and «-U, respectively: (a) computed using the GSH method (Eq. (13)) and (b) computed directly using Eq. (7) (Q method). The maximum difference between

the two plots is of the order 10~'* GPa.

GSH

(b)

Fig. 4. Contour plots of the oy, thermal expansion coefficient in the orthotropic-triclinic fundamental zone of the Bunge-Euler space for o-U (a) computed using the GSH
method (an equivalent of Eq. (13)) and (b) computed directly using Eq. (9). The maximum difference between the two plots is of the order 10-3 K1,

of C¢. Equivalently, for the calculation of @, the equation requires
F_,“", up to second order (L = 2) expansion coefficients for the ori-
entation tensor, and «f crystal tensor. As is evident, the calcula-
tion only involves summation of 44 numbers for C (and S°) and
10 numbers for o after the multiplication. As a result, the prop-
erty calculation in the spectral representation is essentially instan-
taneous. Note that Eq. (13) can be used to calculate the crystal
property or the volume average property in the sample frame de-
pending on whether F*" or F/*" is supplied. Importantly, the num-
ber of calculations (multiplications and summations) remains the
same. We emphasize, the databases are compact and the calcula-
tions are extremely efficient.

Figs. 3 and 4 show orientation dependent Cyq11(g) elastic stiff-
ness and oq;(g) thermal expansion components over the cubic-

triclinic and orthorhombic-triclinic fundamental zones of orien-
tation space calculated using Eqs. (7) and (13) for Cjj11(g) and
Egs. (9) and (13) for «q1(g). The calculations are performed for
Cu and «-U. The calculations for Cu are included for verification
because a type of the ODF-elastic stiffness spectral representation
was presented in an earlier work [18]. This earlier work considered
a compact form of the elastic stiffness available for cubic metals
[48] as opposed to the general form i.e. Eq. (7). Since the compact
form does not exist for orthorhombic metals, the representations
presented in this paper are done using the general form of Egs.
(7)-(9) for both cubic and orthorhombic metals. The compact or
general forms works equally well for cubic metals. Since the sub-
figures (a) and (b) representing the GSH and Q computations are
identical within both Figs. 3 and 4, the GSH representations of the
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ODF-property relationships developed in the present work are val-
idated.

In closing this section, we present the property bounds relevant
to the delineation of property closures and subsequent FEM simu-
lations. The expressions are given for the elastic stiffness only. The
first-order lower and upper bounds for the diagonal components
of the effective elastic stiffness are [22-24,50]:

(gil)ijij = Cuu = C_UU (14)
The bounds for the off-diagonal components are
max (Giju, (57]),»]-,{1) — VAijij A < Gy < min(Gg, (gfl)ijkl)
+ / Ajjij Ak (15a)

. c-1
Aijua = Ciju — (8 )ijkl'

Only in these two equations, no implicit summation on re-

. ——1 . .
peated indices is used. Note that for (S ), an inverse is taken after
the homogenization.

(15b)

4. Property closures

The spectral approach based on GSH has been used in prior
works to delineate property closures for cubic and hexagonal met-
als [8,17,18]. These closures rely on the first-order bounding the-
ories and consider ODFs as the main microstructural descriptors
influencing the effective properties. In other works, these closures
have been delineated using the spectral approaches based on fast
Fourier transforms (FFTs) [42,51]. The FFT approach facilitates de-
lineating of closures more efficiently than the GSH approach. As
an added advantage, the FFT computational methodology is more
readily accessible than the GSH codes. However, the GSH repre-
sentation is more compact with fewer necessary expansion coeffi-
cients and resulting in smaller databases. This work advances the
GSH approach for delineating property closures to orthorhombic
polycrystals. To this end, the new ODF-property linkages formu-
lated in the prior section are used to obtain the elastic stiffness
and thermal expansion closures. The delineation procedure for clo-
sures relies on the database of non-zero GSH expansion coefficients
for each component of the orientation dependent transformation
tensors for calculating the thermal expansion and elastic stiff-
ness/compliance tensors (e.g. Tjkipgrs)- Next, the expansion coeffi-
cients corresponding to a complete set of ODFs (the texture hull)
must be calculated. Finally, the expansion coefficients correspond-
ing to the ODFs and the properties are multiplied and summed
and then multiplied with crystal properties to obtain the property
bounds (i.e. Eq. (13)). These calculations are performed with a dra-
matic reduction in computational time relative to traditional meth-
ods (i.e. Egs. (7)-(9)).

The procedure starts with selecting a set of points in the tex-
ture hull “eigen textures” [52]. These eigen textures cover the fun-
damental region of the OS. The property bounds Egs. (14) and
(15) are then evaluated using the GSH representation of the ODF-
to-property linkages (Eq. (13)) for all relevant properties (CS, S°,
and o) for these eigen textures. Of these eigen textures, a set of
those producing the boundary points of the property closure are
selected for making combinations (pairs). These combinations are
weighted textures corresponding to the boundary points of the clo-
sures. The weighted pairs are incremented by a 0.2 weighted frac-
tion, i.e. from (0.2, 0.8) pair to (08 02) palr Calculating the rel-
evant properties for these pairs (C S’ and & *) expands the prop-
erty closures. Next, a new set of textures at the new boundary of
the current closure are selected to evaluate properties (C S’ and
o*) corresponding to their weighted combinations. This process is
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repeated until the expansion of closures is saturated. The proce-
dure follows the ideas underlying genetic algorithms and was used
in the past for cubic and hexagonal metals [20].

This procedure in conjunction with the novel GSH represen-
tation of properties, Eq. (13), is used here to obtain the first-
order property closures for orthorhombic metals. However, before
presenting results for orthorhombic metals, we verify the novel
GSH representation of properties using cubic metals. For this pur-
pose, we use polycrystalline Cu. As mentioned earlier, the com-
pact form corresponding to Eqs. (7) and (8) has been used in
the past for cubic and hexagonal metals. This is the first report
using the most general expressions, Eqs. (7)-(9). The general ex-
pressions work for any crystal symmetry but are mandatory for
orthorhombic symmetry as there is no a corresponding compact
form. Fig. 5 presents the results for Cu. These results are identical
to those presented in earlier works based on the GSH represen-
tation [18] and the FFTs representation [42] of the compact form
elastic stiffness/compliance further verifying the spectral represen-
tation of the general expressions, Eqs. (7)—(9). The shaded region
inside the closures denotes the possible property combinations for
the stiffness components according to the first-order bounding the-
ories. Any property combination from the closures has correspond-
ing textures inside the hull. Therefore, the ODF-property linkages
are invertible.

Examples of elastic and thermal expansion property closures
are presented for «-U in Figs. 6 and 7. These closures cover a broad
range of temperatures because the crystal constants were available
(Fig. 2). As with Cu, we present three examples of pairs of the ef-
fective properties. The particular property combination for the ef-
fective axial elastic component and the effective shear component
play a role in the design of engineering parts experiencing a si-
multaneous axial load and twisting moment. Since the closures re-
ported here are for triclinic textures, i.e. no sample symmetry as-
sumed, it is possible to couple the additional normal-shear com-
ponents. Note that when the orthotropic sample symmetry is in-
voked, Cyq15 is zero.

In delineating these closures for orthorhombic metals over the
range of temperatures, certain key attributes are observed and ex-
ploited to facilitate their fast computation. Like for cubic met-
als [18], the expansion coefficients for orthorhombic metals corre-
sponding to the boundary points on the closures are independent
of the temperature dependent single crystal properties. Therefore,
after computing and storing the set of ODF expansion coefficients
corresponding to the boundary points on the closures at one tem-
perature, this set of coefficients can be used to quickly produce
closures at any other temperature. These ODF expansion coeffi-
cients are another database, which can be repeatedly used with
single crystal properties at different temperature to rapidly delin-
eate property closures at that temperature.

5. Thermo-elastic simulation of hemispherical part during
heating

In this section, we use the elastic stiffness and thermal expan-
sion tensorial properties obtained based on the crystal mechan-
ics at every integration point within finite elements in a thermo-
elastic simulation. To this end, we develop a user material (UMAT)
subroutine and combine it with a thermal expansion (UEXPAN)
subroutine in Abaqus. A number of UMATSs have been developed to
embed texture and underlying anisotropy of material response at
FE material points [53-55]. Of these UMATS, the implementation
of the elasto-plastic self-consistent (FE-EPSC) polycrystal plasticity
model is of interest in the present work [56,57] because it is ca-
pable of predicting homogenized elasticity, thermal expansion, and
plasticity [58]. Specifically, the UMAT we develop can calculate the
elastic stiffness and thermal expansion tensorial properties either
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Fig. 5. (Cii1, Ci22), (Crins Ci212), and (Cyqqr, Cii12) closures for Cu at room temperature computed using the GSH procedure presented in this paper.
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Fig. 6. (Ci111, Ci122), (Cinns Ci212), and (Cyypr, Cii12) closures for o-U as a function of temperature computed using the GSH procedure presented in this paper.

based on the GSH representation Eq. (13) or the conventional cal-
culations (Egs. (7)-(9)) along with the underlying Jacobian matrix.
The conventional calculations in the UMAT are used to verify the
GSH calculations from the same UMAT. Moreover, the conventional
calculations are used as a reference to demonstrate the computa-
tional efficiency of the GSH representation. Calculations using an-

other UMAT, the FE-EPSC UMAT, are used to discuss the effect of
the homogenization methodologies used in the prediction of the
thermo-elastic distortion of the part (i.e. SC versus upper bound).
Fig. 8 shows the FE mesh of half of the hollow hemisphere.
The hemisphere has an inner radius of 75 mm and an outer ra-
dius of 80 mm. Note, that the bottom has a small notch for fit-
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Fig. 7. (a1, o12), (o011, @) and (orqy, o33) closures for o-U as a function of temperature computed using the GSH procedure presented in this paper.
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Fig. 8. FE mesh of half of the hemi. The half is shown to reveal the displacement boundary conditions at the pole cap, where the two nodes are indicated. Displacement
degrees of freedom are fixed in all three global directions for (node red) and in the global rolling direction (RD) and transverse direction (TD) for the (node gray). The global
frame and the local frame, 6-azimuthal direction, ¢-polar direction, and r -radial direction, are shown. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 9. Representation of the arcs cut from the hemi with the polar (¢) angles (along arcs) and azimuth (6) angles (along equator of hemi). Measured pole figures are shown
for a few polar angles along the rolling direction (RD) (6 = 0°) and the transverse direction (TD) (6 = 90°). The indicated frames are only for pole figures: a) In the local
frame of reference, the pole figure axes are parallel to the local azimuthal, polar, and radial directions and b) In the global reference frame, the pole figure axis are parallel
to the global RD, TD, and normal direction (ND) of the prior rolled plate that was formed into the hemisphere.

ting in other parts. The mesh consists of 30,096 elements of which
528 are the coupled temperature-displacement triangular prism el-
ements meeting at the pole cap (C3D6T) and the rest are full in-
tegration temperature-displacement elements (C3D8T) with 4 ele-
ments through the thickness. Nodal temperatures are prescribed to
surface of the hemisphere starting at 25 °C and increased to 250 °C
in increments of 1 °C. The remaining imposed boundary conditions
allow for free thermal expansion of the hemisphere since only two
nodes are constrained (Fig. 8). One node has the encastre boundary
condition, while the other is allowed only to move in the ND.

The novel crystal mechanics-based thermo-elastic constitutive
modeling framework is aimed at modeling the spatial variation of
anisotropic deformation during heating by accounting for the spa-
tial variation of crystal lattice orientations of constituent grains
and the temperature dependent single crystal properties across FE
integration points. The first task is initialization of the spatial vari-
ation of texture by embedding the appropriate ODF at each FE in-
tegration point. Figs. 9 and 10 show pole figures of experimentally
measured, neutron diffraction (NeD) texture data for a hemispher-
ical part of depleted «-U. NeD is a bulk texture characterization
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Fig. 10. Projected {020} poles on a hemi made of depleted «-U plotted in (a) local moving frame defined by azimuthal direction (), polar direction (¢), and radial direction
(r) and (b) global sample frame defined by RD, TD, and ND. The dashed lines in (b) pass through pole figures shown in Fig. 9. The intensity scale is the same as in Fig. 9.

technique over ~cm? volumes facilitated by the deep penetration
of thermal neutrons into the material [59]. This measured data for
half of the hemisphere is interpolated to the FE mesh resolution
grid Fig. 8). Assuming orthotropic sample symmetry, we rotate the
data 180° around the ND two fold symmetry axis for each mea-
sured point to initialize the other half of the hemisphere. A rig-
orous procedure for the interpolation was presented in [1]. The
procedure exploits the linearity of the GSH expansion space in
the spatial interpolation/weighting of the expansion coefficients of
measured ODFs. Upon interpolation, a corresponding ODF to the
interpolated coefficients can readily be constructed by solving a
linear programming problem in the expansion space [9,60]. How-
ever, there is no need for reconstructing ODFs because the coef-
ficients are sufficient for Eq. (13). Elegantly, the interpolated ex-
pansion coefficients are directly used in the ODF-property link-
ages (i.e. Eq. (13)). Nevertheless, the ODFs are reconstructed with
the minimal number of 113 weighted orientations at each spatial
location over the hemi to initialize the conventional simulation

10

(Egs. (7)-(9)) and the FE-EPSC simulation because these simula-
tions require Bunge-Euler angles for texture at each FE integration
point. 113 is the minimum number of weighted crystal orientations
to facilitate a unique solution to an ODF given the expansion coef-
ficients for orthorhombic-triclinic textures at L = 10. The heating
simulations of the part can now be carried out taking into account
the anisotropy because the thermo-elastic properties at each in-
tegration point are based on texture and temperature dependent
single crystal constants.

Textures are interpolated to the centroid of each finite element
of the hemisphere and assigned per element. Room temperature
thermal expansion coefficients based on the interpolated textures
at the centroids of each finite element are calculated and shown in
Fig. 11. The coefficients of thermal expansion are calculated using
the three material models (1) the upper bound GSH representation
(denoted as GSH-UB), (2) the upper bound conventional calcula-
tions using the coordinate transformation matrix, Q (denoted as
Q-UB), and (3) the self-consistent FE-EPSC (denoted as SC). As ex-
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Fig. 11. Effective thermal expansion coefficients expressed in the local frame (a) &g, (b) &, and (c) @y, at room temperature based on ODFs at each integration point of
the hemisphere after the interpolation. These projections are in the same coordinate system and orientation as those in Fig. 10a.

pected, GSH-UB and Q-UB results are identical. As is evident, the
thermal expansion contours reveal significant spatial variation in
each thermal expansion tensor component over the hemispherical
«-U part. Therefore, the distortion of the part predicted with the
temperature change should be anisotropic.

Using the novel approach described here, the thermo-elastic
heating simulation is performed using Abaqus implicit solver to
study the geometric changes of a depleted «-U hemisphere. The
simulation is carried out using the three material models (1) GSH-
UB, (2) Q-UB, and (3) SC. Thermal strains are driven by the ther-
mal expansion coefficients allowing Abaqus to define nodal dis-
placements based on mechanical constraints. The simulation be-
gins with a zero deformation step to initialize temperature, load
interpolated textures at each integration point, and calculate the
texture dependent thermal expansion coefficients and elastic con-
stants within the UMAT. Next, the UEXPAN subroutine is called,
given the change in temperature to estimate an increment in the
thermal strain field (" = @*AT) based on the thermal expansion
coefficients (already calculated in the UMAT). Next, Abaqus esti-

n

mates the mechanical strains (&€ = §Sa) given the boundary con-
ditions. Finally, the UMAT subroutine is called to calculate stresses
given the strains. The UMAT also recalculates the coefficients of
thermal expansion and elastic stiffness for the next call to the UEX-
PAN subroutine.

Fig. 12 shows the predicted displacement fields and Fig. 13
shown the thermal strains plotted solely at the equator of the
hemisphere after heating from 25 to 250 °C. The fields indicate
that the predicted distortion of the hemisphere with temperature
is anisotropic. The predictions show location and directional de-
pendence, which would not be possible to predict with isotropic
models. The material also exhibits highly anisotropic plasticity be-
havior [61,62]. In closing, Fig. 14 shows the computational time in-
volved and memory requirements for the heating simulation as a
function of the number of orientations embedded at each integra-
tion point for the GSH-UB and Q-UB computational methods. The
purpose of these simulations was only to demonstrate the superi-
ority of the GSH method. Simulations were performed on a work-
station: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz with 32 cores
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Fig. 12. Predicted radial displacements (a dot product between displacement vector and radial unit vector) after heating from 25 to 250 °C.

and 772 GB RAM. 30 cores were used to carry out the heating
simulations. The time involved and memory required in GSH-UB
is constant, while these increase approximately linearly with the
number of orientations for the Q-UB computational method. Re-
sults for SC are not shown. The SC simulation is the slowest by far
because it requires the self-consistent iterations.

6. Summary and conclusions

This work developed the computational procedure for mi-
crostructure - property linkages for orthorhombic metals us-
ing GSH base functions. At the core of the procedure are the
databases built to capture the spectral representation of each com-
ponent of the orientation dependent transformation tensors. The
databases are used recursively and efficiently in calculating the
bounds of local or homogenized thermal expansion and elastic
stiffness/compliance tensors. The procedure is used to delineate
the first-order property closures for polycrystalline microstruc-
tures of «-U. Numerous examples of thermal expansion and elastic
property closures are computed covering a broad range of tem-
peratures. In doing so, certain key properties of these closures
are exploited to facilitate their computation with drastically re-
duced computational effort. The properties of the closures pertain
to the invariant texture coefficients corresponding to the bound-
ary points of the closures. The developed computationally effi-
cient ODF-effective property linkages, in conjunction with the re-
cently developed GSH-based interpolation procedure for ODFs from
coarsely spaced experimental measurement grids to finely spaced
modeling grids, are used to establish a crystal mechanics-based
simulation framework coupled with finite elements. The expansion
coefficients upon the interpolation are used directly in the GSH-
based ODF-property linkages without reconstructing ODFs at ev-
ery FE integration point. As a result, the thermal expansion and
elastic anisotropy are introduced efficiently and elegantly into the
numerical FE tool for simulating thermo-mechanical loadings. The
GSH approach is verified by simulating the distortion of a hemi-
spherical part made of «-U during heating by comparing results
of the same simulation performed using the upper bound conven-
tional methodology. Additionally, the same results are presented
based on the self-consistent homogenization to appreciate the dif-
ference between the self-consistent and the upper bound homog-
enization. The invertible linkages framework can be used to itera-
tively vary ODFs to design texture in the part for minimized dis-
tortion. These aspects, in addition to introducing the plasticity and
texture evolution in the framework, will be subject of future re-
search. Additionally, future works will compare predicted displace-
ment and residual stress fields to experimental data for several
thermo-mechanically processed parts.
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