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PEIXIN WANG!, JIAHONG WU?2, XTIAOJING XU! AND YUEYUAN ZHONG!

ABSTRACT. Precise large-time behavior of physical quantities plays a crucial role
in understanding many physical phenomena. For partial differential equation
(PDE) models with full dissipation, powerful methods such as the Fourier-splitting
technique have been developed. However, these methods may not be applied to
PDE systems with only partial dissipation. This paper offers new ideas on how
to obtain precise large-time decay estimates on a partially dissipated system. We
examine the d-dimensional incompressible Oldroyd-B model without velocity dis-
sipation and with only fractional diffusive stress. The discovery here is that the
coupling and interaction of the velocity and the non-Newtonian stress actually
enhances the regularity and the stability of the system. Without the stress, the
Sobolev norms of the velocity could grow rather rapidly in time, let alone decay at
explicit rates. Making use of the interaction, we deduce a system of damped wave
equations obeyed by the velocity and the Leray projection of the divergence of
the stress. By constructing a suitable Lyapunov functional, we are able to control
the growth in the derivatives and extract explicit decay rates. The optimal decay
rates are established by representing the wave equations in an integral form and
applying a bootstrapping argument.

1. INTRODUCTION

Let d > 2 be an integer. Consider the initial-value problem for the d-dimensional
Oldroyd-B model
du+u-Vu+VP=V-7, z€R t>0,
O +u- VT +n(—A)°T+Q(1, Vu) = D(u),
V.-u=0,
U(Q?, O) = U0($)7 T<I7 0) = To(l’),
where u(z,t) = (ui(x,t),...,uq(x,t)) denotes the velocity field of the fluid, P =
P(z,t) denotes the pressure, 7 = 7(x,t) denotes the non-Newtonian part of stress

tensor (a symmetric matrix), and n > 0 and 5 > 0 are parameters. Here D(u) is
the symmetric part of Vu,

(1.1)

D) = 5(Vu + (Vu)"),
and @ is the following bilinear form
Q(7, Vu) = 7Qu) — QUu)t + b (D(u)T +7D(u)), be[-1,1]
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with Q(u) being the skew-symmetric part of Vu, namely
1
Qu) = §(Vu — (Vu)h).

The fractional Laplacian operator (—A)? is defined through the Fourier transform,
namely

CAVHO £ kRO, Fo=Fi© 2 [ e

. . 1 . .
Sometimes we write A = (—A)z for notational convenience.

The Oldroyd-B equations govern the motion of a class of complex fluids such as
a solvent with particles suspended in it and have become one of the most studied
models in viscoelastic flows (see, e.g., [1,27]). The Oldroyd-B model in (1.1) is a
system coupling the forced Euler equations for the velocity with a kinetic description
of the particles. When the fluid viscosity is small or Reynolds number is large, the
Euler equations serve as a good approximation for the fluid motion. The equation
of 7 contains no damping but dissipation given by a fractional Laplacian operator.
When the Weissenberg number is large, the damping is negligible. The fractional
Laplacian dissipation (—A)? with 8 > 0 includes the standard Laplacian as a spe-
cial case and is physically relevant to nonlocal interactions. Mathematically the
fractional dissipation allows the study on a family of equations simultaneously and
gives us a broad view on how the behavior of solutions changes as the dissipation
power varies.

The goal of this paper is to understand the large-time behavior of solutions to
(1.1) and provide optimal estimates on the decay rates. The Oldroyd-B model exam-
ined here involves only partial dissipation with the velocity equation being inviscid.
Large-time behavior plays a crucial role in understanding many physical phenomena
and powerful tools have been created for PDE systems with full dissipation. The
Fourier-splitting approach of Schonbek and her collaborators has been proven to be
very useful for many fully dissipative systems such as the Navier-Stokes equations
(see, e.g., [28,29]). However, when there is only partial dissipation, the large-time
behavior problem is in general difficult. The Fourier-splitting method does not ap-
pear to work for our partially dissipated system. This paper presents new ideas
on how to deal with the large-time behavior problem on an partially dissipated
Oldroyd-B model. We take advantage of the fact that the coupling and interaction
between the velocity u and the stress 7 actually enhance the regularity and stability
of the system. It is hoped that this work would pave a path for more discoveries on
the large-time behavior of PDE models with only partial dissipation.

In addition, this paper serves as a continuation of a previous work of Constantin,
Wu, Zhao and Zhu [6], which established the global stability of perturbations near
the trivial solution of (1.1) in the case when § > 3. More precisely, [6] shows that
any sufficiently small initial data (ug, 7o) in the Sobolev space H"(R?) with r > 1+4
leads to a unique global solution (u,7) that remains comparable to the initial data.
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Since this result will be cited in our main results, we provide a precise statement of
their result.

Theorem 1.1. Consider (1.1) with n > 0 and 3 < f < 1. Let d = 2,3 and
r>1+%. Assume (ug,79) € H'(R?), V - ug = 0, and 7o is symmetric. Then there
exists a small constant € > 0 such that, if

[uollr + l[ollar < e,

then (1.1) has a unique global solution (u,T) satisfying,
t
B(t) = lu®)F + Tl +/0 (A7 ()1 + [ Vuls)lFs) ds S €% (1.2)

Here A < B means that there exists a constant C' such that A < C'B. The
positive constants C' may be different in each case. This global stability result is not
trivial. The velocity equation in (1.1) is the forced Euler equations. As demonstrated
in several recent works [7,21,38], the Sobolev norms of the solutions to the Euler
equations can grow rather quickly (even double exponentially) in time. [6] was able
to prove the desired stability by making the new observation that the non-Newtonian
stress tensor can actually smooth and stabilize the velocity field. Mathematically [6]
observed that u and PV - 7 (the Leray projection of the divergence of 7) actually
satisfy damped wave equations. By constructing a suitable Lyapunov functional
as suggested by the wave structure, [6] was able to established the aforementioned
global stability.

1.1. Main results. This paper focuses on the large-time behavior of the solutions
obtained in [6]. We establish two main results. The first result assesses that any
spatial derivative of order one or higher of the solution obtained in [6] actually

decays at least at the rate of (1+ t)_%. More precisely, the following theorem holds.

Theorem 1.2. Consider (1.1) with n > 0 and % < B <1. Letd= 2,3 and
r>1+ g. Assume (ug, 70) € H"(RY), V -ug = 0, and 7y is symmetric. In addition,
(uo, 70) fulfills the smallness requirement of Theorem 1.1, namely

luollrr + lIoll - < &

for sufficiently small € > 0. Let (u,T) be the corresponding solution of (1.1). Then
(u,7) obeys the decay estimate, for any t > 0,

IVu@) | + V7)1 S e(1+18)75. (1.3)

Even though (1.1) is only a partially dissipated system, the decay result of Theo-
rem 1.2 resemble those for fully dissipative PDE systems such as the heat equations
and the Navier-Stokes equations. Due to the lack of dissipation in the velocity equa-
tion, this decay result is not trivial. One reason, as aforementioned, is the potential
rapid growth in the Sobolev norms of the solution. In order to control the growth
of the solution, we take advantage of the hidden wave structure for v and PV - 7,

1
attu + n(—A)’Batu — §Au = Nl: x € Rd, t> O,

1.4)
1 (
OuPV -7 +n(=A)PO,PV - T — §AIP>V T=N,, V-u=0,
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where P = I — VA™!V. denotes the Leray projection, and N; and N, are the
nonlinear terms,

Ny = — (0, +n(—=A)")P(u - Vu) =PV - (u-V7) =PV - Q,
1
Since (1.4) plays a crucial role in our analysis, we provide the details of derivation.
Applying the projection operator P = I — VA~V to the velocity equation and the
operator PV- to the equation of 7 in (1.1) lead to

0tu:IPV-T+N1,

5 1 ~ (1.5)
PV -7+ n(—=A)'PV -7 — iAu = Ny,

where
Ny = —P(u-Vu) and Ny=—PV.(u-V7)—PV-Q(r, Vu).
Differentiating the first equation of (1.5) in ¢ yields
Oyt = 0PV - 7 + 9, N,.
Replacing 0;PV - 7 by the second equation of (1.5), we obtain

1 - ~
Ouu = —n(—=A)°PV - 1 + 5 AU+ Ny + 0N
By further invoking PV - 7 = d,u — N via the first equation of (1.5), we have
1 -~ -
8ttu + n(—A)’B&gu — §Au = n(—A)ﬁNl + N2 + (%NL

The terms on the right-hand side is the same as Ny,

77<_A)6f\71 + No + O, Ny

= —(0y +n(=A)")P(u-Vu) =PV - (u-V7) =PV -Q = N;.

We have thus obtained the first equation in (1.4). The second equation in (1.4) can
be derived very similarly.

By exploiting the regularization due to the wave equations in (1.4), we are able
to construct a suitable Lyapunov functional to control the growth of ||Vu(t)| gr-1 +
V7 ()|l grr—1. More detailed ideas on the proof of Theorem 1.2 will be presented in
the later part of this introduction.

Theorem 1.2 does not provide the large-time behavior on the L?norm of the
solution (u,7) itself. This is not surprising. Even in the case of the heat equation,
the L?-norm of the solution is not known to decay in time if we only know that the
initial data is in L?. In order to make the behavior of L?-norm of the solution definite,
we need to make extra assumptions on the initial data (ug, 79). The extra condition
imposed here is (ug, 7o) € L'. This type of functional setup or the Sobolev space
with a negative index is usually required when dealing with large-time behavior of
dissipative PDEs (see, e.g., [28,29]). Our second main result establishes the optimal
decay rates for the L?-norm of u and Vu, the L>®-norm of u and Vu as well as the
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L?norm of PV - 7. The precise statement is provided in the following theorem. The
following notation will be used throughout the rest of this paper

I llee &1 Noo@ay, -l 21 ey, (8 =1+ 2.
Theorem 1.3. Let d = 2,3. Consider (1.1) withn > 0 and 3 < 8 < 1. Assume
%32 # 1. Assume the initial data (ug, 7o) satisfies
d 2d+2
(10,70) € LR N HT(RY) with 1 =3+ 5+ ; C Veup=0

and Ty is symmetric. Then there exists a sufficiently small parameter ¢ > 0 such
that, if
[ (o, 70) || L1nmr < €,

then (1.1) has a unique global solution (u, T) that obeys the following decay properties
_d _d _di2
[u(@ll2 S ety 2, fu@)lze Se®) 2, [[Vul@)lz Set) 7,
IVu®llee S5, [PV -7(0)le S ()% .

The decay rates obtained in Theorem 1.3 are optimal. They are in line with those
for the solutions of the generalized heat equation,

U+ (=AU =0, z€Rt>0,
U(x,0)=Uy, € L' N L2

This theorem and its proof offer a new approach on how to obtain sharp large-time
behavior for systems of equations with only partial dissipation. The main discovery
is that the coupling and interaction between the velocity equation and the equation
of 7 actually enhance the regularity and stability of the system. Due to the lack of
dissipation in the equation of u, the decay rates can not be derived from the original
system in (1.1). The idea here is to make use of the system of wave equations (1.4)
satisfied by u and PV - 7. This system reflects the enhanced regularity and makes
the desired decay possible. We will give more precise description on how we actually
achieve the optimal rates later.

We remark that the Oldroyd-B models have attracted considerable interests and
there are substantial recent developments. Significant progress has been made on

many fundamental issues such as the well-posedness and stability problems (see,
e.g., [2-6,8-14,16-20,22-26,31-37]).

1.2. Main ideas in the proofs of Theorem 1.2 and Theorem 1.3. We briefly
describe the main ideas on how we prove Theorem 1.2 and Theorem 1.3. The proof
of Theorem 1.2 is based on the following lemma, which provides a precise decay rate
for a nonnegative integrable function when it decreases in a generalized sense.

Lemma 1.4. Let f = f(t) be a nonnegative function satisfying, for two constants
ag >0 and a; > 0,

/mf(r)d7§a0<oo and f(t) <ay f(s) forany0<s<t. (1.6)
0
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Then, for ay = max{2a; f(0),2apas} and for any t > 0,
() <ax(1+1t)7%
By Lemma 1.4, to prove Theorem 1.2, it suffices to verify that
F@&) = IVu®)lz- + IV (@)1l

satisfies the two conditions in (1.6). The first condition of (1.6), namely the time in-
tegrability of f(t), has been established in [6], as stated in Theorem 1.1. The second
condition of (1.6), namely the generalized monotonicity of f, is the main focus of
the proof of Theorem 1.2. Due to the lack of dissipation in the velocity equation, the
Sobolev norms of the solution (u,7) could potentially grow in time and the desired
generalized monotonicity appears to be impossible. A key observation here is that
the coupling and interaction between the velocity u and the non-Newtonian tensor
7 helps smooth and stabilize the solution of (1.1). Mathematically the interaction
allows us to derive the hidden wave equations obeyed by uw and PV - 7, namely
(1.4). The wave equations (1.4) decouple u from PV -7 in the linearization, and are
obtained by taking 0; of the equations for v and PV - T,

Owu+P(u-Vu) =PV - T,

1
OPV -7 +PV - (u-V7)+n(=A)’PV -7 +PV-Q(r,Vu) = §Au’ (1.7)
V-u=0,

making several substitutions, and regrouping linear and nonlinear terms. The wave
structure in (1.4) reveals that both u and PV - 7 are effectively dissipative and
dispersive. In order to unearth the hidden regularization, we construct a suitable
Lyapunov functional,

L(u,7) = [|[Vul|}r—1 + |V 7|3-1 + 2k (Vu, VPV - 7) gr1-5 (1.8)

where k > 0 is a suitably selected parameter and (f, g) y- denotes the inner product
in the Sobolev space H?. The inclusion of the inner product term will bring out
the dissipation on wu, which helps prevent any potential growth in the Sobolev norm
of u. This is how we obtain the aforementioned generalized monotonicity, for any
0<s<t

[Au@) e + IAT O < C ([Aw(s) s + AT () [Frr)

which, together with the time integrability of f(¢) guaranteed by (1.2), leads to the
desired decay rates stated in Theorem 1.2. We leave more technical details to the
proof of Theorem 1.2 in Section 3.

Due to the lack of dissipation in the velocity equation in (1.1), the optimal decay
rates stated in Theorem 1.3 do not follow from classical approaches designed for
fully dissipative systems. Our idea here is to exploit the regularization and damping
effects created by the wave equations satisfied by u and A £ PV - 7. We represent
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the equations of u and A in an integral form via the spectral analysis,

u(é, 1) M1U0+M2Ao+/ M,y (t — s)G(s)ds

/Mgt—s F(s)+ H(s )>ds,

1.9
I o (19)

BU Myt + MsAg — | SMy(t — 5)G(s)ds

/Mgt—s ()+H()>ds.

The derivation of (1.9) is obtained in Lemma 4.1. The explicit formulas of the
kernel operators M, M, and M;s are also specified there. The framework of the
proof is to apply the bootstrapping argument to (1.9). A direct applicable form of
the bootstrapping argument can be found in [30, p.21]). As a preparation, we need
to derive optimal explicit upper bounds on the kernel functions M;, M, and Ms.
These kernel functions are nonhomogeneous and frequency dependent. To achieve
the sharp upper bounds, we divide the whole frequency space into suitable subdo-
mains and derive definite upper bounds for these kernels in each subdomain. The
precise division of the frequency space and the explicit upper bounds are presented
in Proposition 4.2 in Section 4.

Alg,t) =

To apply the bootstrapping argument, we need to define a suitable functional
setting. We introduce the following time-weighted norm

X(t) = sup {5 u() @ + () [0(5) @ . (110)
Y(t) = sup { ()% (IVu(s)zaes + [ AG) 2
+ () T J€fa(s) e (1.11)
Our main efforts are devoted to establishing
X(t) 5 o, 7o)l ma + X(OY (8) + (X(0) + Y @) 17l e, (112)
Y (8) S o, 70) luaca + 11, ) [F e
(X0 +Y(0) (YO + 1,7 ) (1.13)

If we take the initial data (ug, 7o) to be sufficiently small,

| (wo, 70) || L1 < €

for a suitable small ¢ > 0, Theorem 1.1 assesses that the corresponding solution
remains small for all time,

[(u(®), 7)) < Ce.
Then (1.12) and (1.13) imply
Xt)+Y({t)<Ce+C(X(t)+Y(t)> (1.14)
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Then a simple application of the bootstapping argument to (1.14) would lead to
X(t)+Y(t) <Ce,

which yields the desired result of Theorem 1.3. The proof of (1.12) and (1.13) is a
lengthy and technical process. We apply various new techniques such as sharp decay
rates for generalized heat operators associated with fractional Laplacian, and frac-
tional derivative identities and commutators to facilitate the shifting of derivatives.
The details are provided in Section 5.

In [15] Yan Guo and Yanjin Wang proposed and applied a powerful and effective
approach for the problem of optimal decay rates on dissipative equations in the
whole space. We discuss the possibility of implementing their approach for the
decay problem solved in this paper. We briefly outline the mechanism of their
approach. It is based on the energy estimates. The initial data is assumed to be in
the standard Sobolev setting H*(R?) with s > 1+ g as well as in a Sobolev space of
negative index, H?(R?) with 0 < 0. Generally the initial data is also assumed to be
small in H*(R?) in order to obtain the global uniform bound on the H*-norm of the
solution. A crucial feature of their approach is to show that the negative Sobolev
norm of the solution is preserved along time evolution. To obtain the decay rate for
the H*-norm with ' < s, one interpolates the H*-norm in terms of the H*-norm
and the H?-norm in the energy estimates. In order to apply their approach to our
problem here, we need to prove that the negative Sobolev norm is preserved in time.
For the Oldroyd-B model considered here, the lack of the velocity dissipation and
the involvement of the nonlinear term () in the equation of 7 make this task difficult.
Clearly we need to construct suitable Lyapunov functional involving the negative
Sobolev norm and carefully crafted inner product terms of v and PV - 7. We will
pursue this approach in our future research.

The rest of this paper is divided into four sections. Section 2 provides several tool
lemmas to be used in the proofs of subsequent sections. Section 3 proves Theorem
1.2. Section 4 serves as a preparation for the proof of Theorem 1.3. It converts
the equations of u and A into an integral form in terms of the kernel functions Mj,
M, and Mj. Sharp upper bounds on these kernel functions are also derived in this
section. Section 5 provides the proof of Theorem 1.3. The proof is very long and is
divided into six subsections.

2. PREPARATION

This section serves as a preparation. It lists several tools to be used in the
proofs of Theorem 1.2 and Theorem 1.3. The first provides an upper bound on an
convolution integral (see, e.g., [31]).

Lemma 2.1. If0 < s1 < s, then
. C ()", if 59> 1,
/ (t —s) " (s)7"2ds < L C(t) " In(1 + ), if sy =1,
" C(t)' =72 if sy < 1.
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The next lemma provides an exact decay estimate for the heat operator associated
with a fractional Laplacian.

Lemma 2.2. Let v > 0 and f € L*(RY) N L*(R%). Then,

o _d
le™ A fllr2@ay < C ()73 || fllp@ynzeme). (2.1)
Proof. We provide an elementary proof. For 0 <t <1,
—u(— a v 2a4 N -
e =4) tf”L2(Rd) = |le i tfHH(]Rd) < [ fllzzwey = [ fll 2 mey- (2.2)
For ¢t > 1,
—u(— «@ v 2a4 —v 2a -
le =4) tfHLQ(Rd) = |le €l tfHL?(]Rd) <le & t||L2(Rd)||f||L°°(Rd)
_le[2e _d
< e oy | f 1|21 ey = C)E 3 || £l £ oy (2.3)
Combining (2.2) and (2.3) leads to (2.1). O

The following lemma rewrites the nonlinear term PV - (u - V7) into three terms
with one of them containing A £ PV - 7 and the other two containing Vu. This
identity is useful when we try to prove (1.12) and (1.13) in Section 5. It is derived
in (36, Proposition 3.1].

Lemma 2.3. For any sufficiently smooth d-dimensional vector u and any tensor
T = [Tij]dxd;
PV - (u-V7)=Pu-VPV . -7)+P(Vu -V7) —P(Vu-VATIV.-V.7). (24)

Finally we state a commutator estimate that can be found in [31, Lemma 4.1].
This estimate will be useful in the proof of Theorem 1.3.

Lemma 2.4. Let v be a scalar function and T be a tensor. Then

[PV o7l S IVollezll7l e + Jvllz (Al 2. (2:5)

3. PROOF OF THEOREM 1.2
This section is devoted to the proof of Theorem 1.2.
Proof of Theorem 1.2. We set

d
F(O) 2 IVa@)llrs + VT O 7> 143,

and apply Lemma 1.4. According to (1.2) in Theorem 1.1,

/ ft)dt < Ce?

where C' > 0 is a pure constant. This verifies the first condition in (1.6). If we can
establish the second condition in (1.6), namely

f(t) <C f(s) forany0<s<t, (3.1)
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then Lemma 1.4 would conclude that
[y <Ce(1416)71,

which is exactly (1.3) in Theorem 1.2. The rest of the proof shows (3.1). As we
have explained in the introduction, it is not trivial to verify (3.1) due to the lack of
velocity dissipation. We need to work with the Lyapunov functional L defined in

(1.8) in order to materialize the dissipative effect revealed by the wave structure in
(1.4).

The attention will be focused on the evolution of L. Recall that A = (—A)%.
Due to the equivalence of the norms
Vgl ~ lIAgllzz + [[A gl 2,

we use the norm on the right in the estimates. Applying A to (1.1) and dotting by
(Au, A7), and applying A" to (1.1) and dotting by (A"u, A7), we obtain

1d
5%(”1\“”%—1 AT |G+l AT
= —(A(u-Vu),Au)gr—1 — (A(u - V7),AT) gr—1 — (AQ(7, Vu), AT) gr—1,  (3.2)
where we have used, for [ = 1 and r,
/ (A - (A'V - 7) + A'D(u) - Al7)dz = 0.
R4
It is not difficult to use (1.7) to verify that

d 1
—(Au, APV - 1) + §|]Au\|iz — ||APV - 73,

dt
= —(A(u-Vu),APV - 1) — (APV - (u - VT1), Au)
— (APV - Q(7, V), Au) — n(A* TPV - 7, Au). (3.3)
Similarly we can check that
d r— r— 1 r—1— r—
E(A Pu, A"PPV - 1) + §||A A3, — |ATTPPY - 7|3
= (A" P(u-Vu), PPV - 7) — (A"PPV - (u- V7)), A" Pu)
— (A"PPV - Q(1, Vu), A" Pu) — n(A"PPV - 7, A" Pu). (3.4)
For a constant k& > 0, (3.2)+k(3.3)+k(3.4) yields
1d
2 (IAulps + IATZs 4+ 2kt ABY 1) rm10) + ] AT
I 7
+ §||AU||§{T4—B — k[|APV - 7|31 = Z Zi, (3.5)
i=1
where

Zl = —k(A(U : V’LL), APV - T)HT—I—B,
Zy = —k(APV - (u- V1), Au)gr-1-5,
Zy = —k(APV - Q(1, Vu), Au) gr—1-5,
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—kn(A*PTIPY -7 Aw) greoas,
—(A(u-Vu), Au)gr-1,
—(A(u-V71),AT) g1,
—(AQ(T, Vu), AT)gr-1.

Next we estimate Z; through Z;. The following Sobolev inequalities will be used
frequently,

1 1

91l 212y < CllgllZe @) IVl L2 z2y (3.6)
(R?) (R?)

lgllzes) < ClIVgll L2 (3.7)

The case d = 2 is treated differently from the case d = 3. We start with d = 2. By
Holder’s inequality, (3.6) and some basic embedding inequalities,

1Z0] S NI Vull7age APV - 7]l 22y + lull oo 2y | Aull L2@2) [[APY - 7| 122y
+ A a2 | oo 2y |A™ P L2 2y
S IVull 2 @) | Aull 2@y A7 e 2y
+ ol ey || A pre-s-s ey A7 1 2y
S el e ey | Avll grr-s @) IA 7| s g2
S Nellarcey (1803 1msqany + NP7 2sae) )
Similarly,
| Zo| S NIVl o) V7 || o ey | Aul| 22y + [l oo 2y AT 222y || Al 22 (g2
+ A Pul pamey (1Al 2z |71 oo 2y + ([0l oo ooy | AT 707 22 )
< IVl gy IV 75 e A7 e S0l ey ey | Sl
+ Nl e @) | Aull gr-1-e 2y [| A7 | e 2y
~ (HUHHT(IR{?) + HT”HT(R?)) (HAUHHH—ﬁ(R'z) + ||A1+BT||%IT—1(R2)>
and
|Z3

SVl s IVl Loy | Aul| 22y + 17| oo R2) | A 22 g2y
A | azy (APl gy 17l oo 2y + 11Vl oo oy [|A™27 || 222y
S (alliequy + 7l aeny) (1A 1) + 1A 7131 s))
Z,4 is bounded by
| Zal < knl| A7 || s g2y || Al 15 g2y
< A P71 oy + K0 Al 1 s (38)
By V.-u=0, <ﬂ<1and7’>1+— we have

|Zs5| = / (U'VU)-Audx—/ (A" (u-Vu) —u-VA™u) - Nudz
RQ

RQ
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S ull s IVl pa@e) |Aul 22y + [Vl oo @) | A 6l 22 g2y
1 3
S Ml 22 oy 1Vl 2oy [| Al 2 gy + el oy | Al 715 g2
k
< §||AUH%2(R2) + Cllullfzme) I Vull z2mey + Cllullar @) | AullFr-1-s g2y -
Similarly,
| Zg| = ‘—/ Vu-Vr-Vrdr — / (A" (u-V71)—u-VA'T)N'17dx
R2 R2
S HVUHLQ(RQ)”VTH%‘%R?)
+ AT 2oy (V]| oo re) |A T [ L2(r2) + |A w| L2r2) [V T || oo (2))
S IVl 2@ V7] 22 AT | 22y + ([l g2y + 7] e e2))
X (11 + IA 271 )
Ui
< §HA27||%2(R2) + CHVUH%Z(RZ)HVT”%?(]RQ)

+ C ([lull ar@y + 17l z2)) (HAH_ﬁT”%{T—l(RQ) + ||Au||12m—1—6(R2)> :
Zr is bounded by
Z:| = [(Q(7, Vu), A*T) + (A" PQ(7, Vu), A7)
S 17l ey | Vol oz AT || 2 g2y
+ A7) 2 ey (AP Vul| 22y |17 1o 2y + [Vl oo 2y [|A 27| 12 r2y)

1 1 1 1
S HTHEZ’(RZ’)||VT||22(R2)||VUHE2(R2)HAUHE2(R2)HA27HL2(R2)

|A1+,B |AH'B

17 e ATl s o | Al -1 g2y + [l ey AT 7 e )

k Ul
< §||Au||%2(m2) + gHAQTH%Q(RQ) + CHTH%Q(RQ)||V7—||%2(R2)||VUH%Q(R2)
+ C (Jlullgr@2) + 7] 57 22)) <||A1+BT||?W—1(R2) + HAUHE’"*Pﬁ(R?)) :
In addition, for % < B <1, we have
k||APV - TH?{T*FB(RUZ) < kHAHﬁTH%{Pl(Rd)'
Inserting the estimates for Z; through Z7 in (3.5), we obtain
1d
2dt
n 146112 k 2 2
+ (5 - ]f) ||A THHT_1(R2) + Z —k n HAUHHT—l—B(RQ)

< €l + Il ) (1A 71301 gy + 120l

(||AUH§{T,1(R2) AT 21 ey + 2k(Au, APV - T)Hr,l,B(RQ))

2
Hv-flf,B(R2)>
+ C (Nl 2 | Vellaqgey + 97 2aqge) + 1712 IV 72y ) 11V

< Ce (HAH_BTH?{TA(RQ) + ||Au||12qr_1—ﬁ(R2)>
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+ O (I DB ey + 1) (IVul22qzy + 197 22 )

X (A1 ey + AT U1 s )
To proceed, we set
FA() = 1A 3-1 ey + AT gy + 26 (Au(t), APV - 7(8)) 1o
Since
2k (A, APV - 7) prr1-s (gay | < 2K || Al o1 (ga) [|AT || 26 (ro)
< 2k || Al gr-1 ey || AT || grr-1 ey
< SNl sy + 2RAT ey (39

we have

1
Fi(t) 2 5| Aufl - ey + (1 = 2k%) [|AT |71 ray.

If we choose k > 0 small enough, say
1 1
k <min<{ —, Q, —
2 4" 8y
d

SF(1) + () = Cre) (N7 sy + 1Al o))

dt
ey + 1) (IVul2age) + 1V 2eq) ) Fa(t):

< ¢ (Il )
Here ¢ > 0 is taken to be sufficiently small such that C(n) — Cie > 0. Applying
Gronwall’s inequality and (1.2) yields, for any 0 < s <t < o0,

then we have

Fi(t) < CF1(8)60<Sup”(“’TN@NRZ)H) fst(Hv“”i2(R2>+”VTH2L?<R2))dt/ < CFy(s),

which, together with (3.9), implies that, for any 0 < s <t < o0,

1A (8) -1 gy + AT s gty < © (A s ey + AT () o))
This is exactly the desired inequality in (3.1). It then follows from Lemma 1.4 that
HAu(t)Hf-{r,l(Rz) + HAT(t)Hf-Jr,l(Rz) <Ce? )" with r>2 (3.10)
Next we consider the case when d = 3. Some of the terms are estimated differ-
ently. By Holder’s inequality and (3.7),
1Z1| S I Vulla@s) [[Vull sge) | APV - 7| L2(rs)
+ [ull o ey | Aul| 2(re) APV - 7| 12 )
F AT 2 as [l oo sy AT 2 s

5 H'U,HHT(RS)HAUHHrflfB(RB)HA1+BT||HT—1(R3)

S lullresy (1A% + A 71 as))
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Similarly, Z, and Z3 are bounded by
| Za| SNVTlLs@s) [ Vull Lo @s) | Aul| 2 rs)
+ [ul| oo @) IAT || L2y | A 25y
+ JA P pagey AT Pul g || 7| oo ey
+ [|A ) 2 gy [lull poo e | AT 07 || 2 rey
S (||u||HT(R3) + HTHHT(R?’)) (HAuH?{T—l—ﬁ(RS) + ||A1+BT||12LIT—1(R3)>
and
| Zs| SNVl s @s)l| Vull Lo @s) | Aull 2 @) + (17| oo @) [| A1 72 gy
+ JA P pagey A Pul| gy || 7| oo ety
-+ HArJrl*BuHLQ(Rs) HVUHL‘”(R3)HAT?BTHLQ(RC‘)
S (HUHHT(R3) + ||T||HT(R3)) <||AU||§W4—B(R3) + ||A1+BT||%I’“—1(R3)> :

Z, is bounded the same as (3.8). By V-u =0, % <fB<landr>1+ g,

| Zs| =

/ (u-Vu) - Audx — / (A"(u-Vu) —u-VAu)  Audx
R3 R3

S lull sy IVl s sy | Aul| 2 g3y + ||Vu||L°°(R3)||ATUH%Q(R3)
< Mull oy | Aullfgr-1s gy

Similarly,

| Zs| =

/U'VT'AQTdI—i-/ (A" (w-V71)—u-VA'T) - N'7de
R3

R3

< Mull @) VTl o @) [AT | 2msy + AT ]| 2as)
X (IVull oo sy [N T[] L2y + [[A | L2 (o) [[ VT [| oo es) )
S (Il + Nlles) (I 2713 gy + 1Al ses))
Z7 is bounded by
|Z:| = [(Q(7, Vu), A*7) + (APQ(7, Vu), A7)
S ||7'||L3(R3)||VU||L6(R3)||A27||L2(R3)
+ A7) 2y (AP Vul| 2y |7 1o oy + [Vl oo sy [|A™27 || 22 sy
S C (lullires) + Irllars) (127131 goy + 18Ul ) -

Collecting the estimates for Z; to Z7, we obtain

1d
2dt (HAUH%T*l(H@) + ||AT||12LIT*1(R3) + 2k(Au, APV - T)HPPB(M))
k

3
(G- ) I B + (5 = ) 18l
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< C (Julls) + 17l @) (I 7121y + A1 ages) )
< Cae (I sy + AUl 1osga)) -

By choosing k > 0 to be sufficiently small and writing
Fy(t) = [|AulFr1 oy + AT o1 sy + 2k(Av, APV - 7) 15 gs),

we have
d

EFQ(t) + (0(7]> - 02 5) (HAIJFIBTH%p—l(R?,) + HAuH?-P"_l_ﬁ(RS)) <0.

Here € > 0 is taken to be small such that C(n) — Cye > 0. Therefore, for any
0<s<t<oo,

Fg(t) S FQ(S).

Invoking (3.9) and Lemma 1.4, we have

_ i 5)
||AU(t)||?_1r—1(R3) + ||A7’<t)||%_[r—1(R3) < 52 <t> ! Wlth r > 5 (311)

[

(3.10) for d = 2 and (3.11) for d = 3 yield

_ ) d
MOl s oy + IAT Oy S (7! with v > 143,

This completes the proof of Theorem 1.2. O

4. SPECTRAL ANALYSIS

This section serves as a preparation for the proof of Theorem 1.3. We present
an integral representation of (1.1) via the spectral analysis. The key components
of this representation are several kernel operators given by the Fourier multipliers.
These operators are anisotropic and inhomogeneous. The second main result of this
section provides sharp upper bounds for the symbols of these operators.

Recall that A = PV - 7. Clearly, any solution (u,7) of (1.1) also solves (1.7),
namely,

du=A+G, G=-Plu-Vu),
1
IA=—n(=A)A+ EAu +F+ H,

F=-PV-(u-Vr),
H = —-PV-Q(r,Vu).

(4.1)

(4.1) can be converted into an equivalent integral form given in the following lemma.
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Lemma 4.1. Assume (u,.A) solves (4.1). Then (u,.A) satisfies the following integral
representation,

u(&,t) M1U0+M2Ao+/ My (t — $)G(s) ds

/Mgt—s F(s) + H(s )) ds,

60— P . -
A&, t) = — =—Myu 0+M3.A0 / —M2(t— s)G(s)ds
/Mgt—s ()—i—H())ds,
where the kernel operators My, My and M;s are given by
)\26)\1t _ )\16)\2t 6)\2t _ €>\1t )\26)\2t _ )\16)\1t
M(t) = My(t) = ——, M;3(t) = 4.3
1() A2_)\1 ) 2() )\2_>\1 ) 3() )\2_)\1 ( )
with Ay and XAy being the roots of
N+ n|§|2m+ €] =0
or
1 o8 21¢)
= —— 1 1— 4.4
)\1 277’5‘ ( + n2|€’45 ) ( )
1 2|¢|
Ao =——nl¢[* [ 1—4/1— : 4.5
2 277‘5’ ( 7]2|§|4B ( )

When Ay = Xg, the kernel functions My, My and Ms in (4.3) are replaced by their
corresponding limits as Ao — A1 (see (4.12), (4.13) and (4.14) in the proof).

In order to understand the large-time behavior of v and A in (4.2), we need
precise estimates on the kernels M, M, and M;s. The behavior of these kernels is
inhomogeneous and depends on the frequency £. This suggests that we divide the
frequency space into subdomains to obtain definite controls on the kernels. The
following proposition provides optimal upper bounds for M;, My and Mj.

Proposition 4.2. Let Dy and D, be subsets of R?,

ES {g eRe: ¢ < n*wil} , (4.6)

2 {g cRY: ¢| > 77*2/3%1} , (4.7)

Then My, My and Mjs satisfy the following estimates:
(1) When & € Dy,

IM(E, 1)), | Ma(E,8)] S e 2770 My (6, 1) < Je] e 316, (4.8)
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(2) When & € D,
MED] S e, M6 1)] S 1€ Pemeke™,
My (€, 1)] < eIt 4 |g|2=48 g—elel* 7t
where ¢ > 0 is a constant and depends on n and 3. Especially, for & € Do,
IMy(E,1)], [ Ms(&,8)] S e, |Ma(&, 1) S [P

(4.9)

The rest of this section proves Lemma 4.1 and then Proposition 4.2.
Proof of Lemma /.1. Taking the Fourier transform of (4.1) leads to
dwp = By + R,

m 0 1 G
(0 1 () 5= (:5)
(A) —- e F+H
Therefore, according to the ODE theorey ¢ can be represented as
t
o(t) = eP'p(0) +/ ePU=) R(s)ds.
0

To obtain a more explicit representation, we need to diagonalize B. First, we com-
pute the eigenvalues and eigenvectors of B. The characteristic polynomial of B is
given by

where

b0 = M3+l + -

and its roots are given by (4.4) and (4.5), namely

1 o 21EP
! 2
b= —gnlel” (1 Ve 772|§|4ﬁ> |

e > 20¢?,
A1 and Ay are real numbers. When n?|[*? # 2|¢[> or A; # Ay, the eigenvectors
corresponding to A\; and Ay are given by

Ao A
V1:<ﬁ>, V2=<ﬁ>,
2 2

respectively. Consequently we can write
BW =WD or B=WDW!,

where D is the diagonal matrix and W denotes the matrix with the eigenvectors as

columns, namely
(M0 [ r M
p-(in) we(g )

When
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For [£] # 0, the inverse of W, denoted W™, is given by

1 2 M
A2—A1 €12 A2—X1
W=
__1 2 X
Ao—A1 €2 Aa—A1
Therefore,
At O ‘ e/\l(t—S) O
ot) =W W1¢0+/ W W 'R(s)ds
0 6)\2t 0 0 6/\2(t S)
More explicitly,
At M, M,
1474 W= . 7
0 e —E M, My
where
AQeAﬁ —>A1€Aﬁ ekﬁ _»6Aﬁ AQ@Aﬁ __AleAﬁ
M (t) = My(t) = ——,  M;s(t) = 4.1
1() AQ—Al ? 2() )\2_)\1 Y 3() )\2_/\1 ( 0)
Therefore, for A\; # Ay or n%[€]* > 2|¢]?,
u(&,t) =Myug + My Ay —|—/ My(t — $)G(s) ds
/MQt—s ()—i—H())ds,
(4.11)

Iél2

A ) = — S Myiiy + My Ay - /'5‘2M2(t_ $G(s) ds

/Mgt—s ()+H()>d8.

For n?[¢]* = 2|€]? or A\; = )y, the eigenvectors associated with eigenvalues are dif-
ferent from those for the case when \; # \y. However the representation formula in
(4.11) remain valid if My, My and M3 in (4.10) are interpreted as their corresponding
limits, namely

)\26>\1t — )\16)\2t

_ : _ )\1t
My = i 22— (- e (4.12)

Aot A1t

et — e
My = lim ———— = te™’, :
2= lim —— =te (4.13)

)\26)\2t — )\1€A1t

_ 4 . At
M3 = Algl )\2 — )\1 = (1 + >\1t>€ . (414)

When
e[ < 20¢,



THE OLDROYD-B MODEL 19

1— 2LP s pure imaginary number, and A; and Ay are given by

n2[€|*P
L cp2s | 21EP
M=l (”Z\/W‘1 ’
L cp2s | 218
Ay = _§TI|§| 1 n2|€|4 —1/.

—1
By going through the same process, u(§,t) and ./Zl\(ﬁ ,t) can also be represented by
(4.11), which is the desired formula (4.2). This completes the proof of Lemma
4.1. 0

We now prove Proposition 4.2.

Proof of Proposition 4.2. Let Dy and Dj be the subdomains defined as in (4.6) and
(4.7). We first prove (1). For £ € Dy, we have n?|¢|** < |¢[%, and thus A; and ), are
complex numbers. Then

A2 = M| = [ElV/2 = ?[¢*772 > [¢]

and
2
Ml = 1Aof = %I&I, M| = |eXat| = o BlE,
Therefore,
A A s
|Mi(€,1)] < ﬁ\ehﬂ + MJ%')\M@M‘ < Bl
1 1 s
M(&:8) < mwﬁf + mW”! < Je ez IE,

Mj3 obeys the same bound as that for A;. We now turn to (2). In order to analyze
the property of A\; and Ay more accurately, we further split D, into the following

three regions:
1
2 15—2
Pt {5 eR': yE < ¢ < (_2) }
U]

. 2\ 7 8 \ 72
pus e (7)<t (3) "),

s . ER
Dzs—{feR 13 (37}2) }

It is clear that A; and s given by (4.4) and (4.5) are complex numbers in Do and
real numbers in Doy U Dos. Our consideration is split into three cases.
(i) & € Dy;. The difference | Ay — A;| can get really close to zero when |¢| is close
1

to (772—2) 72 We need to make use of the difference Mt — e*et. Using the simple
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fact that |sinz| < |z|, we have

- (“Wt)
2= Pl

< tem 2l < g 2B R < g 2Bl

261

| My (&, t)] = |e 2k

Since M} = et — A\ My and |\ | = |\o| = ‘/7§|§|,
M0 < M)+ [ Ma] < e 364 gljg 2ok S o
Similarly,
M (€,1)] = [N + Ao M| <[]+ M| M| S e,
(ii) € € Doo. When € € Dap, M < —3[¢[* and Ay < —7[¢]*P. By the mean-value

theorem, there is p € (A1, A2) such that
My = tef < te— 2lEPP°t < ’§|—2ﬁ€—£\€|25t < |§|—2ﬁe—c\£|”t.

It is easy to check that the upper bounds for || and |A\y| in Dy which yield for
any § € Doy

1 21¢1? 3
Al el < nleP {1441 < Znl¢)*.

Then
M| = €Mt — A Mo| = [eMt — Ajtert| < e 2670 4 (g PPte 2K < ot
| Ms| = |€>\1t + Ao Ms| = |€)‘1t + )\gtept] < e—clel*’t,
(iii) £ € Do3. When & € Dqg, A1 given by (4.4) obvious satisfies
M < =21, Dal < g,

Next we estimate A9, we rewrite Ay as

202
1 2/1& 2 1 26 1 _
N\ — n|€|2ﬁ (1 _ 1= | | ) _ = nl¢] < _ |£‘2 25'

T ) R P T
Furthermore,
1 e 2
Ao| = 5 nlé| — S%mzfzg
L4 /1= g
Noticing the difference
ho = A =il 1 2SR Ly
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Therefore, for % < B <1and € € Dog,

A A L2
’Ml(f,t)‘ < |)\2|_2|)\1|6)\1t + |/\2|_1|/\1|e)\2t § |§|274ﬁ€*%n|£|2ﬁt Te 21n|§|2 28¢ § e—ct
Similarly,
1
My(€,1)| < —————et 4 —— Mt
| 2( )| |)\2_)\1’ |)\2_/\1|
< |€]728 el T (g 28 kel
< |§|f2ﬁefc\£l2‘2ﬁt’
RS Ml e
M3, t)| < ———e™ + ———e™
| 3(5 )| |)\2_)\1| |)\2_)\1|
S JgpriP e ek < et
This completes the proof of Proposition 4.2. U

5. PROOF OF THEOREM 1.3

This section completes the proof of Theorem 1.3. We have made some prepara-
tions in the previous section.

Proof of Theorem 1.3. Recall the definitions of X and Y given by (1.10) and (1.11),
respectively. As we have described in the introduction, to complete the proof of
Theorem 1.3, it suffices to show that X and Y satisfy (1.12) and (1.13), namely

X(8) S Muo, 7o)l z1mmr + X @Y () + (X () + Y ()7l oo rrr, (5.1)
Y (t) S uo, 7o)l inar + 1w, 7) [ 70w v
+ (X +Y () V() + [ (w, Tl L) - (5.2)

By taking the initial norm ||(ug, 70)||L1nm+ to be sufficiently small, namely

| (wo, T0) || L1nmr < €

for a suitable small ¢ > 0, Theorem 1.1 assesses that the corresponding solution
remains small for all time,

[(u(t), 7(8)[[ar < Ce.
Then (5.1) and (5.2) imply
Xt +Yt)<Ce+C(X(t)+Y(1))? (5.3)
and a simple application of the bootstapping argument to (5.3) would lead to
X(t)+Y(t) <Ce,
which yields the desired result of Theorem 1.3.

The rest of the proof focuses on (5.1) and (5.2). For the sake of clarity, we split the
proof into several subsections with each devoted to one of the norms in the definitions
of X and Y. More precisely, the rest consists of five subsections estimating the
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norms ||ul|zz, ||Vulzz, || Allzz, ||@]|zr and |||€|@]| 1, respectively. Subsection six is a
summary and completes the proof.

5.1. The estimate of ||u||;2. Thanks to ||ﬂ|L2 = || f]lz2 and (4.11), we have

lull 2 = @2 S | Maiio|ze + | MaAol| 2 +/ |Mi(t — 5)G(s)|| g2 ds

/HMzt—s ()Hmd8+/ IMEy(t — ) FE(3)] 2 ds

SN+ L+ I+ 1+ I
By (4.8), (4.9) and Lemma 2.2,
Iy = || Myt 2 = || Myt || 2o,y + | Matio | 22 (D)
< e 38 Ry | ragp,y + lle™ 00 z2(a)
S (075 + ) Juollznre S (673 lluollzaaze
15 can be bounded similarly,
I £ (0% IImoll e

, Lemma 2.2 and then Lemma 2.1,

By (4.8),
I3 = /HMlt—s F{P(u - Vu)}| 2(p,) ds

+/ ||M1(t—s)ﬁ{]P’(u-Vu)}||L2(D2)ds
0
t
< / e HE 09 2 (P (- V) 2o ds
/ 092 {P(u - V) }| 2y s

S [ 0= o e Vulloss + e Vs ds

~

0
t
-4 —c(t—s
S/ (t =579 |Vl g2 ([ull 2 + llull =) + e u]| = || V]| 2 ds
0

da+1 3d+2

< [a—sr® (6% 0

S (075 X(8) Y ().

3d+2

F) e () s X (1) Y (1)

Due to z"e~* < C for any n > 0 and its variant
|§|k6_3\§|wt < (tf% ¢4l for any k> 0 and £ € Dy, (5.4)

we have

t
I, = / | Ma(t — 5)F{PV - (u - VT)}| r2(p,) ds
0
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t
+/ | My(t — 8)F{PV - (u- VT)}|12(p,) ds
0
t 0 et2s . t -
S [ 1T NGTE i ds + [P s
0 0

' g2 —e(t—s)
< [ (=5 F u® s + e - Tr 2 ds
0

d+2

t
S /0 (t =) (lullezli7llze + llull <17l z2) + €=l oo | V7| 2 ds

d+2

t
S [ -9 (07 4 (07F) 4 e 57 F ds X el
0
_d
S ()7 X(@) 17l e,
where we have used the following inequality in the last step, for ‘%2 > 1,

d+2 d

/0 (t— )5 ()8 ds < ()35 (5.5)

This explains why we have assumed that %32 # 1 in Theorem 1.3. When 5%2 =1

or when d = 2 and 5 = 1, the upper bound in (5.5) is no longer valid and would
need an extra logarithm. We shall no longer mention this when we encounter similar
situations. We now estimate I,

= [ I3t = 97 (B - QU Vo s
+ [ 1lt = )2 (B QU Vs ds
S /t ||€_g‘§|w(t_s)QﬁU>||L2(D1) ds
0
[ e QT Tl i
< [ 49 10 Vs + e Vi s s

t
-4 —c(t—s
5/ (t — s)73 ||7)l 2(|[Vul 2 + |Vl z) + e~ Vau|| g |7 12 ds
0

t
S [ (67 + )7 4 e ) sV W) Il
0
_d
<O Y@ i

~Y

Collecting the bounds above for I; through 75, we find
N _d _d
[all 2 < C8) % (| (uo, 70)l[Lraze + (8) 57 X (£)Y(2)
_d
+ ()7 (X)) + YOl - (5.6)
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5.2. The estimate of ||Vul|[z:. We compute the L?-norm of Vu via (4.11),

IVullze = l€lallze S €M 22 + 11161 MaAo| 2 +/ ML (t = 5)C(s)]] 12 ds

/|||5|M2t—s Fs ||des+/ €Mt — 5) B (s)]] = ds
:J1—|—JQ+J3+J4+J5.

By (4.8), (4.9) and Lemma 2.2,

Jv = [[|EIMyio || 2,y + 1€l Matio|| 22Dy
n 2 —~ _ —~
< l1gle 2 EtuoHLQ(Dl) + [l1éle™" @ || L2(ps)
—dt2 —ct
S () % Juollzinze + e ul[m
_d+2
S ()% luollprnm

Similarly,

_d+2
Jo S () |[7ollpinmn

Again, by (4.8), (4.9) and Lemma 2.2,
fo= [ NN~ 97 PG 9o s
+ [ N~ ) F e T o
< [ llele 1D B Vi s
/ l1€le™=9.# {P(u - Va)} 2o ds

< / (t— )" |Ju- Vullpinze + eI || - Va2 ds
0

~+
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To estimate J,, we split it into two parts,

5= [ 1M = )7 BT - (- V) oo

+ [Nt = 97T - (0 V)i ds

= Jn + Jao.
We first compute Jyo. By (4.9),

t
1= [Nt~ ) F BT - (- 97 s
0
t
S/ le™ 2 eu - V7| r2(py) ds
/ D (([[€]@l 1€ e + @l [1E1P7 r2) ds

/ ) ()7 F 4 ()7 ds (X(0) + Y (D) 1 s

ST (X + Y (8) 7] e
ST (X + Y ) 7]l one,

where the last step needs d > 2. A new approach is needed in order to obtain a
suitable upper bound for Jy;. If we estimate Jy; similarly as before, we would end
up with an integral of the form

t gie .
/ (=) 7 |lull2[[VTl2ds S ()7 X(8) [|7]| oo 2,
0
which does not have the desired decay rate <t)7%2. In order to generate enough
decay to close the estimates, we write
d

PV - (u-V7) Zaw wir) =Y (O;[PV-, wlr + 0;(u;A)). (5.7)

i=1

By (4.8), Lemma??and( 5),

TS [ 19N Az ds
3 [ I I B o s
i=1 70

t
< / (t— )" (Ju® Al + Ju® Al
0
+ [PV, w7 + ||[IP’V-,u,»]THL2) ds

¢ _d+2
5/ (t —5)" 4 ([lull 2l Al 2 + [Ju]| oo | A 22
0
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+ IVullzzlirlze + €l 7]l 22) ds
t
S [ =9 (1075 407 4 97 dsv) 00 + )
0

SO YO X+ 17lir2)
where we have used the fact (see [31, Appendix])
1PV, wil 7l 2 S (l1€]al| o [[7]] 2 (5-8)
Thus
Ji S (875 (XOY (1) + (X(E) + Y O)I7 ]| prre)
Next we estimate J5. The process is more elaborate. First, it is naturally split into
two parts,

Js = /0 NElMa(t — 8)F PV - Q(r, Vi) 22y s

+ [Nt = 97 BV - Q. Vi lios ds

£ Js51 + Jso.

Js1 can be treated in a similar fashion as before, but Js» requires some new ap-
proaches. By (4.8) and Lemma 2.2,

IS [ e 1IN P Tl s
_d+2
N/ (t— )5 | Q(r, V)| anre ds
0
t
_d+2
S [ 0= F rle (19l + V) ds
0

< [—a (07 4 07F) asy O e

S O7F V() |17 e (5.9)

~Y

To estimate J55, we use the upper bound for My with £ € D,
M(t)] S [ el e = e(n) > 0.

Therefore,

t
J52 §/ II6P27 e K09 Z{Q(r, V) Yl 2y ds. (5.10)
0

We need to distinguish between two cases: § =1 and % < B < 1. When =1,
t
Fa 5 [ e FQUE T oo ds
0

t
S [ e ) [ Vul) ds
0
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t

S I OIS COTPYE

t

o—c(t=9) @*% dsY (t) ||7| oo r2

A
S— S—

a+2

SO 7 Y@) [l zeer2- (5.11)

When % < B < 1, we need to split the time integral in (5.10) into two parts,
t/2 N
Js2 S / HEP=22 e <09 ZLQ(r, Vu) | 2 () ds
0

t
98 _cle2—28(4—s
n / €728 k209 Z{Q(r, Vu)} | 12(oy) ds
t/2

2 Jso + Joza. (5.12)
Thanks to |£['72% < C for any ¢ € Dy and Sobolev embedding,

t/2
Jso1 S / e 1£]-F{Q(T, Vu) }|| 12 ds
0

t/2
5/ e ) (|[Vr | pall Vel g + (17l oo V0l £2) ds
0

t/2
< / e |Jul g2 1722 ds
0

@ [wll Lo rr2 (| 7| oo 222 (5.13)

Y

Se 2! 3 1l Lo 2| T || oo 2 S ()

To estimate J599, we take 0 < 0 < 1 to be a small number and write

t
— —0 —c|€?728(t—s - o
J522:// |||£‘(2 28)1-0) el (t )|§|(2 28) g{Q(T’VU)}HLQ(DQ)dS
t/2

< [ (=500 g QU Vs ds

/2
St sup [AC7Q(r, V) o

t/2<s<t

St sup ([ACTD77 12 [Vl + (7]l [1ACP7 V] 1)
t/2<s<t

g —ﬂ ag — o
S ) YO Irlewmz + (7 I7llzomn sup [|A®2D7Vul|L,
t/2<s<t

where 2 < p,q < oo and ry satisfy

1 1 1 2 1 1

-+ - =, d(l——>—86—40>0, ry >d(= ——).

poq 2 q ( ) v=d p)
By the Gagliardo-Nirenberg inequality,

A7V | Loy < Cl|Vull P gy [Vl 3 gy [A7 V] 13 g
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where
(2—2P)o < oy, (5.14)
0<mni <1, O0<my<l1l, O<nz<l, (5.15)
1 2—2 1 1
ny+ngs+ng=1, 5—%257124—(5—%) ns. (516)

Then J599 can be further bounded by
_dt1
Js2o S ()2 7Y () ||| oo
o —ng Ll _p,ydt2 +
+ @7 Nrlleonr (€)1 2 721 Y(E) ||ul)
_d+l o
SO Y Q@) (7l pen
g AL g d42
()" T 7 ey (YV(8) + [Jull oo e ).

By further choosing 0 < o < o7 < ¢, and n; € (0,1) and ny € (0,1) such that

n3
oo [Hlto1

d+1 d—+2 d+1 d—+2 d—+ 2
i S _ < 47 1
2 +o0< 5 ny 25 No 17 +0< R (5.17)
we then obtain
_dt2
Jso2 S () [Tl pocrz (Y(E) + ||l oo grrven ). (5.18)

Since r; < d/2 < 2, we have replaced H™ by H? here. A simple calculation assures
that we can indeed choose o € (0,1), o1, n1, ny and ng to satisfy (5.14), (5.15),
(5.16) and (5.17). In fact, (5.16) reduces to

2
dny + 201 n3 —d(l — —) +4(1 = p)o
q
and (5.17) to
460 < d, (d+2)ng+48 0 < dn,.
These conditions will be fulfilled if we choose

d

o >0 is sufficiently small, o, = 5
2

d(l——) — (88 —4)0 >0,
q

d(l—g)—(Sﬁ—zL)a
d+2+20’1

 4B0 d+2 2 (88 —4)o

M=t i 2 20, <1 ’

ng = )

q d

n2:1_(”1+”3)=§—@‘

It is clear that, when o > 0 is sufficiently small, ny, ny and ng € (0,1). We summarize
our estimates on Js. In the case when § = 1, by (5.9) and (5.11),

_d+2
[ J5] S @) % Y(@) |7l peere.



THE OLDROYD-B MODEL 29
In the case when 1 < 4 < 1, by (5.9), (5.12), (5.13) and (5.18),
_d+2

S 07 Il (Y + Il pirg)

Combining the five estimates above can yield
_d+2 _dr2
IVullz S (8% [[(uo, 7o)l + (6 7 Null . avg [Tllzom
_d+2

+ ()7 (XY () + (X)) + Y @), 7)l|Loem2) - (5.19)
5.3. The estimate of || Al|;2. By (4.11),
’|€|2

2 e~
1Al = 1Az < 10 + 10 B0+ / 1€ 0t — )86 102 ds

b [ e = P )asds + [ 10t = 9B 5) s

:N1+N2+N3+N4+N5.
According to (4.8), (4.9) and Lemma 2.2,

1 N 1 N
Ny = §H|€\2 Mytio|2(py) + §H|f|2M2U0HL2(D2)
0284 ~ 98 b~
S 1€1e 9 @ | 2, + 1161616 @0 | L2
—dt2 —ct —dt2
S luollinzz + e[ Vuollze S () [luollinmn,
where we have used the simple fact that |£]'=2% < C for any ¢ € D,. Similarly,

_d+2
N2 ,S <t> 48 ||T0HLIQH1'

By (4.8), (4.9) and Lemma 2.2,

Ny = /Ot ng\@(f ) F{Bu- V)| ooy ds
+ [ 1R - 97 P 9o
S [ lele 1Tl
/ 269 €]~ Va2

N/ <t_5>_4ﬂ - Vulpinre +e S)H|§|U Vul|L2(p,) ds
0

S [ -9 T [Fulia(lulse + ull) + e
0
x (el Nl = + il Pl ) ds
< t T ~35 = c(t—s) 35 25 ) (
S [ =9 (@0 F 7)) (07 F 97 F) s
(XY (1) + (X0 + Y () Jul~e)
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d+2

SO (XOY () + (X0 + Y @) ulleon) -

Ny can be estimated similarly as Jy,

d+2

Ny S ()% (XOY () + (X (@) + YOl n2) -

The estimate of N5 share some ideas with that for Js. First, Ny is naturally split
into two parts,

t
N5:/ 1Myt — $)F{BY - Q(r, Vi) } |12y ds
0

t
+ / | M3(t — 5)F{PV - Q(7,Vu)}||L2(p,) ds
0
£ N5 + Nio.

N51 can be bounded similarly as before,

t
Nay < / e 69 Z{BY - Q(r, Vau) |20y ds
0
t
< / (t — )~ |Qr, Va)ll e ds
0

t _d+2
5/0 (t=s)" 2 (|72 ([Vullr2: + [Vul| ) ds

t _d+2 _d+2 _d+1
S [-oF (67 4 ) a0 rlers
O_M
< OF YO Il

~Y

To bound Ns;, we use the following upper bound for M3 when § € D, (see (4.9)),
I e

Inserting this upper bound in Njo further divides N5, into two parts,
t
N52 S / Heic\ﬂQﬁ(tiS)y{Pv . Q(T, VU’)}HLQ(DQ) dS
0
t
i / I[¢>~ e~ 09 Z{BY - Q(r, Vu)}|r2(py) ds
0

£ Nsz + Nia.
For Nz, we split the integral interval [0,¢] into [0,¢/2) and [t/2,1],

) /2 ,
Ny — / e <SPV - Q(r, V) }| 12(py) ds
0

t
—i—/ He’dflw(t"s)ﬁ{]}”v - Q(1,Vu) | 2(p,) ds
t/2

£ Nsa1 + Nsoo.
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Using the same method as for the estimate of J591, we infer

_ _di2
Nsor S () % |Jull oo g2 || 7| oo 2.

The estimate of Nyg is more complex. Our consideration is divided into two cases:
g = % and % < f < 1. When % < f < 1, the simple facts that e~ < C' for any
n >0 and || > C for any £ € D, yield

t
Nso2 S / l[g]e2 == K0 ZLQ (7, V)| 12y ds
t/2

t
< / (t — )75 507 |Q(r, V) | 12 ds
t/2

t
S / (t— )72 509 ||7]| 1 | Vau]| 12 ds
t

t
< / (t— 5)_%6_5“_8) <3>_% dsY (t)||7| Lo 2
12

t
N <t>_d4+’32/ (t—s)"2e 2 ds Y (1) Lo n2
t
_d+2
SO 7 YO)lrlzen,

where the last step uses the simple fact that for any % < p <1,

t
/ (t—s)"2e 279 ds < C(B).
t/2

When = %, Ns99 can be bounded by the process in the estimate of J500,
- _d+2
Nz S (75 el (YO + el ey )
To estimate N52, we distinguish f =1 from % < B < 1. When g =1,
t t
Noa 5 [l 7 QU T oo ds S [ 9|Vl ds
0 0
¢ _d+1 _d+2
N / e ()72 ds Y (1) ||7]|pore S (8) 7 V() ||7]| oo 2,
0

where we have used the simple fact that [¢|™! < C for any € € D,. When 5 < § <1,
Njso can be treated similarly as Jsp in (5.12).

~ t/2 2-2
N52 - / H|§|2_4B e—c\§| ﬁ(t—s)gz{PV : Q(Tv VU)}HL2(D2) dS
0

t
- / €279 =<9 Z P - Q(7, V) }| 2(py) ds
t/2

£ ]\7521 + N522-
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By proceeding as in the estimates of Js2; and J599 in the previous subsection, we
obtain

~ _d+2
Nsgr S ()% ull e 2| 7[| 2 52
and )
~ _d+2
Nz S (75 el (YO + el ey )
Combining the estimates above, we find
_di2
Ns S (07 (YO + lull, g ) 17 o
Collecting the estimates of N; through Nj yields
ANz S 67 110 70) |z + (875 full g 17l
+ ()7 (XOY (1) + (X0 + Y ()0 7) | orr2) (5.20)
5.4. The estimate of ||u||r:. By (4.11),

(@l S 1Mol e + || Moo o +/ M (t — )G(s)| 2 ds

b [t = P ds + [ 1080t = )6 s

2 K+ Ky + Ky + K, + K.
By (4.8) and (4.9),
Ky = || Myt 1 (pyy + || Mitio || 1 (D)
< e 278G 1 oy + et | £y

S e oo e G| 2y + € ||y

1
||€—c|§|25t||L2(D1) — (/ 6—2c\§|2/3t df) 2
lel<n” 2T
2
—¢is (/ ) ) 2o dv) < £,
jo]<t2 5 TFT

—clg|2B —__4d
e 12y < C(d) 2.

Putting the two inequalities above together, we have, for any ¢ > 0,

Ift>1,

fo<t<l,

—cl¢]28 -
| elé! Nrzon S (). (5.21)
By Lemma 2.2,
5 _d
le” alel* "ol 2oy S ()% Nluollzinze
Therefore,

_d _ _d
K1 S ()% Jluol prnrz + € Mol S (8) 728 [Juol| 2,
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for any ry > g. Similarly,

4
Ky S ()2 |70l pinmre-

By (4.8), (5.21) and Lemma 2.2,
Ky = / 1Mt — $)F {B(u - V)| s oy ds

+ / | Mi(t — 5)FZ{P(u- Vu)}| 1, ds
0
¢
S / He‘g\ﬂw(t_s)ﬁ{ﬂ”(u . VU)}HLI(DI) dS
0

¢
+/ ||e_c(t_s)ff{]P’(u . Vu)}||L1(D2)ds
0

~Y

t
</ (= 85 i Yl proge + e~ | @ Va1 ds
0
t
-2 —c(t—=s)||> '
S/ (t = )72 || Vull 2 (||ull 22 + [Jull o) + e[| o || |] ]| 2 ds
0

< /Ot (t—s) % (@Y% + <s>*%> bemelt=9) (YT ds X(£) Y (1)

SH7F XY ).
To bound K, we first split it as

t
K, :/ 1Mt — ) F{BY - (u- V) ooy, ds
0

t
+/ IMa(t = ) F{BY - (- V) o1y ds
0

2 Ky + K.
We first compute Kys,

t t
K4z§/ [ e~ u - V7| 1y dSS/ e~ @ [[[€17]] 1 ds
0 0

t _d _d
S [ e dsXW) e S 07 X lrlmir,
0

where 73 > 1+ 4. To estimate Ky, we divide the time integral interval [0,¢] into
0, 3) and [3,1],

ol

K41:/ |Ma(t — 8)Z{PV - (u- V1) } |11 () ds
0

t
+l 1Ma(t = ) F{BY - (- Vo) s oy ds

= K1 + K.
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Making use of (4.8), (5.4), Holder inequality, (5.21) and Lemma 2.2, Ky1; is bounded
by

t
3 o
K S / ”|§|6_g‘gl26(t_s)u ® 7L (py) ds
0

OIS

< / (t — S>—% ||e—%|£\2/3(t—s)||L2(D1)||6—%|§|26(t—s)@||L2(D1)ds
0

% 7@ 2 7&
< / (t— )" Jurds < / (t — )5 |7 e lull e ds
0 0

Lan [T 4 —35
07 [ ds X0 Irllsws £ 075 X0 Il
0

Again, by (4.8), (5.4), Holder inequality and (5.21), we obtain

A

t
K412§/ [1€]e™ 210G 1y ds

t

2

t
< [ (t _ 8>—% ||6—%\£|26(t—s)||L2(Dl)He—g\5|w(t—s)@||L2(Dl) ds

2
t

t Cdin _dk2
S [ F i@l s [ -9 F (@7 d
t t

2 2

™

t _d+t2 -
S [t )b asX(0) Il

S [ (=) F ds X (1) |7 pere

a.
w\w\
o~

_d
S () X(8) 17| oo e
Therefore,

L d
Ko <75 X () ||7] pooprra, with 7 > 1+ 5

To estimate K5, we first write it as

t
K5 :/ |’M2<t—5)g{]P)VQ(T, Vu)}”Ll(Dl) dS
0

t
+ / | Ma(t — 5)F{PV - Q(7, Vu)}|| L1 (p,) ds
0
= K51 + Kso.
We first compute Ko,

t o t
K < / €[22, V)| 1 o ds < / eI ¢[a 1|7 o1 ds
0 0

! —c(t—s) —dtl _4d+1
5/ E (s) 2 dsY (@) |7llLoenrs S (6) 28 Y () 7] oo s
0
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for any r4 > g. We divide K35, into two parts,

o

2
K51:/ |My(t — 5).F{PV - Q(r, V)| 13 (py) ds
0

+[ [ Ma(t — 8)F{PV - Q(7, Vu) |11 (p,) ds

£ Ksii + Kspa.
By (4.8), Holder inequality, (5.21) and Lemma 2.2, K5, is bounded by

o~

5 —
Ksi S / ||e_g‘5|26(t—5)Q(7-, V)|l 11(py) ds
0

o

2 —
</ ||e—%\§l2ﬂ(t—s)||L2(D1)||€—%|€|23(t—s)Q(T7 V)|l 22,y ds
0

~

|+

S [Mte-9 ot il ds
0
P
S [Tit— o7 IVulplr ds
0
% _d _d+2
S [Tit= s (7 dsY(O)rliern
0

d

(1)~ / () dsY () |7 i

0

N

_4d
S Y (@) |17l o2

For K39, invoking (4.8), Holder inequality, (5.21) and Young’s inequality, we have

t —
K512 < / le™ 2P| L2y e 27 Q 7, V) || 2y ds
t
2

t ; .
< / (t — ) Q@ V)| e ds

2

t
_d ~
S [ -9 lellulirlie ds

2

t _4d _dtl
S [t-o B ds Y Irliern

2

t
<)% / (t— )5 dsY(t) |7l s
2

Therefore
4 d
Ky < (75 Y () ||7|| oorrra, with 74 > 5
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Combining the estimates above, we find, for r3 > 1+ g,
1@l S (7% (o, 7o) linams + ()% X (DY (1)
+ {873 (X (&) + Y ()17 | g

5.5. The estimate of |||¢|u]|;:. By (4.11),

(5.22)

t
1l S NIEIMto|| 2 + [[1§[Ma Ao 11 +/ €M1 (E = 5)G|[ 1 ds
0

t t
+ [ Weate = 9Pl ds+ [ €Mt~ )T ds
0 0

L2 L+ Ly+Ls+ Ly+ Ls.
By (4.8), (4.9), (5.4), (5.21), Holder inequality and Lemma 2.2,
Ly = [[|§] Myt L1 (pyy + 1E1 Mo || 2y ()

< |uf\e*f'ﬂ”tuouml + €™ @l 1 sy

S 075 e Lo, e o 2y + €7 €]l o)

S 7% Juollinze + e fluolars

S 7% (ol
for rs > 1+ %l. Similarly,

Ly S ()% IImoll .

The estimate of L3 is more complex,
L= [ e = ) (B Voo ds
[~ 97 T
/ [1€Je= 409 Z Pl - V) } 1o ds
/ 1€l (Pl - Tl oy ds
< / (¢ — 5 - Vullpings + e Dlela Vel ds
Ot "
S [ =97 IVulaallullzs + fulle)
-/ (@l + [l €l ) ds

¢ _d+1
5/ (t =) 2 |Vl 2 ([Jul| 2 + [Jul| ) ds
0
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t
—c(t—s) ~|12 -~ 2~ 9~
[ e el + 1l (Pl + P, ) | o

t

S [ =97 (€falle (alle + [a) ds

~Y

S—

t
—c(l—s ~ ~ L —~ _ 1 d
o [ e Qe + 1l (60 Wl + o7 e 1,:) } s
t
S [ (078 4 ) e (1975 ) 7
0

< (XY O+ Y0 + XOlul, . yoeg )

<47 (XY + Y+ X0l g )
To estimate L, we first write it as
t
Li— / NEIMa(t — ) F{BY - (- V1)l ds
0

t
-%/‘mawb@——gﬁqu-urKHvHuuDﬂds
0
£ Lyt + Lyo.

In order to generate enough decay in L4y, we invoke (5.7) to write

t
Lﬁs/uezw%@mm®Amwm@
0

d -t
+ 30 [l H N F (Y- wlr oy ds
i=1 70
2 La1 + L.

By (5.4), Holder inequality (5.21) and Lemma 2.2,

t
mns/Ww@W%ﬁmm®Ammm@
0

/ <t_3> 2@ He 11¢|28(t—s) H 2 ”e 11e[26 (t— SU®AHL2 D) ds

5/ (t =5 (lu® Al + 7@ Alzz) ds

0

§/t—s”ﬁHWMMhHWWMMMQ%
0

5/ (=) % (197 +o ) asx@ Y0 < 07 XY@,
0
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To estimate Lyi2, we split the interval [0,¢] into [0, %) and [£,¢] and invoke (4.8),

(5.4), Holder inequality, (5.21), Lemma 2.2, (2.5) and (5.8) to obtain

d t
2 116128 (t—g
Lin=Y / e~ 3169 ¢ F APV, wi]r |11 o) ds
i=1 Y0

d ¢
_N1£12B (t—s
+Z[ He 2‘€| (t )‘fyﬁ{[]pv,UZ]T}HLl(Dl)dS
i=1v2

d t
2 — L mig2B (t—s _N1¢128 (t—g
52/0 (t = 5)727 [le” s o [l s F{PV - w7} | 22, ) ds
i=1

d ¢
+) / (t — 5)7% |[e PP oy lem BP9 ZLPY. )7} 2y ) ds

=1 %
d

S [t BV wlrlo ds

i=1 V0

d ¢
+ Z/ (t— )5 | F{[PV-,uw]r}| 2 ds
=12

|+

VIS i

d+1

§/0 {t =) 2 ([[Vull 2722 + llull 2| Al 2) ds

t 42 R R
[ te= o llefalloa 712 s

2

da+1

< / oo ()75 + ()75 ) dsY(O(X(8) + 17| 1oe12)

t _dt2 ,_d+1
+/ (t—s) 1 (s)” 26 dsY(t)||7|pere

s ()75 + ()75 ) dsY(O(X(0) + 7l poe12)

t
+ (t)” 25 / (15—3}7%2 dsY (t)||7||Lee 2

2

_dt1
S Y(OX )+ I7lreer2).
To estimate Lo, we make use of (4.9), for £ € Dy,
M (1)) S [€]72 el S g7 eer, (5.23)

In addition, in order to generate enough decay, we invoke (2.4) to write the upper
bound into three parts.

t
L < / le==9) F (B (u - VA |10y ds
0
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t
n / |9 Z{B(Vu - Y1)} 11 () ds
/ He_Ct 5 (Vu VA 1V V T)}”Ll D2

< [ et (||u||L1|||g|A||L1 T |||s|a||u|||5|?||u) ds

t
e Y (R [, I

t
/ e-c<t-s>|||s|a||y|||s|ﬂ|L1<D2)ds
0
t

e~ Y[ ()7 ||A] 2 + ()7 [[[¢*H4.A)

+ NNl 11€17 2oy s

t

o—clt—s —~ d _1
L@l ()5 ALl + ()72 17 arges)

+ gl 7l 2 g Y
t

e ()™ ds (XY (1) + (XO +Y O] go3)

_d+1

& (X(t)Y(t) + (X)) +Y )7

S

NN

_|_

S

)

N

LE([E]>(s) ) )

S

A
N N

AN

(t

~

LooH4+%+%> )

Therefore,

Lo (7% (XY@ + (XO + YOIl yeges)

To bound L5, we first split it into two parts,
t
L = [ DLt - )7 (29 - Q. Va sy ds
0

t
T / I1€1Ma(t — 5)F {PY - Q(r, V) Y| s oy ds
0
£ Lsi + Lo

We further divide Ls; into two parts,

N+

L= [ " €alt - )7 (29 - Q. Va1 ds
0

+ [ PRt - ) F BV - Qr. Vi) Hlus oy ds

£ Ls11 + Lsio.
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By (4.8), (5.4), (5.21), Holder inequality and Lemma 2.2,

t
2 —
Lon < / gl e 9 Qlr V) |11 oy s

0

S [Tt ) e HE g e IQT T 12
0

N[

[MIE

N

_d+1
(t —s)" 27 [|Q(1, Vu)| 1 ds

[V

_d+1
(t —s)" 27 [[Vullp2||7]| 2 ds

|

A

N
S— S

_dbl . d+2
(t—s)" 25 (s)" 15 dsY(t)||7||per2

-

d+1

_d+1 [2 _d+2
25 / (s)" 35 dsY (t)||7]|poor2
0

_d+1
S ()% Y () |7l peere
Ls15 is bounded by

AN

(t

~

B1€12 (1) < t ~% | Q(r, Vi
Lz S IHE\ Qr, Vi)l o, ds , (E=s) ¥ IQ(7, V)12 ds

d

t 2 d+1
< / (t — )5 gl |Fllee ds < / (t— )" ()" dsY(0) | loere

2 2

t
<)% / (t— )" dsY(t) [rllere < (85 V() |7l ims

2
To bound Lsy, we use the upper bound (4.9) or (5.23).
t —_—
Lo S [ e Q0 V)l ouyds
0

t
5/ e~ (elall o oo ETN 2202y + 1Tl 22 0o €PN 222 ) ds

/0 DLl Il oy + 17l
2~ 2~
(|||§| ey + T 1) Fs
/ @ 7l rg + 17 oo
0

(6 1T+ 675 WP 2, 1) s
/ ) [l o [ ] v g s

0
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t

+ [ e S)HTHQM (s)* |H§|U”L1d5HTH2

%
t
+/ e==9) ()5 |y aegazag 7] gds
0
! —c(t—s — il
e )5 as{y (1) (Il ey + 171 g)
£l 3+§+2d+2||7||mu4}

5/
0
[ooH

_d+tt
SO7F YO (17 geg I ) el egsaga 7l g

where we used the fact in Theorem 1.2, which is

1

IT()l jrrg < C(s)2

Thus, we have

L 07 F Y0 (Il g + 1712 y) +

Collecting the estimates of L; through Ls leads to

[Tkt 17l i+ }

el < (0% [|(uo )| + (7% (XOY () +Y (1) + XO)l[ull . 0eq)

5 (X + V) (7] el )

d, 2
LeoHg*2%a Loo gl+%

_dt1
HO 7 Nl ergezaz Tl o g

(5.24)
where r5 > 1+ g.

5.6. Verification of (5.1) and (5.2). Finally we combine the estimates in the
previous subsections to verify (5.1) and (5.2). We remark that (5.6) involves only
H'-norm of 7, (5.19) and (5.20) involve the H%norm of 7 and H'*2 of u, (5.22)

. . d . 344 2d+2
involves the H™-norm of 7 with r3 > 1+ ¢, and (5.24) involves the "2 5 -norm

of u and H*3+Z-norm of 7. In order to accommodate all these requirements, we
choose the functional setting to be H” with r = 3 + g + L;?

According to (5.6) with (5.22), for r =3+ ¢ + MT”,
X(0) S Mwos 7o) lL1nmr + X @Y (2) + (X(8) + Y(O)[|7]| oo e
By (5.19), (5.20) and (5.24),
Y(t) S l(wo, o)l + 1w, T[T e + (X (&) + Y (1)) (Y (2) + [l (w, 7)l| e rar) -

This completes the proof of Theorem 1.3. 0J
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