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ABSTRACT. This paper establishes the nonlinear stability of the Couette flow
for the 2D Boussinesq equations with only vertical dissipation. The Boussinesq
equations concerned here model buoyancy-driven fluids such as atmospheric and
oceanographic flows. Due to the presence of the buoyancy forcing, the energy of the
standard Boussinesq equations could grow in time. It is the enhanced dissipation
created by the linear non-self-adjoint operator yd, — v0y, in the perturbation
equation that makes the nonlinear stability possible. When the initial perturbation
from the Couette flow (y,0) is no more than the viscosity to a suitable power (in
the Sobolev space H? with b > §)7 we prove that the solution of the 2D Boussnesq
system with only vertical dissipation on T x R remains close to the Couette at the
same order. A special consequence of this result is the stability of the Couette for
the 2D Navier-Stokes equations with only vertical dissipation.

Keywords: Boussinesq equations, Enhanced dissipation, Stability of Couette flow
AMS Subject Classification (2000): 35Q30, 35Q35, 76D03

1. INTRODUCTION

The Boussinesq system reflects the basic physics laws obeyed by buoyancy-driven
fluids. It is one of the most frequently used models for atmospheric and oceano-
graphic flows and serves as the centerpiece in the study of the Rayleigh-Bénard
convection (see, e.g., [11, 15, 20, 25]). The Boussinesq equations are mathemati-
cally significant. The 2D Boussinesq equations serve as a lower dimensional model
of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations retain
some key features of the 3D Euler and Navier-Stokes equations such as the vortex
stretching mechanism. The inviscid 2D Boussinesq equations can be identified as
the Euler equations for the 3D axisymmetric swirling flows [21]. Furthermore, the
Boussinesq equations have some special characteristics of their own and offer many
opportunities for new discoveries.

Due to their broad physical applications and mathematical significance, the
Boussinesq equations have recently attracted considerable interests. Two funda-
mental problems, the global regularity problem and the stability problem, have been
among the main driving forces in advancing the mathematical theory on the Boussi-
nesq equations. Significant progress has been made on the global regularity of the
2D Boussinesq equations, especially those with only partial or fractional dissipation
or no dissipation at all. Our attention here will be focused on the stability prob-
lem. The study of the stability problem on two physically important steady states

has gained strong momentum. The first steady state is the hydrostatic equilibrium,
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which is a prominent topic in fluid dynamics and astrophysics. Understanding this
stability problem may help gain insight into some weather phenomena. Important
progress has been made on the stability and large-time behavior ([9, 16, 28, 31]).
The second steady state is the shear flow, which is the focus of this paper. The
aim here is to fully understand the stability of perturbations near the Couette flow
and their large-time behavior. Our consideration will cover both the Boussinesq
equations with full dissipation and the Boussinesq equations with only vertical dis-
sipation. Our emphasis is on the case when the dissipation is degenerate and only
in the vertical direction.

The 2D Boussinesq system with full dissipation is given by

O+ (udy + v0y)u = —0,p + vAu,
O + (u0y + v0y)v = —0yp + VAV + 6,
Oyu 4 0yv = 0,

0 + (w0, + v0,)0 = pnAd,

where u = (u,v) denotes the 2D velocity field, p the pressure, 6 the temperature,
v the viscosity and p the thermal diffusivity. The first three equations in (1.1)
are the incompressible Navier-Stokes equation with buoyancy forcing in the vertical
direction. The last equation is a balance of the temperature convection and diffusion.
The spatial domain €2 here is taken to be

Q=TxR
with T = [0, 27| being the periodic box and R being the whole line. In suitable

physical regimes or under suitable scaling, the Boussinesq equations may involve
only vertical dissipation ([22]), namely

(1.1)

0w+ (u0y + vy )u = —0pp + VOyyu,
O + (u0, + v0y)v = —0yp + VOy,v + 6,
Opu + Oyv = 0,

00 + (u0, + v0,)f = pd,,0.

Cao and Wu previously examined the 2D Boussinesq system with only vertical
dissipation and established its global regularity [10]. The Couette flow,

(1.2)

Usp = (ya O>7 Psh = Oa esh = 07

is clearly a stationary solution of (1.1) and also of (1.2). Our goal is to understand
the stability and large-time behavior of perturbations near the Couette flow. The
perturbations

u=u-—"y, U=, D =D, =20,
satisfy, in the case of full dissipation,

ot +yo,u+v+ (a-V)u = —0,p + vAu,

O + Y0, 0 + (U- V)T = —8,p + vAT + 6,

Ozu + 0yv = 0,

00 + y0,0 + (- V)0 = pAd.
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The corresponding perturbed vorticity near the steady vorticity wg, = —1
W= 0,0 — Oyu
verifies, together with 5, the following system

0@ + y0,o + (U- V)& = vAD + 8,0,
00 + yd,0 + (- V)0 = uAd, (1.3)
i=—-Vi(-A)a.

In the case when there is only vertical dissipation, the vorticity perturbation w and
the temperature perturbation 6 satisfy

O + y0ulo + (- V)& = 0y, & + 0,0,
0l + 0,0 + (0- V)0 = (0,0, (1.4)
U=-Vi(-A)".

The stability problem proposed for study here on (1.3) or (1.4) is not trivial. Due
to the presence of the buoyancy forcing term, the Sobolev norms or even the L?-norm
of the velocity field could grow in time if the two linear terms yd,w and y0,.0 were not
included in (1.3) or (1.4). In fact, Brandolese and Schonbek have shown in [8] that
the L2-norm of the velocity to the Boussinesq system with full viscous dissipation and
thermal diffusion can grow in time even for very nice initial data (say, data that are
smooth, fast spatial decaying and small in some strong norm). The stability of the
Couette flow on (1.3) and (1.4) is only possible because of the enhanced dissipation
generated by the non-self-adjoint operator yd, — vd,,, which is the linear part of
the system (1.4). Even though the linear operator yd, — v0,, involves only vertical
dissipation, the non-commutativity between its real part and imaginary part actually
creates smoothing effect in the horizontal direction, a phenomenon that is called the
hypoellipticity. Operators of this type are investigated by Hérmander [17]. For the
standard heat equation d;f = vAf, the dissipation time scale is O(r~1) while, for
the drift diffusion equations

atf +y0xf = VAf and atf +y8xf = Vayyfa

the dissipation time scale is O(v~3), which is much faster than O(v~!) for small v.
A more detailed explanation will be provided later. This enhanced dissipation effect
plays an extremely important role in the stability problem studied here.

The phenomenon of enhanced dissipation has been widely observed and studied
in physics literature (see, e.g., [7, 18, 30, 26]). It has recently attracted enormous
attention from the mathematics community and significant progress has been made.
One of the earliest rigorous results on the enhanced dissipation is obtained by Con-
stantin, Kiselev, Ryzhik and Zlatos on the enhancement of diffusive mixing [12].
Many remarkable results have since been established. In particular, the stability
of the shear flows to passive scale equations and to the Navier-Stokes equations
has been intensively investigated in a sequence of outstanding papers (see, e.g.,
[1,2,3,4,5,6, 23, 24, 32, 33]).
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The study of the stability problem on the Boussinesq system near the shear flow
is very recent. The work of Tao and Wu [27] was able to establish the stability and
the enhanced dissipation phenomenon for the linearized 2D Boussinesq equations
with only vertical dissipation, using the method of hypocoercivity introduced by C.
Villani [29]. The Boussinesq system is different from the Navier-Stokes equations.
The buoyancy force in the velocity equation could drive the growth of the energy
and more generally the growth of the Sobolev norms. In addition, when there is only
vertical dissipation, the control of the nonlinear terms becomes much more difficult.
New techniques and estimates have to be created in order to handle the degenerate
dissipation. It also appears that no previous work has handled the degenerate
case. Since the Boussinesq system reduces to the Navier-Stokes equation when
0 is identically zero, the stability results presented in this paper fill the gap on the
Navier-Stokes equations with only vertical dissipation.

1.1. Results. We present three main results. The first result is on the linearized
Boussinesq equations with either full dissipation or with only vertical dissipation.
The upper bounds are explicit and sharp. The second result assesses the nonlinear
stability and large-time behavior of the Boussinesq system with full dissipation. The
third stability result is for the case with only vertical dissipation. Both nonlinear
stability results are presented in order to make a direct comparison between the full
dissipation and the degenerate dissipation cases.

For notational convenience, we shall write w for w and 6 for 0 from now on. To
explain the linear stability result, we rewrite the equation for both the full dissipation
case and the vertical dissipation case as
0w + YO,w = V(00,, + Oyy)w + 0,0,
Ol + y0,0 = (0., + 0yy)0, (1.5)
Wi=0 = w(®, Oli=0 = 0.

o = 1 corresponds to the full dissipation case while o = 0 to the vertical dissipation

case. To help understand the stability results presented below, we explicitly solve
the linear equation

O F 4+ YO, F = (00, + Oyy) F, F(z,y,0) = Fy(z,y). (1.6)
Taking the Fourier transform yields

OF — kO F = —v(ok®> +€)F,  F(k,£,0) = Fy(k, €),
where the Fourier transform is given by
1

F TR ddy.
(2m)? /yelR /xe’ﬂ‘ (@, g)e o

Making the natural change of variables

ni=E+kt,  H(knt) = F(k, 1),

F(k,&) = FF =

we find that
atH(ka 77775) = _V(UkZ + (77 - kt)z) H(ka 77775)7 H<k7777 0) = F\U(kﬂﬁ
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Integrating in time yields

H(k,n,t) = Fy(k,m)e " Bl rokntar,
Therefore,

F(k&1) = Hkont) = Fok,& + kt)e v fookvieshemn)tar

= Fylk, & + kt) e emquhPimvkes?, (1.7)
This explicit representation reflects the enhanced dissipation. Even when there is
only vertical dissipation, namely o = 0, the solution is dissipated and regularized
in both directions. The dissipation time scale is O(V_%), which is much faster

than the standard dissipation time scale O(v~'). Clearly the dissipation rate is
inhomogeneous and depends on the frequencies k.

Solutions of (1.5) share the same properties as that of (1.6). The linear stability
results on (1.5) are stated in Proposition 1.1 and Proposition 1.2. To make the
statement precise, we define, for f = f(z,y) with (z,y) € T x R and k € Z,

fely) = %Af(x,y)e‘ik””dx.

In addition, we write D = %8. The linear stability result for (1.5) can then be stated
as follows.

Proposition 1.1. Let (w,0) be the solution to (1.5) with initial data (w®,0).
Assuming that v < Lu for some positive constant L, there exist constants ¢ > 0,
C > 0 such that for any k € Z, t > 0,

0 1 1 2

10x@)lz5 < ClOL e 1o M, (1.8)
0 _1 1 0 —cul 2 .

k()22 < C ([t )||L§ + (vp) 5 k|56 >||L§)e TIk|5 e

More generally, for any integer N > 0, there exist cy > 0 and Cy > 0 such that for
any k € Z, t > 0,
1.2 N
IDY 0 (8) 15 < e (DY O 1 + (7 ) F 10713 )
i3 1 1
IDYwn(®llz < Cve™ > M (DYl gz + (vi) =8 kI3 | DY 01 (19)

— N _1 1
+ RO (ot 1z + ()~ [ 1607]125) ).

A similar linear stability result for a slightly different domain was obtained in [27],
but the proof presented here is different, simpler and more compact. The estimates
in Proposition 1.1 can be converted into a more elegant statement that allows a
direct comparison with the nonlinear stability results to be presented. We explain
and define a few notations. (1.7) clearly reveals the distinction between the zero
mode case k = 0 and the nonzero modes k # 0. This triggers the definitions

fo= BoP) = 5= [ fende,  fomPuf=f-Faf. (110
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which represents the projection onto 0 frequency and the projection onto non-zero
frequencies. In the process of deriving (1.7), we made the change of variable n =
& +tk, which naturally invites the definition of the time-dependent elliptic operator,
for t > 0,

A} =1-092— (0, +t0,)?, (1.11)
or, in terms of its symbol, AZ(k,&) = 1+ k? + (€ + tk)?. In general, we denote A

b
with b € R to be the Fourier multiplier with symbol Al(k, &) = (14 k*+ (£ +tk)?) 2.
It is easy to check that the operator A2 commutes with the differential operator with
variable coefficients 0; + y0,, namely

A (0, + y0,) = (0y + yO,) AL (1.12)

Therefore, applying A% allows us to obtain the derivative estimates without destroy-
ing the structure of the linearized equation (1.5). Furthermore, A? shares similarities
with the standard fractional Laplacian operators. For example, for any b > 0,

IAL(F e < I fllzee 1Al 2 + gl o A7 f |2
and, for b > 1,

1FO)llz=(@) < CIF @3 < CIALF )] z2(0)-

To precisely state the second linear stability result, we define the horizontal frac-
tional derivative by

| Do f (K, &) = [E] [ (K, ).
The linear stability result in Proposition 1.1 can be converted into an estimate in
the physical space.

Proposition 1.2. Let (w,0) be the solution to (1.5) with initial data (w©®,0©).
Then there exists C' > 0 such that for b € R,

1 1 1 1
A%l e 0y + V3 1Dy AR 2z + 00 DoAY 2z + 11013 Aol

(
1 1 1 1 1 4
° <H|D:c\3/\§9\|Lg°(L2) + 12| Dy | Dy [3A70]| 12(12) + o2 ||| Dol 3 A0 1212)

+ (vp)
1 2
+ 181 Da B AL 2
< C (|l + ()5 || D509 1)

We assume v = g for simplicity from now on. The main focus of this paper is
actually the nonlinear stability. We are able to establish the stability and large-
time behavior for both the full dissipation case and the case with only vertical
dissipation. Certainly the proof for the vertical dissipation case also works for the
full dissipation. Both results are presented here for a direct comparison. When the
dissipation is degenerate, more strict assumptions have to be made on the initial
data. The stability result for the fully dissipative Boussinesq equation is stated in
the following theorem.
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Theorem 1.3. Assumeb > 1, > %, 0>p+ %, a>0— ﬁ—l—% and that the initial
data (w©®,0)) satisfies
ol < v, 0O < v, |1Du]500 | < 0
for some sufficiently small € > 0. Then the solution (w,0) to (1.3) satisfies that
1 1 1
A%l ey + A IV ALl 30+ 73 11Dl 3 AL 212
HI(=A) "2 Al sz < Cer’,
1 1 1
HA?QHL?’(L?) + vz ||VA59HL§(L2) +ve |||Doc|3Aft)0”L?(L2)
_1 o
+[[(=A4) QA?Q#”Lf(Lz) < Cev
and
1 1 1 1 2
1D 3030 ge 22y + 2 |V Du 5 AL0|| 212y + V3] D3 A0 212
_1 1
H(=A) 72| Dy [ A0 1212y < Cev’.

In the case when there is only vertical dissipation, the stability and large-time
behavior result is stated as follows.

Theorem 1.4. Let b > %, £ > %, 0> 0+ %, a>0—0+ % Assume that

Ol < e, 100 <ev®,  [IDa30O g < 0

for some sufficiently small € > 0. Then the solution to the system (1.4) with initial
data (w©®,0)) satisfies

1 1 1
IAw|| oo 12) + V2 | Dy AL g2 12y + 5 || Dal 3 Abwl| 212y
HI(=A) "2 Abw | 22y < Cer?,
1 1 1
IAL0]| 3o (12) + 02 | DyALO]| 1212y + 15 [[| Du 3 AL|| 12129
[ (—A) 2 A 4| 212y < Cev®
and
1.3 1 1.4y 1 2.4
11 D23 AO]| o2y + 2 || Dy | Dal 5 ALO| 212y + V]| Dl 5 ALO]| 212y
[ (—A) 2D, AL 4| 1212y < Cer’

Special consequences of Theorem 1.3 and Theorem 1.4 are the nonlinear stability
for the 2D Navier-Stokes equation with full dissipation or with only vertical dis-
sipation. When 6 = 0, the system (1.3) reduces to the 2D Navier-Stokes vorticity
equation with full dissipation. The stability problem of the 2D Couette flow or more
general shear flows near the Couette flow has previously been investigated on the 2D
Navier-Stokes equations with full dissipation, we refer to the references [6, 23, 24].
In particular, we recover the threshold index estimate 5 > % with data in H®, b > 1
established firstly in [6]. Moreover, we also obtain the 1/3-horizontal regularity,
which is better than the enhanced dissipation quantity ||[Abw.||z2(z2) obtained in [6,
Theorem 1.1]. This is due to the different choice of the multipliers that are used
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in the proof. On the other hand, since the stability result for the 2D Navier-Stokes
equation with only vertical dissipation is completely new, we state it as a corollary.
When 6 = 0, the system (1.4) reduces to the 2D Navier-Stokes vorticity equation
with only vertical dissipation,

{&w +yo,w+ (u- V)w = vdyw,

u=—Vi(-A)lw. (1.13)

Theorem 1.4 yields the following stability result for (1.13).
Corollary 1.5. Let b > ;—1 and B > % Assume the initial vorticity w© satisfies
@ < e’

for some suitable small number € > 0. Then the corresponding solution w to (1.13)
satisfies

1 1 1
1Azl ge 2y + V2 [ DyAtwll 22y + vl Dol Awll 1212
H[(~A) 2 w4 22y < Cer”.

Remark 1.6. Various works [3, 6, 23, 24] for Couette flow are done with the change
of coordinates X = v — yt,Y = y. QOur results and proofs can be translated into
the coordinates (X,Y) as well. In this paper, we choose to work in the standard
physical variables, since we would like to highlight the role played by the non self-
adjoint operator y0, — v0,,. The multiplier M defined in (1.14) which allows us
to prove the optimal enhanced dissipation estimates, is constructed according to the
first-order bracket structure of the linear operator.

Remark 1.7. As observed in [19], we can prove an exponential converge of the non-
zero modes for both the full dissipation case and the vertical dissipation case. See
Remark 4.1.

Remark 1.8. After we posted the first version of this paper, C. Zillinger kindly
informed us of his very recent manuscript on a similar topic [34]. He studied the
stability on perturbations near both the Couette flow and the hydrostatic balance
simultaneously. In particular, he obtained the linear stability of the Couette flow
for the 2D Boussinesq system with partial dissipation by using explicit solution for-
mulas. In addition, he also showed the nonlinear stability of the Couette flow for
the 2D Boussinesq system with full dissipation by using the multipliers constructed
in [6], with weaker enhanced dissipation terms obtained. Compared with [34], this
paper focuses on the nonlinear stability for the 2D Boussinesq system with only ver-
tical dissipation, and the gain of 1/3-horizontal derivative is well characterized by
carefully choosing the multiplier.

1.2. Sketch of the proof. The proofs of the nonlinear stability results stated
in Theorem 1.3 and Theorem 1.4 are not trivial. As aforementioned, due to the
presence of the buoyancy force, it is not plausible to establish the desired stability
results without taking full advantage of the enhanced dissipation, created by the
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combination of y0d,w with J,,w in the vorticity equation and of y0,0 with 0,,0 in
the temperature equation.

Let us explain how to extract the enhanced dissipation, especially the regularity
in the horizontal direction, generated by the non-self-adjoint operator yd,—v09,,. We
design a Fourier multiplier operator M defined as follows. Choose a real-valued, non-

0, 7 € (—o0,—2],

1, 7 €[2,00),

and ¢ = 411 on [—1,1]. Define the Fourier multiplier M = M(D,,D,) as M =
My + My + 1 with symbols M; and M, given by

M (k. €) = p(v3|k|“ssgn(k)€), & #0,

My(k, &) = %(arctan%%—g), k #0, (1.14)

Ml(oa’f) = MZ(Oag) =0.
Then M is a self-adjoint Fourier multiplier acting on L?(Q2) and verifies that
1< M 24

decreasing function ¢ € C*(R) satisfying 0 < ¢ < 1, ¢(7) = {

The construction of the multiplier M is inspired by the works [13, 14] on the (non-
self-adjoint) linearized operator of the 2D Navier-Stokes equation around the Oseen
vortices. Before we show the key point of our proof, let us remark the fact that for a
self-adjoint operator A = A* and a skew-adjoint operator B = —B* on L?, we have
the following identity

2Re(Af,Bf)r2 = (Af,Bf)r2 + (Bf, Af) 2
= ((AB = BA)f, f)12 = ([A, BIf, )12,

where [A, B] := AB — BA denotes the commutator between A and B.
Now taking the inner product of (y0, — v0,,)w with Mw leads to the quantity

R :=2Re(y0,w, Mw) 2 — 2vRe(0y,w, Mw) 2,

for which we intend to prove a lower bound. Using the fact that M is self-adjoint
and y0, is skew-adjoint, we have

2Re(y0,w, Mw) 2

<[M, yax]m (U>L2
= 3 [ oMy etk ) de.
= JR
where we have used Plancherel’s theorem in the last step. Consequently,

R= Z/R (kO M + 20 ME) |@(k, &)|* dE.
k

The Fourier multiplier M is constructed in order to capture the regularity in the
horizontal direction: according to the definition of My, for any k # 0 and £ € R,

kDM (K, €) = v k|5 ¢ (v5 k| Ssgn(k)E),
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which is bounded from below by iy%\k\g when |€] < v73|k|3, thanks to the special
choice of the function ¢. One finds the following important inequality

1
V€ + kO My > Z—ly%|k;|%, VEER, keZl

The Fourier multiplier M, is designed to control the velocity in the nonlinear
term since we have
1
kO My (k&) = ——.
3 2( 5) k2 + 52
Combining the above estimates, one achieves the lower bound

11 1 1
R > v||ow|?s + 7° 11Dz |3wl]|72 + [[(—A) " 2wl|7-. (1.16)

(1.16) leads to a control of %—horizontal derivative of w and this is the main reason
why we can possibly control the buoyancy force, as well as the nonlinear terms.
Let us also remark that the exponent 1/3 on the right hand side of (1.16) is sharp
in the sense that there exist ¢ > 0 and functions w, € L? such that the equality
| (Y0 — vOyy)wy || L2 ||wy || 2 = cy%|||Dx|éw,,||%2 holds for all 0 < v < 1. This is due to
the special first-order bracket structure of the operator y0, — vdy,, see [17], [13] for
more details.

Standard Sobolev type energy estimates would not work since they would destroy
the combination, see Proposition 1.1. We shall apply the operator A? defined below
(1.11) which allows differentiate the equations in (1.3) and (1.4) without changing
the linear structures of the system, and then apply the multiplier M to obtain the
desired enhanced dissipations for higher-order derivatives.

The buoyancy term in the equation of the vorticity w takes the form 0,60, which
contains full one horizontal derivative. In the process of estimating [|[A’w]|2, the
buoyancy term can be bounded by

(D, AL0, MAYW) 12| < (|| D5 A6 12| Do |3 Al 2,

which contains %—horizontal derivative on €. Since the enhanced dissipation in the
estimate of |[A}6]|2 contains only i-horizontal derivative dissipation, we need to
estimate ||| Dy|3A%)| 22 in order to control the buoyancy term. This explains why
we combine the estimates of |Abw|| 2, |A]|.2 and ||| D, |3 Abw]| 2.

Most of the efforts are devoted to obtaining suitable upper bounds on the non-
linear terms. This is a very delicate process especially when there is only vertical
dissipation. Let us explain some of the difficulties and our approach in dealing with
them when we estimate the nonlinear term u - V#. The velocity u is represented in
terms of w via the Biot-Savart law

u=-V*H(-A)'w.

IThe choice of the multiplier M; is not unique, for example one may use the multiplier
My (k,€) = carctan(visgn(k)|k|~3€) + C.
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To distinguish between the different behaviors of the zeroth mode and the nonzero
modes, we split the velocity into two parts according to (1.10)

= (1) (1) - ()« (00 %)

where uy = 0,( —83)_%0. Accordingly, u - V6 is decomposed into three parts,
u - VO = ug0,0 + 0,(—A) 1w,0,0 — 0, (—A) " w,0,0.

Due to the lack of dissipation in the horizontal direction, it is impossible to derive
suitable bounds for the first two terms in u - V@ directly. Our strategy to overcome
this difficulty is to estimate the scalar product

H = (Ab(u- V), MALG) .

With the help of the Fourier multiplier M, the frequency space is divided into differ-
ent subdomains to facilitate cancellations and derivative distributions. Commutator
estimates are employed to shift derivatives so that we are able to control the non-
linear terms. Detailed estimates are very technical and left to the proof of Theorem
1.4 in Section 4.

The rest of this paper is divided into three sections. Section 2 proves the linear
stability stated in Propositions 1.1 and 1.2. Theorem 1.3 is proved in Section 3 while
Section 4 presents the proof of Theorem 1.4.

2. PROOFS OF PROPOSITIONS 1.1 AND 1.2

This section is devoted to the proofs of the linear stability results stated in Propo-
sitions 1.1 and 1.2. These results are valid for both the full dissipation case and the
case with only vertical dissipation. Notice that the two equations of the linear sys-
tem (1.5) are decoupled. As a result, an explicit solution formula to (1.5) is available
using Fourier transform as for the model problem (1.6). Indeed, by a direct compu-
tation, we have

)

(k, &,1) = Oo(k, € + kt)eJo R +(Ethi—kn)?)r

(k,€,) = Do(k, & + kt)e v oo (Erki-kryin

t
+ lk/ eV fgis(0’]624’(54’]61‘,*187')2)(17'5(]{’ 57 S)dS
0

&)

Then it is immediate to infer the bounds of Proposition 1.1 and 1.2. Here we present
the multiplier method in order to make it more accessible to the nonlinear case.
These multiplier operators are constructed to extract the enhanced dissipation from
the non-self-adjoint operators y0, — v0,, and y0, — ud,,. Moreover, the multiplier
method is flexible and may be used to study more general models, for which an
explicit solution formula might not be available.

We are ready to prove Proposition 1.1.
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Proof of Proposition 1.1. By projecting the equations in (1.5) onto each frequency,
we obtain the system in the y-variable only,
i + V(D2 + ok?)wy, + ikywy, = 1kOy,
aték + M(Dz + (Tk‘z)ek + zky@k =0, (2.1)
wk\tzo = w,ﬁo), ek’t:O = 9;(60)7
where we have used the notation D = %8. We note that ¢ = 1 corresponds to the

full dissipation case while o = 0 to the case with only vertical dissipation. Since wy,
and #; may be complex-valued, the the LZ—inner product is given by

(rg)rs = / 1) a(y) dy.

By taking the LZ-inner product of 6 with the second equation in (2.1), we have
1d
2dt

To further the estimates, we define and apply Fourier multiplier operators. If k£ > 0,

we define a multiplier M} by

M0y, = @(M%|k|_éDy)9ka

16013 + 1 D,0 25 + ouk? 6] 2 = 0. (2.2)

where ¢ is a real-valued, non-decreasing function, ¢ € C*(R) satisfying 0 < ¢ <
1 and ¢ = 1 on [-1,1]. Clearly, M, is a self-adjoint and non-negative Fourier
multiplier operator. We take the LZ—inner product of the second equation in (2.1)
with M.0,. The following basic identities hold,

d
2Re(0,0k, Miby) 12 = E<Mk0k;6k>L§7
2Re<u(D§ + akz)ﬁk, Mk6k>L§ = <2M(D§ + akZ)Mka, 9k>L§7
2Re(2ky9k, Mk0k>L§ = < [Mk, lky} Qk, 0k>L§7

where in the last equation we have used the fact that M, is self-adjoint and iky
is skew-adjoint. Here the bracket in [Mk,iky} denotes the standard commutator.
Noticing that

[My,iky) = [p(u3 k|75 D), iky] = i3 k|3 (43 ]k] 73 D),
we obtain
d 1,1
7 (M, 60) 1 + (20D} + ok*) (s |k|75 D)6, Oi) 13
(3 k|5 ' (13|75 Dy )0k, 0 2 = 0.

Together with (2.2), this gives

d

2 (161135 + (4061, 60).15)

(20003 + k) (14 (bW 5 D,) + bR kD)) 0. 6) =0,

Y
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By the choice of the function ¢, there holds

1
p(E + o) (14 21 [K75€)) + i3 K3 (s K 75€) = Zpu5[k]5

for all £ > 0, u > 0, £ € R. Therefore,

d 1
(U1 + M0, 00)3) + Dy I3 + ok 1043, + 7t K10, < 0. (29

Integrating in ¢ and using properties of My, we obtain the first inequality in (1.8)
for £ > 0. In the case when k < 0, we define the multiplier M, by

My, = (—ps [k 7Dy )b,
and define My = 0, we can deduce the first inequality in (1.8) for & < 0.

We prove the first inequality in (1.9) by induction. Differentiating the second
equation in (2.1) N times with respect to y leads to

DY Oy + p(D; + ok?) D)0, + ikyD) 0 + kN D) "', = 0.
Taking the L2-inner product with (1 + Mj)D,’60, then gives

d

priiCs M) Dy 0y, Dy Or) 1z + pl| Dy 0k |75 + ouk?|| Dy 05172

1
+ _ugyk]§\|DN9k]|%2 < —2Re(kN D)0k, (1 + M) D 0x) 12
< u dik IIDN9k||L2+32N2 3|k|3 | DY - 105122

Integrating in ¢ yields

IDY6.(0)]12: < 2 DY60 |3 e ot 5
+ON,M_§|,I{;|§/ “Dév_l@k(S)HQ e_ﬁuglkls(t 9 ds.
0

Then the first inequality in (1.9) follows from the induction assumption.
To handle the second inequality in (1.8), we define

M = gp(y%|k|_%sgn(k;)Dy) for k # 0, My =0

and multiply the wy, equation in (2.1) by wy, and Mwy, to obtain

1
dt<(1 + Mk)wk,wk>Lz + I/“DywkHLz + UV]CQHOJkHLz + 41/3|I{?‘ ||wk||L2

S 2Re(zk0k, (1 + Mk)wk>L5
Applying Young’s inequality to the right-hand side yields

d

1
dt(((l + My)wy, wi)z) + V| Dywllzs + o vE* willz2 + 8”3 EE ok 17

(2.4)
< 3208 K[ 3]104 2.
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Due to v < Lu, we take a small enough constant ¢ so that ¢ < é, s < %/ﬁ. Then

102
cv3 k|3t

we get, by multiplying the above inequality by e and using the first inequality

in (1.8), that
d -7 31k 31 “lodia e ad ik Fe
7 (U MyJwg, wp) pze™ ) <32075 [k| 316, | 5

ol

—1,,.4, (0) (cu —Lu%>|k|%t
<O |00 ed oI

Integrating in ¢, we obtain
0 1 2 0 _CV1 2
low(®)[172 < C (w12 + (ve) 73 k|5 047 72 ) e W15,

Differentiating the equation of wy in (2.1) and using the estimates for ), we can
deduce the second inequality in (1.9), under the assumption that v < Lyu. This
completes the proof of Proposition 1.1. O

Proposition 1.2 is a consequence of Proposition 1.1. We recall that the operator
Ay defined in (1.11) commutes with 0, + y0,, namely, for any b € R, there holds
(1.12). Therefore it commutes with the linear equation in (1.5).

Proof of Proposition 1.2. For any b € R, we apply A to the equations in (1.5). Since
AY commutes the equations in (1.5), the upper bounds in Proposition 1.1 and the
estimates in the proof of Proposition 1.1 remain valid if we replace w and 6 by Abw
and Ab0, respectively, in Proposition 1.1. Similarly, since any horizontal derivatives
also commute with the linear equations in (1.5), |Dy|3A%0 enjoys similar estimates
as those for 6. In particular, similar to (2.3), one has

d 1 1 1
E(«l + My) | Dy |3 (AL0) | Dl 5 (AL0) ) 12 ) + pal| Dy | Da| 3 (A76)]

2
Ly
1 T, 1
+ ok (|| DalF (A20)el7 + 717 [K[# D27 (A6)ell7 < 0.
Integrating in ¢t and summing up the resulting inequalities for k € Z, we find

1 1 4
|||Dﬂc|3AZt)0||%t°°(L2) +u||Dy|D$|3A29||%%(L2) +UM|||DJ:|3A§€||2L§(L2) 2.5)
1 2.5

1

1 2 1
1D A2 1) < 21D 10O
While similar to (2.4), we have

d _
7 (4 M) (AGw)r, (Mw)idrz) + VI Dy(Ajw)llZ; + o vk?[[(Afw)ell2;

112 1,4
+ §V3|k\3||(AQW)k||%5 < 32073 k]3] (A70)k1 25
Integrating in ¢ and summing up the resulting inequalities for k € Z, we obtain

HA?W“%go(m) + VHDyAf:)WH%g(m) + UV’HDI‘A?WH%?(LZ)
1
gV el A2y gy < 20w o + 32075 | Do AI 2 1) (26)

< 2w® (12, + C(vp) 5 ||| Da| 502,
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where in the last step, we used (2.5).
By summing up (vp) 3x(2.5) and (2.6), we obtain the desired estimates in

Proposition 1.2. We remark that the coefficient (v)~¢ in the estimate of Proposi-
tion 1.2 helps unify the bound in terms of the initial data. This completes the proof
of Proposition 1.2. 0

3. PROOF OF THEOREM 1.3

This section presents the proof of Theorem 1.3 stating the nonlinear stability for
(1.3). The framework is the bootstrap argument, which consists of two main steps.
The first step is to establish the a priori bounds while the second is to apply and
complete the bootstrap argument by using the a priori bounds. Main efforts are
devoted to obtaining suitable a priori bounds. As described in the introduction,
one component in achieving the bounds is to extract the enhanced dissipation by
constructing and applying suitable Fourier multipliers. Another one is to bound the
nonlinear terms suitably. To do so, we separate the horizontal zeroth mode from
the non-zeroth modes to distinguish their different behaviors. We make use of sharp
commutator estimates.

To help prepare for the proof, we recall several notations and basic facts. We
make extensive use of the operator A’ defined below (1.11). The basic properties
stated in the following lemma will be used frequently.

Lemma 3.1. The operator A? defined below (1.11) satisfies the following properties
(1) For any b € R, Ab commutes with 0; + yd,, namely

(2) For any b > 0,
1A (F)llez < [ Flleoe A9l e + gllooe AL F 2
Moreover, for b > 1, we have
1F Ol < CUFO e < CIALF ()] 22
and consequently,

1A (fg)llzz < CIALf Nz [ ALl

Remark 3.2. [t is easy to observe that for any s non-negative and b > 1, there
holds

DAL (f)llze < C (1Dl Abfllz2 | ALgllze + 1AL fIlz2 1 Dol Abgllze). (3.1)
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Indeed, by applying Plancherel’s theorem, we have

DL Ao =S b [ (Ab(k ) (D [ 7k = . = mpaten) dn) e

<.y [ (i) (00— e+ 1)

< [ Fe -t = mgteon) dn) e
R
<CL(IANGIDL P + AN SIDLI ) ).

from which and Lemma 3.1, we deduce (3.1).
Recall that we now assume that y = v. The Fourier multiplier operator M

employed here is defined in (1.14). We also recall the projectors onto the horizontal
zeroth mode and the non-zeroth modes defined in (1.10).

Proof of Theorem 1.3. Applying A? to (1.3) and invoking the properties of A% in
Lemma 3.1, we have
{@Af;w + YO Now — VAN w + AY ((u- V)w) = 0,A%0,

3.2
DAY + Yy, A0 — vAALY + AY((u - V)0) = 0. (3.2)

We then multiply the equations above by MA%w and MAL, respectively, and inte-
grate over T x R. The combination y0, — VA creates the enhanced dissipation. As
we explained in the introduction, we do not need the full Laplacian dissipation and
the vertical dissipation is sufficient. By (1.15), we have

2Re<ya:cfa -/\/lf>L2 = <[Ma yax} f7 f>L2 = <(kan)(D)f7 f>L2

since M is self-adjoint and yd, is skew-adjoint. Invoking the equality above, we
have

d
IV MBI + 20|V MA 2 + ((ROM)(D)A, A6) 2

+ 2Re(AL (u - V), MALG) 12 = 0. &
Similarly,
GIVAALI + 20| OV RN + (WMD), M)
+ 2Re(A} (u - Vw), MAJw) 12 = 2Re(0, A0, MAw) 2.
Taking L? inner product of the 8 equation in (3.2) with M|D,|3A% gives
S IVRADLEAIE: + 20| 7V MDA A 0
(| D, (kM) (D)ALG, AY0) 12 + 2Re(AL (u - V6), | Dy] 3 MALO) 12 = 0,
According to the definition (1.14) of M, we have
kOeM(k, &) = V%]k\%@'(y%w_%sgn(/{)é”) + k2;+£2 (3.6)
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for k # 0, £ € R. This implies that, for k # 0, £ € R,

DAE + )Mk, €) + KoMk, €) = (€ 4 ) + A K +

Therefore,
20[|VV Mf|[72 + (kOM)(D) f, )iz
> VIV + A D I+ (-2 e,
where f is defined by (1.10). (3.4), (3.3) and (3.5) then becomes
DIV + VIVAlZ + DA DA + 1(~8)F Al
< 2Re \(&CA,IZ@, MAi’w>Li—2ReSAf (u- Vw), MAYW) 12

Vv vV
=h =I>

HV A7z + V| VAYO][72 + - V3H|D| SALO||3: + [[(—A) 2 AL
< —2Re( Ab(u VG),MA 6) L2

-~

=I5

and
d 1 1 1 2
ZIVMIDLS A2 + vV ID S ATz + w5 1 Da]5 A6
+[(—A) 2D, [3AY. |22 < —2Re (A (u - VH), | D, |5 MAYY) 12

~
=14

Using the L?-boundedness of M, we have
1] = (020, MALw) 12| < [[[ D5 AL 2| D] 3 Ao 2.

e Estimates for I, and I;.
Recall that the velocity field u is given by the Biot-Savart law

=-viear (40) = ()

According to (1.10), u can be decomposed into uy and u,

uy = Pou = (%O> , with Uy = ay(_ai)_lw(b

e eare = () - ()
Therefore we can write
= (AV(u- Vw), MASW) 12 = I + I,
with
Iy = (A} (uy - Vw), MAJw) e, Iy = (A} (ug - Vw), MAJw) 2

§2+k2.

17

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Using the boundedness of M and Lemma 3.1, we have for b > 1,
[Tor| < A7 (g - Vo) [l p2l|Afwll 2 < ClIA7uL | 22|V AW g2 | A0 2
By (3.11),
[APusllze < V(= 8) Aoz < 1I(=2) 2w
Therefore, for b > 1,
] < ClH (=) 2Nz | 2 | VAL 2l | Afw]

The key point is to bound ;. To simplify the notation, we write M? = v/ MA? or

Mk, €)= /MK, E) ALK, €) = VMK, €) (L+ K + (€ + kD)2 (3.12)

It follows from (3.11) that ug - Vw = uy0,w = ug0,w, since wy is independent of x.
Therefore,

Iy = (A)(ug - Vw), MAJWw) 12 = (M (ugOpwy), Miw) 2,
Due to the cancellations
<M?(anmw¢)aMfwo>L2 =0,
(ugOp(Mbw), Mbwy) 2 = 0,
we have
(0Bpwy ), Miwy) 12

_ b
Iy = (M;
= (M}(uoOpwy) — o0z (Mjws), Miwy) 2.

{

By Plancherel’s theorem,

f = 37 [ (M. = M€ )08~ ) M T i

=- (ME(k, &) — M7 (k. € —n))
>/
By Taylor’s formula,

M
M
%am,n)ka(k,s )Mk, &)k E)dedn.

1
Mk, €) — MOk, € — )] < / 9ME(k, € — sm)|[nlds.

Using the explicit expression of M? we deduce that

|0 M (K, §)] < C(V%“C‘_% + ﬁ) (L+ K+ (E+ kt)Q)%, (3.13)
Therefore,
[Tl <3 CwslkIS +1>// (141 + €+ 50%) T+ (14K + (€ =+ k) ?)
k20

x |@(0, @k, € — n) Mg (k. ©)IB(k, €)|dEdn
< Cvi||Aywoll2 || Do AwllZ + Cll Ajwoll 2| Ajw | Z-
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Consequently,
L] <C(=A) "2 Abw s g2 | VAN W] 2| A
+ O || Afwoll 2 [[| Dal AR + C | Aol 2 | Abeoe |3
<CI(=A) "2 A w s 2| VALw]| 2] AL . (3.14)
+ C v | Abwo| 2| Da |3 Abw] 2
+ C | Abwol| 2 [[(—2) "2 Afwy 2 [ VALl 2.
I3 can be bounded similarly as Io. We write I3 as I3 = I31 + I35 with
Iy = (A} (uy - VO), MAYO) 12, I3p = (A} (ug - VO), MAJO) L2
and obtain the following bound
5| <I(=2) 72 Abwpl| 2| VAL 12| AL 2
+ O || Afwo| 2 || D2 [T A3 + C| Abewio | 2| A2 3.
<|(—A) 72 Awg || 12 ]| VALG| 12| A2 2 (3.15)
+ O3 || Afwol g2 || Dal 5 A6]I3
+ C | Aol 2| (—2)"ZAL0L| 2 [ VALO)] 2.

e Estimates for Iy.
We first decompose I, as I, = I + 145 with

Ly = (A (uy - V0), [DSMAL) 2, Ly = (Al (ug - V6), | D,]5 MAL) 1.

The estimates for I45 are the same as those for I,
o] < Cs||Awoll 21| Dal 5 AP0 72 + Ol Afwoll 2| Dl 5 A4 7.
For 141, we have
1
[ Lia| < (|1Da 5 A} (s - VO) [ 2| Do |5 A6 2.
Furthermore, it follows from (3.1) that
11D2]3A7 (use - VO) [[ 12 < A7l 2| Do 3 ATV 12 + [[| D[ 3 Ajug]| 12| AV 2
and
1 1
IAPuLllze < [(—A) 2 Abwsllre,  [[1DalFAM] 2 < ||| Dyl 5 AW o
Therefore, we deduce that
| L] <Cv || Abwoll 2| De s AP0 32 + C| Aol 2 || D5 ALO£ 3
1 1 1
+ Cll(—A) 2w 2 || Do | FALVO| 2 ||| Do |5 AL 2 (3.16)
1 1
+ Cl[Dy]5 Ajw]| 2 1AV 22 [[| Dl 5 A6 2.

e The closing of the energy estimate
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Inserting the upper bounds (3.10), (3.14), (3.15) and (3.16) in (3.7), (3.8) and
(3.9) and integrating in time, we obtain

1 1 1
ARl T o0 12y + VIV AT F2 12y + g 1D2]3 A7l F2 2y + 1(=A) "2 Ajwe 212y

1 2 1 1
< 20 Agw[Zz + 8073 [[[Dal FAON T 1) + Crvs [ Awll ooy | Dal 3 Afwl|Zz 2y

1
+ Cul (= A) "2 AJws || 222 [ VAW 22y 1AW | oo (12, (3.17)
and
11 1 1
M08 e gy + T2y + A IID A gy + (=2 BA
1
< 2[[AJ0Q3s 4+ Co [[(—A) "2 AJw ]| r2 2y VA 22y |20 | 5o 22
1 1
003 [ AJw|l L (12 | D |3 A7 2 2 (3.18)
1
+C HAQWHL,‘?"(LQ) [(=4) 2Afs)‘gs«féHLf(L?) ||VA?6HLf(L2)7
and

D2 AL e gy + I FIDA ALy + DA
+ [[(=2) 2| Dy |5 AJ0L]122 12,

< 2|||Dx|%/\89(0)||%2 + 03’/%||Afw||L?°(L2)|||Dm|§A?9||ig(L2) (3.19)

+ Cs || Afwoll ge 1) 1D ALO£| 32 12

+ Cy|[(—A) "2 Aol 212) | Dal S ALV 8| 1212y | D 5 A28 1 (12,

+ C3[| Dal 3 AWl 222 NSV 212y 1] Dal 3 ALB]| oo 2.

The a priori bounds in (3.17), (3.18) and (3.19) allow us to prove Theorem 1.3
through the bootstrap argument. We recall the assumptions on the initial data
(0, ),

@l <<, 10 <o NIDHO)m <l (3:20)
where € > 0 is sufficiently small and
1 1 2

To apply the bootstrap argument, we make the ansatz that, for 7' < oo, the solution
of (1.3) obeys

|Aw g 22y + V2 | VALl 13 12) + V8 D25 Aol 3 22
HI(=2)2 M wsll gy < Car®,  (3.22)
A6l oo z2y + vE | VAL 2 12y + 05 || Dol S A0 2 12
HI(=2) 7ML 21y < Cor®, (3.23)
11Da 5 A0l s 2y + V21V | Da |5 AJ0]| 2 12 + 31| Dal 5 A0 2 12,
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HI(=A) "2 Da 3 A4 12 1) < Cev’. (3.24)

We then show that (3.22), (3.23) and (3.24) actually hold with C' replaced by C/2
and C by C'/2. In fact, if we insert the initial condition (3.20) and the ansatz (3.22),
(3.23) and (3.24) in (3.17), (3.18) and (3.19), we find

1 1 1 _1
“A?OJH%Q”(B) + VHVAfs)W”%g(p) + gV’ |HD:):|3A§WHi§(L2) +[(=4) 2A?w7€”ig(p)
< 2220 4 8C22M 5 + ¢ 0353(1/35*% + y3f3*%)7
1 1 1 _1
A8 e 1)+ VIV AL+ SoS LD A + (=) A0 2
< 2:2,%0 4 020383(3VB+20¢7% + Vﬁ+2a7%)’
1 1 11 2
_1 1
HI(—=A)72 D5 A0 7212
< 2627 4 CCCP (20T + CP+2e—5 4 20y5+a+5—§)_

If we invoke (3.21) and choose

1 1 C )
128C1C7 128C,C7 64C3C77

then the inequalities (3.22)-(3.23) hold with C replaced by C/2 and (3.24) holds
with C replaced by C'/2. This completes the proof of Theorem 1.3. O

C>8, C>32C, c=min(

4. PROOF OF THEOREM 1.4

This section proves the nonlinear stability result stated in Theorem 1.4. We recall
that the Boussinesq system concerned here has only vertical dissipation, namely

Ow + yO,w + (0 - V)w = vdyw + 0,0,
0 + y0,0 + (u- V)0 = v0,,0,
u=-Vt(-A)lw,

w(z,0) =w®,  4(z,0) =00,

(4.1)

The proof is much more involved than the full dissipation case. The framework is
still the bootstrap argument, but it is now much more difficult to prove the desired
a priort bounds due to the lack of horizontal dissipation. The Fourier multiplier
operator is the same as that is designed for the full dissipation case, but the nonlin-
ear terms are now difficult to control. Various techniques are combined to achieve
suitable upper bounds. The quantities are decomposed into horizontal zeroth mode
and the non-zeroth modes to distinguish their different behaviors. Commutator es-
timates are employed to shift derivatives. In addition, the frequency space is divided
into different subdomains to facilitate cancellations and derivative distribution.
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Proof of Theorem 1.4. Applying the operator A’ to (4.1) and making use of the fact
that A? commutes with 9; + y0,, we obtain

(4.2)

ONw + Yy, Njw — vOZAYw + AY((u - Vw) = 9,A%0,
QN0 + yO, N0 — vOZAYO + A2 ((u- V)F) = 0.

We then take the scalar product of the equations with MA%w and MA%9, respec-
tively, where the Fourier multiplier M is defined in (1.14). Using (1.15), due to the
fact that M is self-adjoint and y0, is skew-adjoint,

2Re(y0, f, M[) 12 = ([M,y0.] [, f)r2 = (kOeM)(D)f, f)r:

Invoking this equality, we have

d
ZIVMATz + 20| Dy V MAw [ + (kOeM) (D) Afw, Aw) 12
+ 2Re(A} (u - Vw), MANw) 2 = 2Re(0, A0, MALw) 12

(4.3)

and

d
EIIVMA?GII%Q +20|| Dy VMM 72 + ((kOeM)(D)AYO, AYO) 2
+ 2Re(A} (u - V6), MAJO) 2 = 0.

(4.4)

Similarly, taking the L2-inner product of M\D$|%A20 with the 6 equation of (4.2)
gives

d

IVMIDS A2 + 20D,V M D[ A6

(4.5)
+ (| Dy |5 (kO M) (D)ALO, A26) 12 + 2Re (AL (u - V), | D, |5 MALG) 12 = 0.

Using (3.6) and the properties of the function ¢, especially ¢'(7) = 1 when |7] <1,
we have, for k # 0, £ € R

1

112
2V£2M<k,£) + kagM(k,€> > V£2 + ZV?’ ’k’i” + m

As a consequence, it comes out

20[| Dy VM |72 + {(kOeM)(D)f, f) 2

) 1 . 1L N ) (4.6)
2 V|| Dyfllze + w3l Dal3 fllze + 1(=2)72 feze,
where f. is given in (1.10). Inserting (4.6) into (4.3), (4.4), (4.5) yields
d I 1 1 1
T IVMATe + v DyAflle + v [1Da]5 Awll7a + (= A)72 A7
(4.7)

< 2Re (Q,;A?Q,MAf )12 —2Re Ab(u Vw), MALW)

=h =I>
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d 11 1 1
EHVM/\?@H% +v||DyAY|7 + i Do AL017> + I1(—A) "2 A20.|7

< —9Re(Al(u-VO), MAY) . (4D)
T
and
d 1 1 1 1 2
EIIVMID:CISA’ZHII%Q +v||Dy| D3 A70]17: + i 11 D.|5 AL6172
T I=A) DL AN 2. < —2Re (Al(u- V), (D, M) ()
=1
The term I is easy to deal with, using the L2-boundedness of M, we have
1] = [(0uA20, MALw) 12| < [[|De |5 ALO| 2 || D] 3 Ao | 12
1 . Ly o n PR (4.10)
< 16V Do Awlze + 8u 73| Dy A0 72

e Estimates for I, and Is.
The terms I, and I3 have the same structure so that we only estimate 3. In view
of (3.11), we write

u - VO = 10,0 + 0y(—A) 'w.0,0 — 0.(—A)'w,0,0.
Correspondingly, we decompose I3 as
Iy = (A} (u-VO), MAO) 12 = I3 + 3o + I35,  with
I3 = —<Af(8z(—A)_1w¢8y9),MA?0>L27
Isy := (A7 (uo80), MAO) 12,
I35 = (Af(ﬁy(—A)_lw;ﬁxQ),MA§0>L2.
For the term I3, we have
Iy < ||AY(05(=2) " w0,0) || 2| AV 2

. X . (4.11)
< N(=A) "2 Ajwp| L2 | Dy ALO 2] A 2.

The estimates for I3, and I33 are much more elaborate since we only have %—derivative
enhanced dissipation in the z-direction, which is not enough to control 0,6 directly.
By (1.10), we write § = 6+ 6. Since 6, is independent of x, we have 0,6, = 0 and
the cancellations

(M (u00:02), MiBo)r2 = 0, (u0u(M}2), M{0) 2 = 0,
for Mb = v MA? with symbol M?(k,€) given by (3.12). Therefore,

Igy = (M (u00p02), M) 2
- <M?(u08$97é> - uoﬁx(/\/lfe?g), M?0¢>L2~
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Using Plancherel’s theorem, we have

I = ,;o [ (Meth ) = Mih €~ )30 )Rk, € ) M2k, (k. )l

=3 [ (M) — Mih. €~ ) L00,RT . € — 1) ML Ok, E e
k0 n

where we used u(0,7n) = in~'@&(0,n) by (3.11). Therefore, in view of (3.13), we get,
by applying Young’s convolution inequality, that

I < 3 CARE +1) / / (AL(. € — ) + A(0, 7)) [B(0, )]

k0

X (04 (k, & — )| ALk, €)[0.4(k, €)|dEdn
< Ol 1D A A2 + o [ s 1D s e 1D A
+ (|@oll o [1AOL1132 + | Abwoll 210211 [ A262 ] 2)
< Cvs || Aol 2 || Da [ AL6II32 + C[ Abewo | 2 [ A04 3.
Due to div u, = 0, we have the cancellation
(s - V(M) M}B) 12 =0
and we can rewrite

Iz = (M (uz0,0) — uz0,(M;0), M{0) 12 — (020, (M0), M30) 2 .

(. (.

=:J =:J’
The term J' is easy to control
7] < ol oo | Dy M| 2 | M) 2 (4.13)
_1 :
< [(=2)72 Afwsl 2 [ Dy AL || 2| A0 2.

It remains to estimate the term J. Noticing that 9,0y = 9,(M%0y) = 0, we can
write

J = <M?<U¢ax(9¢) — U¢81<Mg9¢),M$9>L2 = Ji + Jowith
Ji = (M8 (ur0,02) — uz0p(MEOL), MEOL) 12,
o 1= (M (u20,02) — uz0p(M702), Mibo) 2.

By Plancherel’s theorem,
no= 3 ] (M - M- L - )
k,l

g (1) - i(k — DOx(k — 1,6 — 1) - M(k, €)84(k, £)dédn

S O | KOV BNV R )
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1)
l2 + 2
where in the last equality we used u(l,n) = in(I*+n?)"*@,(l,n) by (3.11). In order
to estimate Ji, the idea is to use Taylor’s formula for Mb(k &) —Mb(k—1,&£—n)
as in the estimates of I3y. However, M(k, &) and M?(k, £) are not smooth at k = 0.
We then have to divide into four different cases:
Ay ={k>0,k—-1>0}, Ay={k<0,k—1<0},
A3 ={k>0,k—-1<0}, Ay={k<0,k—1>0} (4.14)

Dp(L,mbs(k = 1,€ = n) - MYk, €)04(k, €)dédn,

and denote by

- // Mi(k—1,6 —n))

(k,1)eA;
kE—1 =
£+n) 22k = 1,€ = 1) - M{(K, €)02(h, €)den

We first estimate Ji; and Ji5. When & > 0,k — [ > 0, we use Taylor’s formula,

1
Mk, €) — MUk 1,6 — )| < / Mk — sl, € — s [nlds

1
+/ |0 ML (K — sl,& — sn)||l|ds.
0
A direct computation gives

0N (K, )] < CAP2(k, (1K) + 1€+ Rtl1t]), 1t < — (1€] + Ak, ),

ol
which implies
. €]
|0 ME(K, €| < ( k2)Ab(k,§) for k > 0.
Together with (3.13), we obtain

|M?(k7§) - M?Uf - l,f - 77)|

o (k—sl)z k—sl = (k—sl)? ’

iy ml 1 (el+1E=nDliy o b
S min(k—z,k)%+min(k—l,k)+ & — Dk ) (Af(k =1, —n) + AL, n)).

Here and in all that follows, a < b always means that there is a uniform constant C
so that a < Cb. Therefore, by the convolution inequality,

=] Y [ (M9 - M- 16— )

(k,l)€Aq
1>0

n(k—1)

$ o Ml = 1€ = ) - Mk )0 (k. ) del
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Vi l — 1Pl
<y // \77| RSl (SEa 77D||)<Ag(k_l7g_n)+A§(l,77))

(hDEA k=1 (k =1k
k—1 ~ ~
A%%ﬁgmﬂhm@%—Lé—MM%éWAh@WMn
! 1+ 1€ =l b
v( 1+ = —1 A1
S 3 J et KGR e )

>0
X [@ (1m0 (k = 1,€ = mAY(k, €)04(k, €)|dédn,
from which, we infer

1 —~ 1 1
TPL S 1@l (5 || Dal 3 ALOLI120 + |A20.4]122)
(= A) 2w || 1 || AL | 12 ]| Dy ALOL | 2

—

1 1 1 n
HIAfwe |2 (VI Do 504 o 1 Do 5 AL 2 + 102 ] 1 | ALO£] 2)
HI(=A) 72 A w2 (1021 2 | Dyl 2 + 1Dy 1 [ A0 12)
1 _1
S Afwellzzlll Dals ApO£IIZ> + 1(—A) 72 Afwe |2 | ALO£ ]| 2| Dy AyO£ 2,

~Y

where we have used that (k —1)3 < (k —1)3ks for k> 0,k —1> 0,1 > 0.
On the other hand, when £ > 1,1 < 0, we have the inequalities

E—

< i (k= D8RS 4 = D3 200k - DF),
3

k—1 , L L

T SQmm((k—1)3]1\3,(14;_[)3’”3)_

Jl(f) can be estimated as follows,

(Q)I— Z // M (k= 1,6 —n))

(k,1)EAq
1<0

I D = 1.6 = 1) - MUk, €0k, € )

l2_|_ 2

iy |n|+|l| (|§|+|€ DI /vo b

1 Ak —1,6 —n)+ A7)
(ZA // = k— )k >< )

AEZ 0 o 1k — 1, € — )Nk, €004 (k, €)ded

l2—|—77 )0+ s ) AR, # n

(V3 (k= 1)3k3 + €] + 1€ = nl) (A} (k — 1,€ = n) + Al (L, n)
(Z // ) (A )

(k= DIEALR = 1€ =)+ (k= DEUSALL )
X B (1m0 (k — 1,6 — )AL (k, €)04(k, €)|dEdn,
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which ensures that

—

2 1~ 1 2 1
TL S v l@llo 11 Dal A0 32 + 1 Dal 3ol | Dal 5 AL0L ] 21| A70£ |12

~
—_—

G 1 [A70 4121 D A0 22 + v (| Afw e 2 || Dal 302 oo || D5 ALOL | 2
H|[Da 3 A | 2 || Do 504 1 || AR 2
I ALw |2 (1041122 | DyAYO LI 2 + | Dy02 | 11 | A204 ] £2)
< A 2 (VE || Dol A0 + |AL0. 12| Dy ALO £ | 12)
| D3 A2 s || 2 || Do | 5 A0 2 | A6 12,

where we have used

—

4
1 Daliwellpr < ||| Dy|3 Alws|| 2, provided that b > 5

Combining the bounds for Jl(i) and Jl(f) yields
[Tl S [Awllze (I Dal 2 Af0 |72 + 10702l 2| Dy ALl 12)
1 1
+ 1Do 5 Afwe 2 [l D5 AGO£ ]| 2| AO£ | 2.

The term Ji5 can be treated in the same way.
To estimate Jy3 and Jy4, we notice that, when k£ > 0, k—[l < 0or k <0,k—1 > 0,
we have |k — [ < |l and thus

nllk —1|, -
Jis+ Tl <> // (AL(k =1, —n)+ A?(laﬁ))|l2||+—2||w¢(l,77)’
(k,)eA3UA, N
X |02k = 1, = m)AJ(k, €)Be (k. €) | dcln
SNl | AZO£ N2 + 102 ] 2 [ Afwoe | 2| ALO£] 12
S 1AZwx 22| AfO« | 72
This finishes the estimate for Ji,
1
[ Ti] S 1A2wsl 2 (1 Dal 3 A70£ N2 + 1A702]1 22| Dy AO£ 2 )
+ [[1Da]3 Awiel| 2 ||| Del 3 A0 22 [ AL04 | 2.
To estimate J, we observe that
We thus apply Plancherel’s theorem and (3.11) to write

9l =3 [ (ME0.6) = Mi-.€ = m)aa(t i1, € — ) MEB(O.€) el
140

Unl ~ > ~
>/ ) 7oz P

S L 1A £l 21 A7 B0l 22 + 10111 [ Afwse [ 2 (| Af6o | 2
S [Afwz 2| A0 4] L2 | ALo 2.
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Combining the bounds for J; and .J5, we obtain
1
[T S A fwsllzz (1 Del5 A0 £I[72 + |A70£ 1 22| Dy ALO£] 12 + |A70 | 2] Ag6o | 2)
1 1
+ [ Dal5 Afwsll 12| | Del 3 A0 12| A702 2.
Together with (4.13), we finish the estimates for I3s:
| I3 | S |1 Awie |2l D5 201122 + ([ Dol Al 2 || D5 AYO| 22 [ AGO£] 12

(4.15)
+ [ ARzl 2| AYOl| 2 (| Dy ARO |2 + (A0l 2)-
It follows from (4.11), (4.12) and (4.15) that
1 1 1
T3] S [1AZwll 2l D3 2012 + ([ Dol3 Mgl 22 || Dl 2 A7O| 22 | A7O4 | 2 (4.16)
+ [ A2l 2| AZO]| 2 (| Dy AZO |2 + ([ A7OL ]l 2)-
Similarly, the upper bound for I, is given by
L] S AL 21| Dal 3 A3z + [|AJ]| 2 | Ao | 2 | Dy Ao 22 (4.17)
e Estimates for I,.
As in the estimates of I35, we decompose the term I as
Li=1Ip+ L+ L with Iy = (A (v29,0), | Dy|5 MALG) L2,
Ly == (A (ud,8), | D5 MAYY) 12,
Lig == (A2 (u20,0), | Dy |3 MALG) 2.
By (3.1), one has
Liy S ||1Da|5 AL (020,8) | 2 ||| D] 5 A6 2
0 S NIDLF A e0,0)]12]1D. 1A%, s

1 1 1
S (1Da]3 Afvgl 2| DyAbll 2 + |04l 2 || Do | Dy AL 2) 1| Do [ AV 2.

Setting NP(k, &) := k|3 M?(k, &) and NP the corresponding Fourier multiplier, we
can write

Ly = (N} (u00:02) — uo0uNY O, NP0 12
The estimates for 1,5 are similar to those for I3,
[Laal < w3 || Aol 2 1| Dl s A8 + [| Abwnl 2 || D[S A7 (4.19)
In order to estimate the term I3, we decompose it as
Lz = (N (uz0,0),N{0) 12 = K + K'  with
K = (N (u0,6) — 0, (N9), N?9) 1,
K" = (0,0, (N0), N0} 1.
The term K’ can be bounded easily,
K] < Jvgll e 10,N7 01l 2 [ N7 2

< _1 4 14y 1y (420>
S I(=A) 2 Awell 2| Dy | Dol A8 12]]| D5 A6 12
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For the term K, due to 0,0y = 9,N0y = 0,
K = (NP (up0,02) — up0n(NY02), N} O4) 12
By Plancherel’s theorem and (3.11),

K=- Z/ (NP (k. &) — NP (k — 1,6 n>)l§ Do)

X Ok = 1,€ = NP (k, )04k, €)dédn
=K+ Ky + K3+ Ky,
where, for i = 1,2, 3,4,

a b n(k—1)
:_Z//ng NPk — 1€ — >)l2+77 (1,m)

(k\1)eA;

X O(k — 1,6 — NP (k, €)0,(k, §)dédn
with A; being defined in (4.14). For any k # 0,
0N (R, )] S (05 + K 75)AY (R, €),
OGN () S (K175 + [R5 [E)AL (R, €).
When k& > 0,k — [ > 0, using Taylor’s formula, we have
NP (R, €) = N (K — 1,6 — )
< (vilnl + i+ n|+|€|)(/\( k—=1,6—n)+ A1),

min(k — [, k)3
Therefore, by the convolution inequality,
n(k l)
K = | 3 [ e - ate - e -n) o)

(k,l)€Aq
1>0

Xp(k = 1€ = NP (b, €)0(h, €)decl
Y // us|y+”|+|£ n'+|£’)(Ai’(k'—l7£—n)+Ai’(l,77))

(k,1)eA - l)
1>0

k—1 . .
X%@(h MOz (k —1,& = mNVOL(k, €)|dEdn

Z// (v (k= 1)+ (k= 1) + (€ — 0] + Dk — )3)

(k,l)eAq
>0

X (A(k = 1,6 =) + A (Lm)) @2 (L mbe(k — 1§ — n)NPOL(k, §)|dedn,
from which, we deduce that
~ 1 2 1 1
(K] S @2l (v 1 Dal AP0 22|11 Do s NP O£ 12 + || Dal 3 APO2 ] 2 | NP O£ 2
[ Dy | Da[3 A0 (| 22 INF O£l 2 + 123 A0 22| DyNTO £ 12)

A
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1 2 1 1
HIAywll 22 (V3 |1 Dol5 02| Lo | Dol SN 02| 2 + 11Dl 3041 [INF O] 2

Th L i
+| Dy [ Dal 30411 [|NF O 2 + [[[ Dal 30| 1| DyNT O] 12)
2 1 1
S NIARwellze (11Do ] A0 + 1Dy Dal 3 A0 2] 2 || Dol 704 2),

Y

where we used k — [ < (k:—l)%k% for k> 0,k—1>0,1>0.
On the other hand, using the fact that, for £ > 0,1 < 0,

2,1 1 k—1 2 01 k—1 1
we have
l)
K®| = (N, &) = NGk — 1,6 =) ME =D 1)
1 \z /[ e b
X0k = 1,€ = N (k, )04 (k, €)dgdn)
11+ 1€ —nl + €] b(L b
< Vi | + )(AL(k — 1, — ) + AL(L,m))
Y/
k—1 —~ ~
H\ Bl )0 L~ )N, ) ddl
< ¥ // (E(k = D3EY + (B — DFE + (16 — 0] + €D (5 — D))

(k,1)eAq
>0

X (Ag(k - l?é - 77) + A?(L 77)) |@7é(l7 77)‘57&(1“‘5 - l7€ - U)Mbé\#(k’ g)ldfdﬁ

As a result, it comes out

2 1 2 - 1 2 1
|K{P| Svs (|1 D5 A0 2| 11 || Dal SN0 12 + || Abws || 21| D302 0 ||| D N0 12)

4 D25 AL 12| Dl 5w || 1 NP0 2N 2 + 11 Dal3 b l| 21| D 30| 1 [INZOL] 12
+ 1@l (1D D5 ALO £ 12 INPOL 2 + ([ Dl 3 ALOL] 2| Dy NF O£l 1)
+ A w4l 2 (1 Dy Dal3 020 11 [NFO £ L2 + || D502 11 | DyNF O£ 12)
SIA w2 (03 [[| Dl SAL0 L35 + 1| Dy | Dy | 5 AL | 2| Dy | T ALEL ] 2)
+ 1D |5 Abos || 2 || D | ALOL | 2 || Do |5 ARO4 ] 2.
This completes the estimates for K7,
Ky S A% (1Dl SA202035 + || Dy | Dy |5 ALOL| 2]l | Do | 5 AYOL | 2)
+ 1 Dal5 Mg | 2 || Dol AL 4 2 || Da |5 A2 4| 2.

We can estimate the term K5 in the same way.
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To estimate K3 and K, we notice that when k£ > 0, k-1 <0Qor k< 0,k—1>0,
|k — 1| < |l|. Therefore,

Kkl < 3 [[(Rmo e atE-Le-m)

k‘ ! €A3UA4

x|, m)0s(k — 1,€ = NPOL(k, €)|dedn

S [ Ok = 1Ak - L - )+ A )

(k,l)eA3UAY

AN

X B (1, )02 (k — 1, & = )NPO4(k, &)\ dédn,
so that we have
~ 1 1
[Ks + K| S @40 ([A20 £l 2 | Do SN0\ 22 + 11 Dl 5 Ag0 2| 2 N7 O 2)
H[Afws || 221102 ] 2| Da | SNYO 4] 12
IAfw£ll 2 (1702 2l Dol AgO 2|2 + || D23 A0 72)-
Summarizing the estimates, we achieve that
2 1 1
K| S 1Awellzz (1 Dol 3 A5041[72 + 1Dy Do 3 AL0.4]| 12 || Dl 5 A704 |l 12)
1 2 1
+ 1| Dol Agwsl 2 || Da |3 A0 || 2l D5 A20 2| 2.
Together with (4.20), we obtain
| Ls| S | Awy ez (11 D2 3 AYOIIZ2 + | Dy| D5 A6 2]l D |5 26| 12)
1 2 1
+ [ Dol Agwl| 22 ([ Do 3 A30| 2 [[| Do |3 AL 2
Then by (4.18), (4.19) and (4.21), we finish the estimates for Iy,
L] S Al 211 Dl 3 A1 72 + | Afeos | 211Dy | Dal s A76| 2 || D5 AL 2
H[[Da]5 (=A) 72 Ajwp || 2| Dy AYO | 2 [[| D3 AZO | 2 (4.22)
11Dl s Ageoll 1| Dl S A0 2 1 D |3 A 2.

e The closing of the energy estimate

Integrating (4.7), (4.8) and (4.9) in time and making use of the upper bounds in
(4.10), (4.16), (4.17) and (4.22), we obtain, for b > %,

(4.21)

11 1 1
HA?WH%‘;C(L?) + VHDyA?W”%g(Lz) + gw’ |||Da:|3A§W||2L§(L2) +[[(=4) 2A§W¢||2L§(L2)
_1 2 1
< 2| AW O3 + 81 F | DAL 12 + Crll AWl oz 1D AL 25
+Ol||A§W||L;’°(L2)||A§W¢||L§(L2)||DyA?W||L§(L2)7 (4.23)

and
11 1 _1
”A?@”%go(m) + VHDyA?QH%f(L?) i H|Dx|3/\$s)9|’%§(m) +[1(=4) QA?Q#H%(L?)
1
< 2/|Ag0 72 + Coll Afwll ge (o) [ D3 ALOII7 2 12 (4.24)
1 1
+Coll| D5 Ajwll 212y || Da |5 A0 2 12) | ALO£]| Lo (122
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+02||A?W¢||L§(L2)||A§‘9||L;>°(L2)<||DyA§9||L§(L2) + ||A§9¢||L§(L2))
and
1D AL e gy + v Dy DAL + A 1D AL
HI(=2) 72 D[S A4 72
< 2D, s AL 32 + Csl| Abwl| oo (22 || Dal 3 A0, 2, (4.25)
+Cal[ Az | e (1D Dl A0 3 ez + 1 Dy A 2umy) 11Dl A0 12
+Cll| Dal * Al a1 D | A8l 0 || D 540 2.
With these a priori bounds at our disposal, our final step is to prove Theorem
1.4 via the bootstrap argument. We assume that the initial data (w(®, ) satisfies
@l < e, [0 < v, [ID560 ) < e,

where € > 0 is sufficiently small, and 3, «, ¢ are constants satisfying

2 1 2
Bz §2feg azi-ftg (4.26)

The bootstrap argument starts with the ansatz that, for 7' < oo, the solution (w, €)
of (4.1) satisfies

IAJwl| e 2 + 2 | DyAfwll iz n2) + v [ D3 M| 2 12y
HI(—A) 72 Afws| 2 (z2) < Cer, (4.27)

IA2O]| e 22y + V2 | Dy AL 13,22y + 5 || Dol 5 AL 13, 12
HI(=A) AL 2 12 < Cov®, (4.28)

11Da]3 A0 e (12) + v2 | Dy | Dal 3 A0 12,12y + 6 || D5 AL 3 12
HII(=A) 72 Da 3 AP0L] 13,12y < Cev’. (4.29)

The constants ¢ > O,C,é > (0 are suitably selected and will be specified later.
Making use of the bounds in (4.23), (4.24) and (4.25), we show that (4.27), (4.28)

and (4.29) actually holds with C' replaced by C/2 and C replaced by C/2. The
bootstrap argument then implies that 7" = +oo and (4.27), (4.28) and (4.29) holds
for all time.

In fact, if we substitute the ansatz given by (4.27), (4.28) and (4.29) in the a
priori estimates in (4.23), (4.24) and (4.25), we find

]_ 1 1 1
1Al w + VID A a2 + Gra Dl Adw gz + 1 (=A) 72 Aoz 702
]. 1 1 1
1A i) VIO i) + 373 MDA oy + (=2) 72002 1

< 2622 4 0203€3<3Vﬁ+2a7% + y6+2a7%>7



STABILITY OF COUETTE FLOW 33
LAbp(12 LAbp(12 L1 2 Abp 12
D=3 A0l zge 2y + VI Dyl D3 MOl a 2 + V3 Dals AyOll 7 12
1L
HI (=) 72 Dals ALz 12
< 22% 4+ C5CC 20V 75 4 VP54 Cuftetd=3),
If we recall (4.26) and choose

1 1 C )
128C1C7 128C,C7 64C3C77

then (4.27-4.28) hold with C replaced by C'//2 and (4.29) holds with C replaced by
C'/2. This completes the proof of Theorem 1.4. U

C>8, C>320, &=min(

Remark 4.1. As observed in [19], once we have the bounds for the enhanced dissi-
pation term, we can deduce an explicit exponential converge of the non-zero modes
for both systems (1.3) and (1.4). Let us take the vertical dissipation case (1.4) for
example. First apply the projection P to the system (4.2) and then take the scalar
product of the equations with MAlw, and MA%G, respectively. Multiplying the
1
2yv 3t

energy inequality by a weight e , we obtain

d 3 i 3

e AN B + v D, AL + (- ) A
1 1 1

+ ZV%HeWSﬂDz]éAfw#HQLQ — 2y [ IV MA w2,

1 1
< 2e2  Re(0, A0, MAJw) 2 — 27 " Re(A} (u - Vw)#,/\/lA?w#)Lz,
and similar energy inequalities for 6. By choosing v > 0 small enough and using
estimates for the nonlinear terms, we can deduce
i 1 Vl h 1 y‘l t Lab
e Afwie |l pooz2) + V2] DyAfw sl r2z2) + vl | Dyl 3 Ajwse | r2r2)
1
e (=A) "2 A paa) < 07

and similar bounds for 6.
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