STABILITY AND OPTIMAL DECAY FOR A SYSTEM OF 3D
ANISOTROPIC BOUSSINESQ EQUATIONS
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ABSTRACT. This paper focuses on a system of three-dimensional (3D) Boussi-
nesq equations modeling anisotropic buoyancy-driven fluids. The goal here is to
solve the stability and large-time behavior problem on perturbations near the hy-
drostatic balance, a prominent equilibrium in fluid dynamics, atmospherics and
astrophysics. Due to the lack of the vertical kinematic dissipation and the horizon-
tal thermal diffusion, this stability problem is difficult. When the spatial domain
is @ = R2x T with T = [~1/2,1/2] being a 1D periodic box, this paper establishes
the desired stability for fluids with certain symmetries. The approach here is to
distinguish the vertical averages of the velocity and temperature from their cor-
responding oscillation parts. In addition, the oscillation parts are shown to decay
exponentially to zero in time.

1. INTRODUCTION

The hydrostatic balance or hydrostatic equilibrium refers to the equilibrium when
the fluid is static with all external forces balanced out. Our atmosphere is mainly
in hydrostatic equilibrium, between the upward-directed pressure gradient force and
the downward-directed force of gravity. Understanding the stability of perturbations
near the hydrostatic equilibrium may help gain insight into some weather phenom-
ena. This paper intends to rigorously establish the stability and large-time behavior
of perturbations near the hydrostatic equilibrium for a special system of the 3D
Boussinesq equations. The Boussinesq systems are the most frequently used models
for atmospheric and oceanographic flows (see [6,8,12,15,24]).

More precisely, the 3D Boussinesq system considered here is given by

QU +U-VU = —VP+v(01 +09)U +Oe3, 1€, t>0,
V.U =0, (1.1)
8t@ + U-VO = 77833@,

where U denotes the fluid velocity, P the pressure, © the temperature and e3 =
(0,0,1). Here v > 0 and 1 > 0 are parameters representing the kinematic viscosity
and the thermal diffusivity, respectively. For notational convenience, we have written
3“- for me with ¢+ = 1, 2,3, and shall use Ah = (911 + 822 and Vh = (61,82). Here
the spatial domain €2 is taken to be

Q=R>*xT (1.2)
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with T = [—%, %] being a 1D periodic box. Mathematically the hydrostatic equilib-
rium (Upe, Phe, Ope) is given by
1
Uhe = 07 Phe - 5%’3, @he = I3.

(Uhe, Pre, One) is clearly a steady-state solution of (1.1). Any perturbation (u,p, @)
near the hydrostatic equilibrium with

UZU_Uhea p:P_Phea 9:@_@he

obeys
ou+u-Vu=—-Vp+vAu+0es, €, t>0,
V.-u=0,
00 +u- VO + us = 10330,
u(z,0) = up(x), 6O(x,0) = Oy(z).
The aim of this paper is to rigorously establish the stability of solutions to (1.3) in
a suitable functional setting and give a precise account of their large-time behavior.

(1.3)

We explain the physical relevance of the spatial domain and the associated pe-
riodic boundary condition, and provide physical circumstances that the Boussinesq
system considered here may model. The Boussinesq systems have been studied
in various spatial domains with different type of boundary conditions. The whole
space and bounded domains with either the Dirichlet or the Navier-type boundary
condition are the most popular setups in the study of the Boussinesq systems. The
periodic boundary condition and various combinations of the periodic boundary
condition with other types of boundary conditions are also relevant in the stability
analysis of perturbations near the hydrostatic equilibrium.

The hydrostatic equilibrium solves the Boussinesq system (1.1), although it does
not satisfy the periodic boundary condition imposed on the perturbation. There
appears to be an inconsistency in the non-periodic temperature profile (linear in
x3) with periodic perturbations, but this setup actually connects with the real at-
mosphere [14]. Over a finite range of latitudes from, say, 30 degrees north to 60
degrees north, the temperature is approximately linear, and the perturbations may
look approximately sinusoidal. So it is a local approximation in a certain region,
away from the boundary (or north/south pole and equator) and a full/true solution
could possibly be built by matching with other solutions near the equator and poles.
There are many other examples of this type of setting, the equilibrium state being
linear while perturbations are sinusoidal. One significant example is the passive
tracer in a mean gradient (see [3]).

The relevance of the periodic boundary condition on perturbations near the hy-
drostatic equilibrium is also reflected in several research projects on stratified flows.
Embid and Majda [10] used the periodic boundary condition when they studied the
low Froude number limiting dynamics for stably stratified flow. In [19] Simon and
Nadiga of Los Alamos Laboratory investigated the instability of a periodic flow in
geostrophic and hydrostatic balance.
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We also briefly comment on the relation between the model considered here and
the model in the whole space. In the whole space case, the background temperature
profile mathematically extends from minus infinity to plus infinity. Of course, in a
real atmosphere, the range of values is actually finite. But, in order to allow analytic
solutions, it is convenient to assume the range is infinite. The Boussinesq system
governing the perturbations is equipped with zero boundary conditions at infinity.

The stability problem considered here is difficult. Due to the lack of thermal
diffusion in two directions, the temperature gradient can potentially grow in time
if the Lipschitz norm of the velocity field is not uniformly integrable in time. The
velocity equation doesn’t have vertical dissipation and the buoyancy forcing can
propel the velocity gradients to grow in time. In fact, when the spatial domain is
the whole space R3, the stability problem (1.3) remains an important open problem.

This paper focuses on the domain €2 in (1.2). The vertical periodic boundary con-
dition imposed here has some advantages over the zero Dirichlet boundary condition
or the no-penetration boundary condition. There are two main difficulties associated
with the latter two boundary conditions. The first difficulty is that boundary terms
would emerge when we estimate vertical derivatives of the solution. The second
is that the pressure term on the boundary relies on the vertical derivatives of the
velocity field on the boundary, which are unknown. These two difficulties prevent
us from establishing necessary upper bounds on the derivatives of the solution.

Another significant advanatge of the domain €2 is that it allows us to separate
a physical quantity into its vertical average and the corresponding oscillation part.
More precisely, for a sufficient smooth function f = f(x1,x, 23) on §2, we define the
vertical average by

f($1,$2) = / f(x1, 22, 73) das,
T
and set the oscillation part as
f=r-1r
It is clear that the horizontal average f represents the zeroth vertical Fourier mode
while f consists of all non-zero vertical frequencies.

The decomposition f = f + fis very special. First of all, this decomposition is
orthogonal in the Sobolev space H*(2) for any k > 0. As a special consequence,
the H*-norms of f and f are bounded by the H*-norm of f. Furthermore, this
decomposition commutes with derivatives, and f and J?of a divergence-free vector
field f are also divergence-free. A crucial property to be frequently used in our
estimates is that fsatisﬁes a strong Poincare type inequality

[ fllze) < C 05 f]lL2(0)-

Besides these special properties, this decomposition also allows us to distinguish
the different behaviors of the different parts of the solutions to (1.3). For example,
the decomposition # = 6 + 6 helps distinguish the behavior of # and 6. It is not
difficult to see from (1.3) that the vertical dissipation actually vanishes for § due
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to the zeroth Fourier mode. In contrast, the vertical dissipation damps 0 and may
cause # to decay, even exponentially in time. This decomposition is employed in the
estimates of the nonlinear terms.

We assume the initial velocity wy = (uo1, ug2, up3) and the initial temperature 6y
in (1.3) have the following symmetries:

Up1, Ug are even in x3, and ugz and 6y are odd in x3.

As demonstrated in Corollary 3.2, these symmetries are preserved in time and the
corresponding solution (u, ) with u = (uq, ug, uz) obeys the same symmetries

Uy, ug, p are even in xs, and us and 0 are odd in x3.

As a special consequence of these symmetries,

U3:/U3($1,$2,5L’3,t)d$3:0, 9:/9($1,I’2,.’L’3,t)d$3:0
T T

Therefore,

Us = 637 0=20. (14)
The equations in (1.4) facilitate the estimates of several terms when we bound the
derivatives of 6.

With the basic ingredients at our disposal, we now state our main results.

Theorem 1.1. Consider (1.3) withv > 0 andn > 0. Assume that (ug,6) € H?*(Q)
satisfies V - ug = 0, and

Ugt, Uge are even in x3, and uys and Oy are odd in x3, (1.5)

where ugy, ugy and ugg are the three components of ug. Then there exists e = (v, n) >
0 such that, if

[woll 2 + |00l 2 < e(v,m),
then (1.3) has a unique global solution (u,0) € L>(0,00; H?) satisfying

t t

)+ 1000+ [ I9aliedr 0 [ 10001t < 022 (16)
0 0

Uy, U, p are even in x3, and us and 0 are odd in xs. (1.7)

Furthermore, if the initial datum is in a more reqular Sobolev space, then the corre-
sponding solution is also more reqular. More precisely, if (ug, 0y) € H? is sufficiently
small and has the symmetries in (1.5), then the solution (u,0) remains small in H?,
and satisfies (1.6) with H? replaced by H* and (1.7).

We remark that, as explained in the proof of Theorem 1.1, (v, n) is of the form
e(v,m) = ¢ min{r, n} for some pure small constant ¢ independent of v and 7. The-
orem 1.1 rigorously assesses that any small initial perturbation satisfying the sym-
metries specified in (1.5) leads to a unique global solution of (1.3) that preserves the
symmetries and remains small in H? for all time. This result appears to be the very
first stability result for a three-dimensional Boussinesq equations with anisotropic
velocity dissipation and with only one directional thermal diffusion. The stability
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and large-time behavior problems on perturbations near several physically impor-
tant steady states have recently attracted considerable interest due to their practical
applications and mathematical significance. Progress has been made on the stability
of two special steady states, the hydrostatic equilibrium and shear flows (see, e.g.,
(15,7,9,21,25,27,28]). The work of Doering, Wu, Zhao and Zheng [9] investigated
the stability of the hydrostatic equilibrium to the 2D Boussinesq system with only
kinematic dissipation (without thermal diffusion) and rigorously proved the global
asymptotic stability of any perturbation near the hydrostatic equilibrium [9]. In
addition, extensive numerical simulations are performed in [9] to corroborate the
analytical results and predict some phenomena that are not proven. The work of
Tao, Wu, Zhao and Zheng [21] resolves several important issues left open in [9]. In
particular, [21] provides a precise description of the final buoyancy distribution in
the case of general initial conditions and the explicit decay rate of the velocity field
or the total mechanical energy. The paper of Castro, Cérdoba and Lear successfully
established the stability and large time behavior on the 2D Boussinesq equations
with velocity damping instead of dissipation [5]. More recent work on the hydro-
static equilibrium can be found in [1,11,23,25]. There are very significant recent
developments on the stability of shear flow to the Boussinesq equations with various
partial dissipation [2,7,20,27-29].

Efforts are also made here to understand the large-time behavior of the pertur-
bations. Mathematically this is a challenging problem when the velocity equation
in (1.3) lacks the vertical dissipation and the temperature equation lacks the dis-
sipation in two horizontal directions. Powerful classical tools such as the Fourier
splitting methods designed for the systems with full dissipation no longer apply
here [16-18]. Our approach here is to treat the vertical average of the solution (, §)

differently from the oscillation part (, 5) Unfortunately this process would break
down if the velocity equation does not involve the vertical dissipation. To success-
fully implement our strategy, we consider the following Boussinesq system with full

velocity dissipation,
ou+u-Vu=-Vp+vAu+0e;, x€Q,t>0,
V.-u=0,
(9,50—1—u : V9+u3 = 7]8339,
U(l’, 0) = UQ(.%'), 9(1’, O) = 90(1’)
The only difference between (1.3) and (1.8) is that (1.8) also involves ds3u, which
plays a crucial role in the decay rates. Clearly, Theorem 1.1 carries over to the

system in (1.8). We are now ready to state our result on the large-time behavior of
solutions to (1.8).

(1.8)

Theorem 1.2. Assume that the initial datum (ug,0y) € H3(Q) satisfies the small-
ness and the symmetry conditions stated in Theorem 1.1, namely

| (wo, 00) ||z < e(v,n)  for sufficiently small (v,n) > 0

and
Ug1, Uga are even in x3, and ugz and Oy are odd in x3.
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Let (u,b) be the corresponding solution of (1.8). Let (u,0) be the oscillation part of
(u,0). Then (u,0) decays exponentially in time in H', namely

1@ 0) ()| 12 < (|0, 00) ||z €™, (1.9)
where ¢ = min{v,n}. As a consequence, the limiting system of (1.8) is the following
system of (@1, 5z),

Oyt + 31“? + oty = —O1p + VA,
8@@ + 81U1U2 —+ %u% = —82]7 + VAhﬂg,
817]1 + 821762 = 0

Theorem 1.2 states that the oscillation part of any perturbation governed by the
Boussinesq system in (1.8) decays exponentially in time to zero and the eventual
system is a 2D flow obeying the 2D Navier-Stokes equation. This is consistent with
the mathematics and physics of the system in (1.8) governing the buoyancy-driven
fluids. Mathematically, according to the governing equations on perturbations in
(1.8), the dissipation associated with the vertical average or the zeroth vertical
frequency vanishes while the dissipation for the non-zero vertical frequencies plays
the role of damping. The vertical dissipation plays a crucial role in damping those
non-zero vertical frequencies. We also remark that, as shown in the proof of Theorem
1.2, e(v,n) is of the form e(v,n) = ¢ min{v,n} for some pure small constant ¢
independent of v and 7.

We briefly outline the proofs of Theorems 1.1 and 1.2. Since the local (in time)
well-posedness on (1.3) in the Sobolev setting H?(Q2) or H*(Q) can be shown via
standard approaches (see, e.g., [13]), the proof of Theorem 1.1 is reduced to estab-
lishing the global (in time) bounds for the solutions. The tool is the bootstrapping
argument. An abstract bootstrapping argument can be found in T. Tao’s book [22,
p.20]. To set it up, we define the following energy functional for the H?-solution,

t t
B0) = s u(r). 0 e +v [ 193 dr 1 [ 1060(7)

Our main efforts are devoted to proving the inequality
E(t) < E(0) + C E(t)2, (1.10)

where C' = C(v,n) > 0is a constant depending on v and 7. More explicit dependence
will be provided in the proof of Theorem 1.1. The bootstrapping argument then
implies that if
E(0) = || (uo, 00) 7> < €*

for suitable e = (v, n) > 0, then E(t) remains uniformly bounded for all time, for
0<t< oo,

E(t) < Cg? (1.11)
for some pure constant C' > 0. In particular, (1.11) yields the desired global H?>-
bound on the solution (u, ). The proof of (1.10) makes use of the decomposition

u=u+1u, 0=0+0



ANISOTROPIC 3D BOUSSINESQ EQUATIONS 7

in order to distinguish different behaviors of @ and @, and of 6 and 0. We develop
various anisotropic inequalities to deal with the triple products resulting from the
nonlinear terms. In particular, the strong Poincaré inequality

1 fllz2) < Cll0sfll 2

and the anisotropic upper bound on the triple product

—~ 1 1 1 ~ 1 ~ 1
/Q fahde < ClFILIOSIE glE 1T 10575,

are frequently used. More anisotropic inequalities and their proofs can be found in
Section 2. In addition, we also use special properties on the averages of functions
with symmetries such as f = 0 if f is odd in 3. Details of the proof of Theorem 1.1
are provided in Section 2. The global upper bound on the solution in H? is obtained
similarly.

To prove Theorem 1.2, we take the difference of (1.3) and its average to obtain

the system governing the oscillation (u, 6),

(O + 0y (u? — U_%) + Oa(urug — Urtiz) + O3(usur) = —O1p + vAuy,
s + 01 (ugug — TUrtz) + Oa(u3 — U_%) + O3(tsug) = —0sp + VAU,
Otz + u - Viig = —0sp + vATs + 0,

0,0 +u - VO = nds30 — U,

(V-u=0.

The estimate of the H'-norm of (w, ) is separated into controlling the L?*norm of

(w,0) and that of (Vu, V#). By invoking various anisotropic inequalities stated in
Section 2, we are able to show that

d, - = , -
M@ Ol + (2mindw, n} = Cl(w, O)l ) 1@, 6) 72 < 0,

which leads to the desired exponential decay in Theorem 1.2.

The rest of this paper is divided into three sections. The second section develops
several properties associated with the decomposition f = f + f, the Poincaré and
various anisotropic inequalities. This section serves as preparation. Section 3 proves
Theorem 1.1, while Section 4 proves Theorem 1.2.

2. DECOMPOSITION AND ANISOTROPIC INEQUALITIES

This section serves as preparation for the proofs of Theorems 1.1 and 1.2. First,
we provide several properties associated with the aforementioned decomposition.
In particular, a strong version of the Poincaré inequality is supplied. Second,
anisotropic inequalities for the whole space R3 and for the domain = R? x T
are presented and compared.
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We start by recalling f and f Let = R* x T. Assume that, for every (21, ;) €
R?) f(x1, 79, x3) is integrable in x3 on T. Then, f = f(z1,x2) is defined by

f(ﬁt?l,l‘g) :/Tf(l’l,l'g,l‘g) d[L‘g (21)

and we decompose f as
f=r+r (2.2)
]?Wﬂl be called the oscillation part of f. f also represents the zeroth vertical Fourier

mode while f contains all other vertical frequencies. The decomposition in (2.2)
possesses many fine properties. First of all, (2.2) is an orthogonal decomposition in

H*(Q) for any integer k > 0. Clearly, the L% inner product (f, f) satisfies
(f, J?) = / f($1,$2) f($1,$2,1‘3) dx
Q

= f(f,(]l,l‘g) /‘]7({171,1}2,{[‘3) d[L‘g d[L‘ldIQ
R2 T
=0

due to the fact that the average of fis zero. Similarly, for any differential operator
D := 9{105205%, the L*-inner product

(D“f,D*f) = 0.

That is, f and f are orthogonal in any Sobolev space H ¥(Q) with k > 0 being an
integer. In summary, the following lemma holds.

Lemma 2.1. Let k > 0 be an integer. The decomposition f = f + f s orthogonal
in H*(Q),

(Fo e =0, N = I W + 17113

As a special consequence,
e < Wl W i < F e

It is a direct consequence of the definition in (2.2) that the average operator and
the oscillation operator commute with the derivatives.

Lemma 2.2. The average operator and the oscillation operator commute with the
derivatives, namely, for k=1,2,3,

As a special consequence, if V- u =0, then
V-u=0, V-u=0.

One very important property about the oscillation part is that ]?obeys a strong
version of the Poincaré type inequality.
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Lemma 2.3. Let f cmde be defined as in (2.1) and (2.2). Let k > 0 be an integer.
If 0sf € H*(Q). Then f € H*(Q) and

@) < C105f | ey
where C' > 0 is a constant depending on Q0 and k only.

Proof of Lemma 2.3. By Lemma 2.2, it suffices to consider the case when k = 0.
Since any function in L?(Q2) can be approximated by smooth functions, we can
assume f is smooth without loss of generality. Since, for each (x,75) € R?, the

average of f is zero, there exists p = p(x1,x2) such that

f(l’h T2, P) = 0.
Then

f(x1, 29, x3) = f(9017$27p)+/ 8zf(xl7x27z)dz
p

= / 8Zf(ac1,x2,z) dz.
p

By Holder’s inequality,

2

‘f(951,$27$3)‘ < [/(azf(xhxmz))Q dz]
T
Squaring each side and integrating over € yields

[ fllze) < C 05 f]lL2(0)-
This completes the proof of Lemma 2.3. 0

For a one-dimensional function f € H'(R), we have the elementary inequality

1 1
||f||L°°(R) <V2 ||f||22(R) ||Df||[2,2(R)7 (2.3)

where D f denotes the derivative of f. When the spatial domain is T instead of R,
(2.3) needs to be modified. More precisely, for any f € H'(T), we have the following
lemma.

Lemma 2.4. Let f € HY(T) and let f be its oscillation part. Then

11l (ry < ﬁ”f”%?(ir) (£l + 1 DF l2my) (2.4)
1F e < V2112 1 D712 (2.5)
Proof of Lemma 2.4. For any x3 € T,
Pl =0+ [ D) de (2.6)
P

Integrating in p over T yields

P < [Porae| [ If(Z)\QdZF i |Df<z)|2dzr.
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Integrating over T and then applying Holder’s inequality for the last term on the

right yields (2.4). To prove (2.5), we replace f by f in (2.6) and choose p such that
f(p) =0. Then

(F2(as) = / " DT () de.

Integrating over T and applying Holder’s inequality yields (2.5). O

Several anisotropic upper bounds on the integrals of triple products have been
extremely useful in dealing with partial differential equations with anisotropic dis-
sipation. The following two inequalities for the spatial domains R? and R3 are two
outstanding examples of such upper bounds,

/ fghdx

R2

/ fghdx
R3

These inequalities can be found in [4] and [26]. When the spatial domain is 2 =
R? x T, these inequalities need to be modified suitably.

Lemma 2.5. Let Q = R? x T. Assume that f,01f,g02g,h,03sh € L*(). Then,

‘/Qfghdx

When h is replaced by its oscillation part h, then the lower-order term ||h| 2 in the
last part of the inequality above can be dropped, namely

/Qfg%dx

This lemma is a direct consequence of Lemma 2.4 and Minkowski’s inequality.

1 1 1 1
< Cl[fllzz@2) 191 L2 @2y 1019112 gy 10N £2 g2y 10201l £2 m2y

1 1 1 1
<C Hf||z2(R3) ||alf”22(R3)”9”z2(R3) ||a29|‘z2(ug3)

1 1
X[l L2 ey 195h]| F2 gay -

D=

< CIANZ= N0uf 1172 gl 72 11029172 IRl (lIRllz2 + 1|03kl r2)

1 1 1 1o~ ~ 1
< CflIz2 100 f 117 1lgllZe (10291172 117l 72 103R1Z--

3. PROOF OF THEOREM 1.1

This section proves Theorem 1.1. Since the local (in time) well-posedness of (1.3)
can be established via a standard approach (see [13]), our attention is focused on
the global bound of (u,#). We need to prepare two key ingredients. The first is the
uniqueness of two H?-solutions to (1.3). As a special consequence, the symmetries
of the initial data in (1.5) are preserved for all time, and the corresponding solution
possesses the same symmetries. The second main ingredient is the global a prior:
estimates stated in Propositions 3.3 and 3.4 below. Once these two ingredients are
at our disposal, the proof of Theorem 1.1 is then completed via a bootstrapping
argument.

We first establish the uniqueness of H?-solutions to (1.3).
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Proposition 3.1. Assume that (u",0WM) and (u?,0®) are two solutions of (1.3)
in the reqularity class

(u,6W), (w?,6%) € L>(0,T; H?).
Then, for any 0 <t <T,
(ut, 9(1)) — (u(2), 9(2)).

The proof of Proposition 3.1 is not difficult, but the uniqueness is important and
would guarantee the preservation of the symmetries of the initial data.

Corollary 3.2. Assume (ug,6y) € H*(Q)) satisfies V-ug = 0 and the symmetries in
(1.5). Let T > 0. Let (u,0) € L>=(0,T; H?) be the corresponding solution of (1.3).
Then, for any t < T, (u(t),0(t)) obeys the same symmetries as in (1.5).

It is easy to check that Corollary 3.2 follows from Proposition 3.1. In fact, if
(u,p,0) = (u1,us,us,p,0) is a solution (1.3), then (U, P, ©) with

Uy = ui (21, 29, —x3,t), Us = ug(1, 29, —x3,t), Us = —us(x1,x2, —2x3,1),

P = p(xhx% —Z'g,t), @ - —Q(ZEI,IQ, _I37t)

also satisfies the same Boussinesq equations with the initial datum (Uy, ©g) given
by

Un = U01($1,$2, —$3)7 Up2 = U02($1,$27 —903)7 Ups = —Uos(l‘hxz, —$3)>
O = —bp(x1, 22, —x3).

Due to the symmetries of the initial datum, we have
(Up, ©0) = (ug, bp).
By the uniqueness stated in Proposition 3.1,
(U, P,©) = (u,p,0)
or

Up\r1,x9,I3, ) = U1<I1,x2,—x3,t),

(
2(21, 2, T3, 1) = up(x1, T2, —3, 1),
(

U

Us\ri, T2, T3, ) = _US('IDJ:Q: —Jfg,t),
p(xlv'r%x?n ) p(ﬂfl,.’ﬁg,—xg,t),
9(1‘1,[1?2,333, ) = —Q(ZEl,ZEQ, —Zbg,t).

Therefore, (u,p,#) has the desired symmetries.

We now turn to the proof of Proposition 3.1.
Proof of Proposition 3.1. The difference (du, d6) with

ou=u —u® and 060 =00 — 9@
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satisfies
0ou 4+ uV - Véu + du - Vu® = vA,du — Vép + 66 e,
V- ou =0,
0,00 +u) - V0 + ou - VOP + (6u)s = 1703360,
du(z,0) =0, 060(x,0)=0,

(3.1)

where dp = p(V) — p(?) represents the pressure difference. Testing (3.1) with (u, 60)

yields
1d
57 (19ulze + [10017) + v[[Vadullzz + 00506172 = I + I, (32)

where we have used [(60e3) - du + (0u)300 dz = 0, and

L = —/(5u-Vu(2) coudx, Iy = —/5U-V9(2) 00 dz.

By Lemma 2.5,
L] < CIVe® |, (IVu@ ] + 05V 12)?
< [§ull 2 119:5ull £ l15ull2. (1025l
< C lu®||e 16ull 2 [Vl
< IVl + C s ol
Similarly,

L] < IVOP7: [10:V01 . l|oull . 1020l 22
x[|06]1 22 (11661 2 + (105601 .2)>

< CIVOD 2 1009012, (Joulz, 1962 10200l 2.
gl 180117, I8:5ull7. 2500117,
1 1
< Jv0u0ully + Snlldsdul s

+C (14 [10P13:) (5wl 72 + 1160]72)
Inserting the upper bounds for I; and I in (3.2) yields

d
= (loullzz + 11661[72) + vlIVadullZz + nll950017
< C (L [[u® e + 10P152) (I16ullZ2 + [1661172).
Gronwall’s inequality implies
16u()l|Z2 + [166(0)]1Z2 < ([[5u(0)][72 + [66(0)|[72) elo M7,

where
M(t) = C 1+ [u® | + 6P]72).
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For (u® 0®) € L>(0,T; H?), the time integral of M (t) with 0 < ¢ < T is bounded,

/OtM(T)dT<oo

and therefore, du(t) = 60(t) = 0. This completes the proof of Proposition 3.1. [

Next we state and prove our main propositions.

Proposition 3.3. Assume the initial datum (ug, 6y) satisfies the reqularity and sym-
metry conditions in Theorem 1.1. LetT > 0. Let (u,8) be the corresponding solution
of (1.8) on [0, T]. Define the energy functional E(t) by

t t
E(t) = sup ||(u,0)(7')||12qz—|—u/ 1Vl d¢+n/ 1050|0dr
0 0

0<r<t
Then, for a constant C' > 0 and for 0 <t < T,

E(t) < E(0) + C E(t)?. (3.3)

Proof of Proposition 3.3. According to Corollary 3.2, (u, #) obeys the following sym-
metries
Ul(l'l, T2, T3, t) = Ul(ﬂfl, To, —T3, t),
ug (1, x9, T3,t) = ug(1, T2, —x3,1),
(3.4)
U3(ZL‘1, To, T3, t) = —U3(ZE17 To, —T3, t),
6<I1, Lo, T3, t) = —Q(ZL’l, Lo, —I3, t)
As in (2.1), we define % and @ to be the horizontal averages of u and @, respectively,
and % =u — @ and 6 = 6 — 6. As a special consequence of the symmetries in (3.4),

U3=/U3($1,$27$3,t)d$3:07 52/9(%@2@3’75)‘1933:0
T T

and thus B
Uz = ag, 0=20.

We now prove (3.3). Due to the equivalence of the norms

3
1w )l ~ (Ol + Y 1187w, 576) 72,
i=1

it suffices to estimate ||(u,8)| 2 and 37, [|(8%u, 820)| 2. First of all, we have the
global L?bound. Dotting the equations in (1.3) by (u,#) and integrating by parts,
we find

t t
1w 0)2 + 20 / IV sull2 dr + 21 / 1056]122d7 < (uo, 00)Io.  (35)

Applying the differential operator 9? to the equations in (1.3), testing the resulting
equations by (0?u, 9%0), and integrating by parts, we have
3

d 3 3
— > (17ullie +10701172) +2v ) [IVndiullze +20)  [18:0767

dt 4 : ,
=1 =1 =1
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=J1 + Jo, (3.6)

where we have used the fact that
/((93063 - 0Pu — OPuz0?0) dr = 0

and

3
Jp = — Z/@f(u -Vu) - ?udz,
i=1

3
Jo = —Z/af(u -V0) - 970 dx.
=1

Due to the anisotropic dissipation in (1.3), we need to decompose the terms into
component terms to distinguish the derivatives in the horizontal direction from those
in the vertical direction. In addition, due to V - u = 0,

/(u-Val-Qu) cOPudr =0, i=1,2,3.

Therefore, J; can be written as

2
Ji :—Z/8f(u-Vu)-Q-Qudx—/@g(u-Vu)-@gud:p
i=1

2 2
=— Z/@f(u - Vu) - Ofudr — Z/@%(uk - Opu) - OFu dx
i=1 k=1

- /8§(U3 - Ogu) - Ou dx

2 2
:—ZZCQ”/@Z"%@?’”V%@?UCZ;C

i=1 m=1

2 2
- > ey / O uy - 02 O - O3 dx

k=1 m=1

2
-> ey / Oug - 02" Dgu. - H2u da
m=1

=J11 + Jio + Jis,

where C3" denotes the combinatorial number,

om 2!
2 ml2—m)

Since the derivatives in Jq; are all in the horizontal direction, we can directly apply
Lemma 2.5 to obtain

2 2
Tl <3S ol (10 ulze + 110507 ull 2 )

i=1 m=1

=

2
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1 1 1 1
x [0V ul 22110007Vl 22 107l 72 110207l 7
< Cllullz | Vaull-

To deal with .J5, we realize that the middle term in the integral 8§_m8ku with

k =1 or 2 has at least one horizontal derivative. Thus, we can still use Lemma 2.5
to generate enough time integrability parts,

2 2
1 1 1
[ Jial < C Y > 105 w7 10105 uk|7 (105 O 7
k=1 m=1
1 1 1
x (1057 Ol 2 + (10505~ Ol 1) * (|95l 22 (10205 7

< C lulls |Vl

To deal with .J;3, we use the divergence-free condition dsus = —V, - u;, and Lemma
2.5 to obtain

N[

2 2
[Tis] < C YN C 108 V- unl 2 (105" V- unllze + (10505 Vi - | 2)

m=1 k=1

1 1 1 1
x (1057 ull 72 10195 ull 2 |05 ull 7. [|0205ul 72
< Cllullaz | Vhul3-

In summary, we have shown that
[ 1| < Clull 2 [| Vil (3.7)

We now turn to Jo. First, we distinguish the horizontal derivatives from the vertical
derivatives to decompose .J5 as

2
Jy = —Z/ag(u-ve) -afedx—/ag(u-ve) - 0260 dx
=1

i=1 k=1

2 2 2
==Y Z/af(uk - O0) - %0 da — Z/af(u3 - 930) - 926 dx
1=1
2
> / 02 (ug - BR0) - 926 da — /ag(u?, - 930) - 920 dx
k=1

2 2 2
=Y >y / Oy, - 0700 - 020 du

i=1 k=1 m=1

2 2
-2 / O"us - P04 - 020 da

i=1 m=1

2 2
-y > ey / Oy, - 270 - 920 dx

k=1 m=1
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2
-> cy / Ous - 02050 - 926 da
m=1

= Jo1 + Jog + Jaz + Jou,

where we have used the fact that, due to V- u =0,
/(u VO20)070dr =0, i=1,2,3.

Since the temperature equation involves only vertical dissipation, we need to make
use of the decomposition

0=0+0=10
where we have used 6 = 0 due to the symmetry in 6. Therefore,

2 2 2
Ja==> Y > ¢y / Oy, - 0200 - 920 d.

i=1 k=1 m=1
It then follows from the second inequality in Lemma 2.5 that
2 2 2

[Joal <3000 > o0 unlla 1000wl 22 110708 72 1102070487

i=1 k=1 m=1
~ 1 ~ 1
x [|070117 100761 72
By the strong Poincaré type inequality in Lemma 2.3,
106] 22 < C 0:070] 2.
Therefore, by the basic facts in Lemma 2.1,
| Ja1| < ClIVpull g2 [|0][ 12 [|050] 12

The estimate of Jss is similar,

2 2
1 1 ~ 1 -1
[ Toal CY N CRI0 s 22 11010] s 22 11077050 22 10207050 2

i=1 m=1
! o L
x [|0; 0|72 10:0; 0|17
< C|Vyullgz2 [|0] 2 [|050]] 2

To bound J»3, we first change 6 to 5,
2

2
Js==»_> C / 05y, - 03700 - 030 da.

k=1 m=1
By Lemma 2.5,

2 2
sl < C Y Y C 05 wnll 7 10105 unl| 2 1050081172 110505~ 0ub -

k=1 m=1
~ 1 ~ 1
X [|030]172 110203017

1 1 1 3
< Cllull gz [IVaull g2 1101 2 1105011 2
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< C (lullgz + 110]2) (IVaullzr + [1050]172) -
The estimate of Jy, is similar to that for Jes and
| Joal < C (lullgz + (0] 2) (IVhullfe + 11050]%2) -
Collecting the bounds for J,, we obtain
| Jo| < C ([[uflz + 10]2) (Vaullzr + [1050]172) - (3.8)

Inserting (3.10) and (3.11) in (3.6), integrating in time over [0,¢] and adding to
(3.5), we deduce

t
B@) < BO) +C [ (Il Vil

+ (Nullz + 100 m2) (| Vaul}e + [105001%:) ) dr
< E(0) + C E(t)?,

which is the desired inequality (3.3). Here C'= C(v,n) > 0 is a constant depending
on v and 7. According to the definition of E(t), C' = ¢/ min{v, n} for a pure constant
¢ > 0 independent of v and 7. This completes the proof of Proposition 3.3. 0

Our last proposition concerns itself with an a priori bound for the H? solutions
of (1.3).

Proposition 3.4. Assume the initial datum (ug,6y) € H?> satisfies the symmetry
conditions (1.5) in Theorem 1.1. Let T > 0. Let (u, ) be the corresponding solution
of (1.3) on [0, T]. Define the energy functional E(t) by

t t

E(t) = sup [[(u,0)(r)|Pp + v / IVaullde dr + 1 / 1046137
0<r<t 0 0

Then, for a constant C' > 0 and for 0 <t < T,

E(t) < E(0) + C E(t)?. (3.9)

Proof of Proposition 3.4. Due to the norm equivalence

3
s~ e+ 1182112

i=1
and the global L?-bound in (3.5), it suffices to estimate

3
i=

> (102ullfe + 116761172)

1
By the equations of (u,0) in (1.3),
3

d 3 3
7 > (102ullza + 10761172) + 20 Y [IVadPullfz + 20 ) 1105070117
i=1 i=1 i=1

- Kl +K2a
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where

3
K, = —Z/@f’(u - Vu) - OPude,
i=1

3
K, = —Z/af(u-ve)-agedx.
=1

To cope with the anisotropic dissipation, we decompose K into three terms, as we
did in the previous proof. The situation here is more complex due to the higher-order
derivatives.

2

3
K, = —Zch/aru LTV - QPudx

i=1 m=1

2 3
NS / Oy, - 93O - Ddu

k=1 m=1

3
-> ey / Oug - O3 ™ Oyu - Au da
m=1
p= Ky1 + Ko + Kis.
By Lemma 2.5,

2 3 1
1 < €30 S 10l (107l ez + 19507 ull 2 )

i=1 m=1
1 1 1 1
x (|07 Vull 710107 Vul| 72 (107 72 (10207 ull 7

< Clull e [V nullzs.-

2 3
1 1 1
Kol < C Y0 Y 105 w7 10105 well 7 105" Dyl

k=1 m=1
1 1 1
x (11057 Ol 2 + (0505~ Dgeu]|12) * [|B5ul| 72 (| 0205 ull 7 »
< C ullms [Vl
By the divergence-free condition d3us = —V}, - uj, and Lemma 2.5,

2

3
Kis| < C Y 057"V unllZe (1105 Vi - w2 + 10505 Vi, - w2

m=1 k=1
1 1 1 1
X |05 ul| 72 110105 ull 22 |05 ull 72 (10205 ul| 7.

< Cllullae [V nullzs.

N

In summary, we have shown that

[K1| < Cllullgs [ Vaullgs. (3.10)
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To deal with K5, we divide K5 into four terms,

2 2 3
K== > > cr / Oy - 3700 - 020 d:

i=1 k=1 m=1

2 3
I / O - 03040 - 090 du

i=1 m=1

2 3
IS / Oy, - 3780 - B30 d:

k=1 m=1
3
- e / OMus - O3 D50 - 36 da
m=1

= Ko1 + Koz + Koz + Ky,
To bound these terms, we invoke the fact that
6=0 0=0
and apply Lemma 2.5 to obtain
2 2 3

K| SO YYD CI07 w3 10005 w22 107060132 1102070401 .

i=1 k=1 m=1

x (1070172 1105076172

2 3
SO D> CEIo unll: 10007 w72 107 081 72 110208 087

i=1 k=1 m=1
~ 1 ~ 1
X (1050761172 11050761 2
< C|[Viullgs |[6] s 1100|113,
2 3

Koo < C YD [0 us| 22 110107 us |22 (1027050 22 1|0205 ™ 050 2

i=1 m=1
~ 1 ~ 1
x (1070172 1105070 7.
< ClIVpullgs 0] s 110501 13,
3

2
[Kos| <O Y Y ClIOF w7 10105 w7 105001 2 1050508

k=1 m=1
x [|030]17, 1|10:030]| 2.
1 1 1 3
< Cllull 2 1 VaullZe 101122 10501 22
< C (Jullgs +110llms) (IVauls + 1050]%)

and

Ko < C ([ullzs + 1101lm2) (IVnellzgs + 1105011755) -

19
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Collecting the bounds for Jo, we obtain

Ko < C ([ullgs +1101lms) ([IVaullFs + 1050117) - (3.11)
Collecting the upper bounds for K; and K, and integrating in time lead to the
desired inequality (3.9). This completes the proof of Proposition 3.4. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. As we mentioned at the beginning of this section, it suffices
to establish a global a priori bound on the norm of (u,#) to prove Theorem 1.1.
This is achieved by applying the bootstrapping argument on (3.3) in Proposition
3.3. An abstract bootstrapping argument can be found in T. Tao’s book [22, p.20].

We rely on the inequality (3.3), namely
E(t) < E(0) + Cy E(t)?, (3.12)

where Cy = ¢/ min{v,n} > 0 for a pure constant ¢ > 0 independent of v > 0 and
n > 0. We take ||(ug, 6p)| g2 to be sufficiently small, say

1
5(0) = .80 s < 5 ==
The bootstrapping argument starts with the ansatz that
1
Et) < —. 1
(t) < e (3.13)
It then follows from (3.12) that
) 1 1
E(t) < E(0)+CyE(t): E(t) < E(0)+ Coser E(t) = E(0) + §E(t)
0
or
1
E(t) <2FE(0) < —
(1) <25(0) < g,

which is half of the upper bound in (3.13). The bootstrapping argument then implies
that, for any ¢ > 0,

1
Et) < —.
"= 5cz
In particular,
1

2¢/2C,

The global existence and stability of H? solutions are obtained similarly by using the
inequality (3.9) in Proposition 3.4. This completes the proof of Theorem 1.1. O

[ (t), ()2 < =V2e.
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4. PROOF OF THEOREM 1.2

This section is devoted to the proof of the decay estimates in Theorem 1.2.

Proof of Theorem 1.2. Assume that the initial datum (ug,6y) € H® satisfies the
regularity, symmetry and smallness assumptions stated in Theorem 1.1. Let (u, )
be the corresponding solution of (1.8), namely

ou+u-Vu=-Vp+vAu+0e3, x€Q,t>0,
V.u=0, (4.1)
8t9+uV9+u3:778339

As established by Theorem 1.1, (u, ) remains small in H? for all time and obeys the
same symmetries. As a special consequence of the symmetries, the vertical averages
of ug and 6 are zero, namely

iy =0=0. (4.2)
By taking the vertical average of (4.1), and using (4.2) and the basic properties in
Lemma 2.1, we obtain the equations of ,
Oty + 013 + ottty = —Ohp + VA,
Oyl + Oz + Oqu3 = —0op + VA, lg, (4.3)
81’&1 + 82’112 - O

Taking the difference of (4.1) and (4.3), we find that (7, §) satisfies

Q?ﬁl + 81 (U% — U_%> + 82(U1U2 — Ul%) + 83(ﬂ3u1) = —81ﬁ+ VAﬂl,
Oytiy + 01 (urug — Urltz) + Oa(us — ud) + O5(Usus) = —0op + VAU,

at’ljg +u- Vag = —83154— VAag + 0, (44)
afﬂ +u-Vo = 778339 — ’173,
\v : ;L\L/ - O

As we shall see below, we do not really need the full dissipation in the velocity
equation, but the dissipation in the vertical direction is crucial. The nonlinear terms
will be controlled without using the dissipation in the x;-direction. We estimate the

L2-norms of (u,0) and (Vu, V0) separately. Our goal is to achieve the following
inequalities

d _ ~ _ _
— (1@, 0172 + (2v = Cllul| =) (D2, )l 72 + 21|57 < 0
dt
and
d ~ 5 2 9. Vull2
(7, V0) |32 + 2010, Vi3

+2v = Ci([lull 2 + [19]l12)) 11(02, 03) V|2
+ (21 = Coll[ullzs + 11011 2)) 105VO] 2 < 0.
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Dotting (4.4) by (u, #) and integrating by parts, we obtain

d _ ~ _ -
@ O)IZz + 20|Vl 72 + 201050172
= L1+ Lo+ L3+ Ly + Ls + L,

where

Li=— /ﬁlﬁl(u% —ud)dr, Ly=— /51(92(1“”2 — Uitp) dx,
L3 = — /ﬁlﬁg(ﬁgul) dl’, L, = _/aZaZ(UIUQ - U1U,2) d![’,

L5 = — /ﬂg@g(ug —U_%) dl’, L6 = — /ﬂg@g(ﬂgﬂg) dx.

It is easy to check that

W2 — w2 =20, + (1) — ()2 = 2, 0y + ()2,

U1Ug — UTU2 = ﬂl 62 + ﬂg 61 + 61 172.

Therefore, we can further decompose L; into three parts,

—_~—

L1 :2/5518171551 dx+2/€[1011761 d$+/a1 81(ﬁ1>2d$
= Ly + Lo + L.
By Lemma 2.5 and Lemma 2.3,
1 1 o R 1
Ly < 2|72 (|02t || 72 1018 ][ 72 [[010121 |7 |t ]| 2 || Ot ][ -
18
< C a2 (|02t || 25 || 95t ]|}
< C a2 (102U ]|72 + 1|95t [|72).-
By Holder’s inequality and Lemma 2.3,
Ly < 2[|tn || g2 |t || oe |01t | 22
< C|Osurllz2 (||| 12 |02uz + Osus]|r2
< Claa ||z (102072 + [|0s|72).-

By Lemma 2.1 and Lemma 2.3,

—_~—

Lag < U l|z2 101 (@0)2 ]| 2 < (]| g2 1101 (01)?| 2
< Ot || z2 [ ][ oo || O || L2
< C|| 05t || 2 [t || 2 | D212 + D5t | 2
< C || g2 ([|02l)72 + |05ul|72).
Therefore,
|Ly| < Clua]l g2 ([|851]| 72 + [|05T]172).
Invoking (4.6), we can rewrite Lo as

Lo =— / ﬂlag(ﬂlaz + Uy + ﬂ/lv%) dx.
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The three terms in L, can be estimated similarly to those terms in L, and the upper
bound is
|La| < Clull = (1|02l|72 + [1057]|72)-

By integration by parts,

Ly =— /ﬂg uq O3ty do
< ullzee [[asl 2 [|Ostn | 2
< Cluall2 105us]| 2 (|95t 22
< Clur||a2 | 05|72
Similarly we have
| Lal, | Ls, | Lo| < C'l|ullm2 ([|021][72 + [|952]|72)-
Collecting the upper bounds for L; through Lg, we find

NGB+ 21V + 2B < Ol (105713 + 105713).
or
%H(ﬂ, 0)l[72 + (2v = C|lull i) 1I(D2, 03)i| 3 + 20| 050]|32 < 0.
When the initial data (ug, ) is sufficiently small such that
Cllullg= < v,
we have

D)+ v 10503 + 20l <0
Invoking the Poincaré inequality in Lemma 2.3,
[@llz> < Cl10stll 2, 6]lz> < C 25| 2
leads to
SN +C minfy, 0} B) < 0. (4.7
We now estimate the H'-norm. Taking the gradient of (4.4) and then dotting the

resulting equations with (Vu, V), we have

d _ ~ _ ~
d—tH(Vu, V0|72 + 20| V2al|72 + 21|05V O] 72
= My + - + My,

where

M1 = —/Vﬂl . V@l(uf —U_%) dl’, M2 = —/Vﬂl . Vag(uan - uluz) dl’,
M3 == —/Vﬂl . V@g(ﬂgul) dl’, M4 == —/Vﬁg . V@g(u1u2 —m> dl‘,

M5 — _/Vﬂ2 . VaQ(ug — u_%) d{L’, M6 = —/Vag . Vag(ﬂ;ﬂQ) dilf,
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M7:_/va3-V(u~Vﬁ3)dx, Mgz_/vé.v(u.vé)dx.

To estimate M, we first invoke (4.5) to write M as

—_~—

M1 = —Z/Vﬂl : 81V(7_L1 ﬁl) dr — /Vﬂl . 81V(’171)2 dz = Mll + Mlg.
By integration by parts and V - u = 0,
M11 = 2 / V@lﬂl : (V’ljl Uy + 61Vﬁl) dx

= —2/V<82a2 + 83&3) . (Vﬁl ﬂl + 271Vﬂ1) dx.

Noticing that u; is a 2D function independent of x3, and applying Holder’s inequality
and Lemma 2.3, we have

My < C H(a%@s)VﬁHL?(HVﬁlHLQ @l + \|51!\LﬁLg3|\Vﬂ1\|Lg)
< Cl(02,05)Vul 2 [Vl 2 ||t ]|
1 1
+C (82, 05) V| g2 [[w || 72 [Vt [| L2 [ 2
C (82, 93)Vul > [|05Vus || 2 || ta || 12
+C [[(92, 03) V|12 || 050511 || 721105V itin || 72 | | 122,
where we have used the following Sobolev inequalities

1£llzg < CIFNE IV FlEs < C ULy

Here || f||zs denotes the L9-norm of f over the horizontal 2D space and | f{| .4 12, =

IN

[ f1lz2, || zs- By Lemma 2.1 and then Lemma 2.3,

—_~—

C |01V || 2]| V()2 2

C' |y, 05) V| 2|V (11)?| 2

C [[(Ba, 05) V| 2 | Vit || 2 [0 || oe
C'[|(82, 05) V| 2 1|05V | 2 |t | 2.

| Mo

IN

IA A IA

Therefore,

| M| < C ]|z [1[(82, 95) V][ 7.
To estimate My, we use (4.6) to split M, into three terms,

M, = —/Vm -V <ﬂ1a2+ﬂ2ﬂ1 +ﬂ/1vﬂz> dv := Moy + My + Mas.

These terms can be bounded similarly as M;. The upper bound for M, is

| Mz| < Clu]l 2 [||(82, 95) V][ 7.
By integrating by parts, applying Sobolev’s inequality and Lemma 2.3,

M3 = /(%,Vﬂl : v<a3U1) dx

< C|0sVauy[2 (Vs 2 |Juil|zoe + [[us]|p || Vs ]| 1)
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< Cl|0sVanl|rz (V|| gz lur |l 2 + (sl g |V | m)
< C|0sVur || 2 (|05 Vs || g2 | || 1
< C|ull g2 |05V 7,
where we have used the inequalities
[ flls < Cl ],
[usllm = Nusllze + Vsl r2 < [|0505us[r2 + (|05 Vs || 2.

M, can be estimated similarly as My, M5 as M; and Mg as M3. It remains to bound
My and Mg. Because V - u = 0,

3
My=— )" / Okl Ot O Ui L.

k,m=1

Again we intend to bound this nonlinear term without using the dissipation in the
x1-direction. We decompose the terms in the summation into several parts,

3
M7 = — / 81&3812“8163 dx — Z / akﬂiaakulalﬁii dx
k=2

3 3
-y > / Okl Ot O U

k=1 m=2

= M7y + M7y + Mzs.
By V-u =0 or dyu; = —0us — O3uz and integrating by parts,

M71 = /(81&3)2 (82u2 + 83U3) dz

= — /U2 8163 828163 dx — /u3(9163 838163 dx.
Therefore,
| M| < |lug|| 2o |[Orus]| 2 [|0201Us | 2 + [Jus||poe || Ortis|| 2 | 0301t L2
< Clull g2 ||(D2, 35) V] 7.
By Lemma 2.5 and then Lemma 2.3,
3 1 1 1 1
| Mao| < C  (|0kTis|72 |01 0is | 22 || 013 7 110201 3] 2

k=2

D=

1
X ||Okurll 72 ([|Okurl|L2 + [|030ku1]|L2)

3
1 1 1 1
< Cllunllme Y |10s0iis]| 2. (|01 0kTis |2, 1| 0301512, (| 0201 5] 2.
k=2
< Clull 2 |]|(32, 05) V] 7.

M3 can be bounded similarly as My, and
| Ms| < Clul| g2 (92, 03) V|7
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We now estimate the last term Mg. There is only dissipation in the x3-direction in
the f-equation, so Mg is estimated differently. Because V - u = 0,

Mg = —/vé- Vu - V0 da.
To pinpoint the main difficulty, we decompose My into three parts,

2 2 2
My=-)"Y" / Okl Ot 00 dx = > / Ol Dz D50 dax
k=1

k=1 m=1

2
- Z /63583Um am§d$ - /83563’&3 (%,gdx
m=1
= Mgy + Mgy + Mgz + Msy.

The terms Mgy, Mgs and Mgy all contain at least one 835 and they are relatively
easy to estimate. By Lemma 2.5 and then Lemma 2.3,

2

~ 1 ~ 1 1 1 ~ 1 ~ 1

| M| < C Y [1040]122 1050401122 (| Opus|Z. 1|020kus] |2 [1050]| 22 (101050 2.
k=1

< C'lull 2 |0sV0] 3.
Similarly,
| Mzs| < Cl|ullg2 |05V0]122, | Msa| < C |Jul| g2 [|05V][2.
The terms in Mg; do not contain the favorable derivative 835. We write
Oy, = Oy, + Okt
and Mpg; becomes
2 2 N N 2 2 N B
Mg ==Y > / Ol O Ol dr = > Y~ / Okt Oty O dx
k=1 m=1 k=1 m=1
= Mg11 + Mgio.
By Lemma 2.5 and then Lemma 2.3,
2 2
[Mgir| < C D 1060117 1050601 72 || 0ktim |72 10205t | 7
k=1 m=1

% (1001 22 110100 2
2 2 . . X )
<Y 1030401 22 1105040112 (| Ot | 22 1102087 | 22
k=1 m=1

X [|030, 0|2, 10100 22
< OV 2 10112 19:V0) 22 [0Vl 2
< C(|Jullgz + [10]]m2) (|8:Va|[22 + [[95VE]|22).
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Mgy has to be estimated differently. Since #,, is only a function of x; and s,

2 2
[Maio] <3 > 10l 1048 22 10m8]l 12

k=1 m=1

2 2
<D > 0l e 195048 12 18508112

k=1 m=1
< Clullms 105V6] 13-
It is this last term that needs the H3-norm of u. The other upper bounds only
involve ||ul| gz-norm. Putting together the bounds for M; through Mg, we obtain
SNV V832 + 20,V
+2v = Ci([lull a2 + [10]]72)) [1(92, 95) Vil 72
+ (20 = Co|[ull s + 116]]12)) 95 V|72 < 0.
When the initial data (ug, 0y) € H? is sufficiently small such that
Cillullze +100lm2) < v, Colllullgs +110]]m2) <,

we have

d - _ _ ~
aH(VU, V0|32 + 20|01 V|32 + v|[(Da, 3) V|32 + 1]|05VE||7. < 0.
Invoking the Poincaré inequalities in Lemma 2.3,

IVl 2 < C 105V 2, [[VO]|z2 < C 105V 2

leads to p
(VI V)72 + C min{w, n}[[(VE, VO)|[7. < 0. (4.8)
(4.7) and (4.8) then imply (1.9). This completes the proof of Theorem 1.2. O
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