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Abstract. This paper establishes the nonlinear stability of the Couette flow
for the 2D Boussinesq equations with only vertical dissipation. The Boussinesq
equations concerned here model buoyancy-driven fluids such as atmospheric and
oceanographic flows. Due to the presence of the buoyancy forcing, the energy of the
standard Boussinesq equations could grow in time. It is the enhanced dissipation
created by the linear non-self-adjoint operator y∂x − ν∂yy in the perturbation
equation that makes the nonlinear stability possible. When the initial perturbation
from the Couette flow (y, 0) is no more than the viscosity to a suitable power (in
the Sobolev space Hb with b > 4

3 ), we prove that the solution of the 2D Boussnesq
system with only vertical dissipation on T×R remains close to the Couette at the
same order. A special consequence of this result is the stability of the Couette for
the 2D Navier-Stokes equations with only vertical dissipation.

Keywords: Boussinesq equations, Enhanced dissipation, Stability of Couette flow

AMS Subject Classification (2000): 35Q30, 35Q35, 76D03

1. introduction

The Boussinesq system reflects the basic physics laws obeyed by buoyancy-driven
fluids. It is one of the most frequently used models for atmospheric and oceano-
graphic flows and serves as the centerpiece in the study of the Rayleigh-Bénard
convection (see, e.g., [11, 15, 20, 25]). The Boussinesq equations are mathemati-
cally significant. The 2D Boussinesq equations serve as a lower dimensional model
of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations retain
some key features of the 3D Euler and Navier-Stokes equations such as the vortex
stretching mechanism. The inviscid 2D Boussinesq equations can be identified as
the Euler equations for the 3D axisymmetric swirling flows [21]. Furthermore, the
Boussinesq equations have some special characteristics of their own and offer many
opportunities for new discoveries.

Due to their broad physical applications and mathematical significance, the
Boussinesq equations have recently attracted considerable interests. Two funda-
mental problems, the global regularity problem and the stability problem, have been
among the main driving forces in advancing the mathematical theory on the Boussi-
nesq equations. Significant progress has been made on the global regularity of the
2D Boussinesq equations, especially those with only partial or fractional dissipation
or no dissipation at all. Our attention here will be focused on the stability prob-
lem. The study of the stability problem on two physically important steady states
has gained strong momentum. The first steady state is the hydrostatic equilibrium,
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which is a prominent topic in fluid dynamics and astrophysics. Understanding this
stability problem may help gain insight into some weather phenomena. Important
progress has been made on the stability and large-time behavior ([9, 16, 28, 31]).
The second steady state is the shear flow, which is the focus of this paper. The
aim here is to fully understand the stability of perturbations near the Couette flow
and their large-time behavior. Our consideration will cover both the Boussinesq
equations with full dissipation and the Boussinesq equations with only vertical dis-
sipation. Our emphasis is on the case when the dissipation is degenerate and only
in the vertical direction.

The 2D Boussinesq system with full dissipation is given by
∂tu+ (u∂x + v∂y)u = −∂xp+ ν∆u,

∂tv + (u∂x + v∂y)v = −∂yp+ ν∆v + θ,

∂xu+ ∂yv = 0,

∂tθ + (u∂x + v∂y)θ = µ∆θ,

(1.1)

where u = (u, v) denotes the 2D velocity field, p the pressure, θ the temperature,
ν the viscosity and µ the thermal diffusivity. The first three equations in (1.1)
are the incompressible Navier-Stokes equation with buoyancy forcing in the vertical
direction. The last equation is a balance of the temperature convection and diffusion.
The spatial domain Ω here is taken to be

Ω = T× R
with T = [0, 2π] being the periodic box and R being the whole line. In suitable
physical regimes or under suitable scaling, the Boussinesq equations may involve
only vertical dissipation ([22]), namely

∂tu+ (u∂x + v∂y)u = −∂xp+ ν∂yyu,

∂tv + (u∂x + v∂y)v = −∂yp+ ν∂yyv + θ,

∂xu+ ∂yv = 0,

∂tθ + (u∂x + v∂y)θ = µ∂yyθ.

(1.2)

Cao and Wu previously examined the 2D Boussinesq system with only vertical
dissipation and established its global regularity [10]. The Couette flow,

ush = (y, 0), psh = 0, θsh = 0,

is clearly a stationary solution of (1.1) and also of (1.2). Our goal is to understand
the stability and large-time behavior of perturbations near the Couette flow. The
perturbations

ũ = u− y, ṽ = v, p̃ = p, θ̃ = θ,

satisfy, in the case of full dissipation,
∂tũ+ y∂xũ+ ṽ + (ũ · ∇)ũ = −∂xp̃+ ν∆ũ,

∂tṽ + y∂xṽ + (ũ · ∇)ṽ = −∂yp̃+ ν∆ṽ + θ̃,

∂xũ+ ∂yṽ = 0,

∂tθ̃ + y∂xθ̃ + (ũ · ∇)θ̃ = µ∆θ̃.
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The corresponding perturbed vorticity near the steady vorticity ωsh = −1

ω̃ = ∂xṽ − ∂yũ

verifies, together with θ̃, the following system
∂tω̃ + y∂xω̃ + (ũ · ∇)ω̃ = ν∆ω̃ + ∂xθ̃,

∂tθ̃ + y∂xθ̃ + (ũ · ∇)θ̃ = µ∆θ̃,

ũ = −∇⊥(−∆)−1ω̃.

(1.3)

In the case when there is only vertical dissipation, the vorticity perturbation ω̃ and

the temperature perturbation θ̃ satisfy
∂tω̃ + y∂xω̃ + (ũ · ∇)ω̃ = ν∂yyω̃ + ∂xθ̃,

∂tθ̃ + y∂xθ̃ + (ũ · ∇)θ̃ = µ∂yyθ̃,

ũ = −∇⊥(−∆)−1ω̃.

(1.4)

The stability problem proposed for study here on (1.3) or (1.4) is not trivial. Due
to the presence of the buoyancy forcing term, the Sobolev norms or even the L2-norm

of the velocity field could grow in time if the two linear terms y∂xω̃ and y∂xθ̃ were not
included in (1.3) or (1.4). In fact, Brandolese and Schonbek have shown in [8] that
the L2-norm of the velocity to the Boussinesq system with full viscous dissipation and
thermal diffusion can grow in time even for very nice initial data (say, data that are
smooth, fast spatial decaying and small in some strong norm). The stability of the
Couette flow on (1.3) and (1.4) is only possible because of the enhanced dissipation
generated by the non-self-adjoint operator y∂x − ν∂yy, which is the linear part of
the system (1.4). Even though the linear operator y∂x − ν∂yy involves only vertical
dissipation, the non-commutativity between its real part and imaginary part actually
creates smoothing effect in the horizontal direction, a phenomenon that is called the
hypoellipticity. Operators of this type are investigated by Hörmander [17]. For the
standard heat equation ∂tf = ν∆f , the dissipation time scale is O(ν−1) while, for
the drift diffusion equations

∂tf + y∂xf = ν∆f and ∂tf + y∂xf = ν∂yyf,

the dissipation time scale is O(ν−
1
3 ), which is much faster than O(ν−1) for small ν.

A more detailed explanation will be provided later. This enhanced dissipation effect
plays an extremely important role in the stability problem studied here.

The phenomenon of enhanced dissipation has been widely observed and studied
in physics literature (see, e.g., [7, 18, 30, 26]). It has recently attracted enormous
attention from the mathematics community and significant progress has been made.
One of the earliest rigorous results on the enhanced dissipation is obtained by Con-
stantin, Kiselev, Ryzhik and Zlatos on the enhancement of diffusive mixing [12].
Many remarkable results have since been established. In particular, the stability
of the shear flows to passive scale equations and to the Navier-Stokes equations
has been intensively investigated in a sequence of outstanding papers (see, e.g.,
[1, 2, 3, 4, 5, 6, 23, 24, 32, 33]).
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The study of the stability problem on the Boussinesq system near the shear flow
is very recent. The work of Tao and Wu [27] was able to establish the stability and
the enhanced dissipation phenomenon for the linearized 2D Boussinesq equations
with only vertical dissipation, using the method of hypocoercivity introduced by C.
Villani [29]. The Boussinesq system is different from the Navier-Stokes equations.
The buoyancy force in the velocity equation could drive the growth of the energy
and more generally the growth of the Sobolev norms. In addition, when there is only
vertical dissipation, the control of the nonlinear terms becomes much more difficult.
New techniques and estimates have to be created in order to handle the degenerate
dissipation. It also appears that no previous work has handled the degenerate
case. Since the Boussinesq system reduces to the Navier-Stokes equation when
θ is identically zero, the stability results presented in this paper fill the gap on the
Navier-Stokes equations with only vertical dissipation.

1.1. Results. We present three main results. The first result is on the linearized
Boussinesq equations with either full dissipation or with only vertical dissipation.
The upper bounds are explicit and sharp. The second result assesses the nonlinear
stability and large-time behavior of the Boussinesq system with full dissipation. The
third stability result is for the case with only vertical dissipation. Both nonlinear
stability results are presented in order to make a direct comparison between the full
dissipation and the degenerate dissipation cases.

For notational convenience, we shall write ω for ω̃ and θ for θ̃ from now on. To
explain the linear stability result, we rewrite the equation for both the full dissipation
case and the vertical dissipation case as

∂tω + y∂xω = ν(σ∂xx + ∂yy)ω + ∂xθ,

∂tθ + y∂xθ = µ(σ∂xx + ∂yy)θ,

ω|t=0 = ω(0), θ|t=0 = θ(0).

(1.5)

σ = 1 corresponds to the full dissipation case while σ = 0 to the vertical dissipation
case. To help understand the stability results presented below, we explicitly solve
the linear equation

∂tF + y∂xF = ν(σ∂xx + ∂yy)F, F (x, y, 0) = F0(x, y). (1.6)

Taking the Fourier transform yields

∂tF̂ − k∂ξF̂ = −ν(σk2 + ξ2)F̂ , F̂ (k, ξ, 0) = F̂0(k, ξ),

where the Fourier transform is given by

F̂ (k, ξ) = FF =
1

(2π)2

∫
y∈R

∫
x∈T

F (x, y)e−i(kx+ξy) dxdy.

Making the natural change of variables

η := ξ + kt, H(k, η, t) := F̂ (k, ξ, t),

we find that

∂tH(k, η, t) = −ν(σk2 + (η − kt)2)H(k, η, t), H(k, η, 0) = F̂0(k, η).
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Integrating in time yields

H(k, η, t) = F̂0(k, η)e−ν
∫ t
0 (σk2+(η−kτ)2) dτ .

Therefore,

F̂ (k, ξ, t) = H(k, η, t) = F̂0(k, ξ + kt) e−ν
∫ t
0 σk

2+(ξ+k(t−τ))2 dτ

= F̂0(k, ξ + kt) e−ν(σk2+ξ2)t e−
1
3
νk2t3−νkξt2 . (1.7)

This explicit representation reflects the enhanced dissipation. Even when there is
only vertical dissipation, namely σ = 0, the solution is dissipated and regularized
in both directions. The dissipation time scale is O(ν−

1
3 ), which is much faster

than the standard dissipation time scale O(ν−1). Clearly the dissipation rate is
inhomogeneous and depends on the frequencies k.

Solutions of (1.5) share the same properties as that of (1.6). The linear stability
results on (1.5) are stated in Proposition 1.1 and Proposition 1.2. To make the
statement precise, we define, for f = f(x, y) with (x, y) ∈ T× R and k ∈ Z,

fk(y) :=
1

2π

∫
T
f(x, y)e−ikxdx.

In addition, we write D = 1
i
∂. The linear stability result for (1.5) can then be stated

as follows.

Proposition 1.1. Let (ω, θ) be the solution to (1.5) with initial data (ω(0), θ(0)).
Assuming that ν ≤ Lµ for some positive constant L, there exist constants c > 0,
C > 0 such that for any k ∈ Z, t > 0,

‖θk(t)‖L2
y
≤ C‖θ(0)

k ‖L2
y
e−

1
16
µ

1
3 |k|

2
3 t,

‖ωk(t)‖L2
y
≤ C

(
‖ω(0)

k ‖L2
y

+ (νµ)−
1
6 |k|

1
3‖θ(0)

k ‖L2
y

)
e−cν

1
3 |k|

2
3 t.

(1.8)

More generally, for any integer N ≥ 0, there exist cN > 0 and CN > 0 such that for
any k ∈ Z, t > 0,

‖DN
y θk(t)‖L2

y
≤ CNe

−cNµ
1
3 |k|

2
3 t
(
‖DN

y θ
(0)
k ‖L2

y
+ (µ−1|k|)

N
3 ‖θ(0)

k ‖L2
y

)
,

‖DN
y ωk(t)‖L2

y
≤ CNe

−cNν
1
3 |k|

2
3 t
(
‖DN

y ω
(0)
k ‖L2

y
+ (νµ)−

1
6 |k|

1
3‖DN

y θ
(0)
k ‖L2

y

+ (ν−1|k|)
N
3

(
‖ω(0)

k ‖L2
y

+ (νµ)−
1
6 |k|

1
3‖θ(0)

k ‖L2
y

))
.

(1.9)

A similar linear stability result for a slightly different domain was obtained in [27],
but the proof presented here is different, simpler and more compact. The estimates
in Proposition 1.1 can be converted into a more elegant statement that allows a
direct comparison with the nonlinear stability results to be presented. We explain
and define a few notations. (1.7) clearly reveals the distinction between the zero
mode case k = 0 and the nonzero modes k 6= 0. This triggers the definitions

f0 := (P0f)(y) =
1

2π

∫
T
f(x, y)dx, f 6= := P 6=f = f − P0f, (1.10)
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which represents the projection onto 0 frequency and the projection onto non-zero
frequencies. In the process of deriving (1.7), we made the change of variable η =
ξ+ tk, which naturally invites the definition of the time-dependent elliptic operator,
for t ≥ 0,

Λ2
t = 1− ∂2

x − (∂y + t∂x)
2, (1.11)

or, in terms of its symbol, Λ2
t (k, ξ) = 1 + k2 + (ξ + tk)2. In general, we denote Λb

t

with b ∈ R to be the Fourier multiplier with symbol Λb
t(k, ξ) =

(
1+k2 +(ξ+ tk)2

) b
2 .

It is easy to check that the operator Λb
t commutes with the differential operator with

variable coefficients ∂t + y∂x, namely

Λb
t (∂t + y∂x) = (∂t + y∂x) Λb

t . (1.12)

Therefore, applying Λb
t allows us to obtain the derivative estimates without destroy-

ing the structure of the linearized equation (1.5). Furthermore, Λb
t shares similarities

with the standard fractional Laplacian operators. For example, for any b > 0,

‖Λb
t(fg)‖L2 ≤ ‖f‖L∞‖Λb

tg‖L2 + ‖g‖L∞‖Λb
tf‖L2

and, for b > 1,

‖f(t)‖L∞(Ω) ≤ C‖f̂(t)‖L1(Ω) ≤ C‖Λb
tf(t)‖L2(Ω).

To precisely state the second linear stability result, we define the horizontal frac-
tional derivative by

̂|Dx|γf(k, ξ) = |k|γ f̂(k, ξ).

The linear stability result in Proposition 1.1 can be converted into an estimate in
the physical space.

Proposition 1.2. Let (ω, θ) be the solution to (1.5) with initial data (ω(0), θ(0)).
Then there exists C > 0 such that for b ∈ R,

‖Λb
tω‖L∞t (L2) + ν

1
2‖DyΛ

b
tω‖L2

t (L2) + σν
1
2‖DxΛ

b
tω‖L2

t (L2) + ν
1
6‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+ (νµ)−
1
6

(
‖|Dx|

1
3 Λb

tθ‖L∞t (L2) + µ
1
2‖Dy|Dx|

1
3 Λb

tθ‖L2
t (L2) + σµ

1
2‖|Dx|

4
3 Λb

tθ‖L2
t (L2)

+ µ
1
6‖|Dx|

2
3 Λb

tθ‖L2
t (L2)

)
≤ C

(
‖ω(0)‖Hb + (νµ)−

1
6‖|Dx|

1
3 θ(0)‖Hb

)
.

We assume ν = µ for simplicity from now on. The main focus of this paper is
actually the nonlinear stability. We are able to establish the stability and large-
time behavior for both the full dissipation case and the case with only vertical
dissipation. Certainly the proof for the vertical dissipation case also works for the
full dissipation. Both results are presented here for a direct comparison. When the
dissipation is degenerate, more strict assumptions have to be made on the initial
data. The stability result for the fully dissipative Boussinesq equation is stated in
the following theorem.
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Theorem 1.3. Assume b > 1, β ≥ 1
2
, δ ≥ β + 1

3
, α ≥ δ− β + 2

3
and that the initial

data (ω(0), θ(0)) satisfies

‖ω(0)‖Hb ≤ ενβ, ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ,

for some sufficiently small ε > 0. Then the solution (ω, θ) to (1.3) satisfies that

‖Λb
tω‖L∞t (L2) + ν

1
2‖∇Λb

tω‖L2
t (L2) + ν

1
6‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+‖(−∆)−
1
2 Λb

tω 6=‖L2
t (L2) ≤ Cενβ,

‖Λb
tθ‖L∞t (L2) + ν

1
2‖∇Λb

tθ‖L2
t (L2) + ν

1
6‖|Dx|

1
3 Λb

tθ‖L2
t (L2)

+‖(−∆)−
1
2 Λb

tθ 6=‖L2
t (L2) ≤ Cενα

and

‖|Dx|
1
3 Λb

tθ‖L∞t (L2) + ν
1
2‖∇|Dx|

1
3 Λb

tθ‖L2
t (L2) + ν

1
6‖|Dx|

2
3 Λb

tθ‖L2
t (L2)

+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖L2
t (L2) ≤ Cενδ.

In the case when there is only vertical dissipation, the stability and large-time
behavior result is stated as follows.

Theorem 1.4. Let b > 4
3
, β ≥ 2

3
, δ ≥ β + 1

3
, α ≥ δ − β + 2

3
. Assume that

‖ω(0)‖Hb ≤ ενβ, ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ

for some sufficiently small ε > 0. Then the solution to the system (1.4) with initial
data (ω(0), θ(0)) satisfies

‖Λb
tω‖L∞t (L2) + ν

1
2‖DyΛ

b
tω‖L2

t (L2) + ν
1
6‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+‖(−∆)−
1
2 Λb

tω 6=‖L2
t (L2) ≤ Cενβ,

‖Λb
tθ‖L∞t (L2) + ν

1
2‖DyΛ

b
tθ‖L2

t (L2) + ν
1
6‖|Dx|

1
3 Λb

tθ‖L2
t (L2)

+‖(−∆)−
1
2 Λb

tθ 6=‖L2
t (L2) ≤ Cενα

and

‖|Dx|
1
3 Λb

tθ‖L∞t (L2) + ν
1
2‖Dy|Dx|

1
3 Λb

tθ‖L2
t (L2) + ν

1
6‖|Dx|

2
3 Λb

tθ‖L2
t (L2)

+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖L2
t (L2) ≤ Cενδ.

Special consequences of Theorem 1.3 and Theorem 1.4 are the nonlinear stability
for the 2D Navier-Stokes equation with full dissipation or with only vertical dis-
sipation. When θ ≡ 0, the system (1.3) reduces to the 2D Navier-Stokes vorticity
equation with full dissipation. The stability problem of the 2D Couette flow or more
general shear flows near the Couette flow has previously been investigated on the 2D
Navier-Stokes equations with full dissipation, we refer to the references [6, 23, 24].
In particular, we recover the threshold index estimate β ≥ 1

2
with data in Hb, b > 1

established firstly in [6]. Moreover, we also obtain the 1/3-horizontal regularity,
which is better than the enhanced dissipation quantity ‖Λb

tω 6=‖L2(L2) obtained in [6,
Theorem 1.1]. This is due to the different choice of the multipliers that are used
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in the proof. On the other hand, since the stability result for the 2D Navier-Stokes
equation with only vertical dissipation is completely new, we state it as a corollary.
When θ ≡ 0, the system (1.4) reduces to the 2D Navier-Stokes vorticity equation
with only vertical dissipation,{

∂tω + y∂xω + (u · ∇)ω = ν∂yyω,

u = −∇⊥(−∆)−1ω.
(1.13)

Theorem 1.4 yields the following stability result for (1.13).

Corollary 1.5. Let b > 4
3

and β ≥ 2
3
. Assume the initial vorticity ω(0) satisfies

‖ω(0)‖Hb ≤ ενβ

for some suitable small number ε > 0. Then the corresponding solution ω to (1.13)
satisfies

‖Λb
tω‖L∞t (L2) + ν

1
2‖DyΛ

b
tω‖L2

t (L2) + ν
1
6‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+‖(−∆)−
1
2 Λb

tω 6=‖L2
t (L2) ≤ Cενβ.

Remark 1.6. Various works [3, 6, 23, 24] for Couette flow are done with the change
of coordinates X = x − yt, Y = y. Our results and proofs can be translated into
the coordinates (X, Y ) as well. In this paper, we choose to work in the standard
physical variables, since we would like to highlight the role played by the non self-
adjoint operator y∂x − ν∂yy. The multiplier M1 defined in (1.14) which allows us
to prove the optimal enhanced dissipation estimates, is constructed according to the
first-order bracket structure of the linear operator.

Remark 1.7. As observed in [19], we can prove an exponential converge of the non-
zero modes for both the full dissipation case and the vertical dissipation case. See
Remark 4.1.

Remark 1.8. After we posted the first version of this paper, C. Zillinger kindly
informed us of his very recent manuscript on a similar topic [34]. He studied the
stability on perturbations near both the Couette flow and the hydrostatic balance
simultaneously. In particular, he obtained the linear stability of the Couette flow
for the 2D Boussinesq system with partial dissipation by using explicit solution for-
mulas. In addition, he also showed the nonlinear stability of the Couette flow for
the 2D Boussinesq system with full dissipation by using the multipliers constructed
in [6], with weaker enhanced dissipation terms obtained. Compared with [34], this
paper focuses on the nonlinear stability for the 2D Boussinesq system with only ver-
tical dissipation, and the gain of 1/3-horizontal derivative is well characterized by
carefully choosing the multiplier.

1.2. Sketch of the proof. The proofs of the nonlinear stability results stated
in Theorem 1.3 and Theorem 1.4 are not trivial. As aforementioned, due to the
presence of the buoyancy force, it is not plausible to establish the desired stability
results without taking full advantage of the enhanced dissipation, created by the
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combination of y∂xω with ∂yyω in the vorticity equation and of y∂xθ with ∂yyθ in
the temperature equation.

Let us explain how to extract the enhanced dissipation, especially the regularity
in the horizontal direction, generated by the non-self-adjoint operator y∂x−ν∂yy. We
design a Fourier multiplier operatorM defined as follows. Choose a real-valued, non-

decreasing function ϕ ∈ C∞(R) satisfying 0 ≤ ϕ ≤ 1, ϕ(τ) =

{
0, τ ∈ (−∞,−2],

1, τ ∈ [2,∞),

and ϕ′ = 1
4

on [−1, 1]. Define the Fourier multiplier M = M(Dx, Dy) as M =
M1 +M2 + 1 with symbols M1 and M2 given by

M1(k, ξ) = ϕ
(
ν

1
3 |k|−

1
3 sgn(k)ξ

)
, k 6= 0,

M2(k, ξ) =
1

k2

(
arctan

ξ

k
+
π

2

)
, k 6= 0,

M1(0, ξ) =M2(0, ξ) = 0.

(1.14)

Then M is a self-adjoint Fourier multiplier acting on L2(Ω) and verifies that

1 ≤M ≤ 2 + π.

The construction of the multiplier M is inspired by the works [13, 14] on the (non-
self-adjoint) linearized operator of the 2D Navier-Stokes equation around the Oseen
vortices. Before we show the key point of our proof, let us remark the fact that for a
self-adjoint operator A = A∗ and a skew-adjoint operator B = −B∗ on L2, we have
the following identity

2Re〈Af,Bf〉L2 = 〈Af,Bf〉L2 + 〈Bf,Af〉L2

= 〈B∗Af, f〉L2 + 〈A∗Bf, f〉L2

= 〈(AB − BA)f, f〉L2 = 〈[A,B]f, f〉L2 ,

(1.15)

where [A,B] := AB − BA denotes the commutator between A and B.
Now taking the inner product of (y∂x − ν∂yy)ω with Mω leads to the quantity

R := 2Re〈y∂xω,Mω〉L2 − 2νRe〈∂yyω,Mω〉L2 ,

for which we intend to prove a lower bound. Using the fact that M is self-adjoint
and y∂x is skew-adjoint, we have

2Re〈y∂xω,Mω〉L2 = 〈[M, y∂x]ω, ω〉L2

=
∑
k

∫
R
(k∂ξM) |ω̂(k, ξ)|2 dξ,

where we have used Plancherel’s theorem in the last step. Consequently,

R =
∑
k

∫
R

(
k∂ξM+ 2νMξ2

)
|ω̂(k, ξ)|2 dξ.

The Fourier multiplier M1 is constructed in order to capture the regularity in the
horizontal direction: according to the definition of M1, for any k 6= 0 and ξ ∈ R,

k∂ξM1(k, ξ) = ν
1
3 |k|

2
3ϕ′
(
ν

1
3 |k|−

1
3 sgn(k)ξ

)
,
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which is bounded from below by 1
4
ν

1
3 |k| 23 when |ξ| ≤ ν−

1
3 |k| 13 , thanks to the special

choice of the function ϕ. One finds the following important inequality

νξ2 + k∂ξM1 ≥
1

4
ν

1
3 |k|

2
3 , ∀ξ ∈ R, k ∈ Z.1

The Fourier multiplier M2 is designed to control the velocity in the nonlinear
term since we have

k∂ξM2(k, ξ) =
1

k2 + ξ2
.

Combining the above estimates, one achieves the lower bound

R ≥ ν‖∂yω‖2
L2 +

1

4
ν

1
3‖|Dx|

1
3ω‖2

L2 + ‖(−∆)−
1
2ω 6=‖2

L2 . (1.16)

(1.16) leads to a control of 1
3
-horizontal derivative of ω and this is the main reason

why we can possibly control the buoyancy force, as well as the nonlinear terms.
Let us also remark that the exponent 1/3 on the right hand side of (1.16) is sharp
in the sense that there exist c > 0 and functions ων ∈ L2 such that the equality
‖(y∂x− ν∂yy)ων‖L2‖ων‖L2 = cν

1
3‖|Dx|

1
3ων‖2

L2 holds for all 0 < ν < 1. This is due to
the special first-order bracket structure of the operator y∂x − ν∂yy, see [17], [13] for
more details.

Standard Sobolev type energy estimates would not work since they would destroy
the combination, see Proposition 1.1. We shall apply the operator Λb

t defined below
(1.11) which allows differentiate the equations in (1.3) and (1.4) without changing
the linear structures of the system, and then apply the multiplier M to obtain the
desired enhanced dissipations for higher-order derivatives.

The buoyancy term in the equation of the vorticity ω takes the form ∂xθ, which
contains full one horizontal derivative. In the process of estimating ‖Λb

tω‖L2 , the
buoyancy term can be bounded by

|〈∂xΛb
tθ,MΛb

tω〉L2 | ≤ ‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tω‖L2 ,

which contains 2
3
-horizontal derivative on θ. Since the enhanced dissipation in the

estimate of ‖Λb
tθ‖L2 contains only 1

3
-horizontal derivative dissipation, we need to

estimate ‖|Dx|
1
3 Λb

tθ‖L2 in order to control the buoyancy term. This explains why

we combine the estimates of ‖Λb
tω‖L2 , ‖Λb

tθ‖L2 and ‖|Dx|
1
3 Λb

tω‖L2 .

Most of the efforts are devoted to obtaining suitable upper bounds on the non-
linear terms. This is a very delicate process especially when there is only vertical
dissipation. Let us explain some of the difficulties and our approach in dealing with
them when we estimate the nonlinear term u · ∇θ. The velocity u is represented in
terms of ω via the Biot-Savart law

u = −∇⊥(−∆)−1ω.

1The choice of the multiplier M1 is not unique, for example one may use the multiplier
M1(k, ξ) = c arctan(ν

1
3 sgn(k)|k|− 1

3 ξ) + C.
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To distinguish between the different behaviors of the zeroth mode and the nonzero
modes, we split the velocity into two parts according to (1.10)

u = u0 + u 6= =

(
u0

0

)
+

(
u 6=
v 6=

)
=

(
u0

0

)
+

(
∂y(−∆)−1ω 6=
−∂x(−∆)−1ω 6=

)
,

where u0 = ∂y(−∂2
y)
−1ω0. Accordingly, u · ∇θ is decomposed into three parts,

u · ∇θ = u0∂xθ + ∂y(−∆)−1ω 6=∂xθ − ∂x(−∆)−1ω 6=∂yθ.

Due to the lack of dissipation in the horizontal direction, it is impossible to derive
suitable bounds for the first two terms in u · ∇θ directly. Our strategy to overcome
this difficulty is to estimate the scalar product

H := 〈Λb
t(u · ∇θ),MΛb

tθ〉L2 .

With the help of the Fourier multiplierM, the frequency space is divided into differ-
ent subdomains to facilitate cancellations and derivative distributions. Commutator
estimates are employed to shift derivatives so that we are able to control the non-
linear terms. Detailed estimates are very technical and left to the proof of Theorem
1.4 in Section 4.

The rest of this paper is divided into three sections. Section 2 proves the linear
stability stated in Propositions 1.1 and 1.2. Theorem 1.3 is proved in Section 3 while
Section 4 presents the proof of Theorem 1.4.

2. Proofs of Propositions 1.1 and 1.2

This section is devoted to the proofs of the linear stability results stated in Propo-
sitions 1.1 and 1.2. These results are valid for both the full dissipation case and the
case with only vertical dissipation. Notice that the two equations of the linear sys-
tem (1.5) are decoupled. As a result, an explicit solution formula to (1.5) is available
using Fourier transform as for the model problem (1.6). Indeed, by a direct compu-
tation, we have

θ̂(k, ξ, t) = θ̂0(k, ξ + kt)e−µ
∫ t
0 (σk2+(ξ+kt−kτ)2)dτ ,

ω̂(k, ξ, t) = ω̂0(k, ξ + kt)e−ν
∫ t
0 (σk2+(ξ+kt−kτ)2)dτ

+ ik

∫ t

0

e−ν
∫ t−s
0 (σk2+(ξ+kt−kτ)2)dτ θ̂(k, ξ, s)ds.

Then it is immediate to infer the bounds of Proposition 1.1 and 1.2. Here we present
the multiplier method in order to make it more accessible to the nonlinear case.
These multiplier operators are constructed to extract the enhanced dissipation from
the non-self-adjoint operators y∂x − ν∂yy and y∂x − µ∂yy. Moreover, the multiplier
method is flexible and may be used to study more general models, for which an
explicit solution formula might not be available.

We are ready to prove Proposition 1.1.
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Proof of Proposition 1.1. By projecting the equations in (1.5) onto each frequency,
we obtain the system in the y-variable only,

∂tωk + ν(D2
y + σk2)ωk + ikyωk = ikθk,

∂tθk + µ(D2
y + σk2)θk + ikyθk = 0,

ωk|t=0 = ω
(0)
k , θk|t=0 = θ

(0)
k ,

(2.1)

where we have used the notation D = 1
i
∂. We note that σ = 1 corresponds to the

full dissipation case while σ = 0 to the case with only vertical dissipation. Since ωk
and θk may be complex-valued, the the L2

y-inner product is given by

〈f, g〉L2
y

=

∫
R
f(y) ḡ(y) dy.

By taking the L2
y-inner product of θk with the second equation in (2.1), we have

1

2

d

dt
‖θk‖2

L2
y

+ µ‖Dyθk‖2
L2
y

+ σµk2‖θk‖2
L2
y

= 0. (2.2)

To further the estimates, we define and apply Fourier multiplier operators. If k > 0,
we define a multiplier Mk by

Mkθk := ϕ(µ
1
3 |k|−

1
3Dy)θk,

where ϕ is a real-valued, non-decreasing function, ϕ ∈ C∞(R) satisfying 0 ≤ ϕ ≤
1 and ϕ′ = 1

4
on [−1, 1]. Clearly, Mk is a self-adjoint and non-negative Fourier

multiplier operator. We take the L2
y-inner product of the second equation in (2.1)

with Mkθk. The following basic identities hold,

2Re〈∂tθk,Mkθk〉L2
y

=
d

dt
〈Mkθk, θk〉L2

y
,

2Re〈µ(D2
y + σk2)θk,Mkθk〉L2

y
= 〈2µ(D2

y + σk2)Mkθk, θk〉L2
y
,

2Re〈ikyθk,Mkθk〉L2
y

= 〈
[
Mk, iky

]
θk, θk〉L2

y
,

where in the last equation we have used the fact that Mk is self-adjoint and iky
is skew-adjoint. Here the bracket in

[
Mk, iky

]
denotes the standard commutator.

Noticing that

[Mk, iky] =
[
ϕ(µ

1
3 |k|−

1
3Dy), iky

]
= µ

1
3 |k|

2
3ϕ′(µ

1
3 |k|−

1
3Dy),

we obtain

d

dt
〈Mkθk, θk〉L2

y
+ 〈2µ(D2

y + σk2)ϕ(µ
1
3 |k|−

1
3Dy)θk, θk〉L2

y

+〈µ
1
3 |k|

2
3ϕ′(µ

1
3 |k|−

1
3Dy)θk, θk〉L2

y
= 0.

Together with (2.2), this gives

d

dt

(
‖θk‖2

L2
y

+ 〈Mkθk, θk〉L2
y

)
+
〈(

2µ(D2
y + σk2)

(
1 + ϕ(µ

1
3 |k|−

1
3Dy)

)
+ µ

1
3 |k|

2
3ϕ′(µ

1
3 |k|−

1
3Dy)

)
θk, θk

〉
L2
y

= 0.
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By the choice of the function ϕ, there holds

µ(ξ2 + σk2)
(
1 + 2ϕ(µ

1
3 |k|−

1
3 ξ)
)

+ µ
1
3 |k|

2
3ϕ′(µ

1
3 |k|−

1
3 ξ) ≥ 1

4
µ

1
3 |k|

2
3

for all k > 0, µ > 0, ξ ∈ R. Therefore,

d

dt

(
〈(1 +Mk)θk, θk〉L2

y

)
+ µ‖Dyθk‖2

L2
y

+ σµk2‖θk‖2
L2
y

+
1

4
µ

1
3 |k|

2
3‖θk‖2

L2
y
≤ 0. (2.3)

Integrating in t and using properties of Mk, we obtain the first inequality in (1.8)
for k > 0. In the case when k < 0, we define the multiplier Mk by

Mkθk := ϕ(−µ
1
3 |k|−

1
3Dy)θk,

and define M0 = 0, we can deduce the first inequality in (1.8) for k ≤ 0.

We prove the first inequality in (1.9) by induction. Differentiating the second
equation in (2.1) N times with respect to y leads to

∂tD
N
y θk + µ(D2

y + σk2)DN
y θk + ikyDN

y θk + kNDN−1
y θk = 0.

Taking the L2
y-inner product with (1 + Mk)D

N
y θk then gives

d

dt
〈(1 +Mk)D

N
y θk, D

N
y θk〉L2

y
+ µ‖DN+1

y θk‖2
L2
y

+ σµk2‖DN
y θk‖2

L2
y

+
1

4
µ

1
3 |k|

2
3‖DN

y θk‖2
L2
y
≤ −2Re〈kNDN−1

y θk, (1 +Mk)D
N
y θk〉L2

y

≤ 1

8
µ

1
3 |k|

2
3‖DN

y θk‖2
L2
y

+ 32N2µ−
1
3 |k|

4
3‖DN−1

y θk‖2
L2
y
.

Integrating in t yields

‖DN
y θk(t)‖2

L2
y
≤ 2‖DN

y θ
(0)
k ‖

2
L2
y
e−

1
16
µ

1
3 |k|

2
3 t

+CNµ
− 1

3 |k|
4
3

∫ t

0

‖DN−1
y θk(s)‖2

L2
y
e−

1
16
µ

1
3 |k|

2
3 (t−s)ds.

Then the first inequality in (1.9) follows from the induction assumption.
To handle the second inequality in (1.8), we define

Mk := ϕ(ν
1
3 |k|−

1
3 sgn(k)Dy) for k 6= 0, M0 = 0

and multiply the ωk equation in (2.1) by ωk and Mkωk to obtain

d

dt
〈(1 +Mk)ωk, ωk〉L2

y
+ ν‖Dyωk‖2

L2
y

+ σνk2‖ωk‖2
L2
y

+
1

4
ν

1
3 |k|

2
3‖ωk‖2

L2
y

≤ 2Re〈ikθk, (1 +Mk)ωk〉L2
y
.

Applying Young’s inequality to the right-hand side yields

d

dt

(
〈(1 +Mk)ωk, ωk〉L2

y

)
+ ν‖Dyωk‖2

L2
y

+ σ νk2‖ωk‖2
L2
y

+
1

8
ν

1
3 |k|

2
3‖ωk‖2

L2
y

≤ 32ν−
1
3 |k|

4
3‖θk‖2

L2
y
.

(2.4)
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Due to ν ≤ Lµ, we take a small enough constant c so that c ≤ 1
8
, cν

1
3 ≤ 1

32
µ

1
3 . Then

we get, by multiplying the above inequality by ecν
1
3 |k|

2
3 t and using the first inequality

in (1.8), that

d

dt

(
〈(1 +Mk)ωk, ωk〉L2

y
ecν

1
3 |k|

2
3 t
)
≤32ν−

1
3 |k|

4
3‖θk‖2

L2
y
ecν

1
3 |k|

2
3 t

≤Cν−
1
3 |k|

4
3‖θ(0)

k ‖L2
y
e

(
cν

1
3− 1

16
µ

1
3

)
|k|

2
3 t
.

Integrating in t, we obtain

‖ωk(t)‖2
L2
y
≤ C

(
‖ω(0)

k ‖
2
L2
y

+ (νµ)−
1
3 |k|

2
3‖θ(0)

k ‖
2
L2
y

)
e−cν

1
3 |k|

2
3 t.

Differentiating the equation of ωk in (2.1) and using the estimates for θk, we can
deduce the second inequality in (1.9), under the assumption that ν ≤ Lµ. This
completes the proof of Proposition 1.1. �

Proposition 1.2 is a consequence of Proposition 1.1. We recall that the operator
Λt defined in (1.11) commutes with ∂t + y∂x, namely, for any b ∈ R, there holds
(1.12). Therefore it commutes with the linear equation in (1.5).

Proof of Proposition 1.2. For any b ∈ R, we apply Λb
t to the equations in (1.5). Since

Λb
t commutes the equations in (1.5), the upper bounds in Proposition 1.1 and the

estimates in the proof of Proposition 1.1 remain valid if we replace ω and θ by Λb
tω

and Λb
tθ, respectively, in Proposition 1.1. Similarly, since any horizontal derivatives

also commute with the linear equations in (1.5), |Dx|
1
3 Λb

tθ enjoys similar estimates
as those for θ. In particular, similar to (2.3), one has

d

dt

(
〈(1 +Mk)|Dx|

1
3 (Λb

tθ)k,|Dx|
1
3 (Λb

tθ)k〉L2
y

)
+ µ‖Dy|Dx|

1
3 (Λb

tθ)k‖2
L2
y

+ σµk2‖|Dx|
1
3 (Λb

tθ)k‖2
L2
y

+
1

4
µ

1
3 |k|

2
3‖|Dx|

1
3 (Λb

tθ)k‖2
L2
y
≤ 0.

Integrating in t and summing up the resulting inequalities for k ∈ Z, we find

‖|Dx|
1
3 Λb

tθ‖2
L∞t (L2) + µ‖Dy|Dx|

1
3 Λb

tθ‖2
L2
t (L2) + σµ‖|Dx|

4
3 Λb

tθ‖2
L2
t (L2)

+
1

4
µ

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2) ≤ 2‖|Dx|

1
3 θ(0)‖2

Hb .
(2.5)

While similar to (2.4), we have

d

dt

(
〈(1 +Mk)(Λ

b
tω)k, (Λ

b
tω)k〉L2

y

)
+ ν‖Dy(Λ

b
tω)k‖2

L2
y

+ σ νk2‖(Λb
tω)k‖2

L2
y

+
1

8
ν

1
3 |k|

2
3‖(Λb

tω)k‖2
L2
y
≤ 32ν−

1
3 |k|

4
3‖(Λb

tθ)k‖2
L2
y
.

Integrating in t and summing up the resulting inequalities for k ∈ Z, we obtain

‖Λb
tω‖2

L∞t (L2) + ν‖DyΛ
b
tω‖2

L2
t (L2) + σ ν‖|Dx|Λb

tω‖2
L2
t (L2)

+
1

8
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2
t (L2) ≤ 2‖ω(0)‖2

Hb + 32ν−
1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2)

≤ 2‖ω(0)‖2
Hb + C(νµ)−

1
3‖|Dx|

1
3 θ(0)‖2

Hb ,

(2.6)
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where in the last step, we used (2.5).

By summing up (νµ)−
1
3×(2.5) and (2.6), we obtain the desired estimates in

Proposition 1.2. We remark that the coefficient (νµ)−
1
6 in the estimate of Proposi-

tion 1.2 helps unify the bound in terms of the initial data. This completes the proof
of Proposition 1.2. �

3. Proof of Theorem 1.3

This section presents the proof of Theorem 1.3 stating the nonlinear stability for
(1.3). The framework is the bootstrap argument, which consists of two main steps.
The first step is to establish the a priori bounds while the second is to apply and
complete the bootstrap argument by using the a priori bounds. Main efforts are
devoted to obtaining suitable a priori bounds. As described in the introduction,
one component in achieving the bounds is to extract the enhanced dissipation by
constructing and applying suitable Fourier multipliers. Another one is to bound the
nonlinear terms suitably. To do so, we separate the horizontal zeroth mode from
the non-zeroth modes to distinguish their different behaviors. We make use of sharp
commutator estimates.

To help prepare for the proof, we recall several notations and basic facts. We
make extensive use of the operator Λb

t defined below (1.11). The basic properties
stated in the following lemma will be used frequently.

Lemma 3.1. The operator Λb
t defined below (1.11) satisfies the following properties

(1) For any b ∈ R, Λb
t commutes with ∂t + y∂x, namely

Λb
t (∂t + y∂x) = (∂t + y∂x) Λb

t .

(2) For any b > 0,

‖Λb
t(fg)‖L2 ≤ ‖f‖L∞‖Λb

tg‖L2 + ‖g‖L∞‖Λb
tf‖L2 .

Moreover, for b > 1, we have

‖f(t)‖L∞ ≤ C‖f̂(t)‖L1 ≤ C‖Λb
tf(t)‖L2 .

and consequently,

‖Λb
t(fg)‖L2 ≤ C ‖Λb

tf‖L2 ‖Λb
tg‖L2 .

Remark 3.2. It is easy to observe that for any s non-negative and b > 1, there
holds

‖|Dx|sΛb
t(fg)‖L2 ≤ C

(
‖|Dx|sΛb

tf‖L2 ‖Λb
tg‖L2 + ‖Λb

tf‖L2 ‖|Dx|sΛb
tg‖L2

)
. (3.1)
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Indeed, by applying Plancherel’s theorem, we have

‖|Dx|sΛb
t(fg)‖2

L2 =
∑
k∈Z

|k|2s
∫
R

(
Λb
t(k, ξ)

)2
(∑
`∈Z

∫
R
f̂(k − `, ξ − η)ĝ(`, η) dη

)2

dξ

≤Cs
∑
k∈Z

∫
R

(
Λb
t(k, ξ)

)2
(∑
`∈Z

(
|k − `|s + |`|s

)
×
∫
R
f̂(k − `, ξ − η)ĝ(`, η) dη

)2

dξ

≤Cs
(
‖Λb

t(g|Dx|sf)‖2
L2 + ‖|Λb

t(f |Dx|sg)‖2
L2

)
,

from which and Lemma 3.1, we deduce (3.1).

Recall that we now assume that µ = ν. The Fourier multiplier operator M
employed here is defined in (1.14). We also recall the projectors onto the horizontal
zeroth mode and the non-zeroth modes defined in (1.10).

Proof of Theorem 1.3. Applying Λb
t to (1.3) and invoking the properties of Λb

t in
Lemma 3.1, we have{

∂tΛ
b
tω + y∂xΛ

b
tω − ν∆Λb

tω + Λb
t

(
(u · ∇)ω

)
= ∂xΛ

b
tθ,

∂tΛ
b
tθ + y∂xΛ

b
tθ − ν∆Λb

tθ + Λb
t

(
(u · ∇)θ

)
= 0.

(3.2)

We then multiply the equations above byMΛb
tω andMΛb

tθ, respectively, and inte-
grate over T× R. The combination y∂x − ν∆ creates the enhanced dissipation. As
we explained in the introduction, we do not need the full Laplacian dissipation and
the vertical dissipation is sufficient. By (1.15), we have

2Re〈y∂xf,Mf〉L2 = 〈
[
M, y∂x

]
f, f〉L2 = 〈(k∂ξM)(D)f, f〉L2

since M is self-adjoint and y∂x is skew-adjoint. Invoking the equality above, we
have

d

dt
‖
√
MΛb

tθ‖2
L2 + 2ν‖∇

√
MΛb

tθ‖2
L2 + 〈(k∂ξM)(D)Λb

tθ,Λ
b
tθ〉L2

+ 2Re〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2 = 0.
(3.3)

Similarly,

d

dt
‖
√
MΛb

tω‖2
L2 + 2ν‖∇

√
MΛb

tω‖2
L2 + 〈(k∂ξM)(D)Λb

tω,Λ
b
tω〉L2

+ 2Re〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2 = 2Re〈∂xΛb
tθ,MΛb

tω〉L2 .
(3.4)

Taking L2 inner product of the θ equation in (3.2) with M|Dx|
2
3 Λb

tθ gives

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + 2ν‖∇

√
M|Dx|

1
3 Λb

tθ‖2
L2

+ 〈|Dx|
2
3 (k∂ξM)(D)Λb

tθ,Λ
b
tθ〉L2 + 2Re〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 = 0,

(3.5)

According to the definition (1.14) of M, we have

k∂ξM(k, ξ) = ν
1
3 |k|

2
3ϕ′
(
ν

1
3 |k|−

1
3 sgn(k)ξ

)
+

1

k2 + ξ2
(3.6)
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for k 6= 0, ξ ∈ R. This implies that, for k 6= 0, ξ ∈ R,

2ν(ξ2 + k2)M(k, ξ) + k∂ξM(k, ξ) ≥ ν(ξ2 + k2) +
1

4
ν

1
3 |k|

2
3 +

1

ξ2 + k2
.

Therefore,

2ν‖∇
√
Mf‖2

L2 + 〈(k∂ξM)(D)f, f〉L2

≥ ν‖∇f‖2
L2 +

1

4
ν

1
3‖|Dx|

1
3f‖2

L2 + ‖(−∆)−
1
2f 6=‖2

L2 ,

where f 6= is defined by (1.10). (3.4), (3.3) and (3.5) then becomes

d

dt
‖
√
MΛb

tω‖2
L2 + ν‖∇Λb

tω‖2
L2 +

1

4
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2 + ‖(−∆)−

1
2 Λb

tω 6=‖2
L2

≤ 2Re 〈∂xΛb
tθ,MΛb

tω〉L2︸ ︷︷ ︸
=I1

−2Re 〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2︸ ︷︷ ︸
=I2

,
(3.7)

d

dt
‖
√
MΛb

tθ‖2
L2 + ν‖∇Λb

tθ‖2
L2 +

1

4
ν

1
3‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖(−∆)−

1
2 Λb

tθ 6=‖2
L2

≤ −2Re 〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2︸ ︷︷ ︸
=I3

(3.8)

and

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + ν‖∇|Dx|

1
3 Λb

tθ‖2
L2 +

1

4
ν

1
3‖|Dx|

2
3 Λb

tθ‖2
L2

+ ‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖2
L2 ≤ −2Re 〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2︸ ︷︷ ︸
=I4

.
(3.9)

Using the L2-boundedness of M, we have

|I1| = |〈∂xΛb
tθ,MΛb

tω〉L2 | ≤ ‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tω‖L2 . (3.10)

• Estimates for I2 and I3.
Recall that the velocity field u is given by the Biot-Savart law

u = −∇⊥(−∆)−1ω =

(
∂y(−∆)−1ω
−∂x(−∆)−1ω

)
=:

(
u
v

)
.

According to (1.10), u can be decomposed into u0 and u 6=,

u0 = P0u =

(
u0

0

)
, with u0 = ∂y(−∂2

y)
−1ω0,

u 6= = P 6=u = −∇⊥(−∆)−1ω 6= =

(
∂y(−∆)−1ω 6=
−∂x(−∆)−1ω 6=

)
=

(
u 6=
v 6=

)
.

(3.11)

Therefore we can write

I2 = 〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2 = I21 + I22,

with

I21 = 〈Λb
t

(
u 6= · ∇ω

)
,MΛb

tω〉L2 , I22 = 〈Λb
t

(
u0 · ∇ω

)
,MΛb

tω〉L2 .
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Using the boundedness of M and Lemma 3.1, we have for b > 1,

|I21| ≤ ‖Λb
t

(
u 6= · ∇ω

)
‖L2‖Λb

tω‖L2 ≤ C‖Λb
tu 6=‖L2‖∇Λb

tω‖L2‖Λb
tω‖L2 .

By (3.11),

‖Λb
tu 6=‖L2 ≤ ‖∇⊥(−∆)−1Λb

tω 6=‖L2 ≤ ‖(−∆)−
1
2 Λb

tω 6=‖L2 ,

Therefore, for b > 1,

|I21| ≤ C‖(−∆)−
1
2 Λb

tω 6=‖L2‖∇Λb
tω‖L2‖Λb

tω‖L2 .

The key point is to bound I22. To simplify the notation, we write Mb
t =
√
MΛb

t or

Mb
t(k, ξ) :=

√
M(k, ξ) Λb

t(k, ξ) =
√
M(k, ξ) (1 + k2 + (ξ + kt)2)b/2. (3.12)

It follows from (3.11) that u0 · ∇ω = u0∂xω = u0∂xω 6= since ω0 is independent of x.
Therefore,

I22 = 〈Λb
t

(
u0 · ∇ω

)
,MΛb

tω〉L2 = 〈Mb
t(u0∂xω 6=),Mb

tω〉L2 ,

Due to the cancellations

〈Mb
t(u0∂xω 6=),Mb

tω0〉L2 = 0,

〈u0∂x(Mb
tω 6=),Mb

tω 6=〉L2 = 0,

we have

I22 = 〈Mb
t(u0∂xω 6=),Mb

tω 6=〉L2

= 〈Mb
t(u0∂xω 6=)− u0∂x(Mb

tω 6=),Mb
tω 6=〉L2 .

By Plancherel’s theorem,

I22 =
∑
k 6=0

∫∫ (
Mb

t(k, ξ)−Mb
t(k, ξ − η)

)
û(0, η)ikω̂(k, ξ − η)Mb

t(k, ξ)ω̂(k, ξ)dξdη

= −
∑
k 6=0

∫∫ (
Mb

t(k, ξ)−Mb
t(k, ξ − η)

)1

η
ω̂(0, η)kω̂(k, ξ − η)Mb

t(k, ξ)ω̂(k, ξ)dξdη.

By Taylor’s formula,

|Mb
t(k, ξ)−Mb

t(k, ξ − η)| ≤
∫ 1

0

|∂ξMb
t(k, ξ − sη)||η|ds.

Using the explicit expression of Mb
t we deduce that

|∂ξMb
t(k, ξ)| ≤ C

(
ν

1
3 |k|−

1
3 +

1

|k|
)(

1 + k2 + (ξ + kt)2
) b

2 . (3.13)

Therefore,

|I22| ≤
∑
k 6=0

C(ν
1
3 |k|

2
3 + 1)

∫∫ ((
1 + k2 + (ξ + kt)2

) b
2 +

(
1 + k2 + (ξ − η + kt)2

) b
2

)
× |ω̂(0, η)||ω̂(k, ξ − η)|Mb

t(k, ξ)|ω̂(k, ξ)|dξdη

≤ Cν
1
3‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tω‖2
L2 + C‖Λb

tω0‖L2‖Λb
tω 6=‖2

L2 .
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Consequently,

|I2| ≤C ‖(−∆)−
1
2 Λb

tω 6=‖L2‖∇Λb
tω‖L2‖Λb

tω‖L2

+ C ν
1
3‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tω‖2
L2 + C ‖Λb

tω0‖L2‖Λb
tω 6=‖2

L2

≤C ‖(−∆)−
1
2 Λb

tω 6=‖L2‖∇Λb
tω‖L2‖Λb

tω‖L2

+ C ν
1
3‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tω‖2
L2

+ C ‖Λb
tω0‖L2 ‖(−∆)−

1
2 Λb

tω 6=‖L2 ‖∇Λb
tω‖L2 .

(3.14)

I3 can be bounded similarly as I2. We write I3 as I3 = I31 + I32 with

I31 = 〈Λb
t

(
u 6= · ∇θ

)
,MΛb

tθ〉L2 , I32 = 〈Λb
t

(
u0 · ∇θ

)
,MΛb

tθ〉L2

and obtain the following bound

|I3| ≤‖(−∆)−
1
2 Λb

tω 6=‖L2‖∇Λb
tθ‖L2‖Λb

tθ‖L2

+ Cν
1
3‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖Λb
tθ 6=‖2

L2

≤‖(−∆)−
1
2 Λb

tω 6=‖L2‖∇Λb
tθ‖L2‖Λb

tθ‖L2

+ C ν
1
3‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ‖2
L2

+ C ‖Λb
tω0‖L2‖(−∆)−

1
2 Λb

tθ 6=‖L2 ‖∇Λb
tθ‖L2 .

(3.15)

• Estimates for I4.
We first decompose I4 as I4 = I41 + I42 with

I41 = 〈Λb
t

(
u 6= · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 , I42 = 〈Λb
t

(
u0 · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 .

The estimates for I42 are the same as those for I22,

|I42| ≤ Cν
1
3‖Λb

tω0‖L2‖|Dx|
2
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ 6=‖2
L2 .

For I41, we have

|I41| ≤ ‖|Dx|
1
3 Λb

t

(
u 6= · ∇θ

)
‖L2‖|Dx|

1
3 Λb

tθ‖L2 .

Furthermore, it follows from (3.1) that

‖|Dx|
1
3 Λb

t

(
u 6= · ∇θ

)
‖L2 ≤ ‖Λb

tu 6=‖L2‖|Dx|
1
3 Λb

t∇θ‖L2 + ‖|Dx|
1
3 Λb

tu 6=‖L2‖Λb
t∇θ‖L2

and

‖Λb
tu 6=‖L2 ≤ ‖(−∆)−

1
2 Λb

tω 6=‖L2 , ‖|Dx|
1
3 Λb

tu 6=‖L2 ≤ ‖|Dx|
1
3 Λb

tω‖L2 .

Therefore, we deduce that

|I4| ≤Cν
1
3‖Λb

tω0‖L2‖|Dx|
2
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ 6=‖2
L2

+ C ‖(−∆)−
1
2 Λb

tω 6=‖L2 ‖|Dx|
1
3 Λb

t∇θ‖L2‖|Dx|
1
3 Λb

tθ‖L2

+ C ‖|Dx|
1
3 Λb

tω‖L2 ‖Λb
t∇θ‖L2 ‖|Dx|

1
3 Λb

tθ‖L2 .

(3.16)

• The closing of the energy estimate
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Inserting the upper bounds (3.10), (3.14), (3.15) and (3.16) in (3.7), (3.8) and
(3.9) and integrating in time, we obtain

‖Λb
tω‖2

L∞t (L2) + ν‖∇Λb
tω‖2

L2
t (L2) +

1

8
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tω 6=‖2
L2
t (L2)

≤ 2‖Λb
0ω

(0)‖2
L2 + 8ν−

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2) + C1ν

1
3‖Λb

tω‖L∞t (L2)‖|Dx|
1
3 Λb

tω‖2
L2
t (L2)

+C1‖(−∆)−
1
2 Λb

tω 6=‖L2
tL

2‖∇Λb
tω‖L2

t (L2)‖Λb
tω‖L∞t (L2), (3.17)

and

‖Λb
tθ‖2

L∞t (L2) + ν‖∇Λb
tθ‖2

L2
t (L2) +

1

4
ν

1
3‖|Dx|

1
3 Λb

tθ‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tθ 6=‖2
L2
t (L2)

≤ 2‖Λb
0θ

(0)‖2
L2 + C2 ‖(−∆)−

1
2 Λb

tω 6=‖L2
t (L2)‖∇Λb

tθ‖L2
t (L2)‖Λb

tθ‖L∞t (L2)

+C2ν
1
3‖Λb

tω‖L∞t (L2)‖|Dx|
1
3 Λb

tθ‖2
L2
t (L2) (3.18)

+C2 ‖Λb
tω‖L∞t (L2) ‖(−∆)−

1
2 Λb

tθ 6=‖L2
t (L2) ‖∇Λb

tθ‖L2
t (L2),

and

‖|Dx|
1
3 Λb

tθ‖2
L∞t (L2) + ν‖∇|Dx|

1
3 Λb

tθ‖2
L2
t (L2) +

1

4
ν

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2)

+ ‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖2
L2
t (L2)

≤ 2‖|Dx|
1
3 Λb

0θ
(0)‖2

L2 + C3ν
1
3‖Λb

tω‖L∞t (L2)‖|Dx|
2
3 Λb

tθ‖2
L2
t (L2)

+ C3 ‖Λb
tω0‖L∞t (L2)‖|Dx|

1
3 Λb

tθ 6=‖2
L2
t (L2)

+ C3 ‖(−∆)−
1
2 Λb

tω 6=‖L2
t (L2) ‖|Dx|

1
3 Λb

t∇θ‖L2
t (L2)‖|Dx|

1
3 Λb

tθ‖L∞t (L2)

+ C3‖|Dx|
1
3 Λb

tω‖L2
t (L2) ‖Λb

t∇θ‖L2
t (L2) ‖|Dx|

1
3 Λb

tθ‖L∞t (L2).

(3.19)

The a priori bounds in (3.17), (3.18) and (3.19) allow us to prove Theorem 1.3
through the bootstrap argument. We recall the assumptions on the initial data
(ω(0), θ(0)),

‖ω(0)‖Hb ≤ ενβ, ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ, (3.20)

where ε > 0 is sufficiently small and

β ≥ 1

2
, δ ≥ β +

1

3
, α ≥ δ − β +

2

3
. (3.21)

To apply the bootstrap argument, we make the ansatz that, for T ≤ ∞, the solution
of (1.3) obeys

‖Λb
tω‖L∞T (L2) + ν

1
2‖∇Λb

tω‖L2
T (L2) + ν

1
6‖|Dx|

1
3 Λb

tω‖L2
T (L2)

+‖(−∆)−
1
2 Λb

tω 6=‖L2
T (L2) ≤ Cενβ, (3.22)

‖Λb
tθ‖L∞T (L2) + ν

1
2‖∇Λb

tθ‖L2
T (L2) + ν

1
6‖|Dx|

1
3 Λb

tθ‖L2
T (L2)

+‖(−∆)−
1
2 Λb

tθ 6=‖L2
T (L2) ≤ Cενα, (3.23)

‖|Dx|
1
3 Λb

tθ‖L∞T (L2) + ν
1
2‖∇|Dx|

1
3 Λb

tθ‖L2
T (L2) + ν

1
6‖|Dx|

2
3 Λb

tθ‖L2
T (L2)
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+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖L2
T (L2) ≤ C̃ενδ. (3.24)

We then show that (3.22), (3.23) and (3.24) actually hold with C replaced by C/2

and C̃ by C̃/2. In fact, if we insert the initial condition (3.20) and the ansatz (3.22),
(3.23) and (3.24) in (3.17), (3.18) and (3.19), we find

‖Λb
tω‖2

L∞t (L2) + ν‖∇Λb
tω‖2

L2
t (L2) +

1

8
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tω 6=‖2
L2
t (L2)

≤ 2ε2ν2β + 8C̃2ε2ν2δ− 2
3 + C1 C

3ε3(ν3β− 1
3 + ν3β− 1

2 ),

‖Λb
tθ‖2

L∞t (L2) + ν‖∇Λb
tθ‖2

L2
t (L2) +

1

4
ν

1
3‖|Dx|

1
3 Λb

tθ‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tθ 6=‖2
L2
t (L2)

≤ 2ε2ν2α + C2C
3ε3(3νβ+2α− 1

2 + νβ+2α− 1
3 ),

‖|Dx|
1
3 Λb

tθ‖2
L∞t (L2) + ν‖∇|Dx|

1
3 Λb

tθ‖2
L2
t (L2) +

1

4
ν

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2)

+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖2
L2
t (L2)

≤ 2ε2ν2δ + C3CC̃ε
3(2C̃νβ+2δ + Cνβ+2α− 1

3 + 2Cνβ+α+δ− 2
3 ).

If we invoke (3.21) and choose

C̃ ≥ 8, C ≥ 32C̃, ε = min
( 1

128C1C
,

1

128C2C
,

C̃

64C3C

)
,

then the inequalities (3.22)-(3.23) hold with C replaced by C/2 and (3.24) holds

with C̃ replaced by C̃/2. This completes the proof of Theorem 1.3. �

4. Proof of Theorem 1.4

This section proves the nonlinear stability result stated in Theorem 1.4. We recall
that the Boussinesq system concerned here has only vertical dissipation, namely

∂tω + y∂xω + (u · ∇)ω = ν∂yyω + ∂xθ,

∂tθ + y∂xθ + (u · ∇)θ = ν∂yyθ,

u = −∇⊥(−∆)−1ω,

ω(x, 0) = ω(0), θ(x, 0) = θ(0).

(4.1)

The proof is much more involved than the full dissipation case. The framework is
still the bootstrap argument, but it is now much more difficult to prove the desired
a priori bounds due to the lack of horizontal dissipation. The Fourier multiplier
operator is the same as that is designed for the full dissipation case, but the nonlin-
ear terms are now difficult to control. Various techniques are combined to achieve
suitable upper bounds. The quantities are decomposed into horizontal zeroth mode
and the non-zeroth modes to distinguish their different behaviors. Commutator es-
timates are employed to shift derivatives. In addition, the frequency space is divided
into different subdomains to facilitate cancellations and derivative distribution.
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Proof of Theorem 1.4. Applying the operator Λb
t to (4.1) and making use of the fact

that Λb
t commutes with ∂t + y∂x, we obtain{

∂tΛ
b
tω + y∂xΛ

b
tω − ν∂2

yΛ
b
tω + Λb

t

(
(u · ∇)ω

)
= ∂xΛ

b
tθ,

∂tΛ
b
tθ + y∂xΛ

b
tθ − ν∂2

yΛ
b
tθ + Λb

t

(
(u · ∇)θ

)
= 0.

(4.2)

We then take the scalar product of the equations with MΛb
tω and MΛb

tθ, respec-
tively, where the Fourier multiplier M is defined in (1.14). Using (1.15), due to the
fact that M is self-adjoint and y∂x is skew-adjoint,

2Re〈y∂xf,Mf〉L2 = 〈
[
M, y∂x

]
f, f〉L2 = 〈(k∂ξM)(D)f, f〉L2 .

Invoking this equality, we have

d

dt
‖
√
MΛb

tω‖2
L2 + 2ν‖Dy

√
MΛb

tω‖2
L2 + 〈(k∂ξM)(D)Λb

tω,Λ
b
tω〉L2

+ 2Re〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2 = 2Re〈∂xΛb
tθ,MΛb

tω〉L2

(4.3)

and

d

dt
‖
√
MΛb

tθ‖2
L2 + 2ν‖Dy

√
MΛb

tθ‖2
L2 + 〈(k∂ξM)(D)Λb

tθ,Λ
b
tθ〉L2

+ 2Re〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2 = 0.
(4.4)

Similarly, taking the L2-inner product of M|Dx|
2
3 Λb

tθ with the θ equation of (4.2)
gives

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + 2ν‖Dy

√
M|Dx|

1
3 Λb

tθ‖2
L2

+ 〈|Dx|
2
3 (k∂ξM)(D)Λb

tθ,Λ
b
tθ〉L2 + 2Re〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 = 0.

(4.5)

Using (3.6) and the properties of the function ϕ, especially ϕ′(τ) = 1
4

when |τ | ≤ 1,
we have, for k 6= 0, ξ ∈ R

2νξ2M(k, ξ) + k∂ξM(k, ξ) ≥ νξ2 +
1

4
ν

1
3 |k|

2
3 +

1

ξ2 + k2
.

As a consequence, it comes out

2ν‖Dy

√
Mf‖2

L2 + 〈(k∂ξM)(D)f, f〉L2

≥ ν‖Dyf‖2
L2 +

1

4
ν

1
3‖|Dx|

1
3f‖2

L2 + ‖(−∆)−
1
2f 6=‖2

L2 ,
(4.6)

where f 6= is given in (1.10). Inserting (4.6) into (4.3), (4.4), (4.5) yields

d

dt
‖
√
MΛb

tω‖2
L2 + ν‖DyΛ

b
tω‖2

L2 +
1

4
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2 + ‖(−∆)−

1
2 Λb

tω 6=‖2
L2

≤ 2Re 〈∂xΛb
tθ,MΛb

tω〉L2︸ ︷︷ ︸
=I1

−2Re 〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2︸ ︷︷ ︸
=I2

,
(4.7)
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d

dt
‖
√
MΛb

tθ‖2
L2 + ν‖DyΛ

b
tθ‖2

L2 +
1

4
ν

1
3‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖(−∆)−

1
2 Λb

tθ 6=‖2
L2

≤ −2Re 〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2︸ ︷︷ ︸
=I3

(4.8)

and

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + ν‖Dy|Dx|

1
3 Λb

tθ‖2
L2 +

1

4
ν

1
3‖|Dx|

2
3 Λb

tθ‖2
L2

+ ‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖2
L2 ≤ −2Re 〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2︸ ︷︷ ︸
=I4

.
(4.9)

The term I1 is easy to deal with, using the L2-boundedness of M, we have

|I1| = |〈∂xΛb
tθ,MΛb

tω〉L2 | ≤ ‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tω‖L2

≤ 1

16
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2 + 8ν−

1
3‖|Dx|

2
3 Λb

tθ‖2
L2 .

(4.10)

• Estimates for I2 and I3.
The terms I2 and I3 have the same structure so that we only estimate I3. In view

of (3.11), we write

u · ∇θ = u0∂xθ + ∂y(−∆)−1ω 6=∂xθ − ∂x(−∆)−1ω 6=∂yθ.

Correspondingly, we decompose I3 as

I3 = 〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2 = I31 + I32 + I33, with

I31 := −〈Λb
t

(
∂x(−∆)−1ω 6=∂yθ

)
,MΛb

tθ〉L2 ,

I32 := 〈Λb
t

(
u0∂xθ

)
,MΛb

tθ〉L2 ,

I33 := 〈Λb
t

(
∂y(−∆)−1ω 6=∂xθ

)
,MΛb

tθ〉L2 .

For the term I31, we have

I31 ≤ ‖Λb
t

(
∂x(−∆)−1ω 6=∂yθ

)
‖L2‖Λb

tθ‖L2

≤ ‖(−∆)−
1
2 Λb

tω 6=‖L2‖DyΛ
b
tθ‖L2‖Λb

tθ‖L2 .
(4.11)

The estimates for I32 and I33 are much more elaborate since we only have 1
3
-derivative

enhanced dissipation in the x-direction, which is not enough to control ∂xθ directly.
By (1.10), we write θ = θ0 + θ 6=. Since θ0 is independent of x, we have ∂xθ0 = 0 and
the cancellations

〈Mb
t(u0∂xθ 6=),Mb

tθ0〉L2 = 0, 〈u0∂x(Mb
tθ 6=),Mb

tθ 6=〉L2 = 0,

for Mb
t =
√
MΛb

t with symbol Mb
t(k, ξ) given by (3.12). Therefore,

I32 = 〈Mb
t(u0∂xθ 6=),Mb

tθ 6=〉L2

= 〈Mb
t(u0∂xθ 6=)− u0∂x(Mb

tθ 6=),Mb
tθ 6=〉L2 .
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Using Plancherel’s theorem, we have

I32 =
∑
k 6=0

∫∫ (
Mb

t(k, ξ)−Mb
t(k, ξ − η)

)
û(0, η)ikθ̂ 6=(k, ξ − η)Mb

t(k, ξ)θ̂ 6=(k, ξ)dξdη

= −
∑
k 6=0

∫∫ (
Mb

t(k, ξ)−Mb
t(k, ξ − η)

)1

η
ω̂(0, η)kθ̂ 6=(k, ξ − η)Mb

t(k, ξ)θ̂ 6=(k, ξ)dξdη,

where we used û(0, η) = iη−1ω̂(0, η) by (3.11). Therefore, in view of (3.13), we get,
by applying Young’s convolution inequality, that

|I32| ≤
∑
k 6=0

C(ν
1
3 |k|

2
3 + 1)

∫∫ (
Λb
t(k, ξ − η) + Λb

t(0, η)
)
|ω̂(0, η)|

× |θ̂ 6=(k, ξ − η)|Λb
t(k, ξ)|θ̂ 6=(k, ξ)|dξdη

≤ C
(
ν

1
3‖ω̂0‖L1‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ν

1
3‖Λb

tω0‖L2‖ ̂|Dx|
1
3 θ 6=‖L1‖|Dx|

1
3 Λb

tθ 6=‖L2

+ ‖ω̂0‖L1‖Λb
tθ 6=‖2

L2 + ‖Λb
tω0‖L2‖θ̂ 6=‖L1‖Λb

tθ 6=‖L2

)
≤ Cν

1
3‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖Λb
tθ 6=‖2

L2 .

(4.12)

Due to div u 6= = 0, we have the cancellation

〈u 6= · ∇(Mb
tθ),Mb

tθ〉L2 = 0

and we can rewrite

I33 = 〈Mb
t(u 6=∂xθ)− u 6=∂x(Mb

tθ),Mb
tθ〉L2︸ ︷︷ ︸

=:J

−〈v 6=∂y(Mb
tθ),Mb

tθ〉L2︸ ︷︷ ︸
=:J ′

.

The term J ′ is easy to control

|J ′| ≤ ‖v 6=‖L∞‖DyMb
tθ‖L2‖Mb

tθ‖L2

≤ ‖(−∆)−
1
2 Λb

tω 6=‖L2‖DyΛ
b
tθ‖L2‖Λb

tθ‖L2 .
(4.13)

It remains to estimate the term J . Noticing that ∂xθ0 = ∂x(Mb
tθ0) = 0, we can

write

J = 〈Mb
t(u 6=∂xθ 6=)− u 6=∂x(Mb

tθ 6=),Mb
tθ〉L2 = J1 + J2with

J1 := 〈Mb
t(u 6=∂xθ 6=)− u 6=∂x(Mb

tθ 6=),Mb
tθ 6=〉L2 ,

J2 := 〈Mb
t(u 6=∂xθ 6=)− u 6=∂x(Mb

tθ 6=),Mb
tθ0〉L2 .

By Plancherel’s theorem,

J1 =
∑
k,l

∫∫ (
Mb

t(k, ξ)−Mb
t(k − l, ξ − η)

)
×û 6=(l, η) · i(k − l)θ̂ 6=(k − l, ξ − η) · Mb

t(k, ξ)θ̂ 6=(k, ξ)dξdη

= −
∑

k 6=0,l 6=0
k−l 6=0

∫∫ (
Mb

t(k, ξ)−Mb
t(k − l, ξ − η)

)
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×η(k − l)
l2 + η2

ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η) · Mb
t(k, ξ)θ̂ 6=(k, ξ)dξdη,

where in the last equality we used û 6=(l, η) = iη(l2 +η2)−1ω̂ 6=(l, η) by (3.11). In order
to estimate J1, the idea is to use Taylor’s formula for Mb

t(k, ξ) −Mb
t(k − l, ξ − η)

as in the estimates of I32. However,M(k, ξ) andMb
t(k, ξ) are not smooth at k = 0.

We then have to divide into four different cases:

A1 = {k > 0, k − l > 0}, A2 = {k < 0, k − l < 0},
A3 = {k > 0, k − l < 0}, A4 = {k < 0, k − l > 0} (4.14)

and denote by

J1i := −
∑

(k,l)∈Ai

∫∫ (
Mb

t(k, ξ)−Mb
t(k − l, ξ − η)

)
×η(k − l)
l2 + η2

ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η) · Mb
t(k, ξ)θ̂ 6=(k, ξ)dξdη.

We first estimate J11 and J12. When k > 0, k − l > 0, we use Taylor’s formula,

|Mb
t(k, ξ)−Mb

t(k − l, ξ − η)| ≤
∫ 1

0

|∂ξMb
t(k − sl, ξ − sη)||η|ds

+

∫ 1

0

|∂kMb
t(k − sl, ξ − sη)||l|ds.

A direct computation gives

|∂kΛb
t(k, ξ)| ≤ CΛb−2

t (k, ξ)(|k|+ |ξ + kt||t|), |t| ≤ 1

|k|
(
|ξ|+ Λt(k, ξ)

)
,

which implies

|∂kMb
t(k, ξ)| ≤

(1

k
+
|ξ|
k2

)
Λb
t(k, ξ) for k > 0.

Together with (3.13), we obtain

|Mb
t(k, ξ)−Mb

t(k − l, ξ − η)|

≤
∫ 1

0

( ν
1
3 |η|

(k − sl) 1
3

+
|η|+ |l|
k − sl

+
|ξ − sη||l|
(k − sl)2

)
Λb
t(k − sl, ξ − sη)ds

.
( ν

1
3 |η|

min(k − l, k)
1
3

+
|η|+ |l|

min(k − l, k)
+

(|ξ|+ |ξ − η|)|l|
(k − l)k

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
.

Here and in all that follows, a . b always means that there is a uniform constant C
so that a ≤ Cb. Therefore, by the convolution inequality,

|J (1)
11 | :=

∣∣∣ ∑
(k,l)∈A1

l>0

∫∫ (
Mb

t(k, ξ)−Mb
t(k − l, ξ − η)

)
×η(k − l)
l2 + η2

ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η) · Mb
t(k, ξ)θ̂ 6=(k, ξ)dξdη

∣∣∣
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.
∑

(k,l)∈A1
l>0

∫∫ ( ν
1
3 |η|

(k − l) 1
3

+
|η|+ |l|
k − l

+
(|ξ|+ |ξ − η|)|l|

(k − l)k

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×|η|(k − l)
l2 + η2

|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)Λb
t(k, ξ)θ̂ 6=(k, ξ)|dξdη

.
∑

(k,l)∈A1
l>0

∫∫ (
ν

1
3 (k − l)

2
3 + 1 +

|ξ|+ |ξ − η|
(l2 + η2)

1
2

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)Λb
t(k, ξ)θ̂ 6=(k, ξ)|dξdη,

from which, we infer

|J (1)
11 | . ‖ω̂ 6=‖L1

(
ν

1
3‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ‖Λb

tθ 6=‖2
L2

)
+‖ ̂

(−∆)−
1
2ω 6=‖L1‖Λb

tθ 6=‖L2‖DyΛ
b
tθ 6=‖L2

+‖Λb
tω 6=‖L2

(
ν

1
3‖ ̂|Dx|

1
3 θ 6=‖L1‖|Dx|

1
3 Λb

tθ 6=‖L2 + ‖θ̂ 6=‖L1‖Λb
tθ 6=‖L2

)
+‖(−∆)−

1
2 Λb

tω 6=‖L2

(
‖θ̂ 6=‖L1‖DyΛ

b
tθ 6=‖L2 + ‖D̂yθ 6=‖L1‖Λb

tθ 6=‖L2

)
. ‖Λb

tω 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖2
L2 + ‖(−∆)−

1
2 Λb

tω 6=‖L2‖Λb
tθ 6=‖L2‖DyΛ

b
tθ 6=‖L2 ,

where we have used that (k − l) 2
3 ≤ (k − l) 1

3k
1
3 for k > 0, k − l > 0, l > 0.

On the other hand, when k ≥ 1, l < 0, we have the inequalities

k − l
k

1
3

≤ min
(
(k − l)

1
3k

1
3 + (k − l)

1
3 |l|

2
3 , 2(k − l)

2
3 |l|

1
3

)
,

k − l
k
≤ 2 min

(
(k − l)

1
3 |l|

2
3 , (k − l)

2
3 |l|

1
3

)
.

J
(2)
11 can be estimated as follows,

|J (2)
11 | :=

∣∣∣ ∑
(k,l)∈A1

l<0

∫∫ (
Mb

t(k, ξ)−Mb
t(k − l, ξ − η)

)
×η(k − l)
l2 + η2

ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η) · Mb
t(k, ξ)θ̂ 6=(k, ξ)dξdη

∣∣∣
.

∑
(k,l)∈A1

l<0

∫∫ (ν 1
3 |η|
k

1
3

+
|η|+ |l|

k
+

(|ξ|+ |ξ − η|)|l|
(k − l)k

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×|η|(k − l)
l2 + η2

|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)Λb
t(k, ξ)θ̂ 6=(k, ξ)|dξdη

.
∑

(k,l)∈A1
l<0

∫∫ ((
ν

1
3 (k − l)

1
3k

1
3 + |ξ|+ |ξ − η|

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

+(k − l)
1
3 |l|

2
3 Λb

t(k − l, ξ − η) + (k − l)
2
3 |l|

1
3 Λb

t(l, η)
)

×|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)Λb
t(k, ξ)θ̂ 6=(k, ξ)|dξdη,
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which ensures that

|J (2)
11 | . ν

1
3‖ω̂ 6=‖L1‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ‖ ̂|Dx|

2
3ω 6=‖L1‖|Dx|

1
3 Λb

tθ 6=‖L2‖Λb
tθ 6=‖L2

+‖ω̂ 6=‖L1‖Λb
tθ 6=‖L2‖DyΛ

b
tθ 6=‖L2 + ν

1
3‖Λb

tω 6=‖L2‖ ̂|Dx|
1
3 θ 6=‖L1‖|Dx|

1
3 Λb

tθ 6=‖L2

+‖|Dx|
1
3 Λb

tω 6=‖L2‖ ̂|Dx|
2
3 θ 6=‖L1‖Λb

tθ 6=‖L2

+‖Λb
tω 6=‖L2

(
‖θ̂ 6=‖L1‖DyΛ

b
tθ 6=‖L2 + ‖D̂yθ 6=‖L1‖Λb

tθ 6=‖L2

)
. ‖Λb

tω 6=‖L2

(
ν

1
3‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ‖Λb

tθ 6=‖L2‖DyΛ
b
tθ 6=‖L2

)
+‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2‖Λb
tθ 6=‖L2 ,

where we have used

‖ ̂|Dx|
2
3ω 6=‖L1 ≤ ‖|Dx|

1
3 Λb

tω 6=‖L2 , provided that b >
4

3
.

Combining the bounds for J
(1)
11 and J

(2)
11 yields

|J11| . ‖Λb
tω 6=‖L2

(
‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ‖Λb

tθ 6=‖L2‖DyΛ
b
tθ 6=‖L2

)
+ ‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2‖Λb
tθ 6=‖L2 .

The term J12 can be treated in the same way.
To estimate J13 and J14, we notice that, when k > 0, k− l < 0 or k < 0, k− l > 0,

we have |k − l| < |l| and thus

|J13 + J14| ≤
∑

(k,l)∈A3∪A4

∫∫ (
Λb
t(k − l, ξ − η) + Λb

t(l, η)
) |η||k − l|
l2 + η2

|ω̂ 6=(l, η)|

× |θ̂ 6=(k − l, ξ − η)Λb
t(k, ξ)θ̂ 6=(k, ξ)|dξdη

. ‖ω̂ 6=‖L1‖Λb
tθ 6=‖2

L2 + ‖θ̂ 6=‖L1‖Λb
tω 6=‖L2‖Λb

tθ 6=‖L2

. ‖Λb
tω 6=‖L2‖Λb

tθ 6=‖2
L2 .

This finishes the estimate for J1,

|J1| . ‖Λb
tω 6=‖L2

(
‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ‖Λb

tθ 6=‖L2‖DyΛ
b
tθ 6=‖L2

)
+ ‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2‖Λb
tθ 6=‖L2 .

To estimate J2, we observe that

Λb
t(0, ξ) ≤ C

(
Λb
t(l, η) + Λb

t(−l, ξ − η)
)
.

We thus apply Plancherel’s theorem and (3.11) to write

|J2| =
∣∣∣∑
l 6=0

∫∫ (
Mb

t(0, ξ)−Mb
t(−l, ξ − η)

)
û 6=(l, η)i(−l)θ̂ 6=(−l, ξ − η)Mb

t θ̂(0, ξ)dξdη
∣∣∣

.
∑
l 6=0

∫∫ (
Λb
t(−l, ξ − η) + Λb

t(l, η)
) |l||η|
l2 + η2

|ω̂ 6=(l, η)θ̂ 6=(−l, ξ − η)Λb
t θ̂(0, ξ)|dξdη

. ‖ω̂ 6=‖L1‖Λb
tθ 6=‖L2‖Λb

tθ0‖L2 + ‖θ̂ 6=‖L1‖Λb
tω 6=‖L2‖Λb

tθ0‖L2

. ‖Λb
tω 6=‖L2‖Λb

tθ 6=‖L2‖Λb
tθ0‖L2 .
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Combining the bounds for J1 and J2, we obtain

|J | . ‖Λb
tω 6=‖L2

(
‖|Dx|

1
3 Λb

tθ 6=‖2
L2 + ‖Λb

tθ 6=‖L2‖DyΛ
b
tθ 6=‖L2 + ‖Λb

tθ 6=‖L2‖Λb
tθ0‖L2

)
+ ‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2‖Λb
tθ 6=‖L2 .

Together with (4.13), we finish the estimates for I33:

|I33| . ‖Λb
tω 6=‖L2‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖|Dx|

1
3 Λb

tω‖L2‖|Dx|
1
3 Λb

tθ‖L2‖Λb
tθ 6=‖L2

+ ‖Λb
tω 6=‖L2‖Λb

tθ‖L2

(
‖DyΛ

b
tθ‖L2 + ‖Λb

tθ 6=‖L2

)
.

(4.15)

It follows from (4.11), (4.12) and (4.15) that

|I3| . ‖Λb
tω‖L2‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖|Dx|

1
3 Λb

tω‖L2‖|Dx|
1
3 Λb

tθ‖L2‖Λb
tθ 6=‖L2

+ ‖Λb
tω 6=‖L2‖Λb

tθ‖L2

(
‖DyΛ

b
tθ‖L2 + ‖Λb

tθ 6=‖L2

)
.

(4.16)

Similarly, the upper bound for I2 is given by

|I2| . ‖Λb
tω‖L2‖|Dx|

1
3 Λb

tω‖2
L2 + ‖Λb

tω‖L2‖Λb
tω 6=‖L2‖DyΛ

b
tω‖L2 . (4.17)

• Estimates for I4.
As in the estimates of I3, we decompose the term I4 as

I4 = I41 + I42 + I43 with I41 := 〈Λb
t

(
v 6=∂yθ

)
, |Dx|

2
3MΛb

tθ〉L2 ,

I42 := 〈Λb
t

(
u0∂xθ

)
, |Dx|

2
3MΛb

tθ〉L2 ,

I43 := 〈Λb
t

(
u 6=∂xθ

)
, |Dx|

2
3MΛb

tθ〉L2 .

By (3.1), one has

I41 . ‖|Dx|
1
3 Λb

t(v 6=∂yθ)‖L2‖|Dx|
1
3 Λb

tθ‖L2

.
(
‖|Dx|

1
3 Λb

tv 6=‖L2‖DyΛ
b
tθ‖L2 + ‖Λb

tv 6=‖L2‖|Dx|
1
3DyΛ

b
tθ‖L2

)
‖|Dx|

1
3 Λb

tθ‖L2 .
(4.18)

Setting N b
t (k, ξ) := |k| 13Mb

t(k, ξ) and N b
t the corresponding Fourier multiplier, we

can write

I42 = 〈N b
t (u0∂xθ 6=)− u0∂xN b

t θ 6=,N b
t θ 6=〉L2 .

The estimates for I42 are similar to those for I32,

|I42| . ν
1
3‖Λb

tω0‖L2‖|Dx|
2
3 Λb

tθ 6=‖2
L2 + ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ 6=‖2
L2 . (4.19)

In order to estimate the term I43, we decompose it as

I43 = 〈N b
t (u 6=∂xθ),N b

t θ〉L2 = K +K ′ with

K = 〈N b
t (u 6=∂xθ)− u 6=∂x(N b

t θ),N b
t θ〉L2 ,

K ′ = −〈v 6=∂y(N b
t θ),N b

t θ〉L2 .

The term K ′ can be bounded easily,

|K ′| ≤ ‖v 6=‖L∞‖∂yN b
t θ‖L2‖N b

t θ‖L2

. ‖(−∆)−
1
2 Λb

tω 6=‖L2‖Dy|Dx|
1
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2 .
(4.20)
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For the term K, due to ∂xθ0 = ∂xN b
t θ0 = 0,

K = 〈N b
t (u 6=∂xθ 6=)− u 6=∂x(N b

t θ 6=),N b
t θ 6=〉L2 .

By Plancherel’s theorem and (3.11),

K = −
∑
k,l

∫∫ (
N b
t (k, ξ)−N b

t (k − l, ξ − η)
)η(k − l)
l2 + η2

ω̂ 6=(l, η)

× θ̂ 6=(k − l, ξ − η)N b
t (k, ξ)θ̂ 6=(k, ξ)dξdη

= K1 +K2 +K3 +K4,

where, for i = 1, 2, 3, 4,

Ki := −
∑

(k,l)∈Ai

∫∫ (
N b
t (k, ξ)−N b

t (k − l, ξ − η)
)η(k − l)
l2 + η2

ω̂ 6=(l, η)

× θ̂ 6=(k − l, ξ − η)N b
t (k, ξ)θ̂ 6=(k, ξ)dξdη

with Ai being defined in (4.14). For any k 6= 0,

|∂ξN b
t (k, ξ)| . (ν

1
3 + |k|−

2
3 )Λb

t(k, ξ),

|∂kN b
t (k, ξ)| . (|k|−

2
3 + |k|−

5
3 |ξ|)Λb

t(k, ξ).

When k > 0, k − l > 0, using Taylor’s formula, we have

|N b
t (k, ξ)−N b

t (k − l, ξ − η)|

.
(
ν

1
3 |η|+ |l|+ |ξ − η|+ |ξ|

min(k − l, k)
2
3

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
.

Therefore, by the convolution inequality,

|K(1)
1 | =

∣∣∣ ∑
(k,l)∈A1

l>0

∫∫ (
N b
t (k, ξ)−N b

t (k − l, ξ − η)
)η(k − l)
l2 + η2

ω̂ 6=(l, η)

×θ̂ 6=(k − l, ξ − η)N b
t (k, ξ)θ̂ 6=(k, ξ)dξdη

∣∣∣
.

∑
(k,l)∈A1

l>0

∫∫ (
ν

1
3 |η|+ |l|+ |ξ − η|+ |ξ|

(k − l) 2
3

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×η(k − l)
l2 + η2

|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)N b
t θ̂ 6=(k, ξ)|dξdη

.
∑

(k,l)∈A1
l>0

∫∫ (
ν

1
3 (k − l) + (k − l)

1
3 + (|ξ − η|+ |ξ|)(k − l)

1
3

)
×
(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)N b

t θ̂ 6=(k, ξ)|dξdη,
from which, we deduce that

|K(1)
1 | . ‖ω̂ 6=‖L1

(
ν

1
3‖|Dx|

2
3 Λb

tθ 6=‖L2‖|Dx|
1
3N b

t θ 6=‖L2 + ‖|Dx|
1
3 Λb

tθ 6=‖L2‖N b
t θ 6=‖L2

+‖Dy|Dx|
1
3 Λb

tθ 6=‖L2‖N b
t θ 6=‖L2 + ‖|Dx|

1
3 Λb

tθ 6=‖L2‖DyN b
t θ 6=‖L2

)
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+‖Λb
tω 6=‖L2

(
ν

1
3‖ ̂|Dx|

2
3 θ 6=‖L1‖|Dx|

1
3N b

t θ 6=‖L2 + ‖ ̂|Dx|
1
3 θ 6=‖L1‖N b

t θ 6=‖L2

+‖ ̂
Dy|Dx|

1
3 θ 6=‖L1‖N b

t θ 6=‖L2 + ‖ ̂|Dx|
1
3 θ 6=‖L1‖DyN b

t θ 6=‖L2

)
. ‖Λb

tω 6=‖L2

(
‖|Dx|

2
3 Λb

tθ 6=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2

)
,

where we used k − l ≤ (k − l) 2
3k

1
3 for k > 0, k − l > 0, l > 0.

On the other hand, using the fact that, for k > 0, l < 0,

k − l ≤ (k − l)
2
3 (k

1
3 + |l|

1
3 ),

k − l
k

2
3

≤ 2(k − l)
2
3 |l|

1
3 ,

k − l
k

2
3 |l|
≤ 2(k − l)

1
3 ,

we have

|K(2)
1 | =

∣∣∣ ∑
(k,l)∈A1

l<0

∫∫ (
N b
t (k, ξ)−N b

t (k − l, ξ − η)
)η(k − l)
l2 + η2

ω̂ 6=(l, η)

×θ̂ 6=(k − l, ξ − η)N b
t (k, ξ)θ̂ 6=(k, ξ)dξdη

∣∣∣
.

∑
(k,l)∈A1

l>0

∫∫ (
ν

1
3 |η|+ |l|+ |ξ − η|+ |ξ|

k
2
3

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×η(k − l)
l2 + η2

|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)N b
t θ̂ 6=(k, ξ)|dξdη

.
∑

(k,l)∈A1
l>0

∫∫ (
ν

1
3 (k − l)

2
3k

1
3 + (k − l)

2
3 |l|

1
3 + (|ξ − η|+ |ξ|)(k − l)

1
3

)
×
(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)N b

t θ̂ 6=(k, ξ)|dξdη.

As a result, it comes out

|K(2)
1 | .ν

1
3

(
‖|Dx|

2
3 Λb

tθ 6=‖L2‖ω̂ 6=‖L1‖|Dx|
1
3N b

t θ 6=‖L2 + ‖Λb
tω 6=‖L2‖ ̂|Dx|

2
3 θ 6=‖L1‖|Dx|

1
3N b

t θ 6=‖L2

)
+ ‖|Dx|

2
3 Λb

tθ 6=‖L2‖ ̂|Dx|
1
3ω 6=‖L1‖N b

t θ 6=‖L2 + ‖|Dx|
1
3 Λb

tω 6=‖L2‖ ̂|Dx|
2
3 θ 6=‖L1‖N b

t θ 6=‖L2

+ ‖ω̂ 6=‖L1

(
‖Dy|Dx|

1
3 Λb

tθ 6=‖L2‖N b
t θ 6=‖L2 + ‖|Dx|

1
3 Λb

tθ 6=‖L2‖DyN b
t θ 6=‖L2

)
+ ‖Λb

tω 6=‖L2

(
‖ ̂
Dy|Dx|

1
3 θ 6=‖L1‖N b

t θ 6=‖L2 + ‖ ̂|Dx|
1
3 θ 6=‖L1‖DyN b

t θ 6=‖L2

)
.‖Λb

tω 6=‖L2

(
ν

1
3‖|Dx|

2
3 Λb

tθ 6=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2

)
+ ‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
2
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2 .

This completes the estimates for K1,

K1 . ‖Λb
tω 6=‖L2

(
‖|Dx|

2
3 Λb

tθ 6=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2

)
+ ‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
2
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2 .

We can estimate the term K2 in the same way.
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To estimate K3 and K4, we notice that when k > 0, k− l < 0 or k < 0, k− l > 0,
|k − l| < |l|. Therefore,

|K3 +K4| ≤
∑

(k,l)∈A3∪A4

∫∫ (
N b
t (k, ξ) +N b

t (k − l, ξ − η)
)

×|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)N b
t θ̂ 6=(k, ξ)|dξdη

.
∑

(k,l)∈A3∪A4

∫∫ (
(|k|

1
3 + |k − l|

1
3 )Λb

t(k − l, ξ − η) + |k|
1
3 Λb

t(`, η)
)

×|ω̂ 6=(l, η)θ̂ 6=(k − l, ξ − η)N b
t θ̂ 6=(k, ξ)|dξdη,

so that we have

|K3 +K4| . ‖ω̂ 6=‖L1

(
‖Λb

tθ 6=‖L2‖|Dx|
1
3N b

t θ 6=‖L2 + ‖|Dx|
1
3 Λb

tθ 6=‖L2‖N b
t θ 6=‖L2

)
+‖Λb

tω 6=‖L2‖θ̂ 6=‖L1‖|Dx|
1
3N b

t θ 6=‖L2

. ‖Λb
tω 6=‖L2

(
‖Λb

tθ 6=‖L2‖|Dx|
2
3 Λb

tθ 6=‖L2 + ‖|Dx|
1
3 Λb

tθ 6=‖2
L2

)
.

Summarizing the estimates, we achieve that

|K| . ‖Λb
tω 6=‖L2

(
‖|Dx|

2
3 Λb

tθ 6=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2

)
+ ‖|Dx|

1
3 Λb

tω 6=‖L2‖|Dx|
2
3 Λb

tθ 6=‖L2‖|Dx|
1
3 Λb

tθ 6=‖L2 .

Together with (4.20), we obtain

|I43| . ‖Λb
tω 6=‖L2

(
‖|Dx|

2
3 Λb

tθ‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2

)
+ ‖|Dx|

1
3 Λb

tω‖L2‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2 .
(4.21)

Then by (4.18), (4.19) and (4.21), we finish the estimates for I4,

|I4| . ‖Λb
tω‖L2‖|Dx|

2
3 Λb

tθ‖2
L2 + ‖Λb

tω 6=‖L2‖Dy|Dx|
1
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2

+ ‖|Dx|
1
3 (−∆)−

1
2 Λb

tω 6=‖L2‖DyΛ
b
tθ‖L2‖|Dx|

1
3 Λb

tθ‖L2

+ ‖|Dx|
1
3 Λb

tω‖L2‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2 .

(4.22)

• The closing of the energy estimate
Integrating (4.7), (4.8) and (4.9) in time and making use of the upper bounds in

(4.10), (4.16), (4.17) and (4.22), we obtain, for b > 4
3
,

‖Λb
tω‖2

L∞t (L2) + ν‖DyΛ
b
tω‖2

L2
t (L2) +

1

8
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tω 6=‖2
L2
t (L2)

≤ 2‖Λb
0ω

(0)‖2
L2 + 8ν−

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2) + C1‖Λb

tω‖L∞t (L2)‖|Dx|
1
3 Λb

tω‖2
L2
t (L2)

+C1‖Λb
tω‖L∞t (L2)‖Λb

tω 6=‖L2
t (L2)‖DyΛ

b
tω‖L2

t (L2), (4.23)

and

‖Λb
tθ‖2

L∞t (L2) + ν‖DyΛ
b
tθ‖2

L2
t (L2) +

1

4
ν

1
3‖|Dx|

1
3 Λb

tθ‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tθ 6=‖2
L2
t (L2)

≤ 2‖Λb
0θ

(0)‖2
L2 + C2‖Λb

tω‖L∞t (L2)‖|Dx|
1
3 Λb

tθ‖2
L2
t (L2) (4.24)

+C2‖|Dx|
1
3 Λb

tω‖L2
t (L2)‖|Dx|

1
3 Λb

tθ‖L2
t (L2)‖Λb

tθ 6=‖L∞t (L2)
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+C2‖Λb
tω 6=‖L2

t (L2)‖Λb
tθ‖L∞t (L2)

(
‖DyΛ

b
tθ‖L2

t (L2) + ‖Λb
tθ 6=‖L2

t (L2)

)
and

‖|Dx|
1
3 Λb

tθ‖2
L∞t (L2) + ν‖Dy|Dx|

1
3 Λb

tθ‖2
L2
t (L2) +

1

4
ν

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2)

+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖2
L2
t (L2)

≤ 2‖|Dx|
1
3 Λb

0θ
(0)‖2

L2 + C3‖Λb
tω‖L∞t (L2)‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2) (4.25)

+C3‖Λb
tω 6=‖L2

t (L2)

(
‖Dy|Dx|

1
3 Λb

tθ‖L2
t (L2) + ‖DyΛ

b
tθ‖L2

t (L2)

)
‖|Dx|

1
3 Λb

tθ‖L∞t (L2)

+C3‖|Dx|
1
3 Λb

tω‖L2
t (L2)‖|Dx|

2
3 Λb

tθ‖L2
t (L2)‖|Dx|

1
3 Λb

tθ‖L∞t (L2).

With these a priori bounds at our disposal, our final step is to prove Theorem
1.4 via the bootstrap argument. We assume that the initial data (ω(0), θ(0)) satisfies

‖ω(0)‖Hb ≤ ενβ, ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ,

where ε > 0 is sufficiently small, and β, α, δ are constants satisfying

β ≥ 2

3
, δ ≥ β +

1

3
, α ≥ δ − β +

2

3
. (4.26)

The bootstrap argument starts with the ansatz that, for T ≤ ∞, the solution (ω, θ)
of (4.1) satisfies

‖Λb
tω‖L∞T (L2) + ν

1
2‖DyΛ

b
tω‖L2

T (L2) + ν
1
6‖|Dx|

1
3 Λb

tω‖L2
T (L2)

+‖(−∆)−
1
2 Λb

tω 6=‖L2
T (L2) ≤ Cενβ, (4.27)

‖Λb
tθ‖L∞T (L2) + ν

1
2‖DyΛ

b
tθ‖L2

T (L2) + ν
1
6‖|Dx|

1
3 Λb

tθ‖L2
T (L2)

+‖(−∆)−
1
2 Λb

tθ 6=‖L2
T (L2) ≤ Cενα, (4.28)

‖|Dx|
1
3 Λb

tθ‖L∞T (L2) + ν
1
2‖Dy|Dx|

1
3 Λb

tθ‖L2
T (L2) + ν

1
6‖|Dx|

2
3 Λb

tθ‖L2
T (L2)

+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖L2
T (L2) ≤ C̃ενδ. (4.29)

The constants ε > 0, C, C̃ > 0 are suitably selected and will be specified later.
Making use of the bounds in (4.23), (4.24) and (4.25), we show that (4.27), (4.28)

and (4.29) actually holds with C replaced by C/2 and C̃ replaced by C̃/2. The
bootstrap argument then implies that T = +∞ and (4.27), (4.28) and (4.29) holds
for all time.

In fact, if we substitute the ansatz given by (4.27), (4.28) and (4.29) in the a
priori estimates in (4.23), (4.24) and (4.25), we find

‖Λb
tω‖2

L∞t (L2) + ν‖DyΛ
b
tω‖2

L2
t (L2) +

1

8
ν

1
3‖|Dx|

1
3 Λb

tω‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tω 6=‖2
L2
t (L2)

≤ 2ε2ν2β + 8C̃2ε2ν2δ− 2
3 + C1C

3ε3(ν3β− 1
3 + ν3β− 2

3 ),

‖Λb
tθ‖2

L∞t (L2) + ν‖DyΛ
b
tθ‖2

L2
t (L2) +

1

4
ν

1
3‖|Dx|

1
3 Λb

tθ‖2
L2
t (L2) + ‖(−∆)−

1
2 Λb

tθ 6=‖2
L2
t (L2)

≤ 2ε2ν2α + C2C
3ε3(3νβ+2α− 1

3 + νβ+2α− 2
3 ),
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‖|Dx|
1
3 Λb

tθ‖2
L∞t (L2) + ν‖Dy|Dx|

1
3 Λb

tθ‖2
L2
t (L2) +

1

4
ν

1
3‖|Dx|

2
3 Λb

tθ‖2
L2
t (L2)

+‖(−∆)−
1
2 |Dx|

1
3 Λb

tθ 6=‖2
L2
t (L2)

≤ 2ε2ν2δ + C3CC̃ε
3(2C̃νβ+2δ− 1

3 + C̃ν2δ+β− 2
3 + Cνβ+α+δ− 2

3 ).

If we recall (4.26) and choose

C̃ ≥ 8, C ≥ 32C̃, ε = min
( 1

128C1C
,

1

128C2C
,

C̃

64C3C

)
,

then (4.27-4.28) hold with C replaced by C/2 and (4.29) holds with C̃ replaced by

C̃/2. This completes the proof of Theorem 1.4. �

Remark 4.1. As observed in [19], once we have the bounds for the enhanced dissi-
pation term, we can deduce an explicit exponential converge of the non-zero modes
for both systems (1.3) and (1.4). Let us take the vertical dissipation case (1.4) for
example. First apply the projection P 6= to the system (4.2) and then take the scalar
product of the equations with MΛb

tω 6= and MΛb
tθ 6=, respectively. Multiplying the

energy inequality by a weight e2γν
1
3 t, we obtain

d

dt
‖eγν

1
3 t
√
MΛb

tω 6=‖2
L2 + ν‖eγν

1
3 tDyΛ

b
tω 6=‖2

L2 + ‖eγν
1
3 t(−∆)−

1
2 Λb

tω 6=‖2
L2

+
1

4
ν

1
3‖eγν

1
3 t|Dx|

1
3 Λb

tω 6=‖2
L2 − 2γν

1
3‖eγν

1
3 t
√
MΛb

tω 6=‖2
L2

≤ 2e2γν
1
3 tRe〈∂xΛb

tθ 6=,MΛb
tω 6=〉L2 − 2e2γν

1
3 tRe〈Λb

t

(
u · ∇ω

)
6=,MΛb

tω 6=〉L2 ,

and similar energy inequalities for θ 6=. By choosing γ > 0 small enough and using
estimates for the nonlinear terms, we can deduce

‖eγν
1
3 tΛb

tω 6=‖L∞(L2) + ν
1
2‖eγν

1
3 tDyΛ

b
tω 6=‖L2(L2) + ν

1
6‖eγν

1
3 t|Dx|

1
3 Λb

tω 6=‖L2(L2)

+‖eγν
1
3 t(−∆)−

1
2 Λb

tω 6=‖L2(L2) . νβ,

and similar bounds for θ 6=.
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