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Abstract. Solutions to the 2D Navier-Stokes equations with full dissipation in
the whole space R2 always decay to zero in Sobolev spaces. In particular, any per-
turbation near the trivial solution is always asymptotically stable. In contrast, so-
lutions to the 2D Euler equations for inviscid flows can grow rather rapidly. An in-
termediate situation is when the dissipation is anisotropic and only one-directional.
The stability and large-time behavior problem for the 2D Navier-Stokes equations
with only one-directional dissipation is not well-understood. When the spatial
domain is the whole space R2, this problem is widely open. This paper solves this
problem when the domain is T×R with T being a 1D periodic box. The idea here
is to decompose the velocity u into its horizontal average ū and the corresponding
oscillation ũ. By making use of special properties of ũ, we establish a uniform
upper bound and the stability of u in the Sobolev space H2, and show that ũ in
H1 decays to zero exponentially in time.

1. Introduction

Let T = [0, 1] be a one-dimensional (1D) periodic box and let Ω = T×R. Consider
the 2D incompressible Navier-Stokes equations with only horizontal dissipation,

∂tu+ u · ∇u = −∇p+ ν∂11u, x ∈ Ω, t > 0,

∇ · u = 0,

u(x, 0) = u0(x),

(1.1)

where u denotes the velocity field of the fluid, p the pressure and ν > 0 the viscosity.
Here ∂1 is the abbreviation of the partial derivative ∂x1 . In certain physical regimes
and after suitable rescaling, the 2D Navier-Stokes equations become degenerate and
reduce to the model in (1.1). One outstanding example is Prandtl’s equation (see,
e.g., [4, 7, 8]).

When the spatial domain is the whole space R2, the global existence and regular-
ity of solutions to (1.1) relies on the Yudovich approach and the upper bound on the
Sobolev norms is double exponential in time. The stability of perturbations near the
trivial solution remains an open problem, let alone the precise large-time behavior
of these perturbations. This paper focuses on the domain Ω specified above. The
goal is two-fold. The first is to establish a uniform upper bound on the Sobolev
norms of solutions to (1.1), and the second is to assess the stability of perturbations
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and pinpoint the exact large-time behavior of these perturbations. The results pre-
sented in this paper appear to be the very first ones devoted to understanding the
2D anisotropic Navier-Stokes equations. We shall explain some of the difficulties
associated with the uniform upper bound and the stability problem.

Mathematically the model in (1.1) is intermediate between the 2D Euler equations
and the 2D Navier-Stokes equations with full dissipation. The 2D Euler equations
given by {

∂tu+ u · ∇u = −∇p,
∇ · u = 0

represent the simplest but one of the most frequently used models for incompressible
ideal fluids. There have been considerable recent interests on the precise large-time
behavior of its solutions. One particular issue is whether the vorticity gradient can
grow double exponentially in time. Here the vorticity ω = ∇× u is transported by
the velocity field,

∂tω + u · ∇ω = 0.

The vorticity gradient in any Lebesgue norm Lp with 2 ≤ p ≤ ∞ admits an upper
bound that grows double exponentially in time. A significant problem is whether or
not the double exponential growth rate is sharp [11]. Kiselev and Sverak were able
to construct an explicit initial vorticity on a unit disk for which the corresponding
vorticity gradient indeed grows double exponentially [5]. A general bounded do-
main appears to share this property [13]. Whether or not such examples can be
constructed in R2 remains an open problem. Other important results on related
issues can be found in several references (see, e.g., [2, 3, 15]). As a special conse-
quence of these growth results, perturbations near the trivial solution of the 2D
Euler equations are in general not stable in the Sobolev setting. In contrast, the
Sobolev norms of solutions to the 2D incompressible Navier-Stokes equations{

∂tu+ u · ∇u = −∇p+ ν∆u, x ∈ R2, t > 0,

∇ · u = 0
(1.2)

always decay algebraically in time (see, e.g., [9, 10]). In particular, perturbations
near the trivial solution of (1.2) are always asymptotically stable in the Sobolev
space H2(R2).

When the dissipation is degenerate and is only one-directional as in (1.1), it is
not clear how the solution would behave. In the case when the spatial domain is
R2, the global existence and regularity relies on the Yudovich approach designed
for the 2D Euler equations [14]. The essence of the Yudovich approach is that the
vorticity ω = ∇×u is bounded for all time. We can show via the Yudovich approach
that any u0 ∈ Hs(R2) with s > 2 leads to a unique global solution of (1.1). The
solution remains in Hs for all time, but the Hs-norm of the solution could grow
rather rapidly in time. An upper bound on ‖u(t)‖Hs is double exponential in time,

‖u(t)‖Hs ≤ (‖u0‖Hs)e
C ‖ω0‖L∞ t

, (1.3)
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where ω0 = ∇×u0 is the corresponding initial vorticity and C is a pure constant. It
remains an open problem whether or not the upper bound in (1.3) is sharp. Another
immediate issue is whether or not we can lower the regularity of the initial data to
u0 ∈ H2(R2). Due to the Yudovich approach, the initial vorticity ω0 = ∇ × u0

is required to be in L∞(R2), which in turn forces u0 ∈ Hs(R2) with s > 2. If we
want to lower the regularity assumption to H2(R2), we need a different approach.
Unfortunately the lack of dissipation in the vertical direction makes it impossible to
control the growth of its solution without the boundedness of the vorticity. When
we resort to the energy method to bound ∇ω, namely

d

dt
‖∇ω(t)‖2

L2 + 2ν‖∂1∇ω(t)‖2
L2 = −2

∫
∇ω · ∇u · ∇ω dx,

the one-directional dissipation fails to control the nonlinearity. In fact, the nonlinear
part contains four component terms

Hard := −
∫
R2

∇ω · ∇u · ∇ω dx

= −
∫
R2

∂1u1 (∂1ω)2 dx−
∫
R2

∂1u2 ∂1ω ∂2ω dx

−
∫
R2

∂2u1 ∂1ω ∂2ω dx−
∫
R2

∂2u2 (∂2ω)2 dx (1.4)

and the last two terms in (1.4) do not admit a time-integrable upper bound. This
explains the difficulty of seeking a solution in H2 as well as lowering the exponential
upper bound. This is also the main reason why the stability problem on (1.1) in R2

remains a mystery.

When the spatial domain is Ω = T × R, this paper is able to obtain the global
existence and regularity in the H2-setting and provide a uniform upper bound on
the H2-norm of the solution. By offering an upper bound depending explicitly
on the initial data, this paper also proves the stability of perturbations near the
trivial solution. More importantly, we establish the precise large-time behavior
of the solutions. The main idea here is to separate a physical quantity into its
horizontal average and the corresponding oscillation. More precisely, for a function
f = f(x1, x2) integrable in x1 on T, we define the horizontal average

f̄ =

∫
T
f(x1, x2) dx1 (1.5)

and write

f = f̄ + f̃ . (1.6)

Clearly f̄ also represents the zero-th horizontal Fourier mode of f . This decomposi-
tion is very useful due to some of the associated fine properties. For example, f̄ and

f̃ are orthogonal in L2, namely the inner product (f̄ , f̃) = 0 and as a consequence,
for any f ∈ L2(Ω),

‖f‖2
L2(Ω) = ‖f̄‖2

L2(Ω) + ‖f̃‖2
L2(Ω).
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In addition, a strong Poincaré type inequality holds,

‖f̃‖L2(Ω) ≤ C ‖∂1f̃‖L2(Ω).

By applying this decomposition to the velocity field, namely writing u = ū+ ũ and
taking advantage of the special properties of ũ such as the Poincaré type inequality,
we are able to establish suitable upper bounds for the nonlinear terms in (1.4),
which in turn leads to a global and uniform upper bound for ‖u‖H2 . This explicit
upper bound also implies the stability of perturbations near the trivial solution. In
addition, by writing the evolution equations of the oscillation ũ, we also able to
prove that the H1-norm of ũ decays to zero exponentially in time. More precisely,
the following theorem holds.

Theorem 1.1. Let T = [0, 1] be a 1D periodic box and let Ω = T × R. Let ν > 0.
Consider (1.1) in Ω. Assume u0 ∈ H2(Ω) and ∇ · u0 = 0. Then (1.1) has a unique
global solution u that obeys the global and uniform H2 bound,

‖u(t)‖2
H2 + ν

∫ t

0

‖∂1u(τ)‖2
H2 dτ ≤ ‖u0‖2

H2e
C(‖u0‖4

H1+‖u0‖2
H1 ) (1.7)

for some constant C > 0 and for all t > 0. In particular, (1.7) implies the stability
of any perturbation near the trivial solution.

Assume the initial data ‖u0‖H2 is sufficiently small. Let u be the corresponding
solution. Let ũ denote the oscillation of u, defined as in (1.6). Then the H1-norm
of ũ decays to zero exponentially in time, namely

‖ũ(t)‖H1 ≤ ‖u0‖H1 e−C0t

for some C0 > 0 and for all t > 0.

The rest of this paper proves Theorem 1.1.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. A crucial idea in the proof
is to decompose the velocity u into its horizontal average ū and the corresponding
oscillation part ũ. We establish and take advantage of some special properties of
this decomposition and those of ũ. To facilitate the proof, we list several frequently
used facts on the decomposition as lemmas.

Lemma 2.1. Let f̄ and f̃ be defined as in (1.5) and (1.6). Then

f̃ = 0, ∂1f = ∂1f̄ = 0, ∂2f = ∂2f̄ , ∂̃2f = ∂2f̃ .

If a vector field F satisfies ∇ · F = 0, then

∇ · F̄ = 0 and ∇ · F̃ = 0.

For any f ∈ L2(Ω), we have

(f̄ , f̃) = 0, ‖f‖2
L2(Ω) = ‖f̄‖2

L2(Ω) + ‖f̃‖2
L2(Ω),

where (f̄ , f̃) denotes the L2-inner product.
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All the items in Lemma 2.1 can be directly verified by the definition of f̄ and f̃ .

The next lemma assesses that the oscillation part f̃ obeys a strong Poincaré type

inequality with the upper bound in terms of ∂1f̃ instead of ∇f̃ .

Lemma 2.2. Let f̄ and f̃ be defined as in (1.5) and (1.6). If ‖∂1f̃‖L2(Ω) <∞, then

‖f̃‖L2(Ω) ≤ C‖∂1f̃‖L2(Ω),

where C is an absolute constant. In addition, if ‖∂1f̃‖H1(Ω) <∞, then

‖f̃‖L∞(Ω) ≤ C‖∂1f̃‖H1(Ω).

The next two lemmas provide anisotropic upper bounds for the L∞-norm of a
function on Ω and for the triple product integral defined on Ω. They are simple but
powerful tools for dealing with anisotropic models. Such anisotropic upper bounds
on the whole space Rd with d = 2, 3 have been discovered and used by many authors
(see, e.g., [1, 12]). For a 1D function f = f(x2) satisfying f ∈ H1(R),

‖f‖L∞
x2

(R) ≤
√

2 ‖f‖
1
2

L2
x2

(R) ‖∂2f‖
1
2

L2
x2

(R). (2.1)

However, when the domain is bounded such as T, this type of inequalities would
necessarily contain the L2-part. More precisely, if f = f(x1) satisfying f ∈ H1(T),

‖f‖L∞
x1

(T) ≤
√

2 ‖f‖
1
2

L2
x1

(T) ‖∂1f‖
1
2

L2
x1

(T) + ‖f‖L2
x1

(T). (2.2)

As a consequence of (2.1) and (2.2), we obtain the anisotropic upper bounds in the
following lemma.

Lemma 2.3. If a function f = f(x1, x2) on Ω satisfies f ∈ H2(Ω), then

‖f‖L∞(Ω) ≤ C ‖f‖
1
4

L2(Ω)

(
‖f‖L2(Ω) + ‖∂1f‖L2(Ω)

) 1
4 ‖∂2f‖

1
4

L2(Ω)

×
(
‖∂2f‖L2(Ω) + ‖∂1∂2f‖L2(Ω)

) 1
4 . (2.3)

In addition, the integral of the triple product over Ω is bounded by∣∣∣∣∫
Ω

f g h dx

∣∣∣∣ ≤ C ‖f‖
1
2

L2 (‖f‖L2 + ‖∂1f‖L2)
1
2 ‖g‖

1
2

L2 ‖∂2g‖
1
2

L2 ‖h‖L2 . (2.4)

For the convenience of the readers, we provide a proof for this lemma.

Proof. Applying Hölder’s inequality in each direction, Minkowski’s inequality, and
(2.1) and (2.2), we have∣∣∣∣∫

Ω

f g h dx

∣∣∣∣ ≤ ‖f‖L2
x2
L∞
x1
‖g‖L∞

x2
L2
x1
‖h‖L2

≤ ‖f‖L2
x2
L∞
x1
‖g‖L2

x1
L∞
x2
‖h‖L2

≤ C
∥∥∥‖f‖ 1

2

L2
x1

‖∂1f‖
1
2

L2
x1

+ ‖f‖L2
x1

∥∥∥
L2
x2

×
∥∥∥‖g‖ 1

2

L2
x2

‖∂2g‖
1
2

L2
x2

∥∥∥
L2
x1

‖h‖L2
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≤ C ‖f‖
1
2

L2 (‖f‖L2 + ‖∂1f‖L2)
1
2 ‖g‖

1
2

L2 ‖∂2g‖
1
2

L2 ‖h‖L2 .

Here ‖f‖L2
x2
L∞
x1

represents the L∞-norm in the x1-variable, followed by the L2-norm

in the x2-variable. To prove (2.3), we again use Hölder’s inequality, Minkowski’s
inequality, and (2.1) and (2.2),

‖f‖L∞
x1
L∞
x2
≤ C

∥∥∥‖f‖ 1
2

L2
x2

‖∂2f‖
1
2

L2
x2

∥∥∥
L∞
x1

≤ C
∥∥∥‖f‖L∞

x1

∥∥∥ 1
2

L2
x2

∥∥∥‖∂2f‖L∞
x1

∥∥∥ 1
2

L2
x2

≤ C
∥∥∥‖f‖ 1

2

L2
x1

‖∂1f‖
1
2

L2
x1

+ ‖f‖L2
x1

∥∥∥ 1
2

L2
x2

×
∥∥∥‖∂2f‖

1
2

L2
x1

‖∂1∂2f‖
1
2

L2
x1

+ ‖∂2f‖L2
x1

∥∥∥ 1
2

L2
x2

≤ C ‖f‖
1
4

L2 (‖f‖L2 + ‖∂1f‖L2)
1
4 ‖∂2f‖

1
4

L2

× (‖∂2f‖L2 + ‖∂1∂2f‖L2)
1
4 .

This completes the proof of Lemma 2.3. �

If we replace f by the oscillation part f̃ , some of the lower-order parts in (2.2),
(2.3) and (2.4) can be dropped, as the following lemma states.

Lemma 2.4. Let f̄ and f̃ be defined as in (1.5) and (1.6). Then

‖f̃‖L∞
x1

(T) ≤ C ‖f̃‖
1
2

L2
x1

(T) ‖∂1f̃‖
1
2

L2
x1

(T). (2.5)

As a special consequence,

‖f̃‖L∞(Ω) ≤ C ‖f̃‖
1
4

L2(Ω)‖∂1f̃‖
1
4

L2(Ω) ‖∂2f̃‖
1
4

L2(Ω) ‖∂1∂2f̃‖
1
4

L2(Ω) (2.6)

and ∣∣∣∣∫
Ω

f̃ g h dx

∣∣∣∣ ≤ C ‖f̃‖
1
2

L2 ‖∂1f̃‖
1
2

L2 ‖g‖
1
2

L2 ‖∂2g‖
1
2

L2 ‖h‖L2 (2.7)

≤ C ‖∂1f̃‖L2 ‖g‖
1
2

L2 ‖∂2g‖
1
2

L2 ‖h‖L2 .

Proof. (2.6) and (2.7) in this lemma can be shown similarly as those in Lemma
2.3. The only modification here is to use (2.5) instead of (2.2). Since (2.5) does
not contain the lower-order part, the inequalities in this lemma do not have the
lower-order terms. �

We are ready to prove Theorem 1.1.

Proof. To establish the global existence and stability of the solutions to (1.1), the
first step is the local existence result, which can be proven by the standard contrac-
tion mapping argument together with a local-in-time a priori bound. The portion
with the contraction mapping argument is standard and can be found in the book [6].
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We shall just provide the local a priori bound. Taking the inner product in H2 of
u with the first equation in (1.1), we find

d

dt
‖u(t)‖2

H2 + 2ν‖∂1u‖2
H2 = −2

∫
Ω

∇u · ∇ω · ∇ω dx. (2.8)

where ‖u‖2
H2 = ‖u‖2

L2 + ‖∇u‖2
L2 + ‖∆u‖2

L2 . By Hölder’s inequality and (2.3) in
Lemma 2.3,

−2

∫
Ω

∇u · ∇ω · ∇ω dx ≤ 2‖∇u‖L∞‖∇ω‖2
L2

≤ C ‖∇u‖
1
4

L2 (‖∇u‖L2 + ‖∂1∇u‖L2)
1
4 ‖∂2∇u‖

1
4

L2

× (‖∂2∇u‖L2 + ‖∂1∂2∇u‖L2)
1
4 ‖∇ω‖2

L2

≤ C (‖∇u‖H1 + ‖∂1∇u‖H1) ‖∇ω‖2
L2

≤ ν‖∂1u‖2
H2 + C

(
‖u‖3

H2 + ‖u‖4
H2

)
.

Inserting this upper bound in (2.8) leads to a differential inequality that assesses
the local upper bound for ‖u‖H2 . The local well-posedness follows as a consequence.

To prove the global existence and stability result, we need to obtain the uniform
in time H2 estimate. It is easy to see that, due to ∇ · u = 0,

‖u(t)‖2
L2 + 2ν

∫ t

0

‖∂1u(τ)‖2
L2 dτ = ‖u0‖2

L2 , (2.9)

‖∇u(t)‖2
L2 + 2ν

∫ t

0

‖∂1∇u(τ)‖2
L2 dτ = ‖∇u0‖2

L2 , (2.10)

where we have used ∫
Ω

(u · ∇u) ·∆u dx = 0.

To bound the H2-norm, we resort to the vorticity equation,

∂tω + u · ∇ω = ν∂11ω. (2.11)

Taking the inner product of ∇ω with the gradient of (2.11), we have

1

2

d

dt
‖∇ω(t)‖2

L2 + ν‖∂1∇ω‖2
L2 = −

∫
∇u · ∇ω · ∇ω dx := N. (2.12)

We further write N into four terms,

N = −
∫
∂1u1 (∂1ω)2 dx−

∫
∂1u2 ∂1ω ∂2ω dx

−
∫
∂2u1 ∂1ω ∂2ω dx−

∫
∂2u2 (∂2ω)2 dx

:= N1 +N2 +N3 +N4.

N1 and N2 can be bounded directly. By Lemma 2.1, ∂1ū = 0 and ∂1u = ∂1ũ. By
Lemma 2.2, Lemma 2.4 and Young’s inequality,

|N1| =

∣∣∣∣− ∫ ∂1ũ1 ∂1ω ∂1ω̃ dx

∣∣∣∣
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≤ C ‖∂1ũ1‖
1
2

L2 ‖∂1∂1ũ1‖
1
2

L2 ‖∂1ω‖
1
2

L2 ‖∂2∂1ω‖
1
2

L2 ‖∂1ω̃‖L2

≤ C ‖∂1u1‖
1
2

L2 ‖∂1∇u1‖
1
2

L2 ‖∂1ω‖L2 ‖∂1∇ω‖L2

≤ C ‖∂1u‖L2‖∂1∇u‖L2 ‖∇ω‖2
L2 +

ν

12
‖∂1∇ω‖2

L2

and

|N2| =

∣∣∣∣− ∫ ∂1ũ2 ∂1ω̃ ∂2ω dx

∣∣∣∣
≤ C ‖∂1ũ2‖

1
2

L2 ‖∂1∂1ũ2‖
1
2

L2 ‖∂1ω̃‖
1
2

L2 ‖∂2∂1ω̃‖
1
2

L2 ‖∂2ω‖L2

≤ C ‖∂1u2‖
1
2

L2 ‖∂1∇u2‖
1
2

L2 ‖∂1∇ω̃‖L2 ‖∂2ω‖L2

≤ C ‖∂1u‖L2‖∂1∇u‖L2 ‖∇ω‖2
L2 +

ν

12
‖∂1∇ω‖2

L2 .

The estimate of N3 is slightly more delicate.

N3 = −
∫
∂2u1 ∂1ω ∂2ω dx = −

∫
∂2(ū1 + ũ1) ∂1ω̃ ∂2(ω̄ + ω̃) dx

= −
∫
∂2ū1 ∂1ω̃ ∂2ω̄ dx−

∫
∂2ū1 ∂1ω̃ ∂2ω̃ dx

−
∫
∂2ũ1 ∂1ω̃ ∂2ω̄ dx−

∫
∂2ũ1 ∂1ω̃ ∂2ω̃ dx

:= N31 +N32 +N33 +N34.

The first term N31 is clearly zero,

N31 = −
∫
R
∂2ū1 ∂2ω̄

∫
T
∂1ω̃1 dx1 dx2 = 0.

To bound N32, we first use (2.7) of Lemma 2.4 and then Lemma 2.2 to obtain

|N32| ≤ C ‖∂2ū1‖L2 ‖∂1ω̃‖
1
2

L2 ‖∂2∂1ω̃‖
1
2

L2 ‖∂2ω̃‖
1
2

L2‖∂1∂2ω̃‖
1
2

L2

≤ C ‖∂2ū1‖L2 ‖∂1ω̃‖
1
2

L2 ‖∂1∂2ω̃‖
3
2

L2

≤ C ‖∂2u‖4
L2 ‖∂1ω‖2

L2 + ‖∂1∇ω‖2
L2

≤ C ‖u0‖2
H1‖∇u‖2

L2 ‖∂1∇u‖2
L2 +

ν

12
‖∂1∇ω‖2

L2

and

|N33| ≤ C ‖∂2ω̄‖L2 ‖∂2ũ1‖
1
2

L2 ‖∂1∂2ũ1‖
1
2

L2 ‖∂1ω̃‖
1
2

L2 ‖∂2∂1ω̃‖
1
2

L2

≤ C ‖∂2ω‖L2 ‖∂1∂1∂2ũ1‖
1
2

L2 ‖∂1∇ũ‖L2 ‖∂2∂1ω̃‖
1
2

L2

≤ C ‖∂2ω‖L2 ‖∂1∇ω̃‖
1
2

L2 ‖∂1∇ũ‖L2 ‖∂1∇ω̃‖
1
2

L2

≤ C ‖∂2ω‖L2 ‖∂1∇ũ‖L2‖∂1∇ω̃‖L2

≤ C ‖∂1∇u‖2
L2 ‖∇ω‖2

L2 +
ν

12
‖∂1∇ω‖2

L2 .
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N34 can be similarly bounded as N32. N4 can also be bounded similarly.

|N4| =

∣∣∣∣∫ ∂1ũ1 (∂2ω̄ + ∂2ω̃)2 dx

∣∣∣∣
=

∣∣∣∣2 ∫ ∂1ũ1 ∂2ω̄ ∂2ω̃ dx+

∫
∂1ũ1 (∂2ω̃)2 dx

∣∣∣∣
≤ C (‖∂2ω̄‖L2 + ‖∂2ω̃‖L2)‖∂1ũ1‖

1
2

L2 ‖∂2∂1ũ1‖
1
2

L2 ‖∂2ω̃‖
1
2

L2 ‖∂1∂2ω̃‖
1
2

L2

≤ C ‖∂1u‖L2‖∂1∇u‖L2 ‖∇ω‖2
L2 +

ν

12
‖∂1∇ω‖2

L2 .

Thus,

|N | ≤C (‖∂1u‖2
L2 + ‖∂1∇u‖2

L2) ‖∇ω‖2
L2

+ C‖u0‖2
H1 ‖∂1∇u‖2

L2 ‖∇u‖2
L2 +

ν

2
‖∂1∇ω‖2

L2 . (2.13)

Inserting (2.13) in (2.12), combining with (2.9) and (2.10) and integrating in time
yields the desired inequality in (1.7),

sup
0≤τ≤t

‖u(τ)‖2
H2 + ν

∫ t

0

‖∂1u(τ)‖2
H2 dτ ≤ ‖u0‖2

H2e
C(‖u0‖4

H1+‖u0‖2
H1 ).

Next we show the desired exponential decay. We first write the equations of
ū = (ū1, ū2). Taking the average of (1.1)

∂tū1 + ∂2(u1u2) = 0,

∂tū2 + ∂2(u2
2) = ∂2p̄,

∂2ū2 = 0.

(2.14)

Taking the difference of (1.1) and (2.14), we find
∂tũ1 + ∂1(u2

1) + ∂2(u1u2 − u1u2) = −∂1p̃+ ν∂11ũ1,

∂tũ2 + ∂1(u1u2) + ∂2(u2
2 − u2

2) = −∂2p̃+ ν∂11ũ2,

∂1ũ1 + ∂2ũ2 = 0.

(2.15)

Taking the inner product of (ũ1, ũ2) with (2.15) yields

d

dt
‖ũ(t)‖2

L2 + 2ν‖∂1ũ‖2
L2 = K1 +K2 +K3 +K4, (2.16)

where

K1 = −
∫
ũ1 ∂1(u2

1) dx, K2 = −
∫
ũ1 ∂2(u1u2 − u1u2) dx,

K3 = −
∫
ũ2 ∂1(u1u2) dx, K4 = −

∫
ũ2 ∂2(u2

2 − u2
2) dx.

By ∂1u1 = ∂1ũ1 and Lemma 2.2,

|K1| =

∣∣∣∣−2

∫
ũ1 u1 ∂1ũ1 dx

∣∣∣∣ ≤ ‖u1‖L∞ ‖ũ1‖L2 ‖∂1ũ1‖L2

≤ C ‖u1‖H2‖∂1ũ1‖2
L2 .
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K3 can be bounded similarly,

|K3| ≤ 2‖ũ2‖L2 ‖u‖L∞ ‖∂1ũ‖L2 ≤ C ‖u‖H2‖∂1ũ‖2
L2 .

To bound K2, we write u = ū+ ũ and

u1u2 − u1u2 = ū1 ũ2 + ū2 ũ1 + ũ1 ũ2 − ũ1 ũ2

= ū1 ũ2 + ū2 ũ1 + ˜̃u1 ũ2 (2.17)

and thus

∂2(u1u2 − u1u2) = ∂2(ū1 ũ2) + ∂2(ū2 ũ1) + ˜∂2(ũ1 ũ2)

= ũ2 ∂2ū1 − ū1∂1ũ1 + ū2∂2ũ1 + ˜∂2(ũ1 ũ2).

Therefore, by Lemma 2.4,

|K2| =

∣∣∣∣− ∫ ũ1(ũ2 ∂2ū1 − ū1∂1ũ1 + ū2∂2ũ1 + ˜∂2(ũ1 ũ2)) dx

∣∣∣∣
≤ C ‖∂2ū1‖L2 ‖ũ1‖

1
2

L2 ‖∂1ũ1‖
1
2

L2 ‖ũ2‖
1
2

L2 ‖∂2ũ2‖
1
2

L2

+‖ũ1‖L2 ‖ ˜∂2(ũ1 ũ2)‖L2 ,

where we have used∫
ũ1 ū1 ∂1ũ1 dx = 0 and

∫
ũ1 ū2 ∂2ũ1 dx = 0.

By Lemma 2.2 and ∇ · ũ = 0, we have

‖ũ1‖L2 ≤ C‖∂1ũ1‖L2 ≤ C ‖∂1ũ‖L2 ,

‖ũ2‖L2 ≤ C‖∂1ũ2‖L2 ≤ C ‖∂1ũ‖L2 ,

‖∂2ũ2‖L2 = ‖∂1ũ1‖L2 ≤ ‖∂1ũ‖L2 .

Using these inequalities and ‖f̃‖L2 ≤ ‖f‖L2 , K2 is bounded by

|K2| ≤ C ‖∂2ū1‖L2 ‖∂1ũ‖2
L2 + ‖ũ1‖L2 ‖∂2(ũ1 ũ2)‖L2

≤ C ‖∂2ū1‖L2 ‖∂1ũ‖2
L2 + ‖ũ1‖L2 ‖ũ1‖L∞ ‖∂1ũ1‖L2

+‖ũ1‖L2 ‖∂2ũ1‖L∞
x1
L2
x2
‖ũ2‖L2

x1
L∞
x2

≤ C (‖∂2ū1‖L2 + ‖ũ1‖H2) ‖∂1ũ‖2
L2 .

K4 can be similarly estimated and

|K4| ≤ C ‖u‖H2‖∂1ũ‖2
L2 .

Inserting these upper bounds in (2.16) yields

d

dt
‖ũ‖2

L2 + (2ν − C ‖u‖H2) ‖∂1ũ‖2
L2 ≤ 0. (2.18)

According to the stability result established above, if ε > 0 is sufficiently small and
‖u0‖H2 ≤ ε, then ‖u(t)‖H2 ≤ C ε and

2ν − C ‖u‖H2 ≥ ν.

(2.18) and Lemma 2.2 then yields the desired exponential decay for ‖ũ‖L2 .



STABILITY AND DECAY FOR NAVIER-STOKES 11

Next we show the exponential decay of ‖∇ũ(t)‖L2 . We start by taking the gra-
dient of the velocity equation in (2.15) and then dotting with ∇ũ to obtain

1

2

d

dt
‖∇ũ(t)‖2

L2 + ν‖∂1∇ũ‖2
L2 = Q1 +Q2 +Q3 +Q4,

where

Q1 = −
∫
∇ũ1 · ∇∂1(u2

1) dx, Q2 = −
∫
∇ũ1 · ∇∂2(u1u2 − u1u2) dx,

Q3 = −
∫
∇ũ2 · ∇∂1(u1u2) dx, Q4 = −

∫
∇ũ2 · ∇∂2(u2

2 − u2
2) dx.

All terms can be bounded suitably. In fact, by Lemma 2.2,

|Q1| =

∣∣∣∣−2

∫
∇ũ1 · (∇u1 ∂1ũ1 + u1∂1∇ũ1) dx

∣∣∣∣
≤ C ‖∇u1‖L2 ‖∇ũ1‖

1
2

L2‖∂1∇ũ1‖
1
2

L2 ‖∂1ũ1‖
1
2

L2 ‖∂2∂1ũ1‖
1
2

L2

+‖u1‖L∞ ‖∇ũ1‖L2 ‖∂1∇ũ1‖L2

≤ C ‖u1‖H2‖∂1∇ũ1‖2
L2 .

Q3 can be bounded similarly and

|Q3| ≤ C ‖u‖H2‖∂1∇ũ‖2
L2 .

By (2.17),

Q2 = −
∫
∇ũ1 · ∇∂2(ū1ũ2 + ũ1ū2 + ˜̃u1ũ2) dx

= Q21 +Q22 +Q23.

Writing Q21 more explicitly,

Q21 = −
∫
∇ũ1 · (∇∂2ū1ũ2 + ū1∇∂2ũ2 +∇ū1∂2ũ2 + ∂2ū1∇ũ2) dx

and applying Lemma 2.4 and then Lemma 2.2, we obtain

|Q21| ≤ ‖∇∂2ū1‖L2‖∇ũ1‖
1
2

L2 ‖∂1∇ũ1‖
1
2

L2‖ũ2‖
1
2

L2‖∂2ũ2‖
1
2

L2

+‖ū1‖L∞‖∇ũ1‖L2 ‖∇∂2ũ2‖L2

+‖∇ū1‖L2 ‖∇ũ1‖
1
2

L2 ‖∂1∇ũ1‖
1
2

L2‖∂2ũ2‖
1
2

L2‖∂2∂2ũ2‖
1
2

L2

+‖∂2ū1‖L2 ‖∇ũ1‖
1
2

L2 ‖∂1∇ũ1‖
1
2

L2‖∇ũ2‖
1
2

L2‖∂2∇ũ2‖
1
2

L2

≤ C ‖u‖H2 ‖∂1ũ‖2
H1 .

The estimate for Q22 is similar and the upper bound is the same.

|Q23| =

∣∣∣∣− ∫ ∇ũ1 · ∇∂2( ˜̃u1ũ2) dx

∣∣∣∣
=

∣∣∣∣− ∫ ∂1ũ1 ∂1∂2( ˜̃u1ũ2) dx−
∫
∂2ũ1 ∂2∂2( ˜̃u1ũ2) dx

∣∣∣∣
≤ ‖∂11ũ1‖L2 ‖∂2( ˜̃u1ũ2)‖L2 + ‖∂2∂2ũ1‖L2‖∂2( ˜̃u1ũ2)‖L2
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≤ ‖∂11ũ1‖L2 ‖∂2(ũ1ũ2)‖L2 + ‖∂2∂2ũ1‖L2‖∂2(ũ1ũ2)‖L2

≤ C ‖∂1∂1ũ1‖L2 ‖ũ‖L∞‖∂2ũ‖L2

+‖∂2∂2ũ1‖L2(‖ũ2‖L2
x1
L∞
x2
‖∂2ũ1‖L2

x2
L∞
x1

+ ‖ũ1‖L2
x2
L∞
x1
‖∂2ũ2‖L2

x1
L∞
x2

)

≤ C ‖u‖H2 ‖∂1ũ‖2
H1 .

The upper bound for Q4 is the same. Combining the estimates for ‖ũ‖L2 and
‖∇ũ‖L2 , we find that

d

dt
‖ũ‖2

H1 + (2ν − C ‖u‖H2)‖∂1ũ‖2
H1 ≤ 0,

which leads to the desired exponential decay in H1. This completes the proof of
Theorem 1.1. �
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