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Abstract. This paper focuses on a system of three-dimensional (3D) Boussi-
nesq equations modeling anisotropic buoyancy-driven fluids. The goal here is to
solve the stability and large-time behavior problem on perturbations near the hy-
drostatic balance, a prominent equilibrium in fluid dynamics, atmospherics and
astrophysics. Due to the lack of the vertical kinematic dissipation and the horizon-
tal thermal diffusion, this stability problem is difficult. When the spatial domain
is Ω = R2×T with T = [−1/2, 1/2] being a 1D periodic box, this paper establishes
the desired stability for fluids with certain symmetries. The approach here is to
distinguish the vertical averages of the velocity and temperature from their cor-
responding oscillation parts. In addition, the oscillation parts are shown to decay
exponentially to zero in time.

1. Introduction

The hydrostatic balance or hydrostatic equilibrium refers to the equilibrium when
the fluid is static with all external forces balanced out. Our atmosphere is mainly
in hydrostatic equilibrium, between the upward-directed pressure gradient force and
the downward-directed force of gravity. Understanding the stability of perturbations
near the hydrostatic equilibrium may help gain insight into some weather phenom-
ena. This paper intends to rigorously establish the stability and large-time behavior
of perturbations near the hydrostatic equilibrium for a special system of the 3D
Boussinesq equations. The Boussinesq systems are the most frequently used models
for atmospheric and oceanographic flows (see [6, 8, 12,15,24]).

More precisely, the 3D Boussinesq system considered here is given by
∂tU + U · ∇U = −∇P + ν(∂11 + ∂22)U + Θ e3, x ∈ Ω, t > 0,

∇ · U = 0,

∂tΘ + U · ∇Θ = η∂33Θ,

(1.1)

where U denotes the fluid velocity, P the pressure, Θ the temperature and e3 =
(0, 0, 1). Here ν > 0 and η > 0 are parameters representing the kinematic viscosity
and the thermal diffusivity, respectively. For notational convenience, we have written
∂ii for ∂xixi with i = 1, 2, 3, and shall use ∆h = ∂11 + ∂22 and ∇h = (∂1, ∂2). Here
the spatial domain Ω is taken to be

Ω = R2 × T (1.2)
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with T = [−1
2
, 1

2
] being a 1D periodic box. Mathematically the hydrostatic equilib-

rium (Uhe, Phe,Θhe) is given by

Uhe = 0, Phe =
1

2
x2

3, Θhe = x3.

(Uhe, Phe,Θhe) is clearly a steady-state solution of (1.1). Any perturbation (u, p, θ)
near the hydrostatic equilibrium with

u = U − Uhe, p = P − Phe, θ = Θ−Θhe

obeys 
∂tu+ u · ∇u = −∇p+ ν∆hu+ θ e3, x ∈ Ω, t > 0,

∇ · u = 0,

∂tθ + u · ∇θ + u3 = η ∂33θ,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(1.3)

The aim of this paper is to rigorously establish the stability of solutions to (1.3) in
a suitable functional setting and give a precise account of their large-time behavior.

We explain the physical relevance of the spatial domain and the associated pe-
riodic boundary condition, and provide physical circumstances that the Boussinesq
system considered here may model. The Boussinesq systems have been studied
in various spatial domains with different type of boundary conditions. The whole
space and bounded domains with either the Dirichlet or the Navier-type boundary
condition are the most popular setups in the study of the Boussinesq systems. The
periodic boundary condition and various combinations of the periodic boundary
condition with other types of boundary conditions are also relevant in the stability
analysis of perturbations near the hydrostatic equilibrium.

The hydrostatic equilibrium solves the Boussinesq system (1.1), although it does
not satisfy the periodic boundary condition imposed on the perturbation. There
appears to be an inconsistency in the non-periodic temperature profile (linear in
x3) with periodic perturbations, but this setup actually connects with the real at-
mosphere [14]. Over a finite range of latitudes from, say, 30 degrees north to 60
degrees north, the temperature is approximately linear, and the perturbations may
look approximately sinusoidal. So it is a local approximation in a certain region,
away from the boundary (or north/south pole and equator) and a full/true solution
could possibly be built by matching with other solutions near the equator and poles.
There are many other examples of this type of setting, the equilibrium state being
linear while perturbations are sinusoidal. One significant example is the passive
tracer in a mean gradient (see [3]).

The relevance of the periodic boundary condition on perturbations near the hy-
drostatic equilibrium is also reflected in several research projects on stratified flows.
Embid and Majda [10] used the periodic boundary condition when they studied the
low Froude number limiting dynamics for stably stratified flow. In [19] Simon and
Nadiga of Los Alamos Laboratory investigated the instability of a periodic flow in
geostrophic and hydrostatic balance.
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We also briefly comment on the relation between the model considered here and
the model in the whole space. In the whole space case, the background temperature
profile mathematically extends from minus infinity to plus infinity. Of course, in a
real atmosphere, the range of values is actually finite. But, in order to allow analytic
solutions, it is convenient to assume the range is infinite. The Boussinesq system
governing the perturbations is equipped with zero boundary conditions at infinity.

The stability problem considered here is difficult. Due to the lack of thermal
diffusion in two directions, the temperature gradient can potentially grow in time
if the Lipschitz norm of the velocity field is not uniformly integrable in time. The
velocity equation doesn’t have vertical dissipation and the buoyancy forcing can
propel the velocity gradients to grow in time. In fact, when the spatial domain is
the whole space R3, the stability problem (1.3) remains an important open problem.

This paper focuses on the domain Ω in (1.2). The vertical periodic boundary con-
dition imposed here has some advantages over the zero Dirichlet boundary condition
or the no-penetration boundary condition. There are two main difficulties associated
with the latter two boundary conditions. The first difficulty is that boundary terms
would emerge when we estimate vertical derivatives of the solution. The second
is that the pressure term on the boundary relies on the vertical derivatives of the
velocity field on the boundary, which are unknown. These two difficulties prevent
us from establishing necessary upper bounds on the derivatives of the solution.

Another significant advanatge of the domain Ω is that it allows us to separate
a physical quantity into its vertical average and the corresponding oscillation part.
More precisely, for a sufficient smooth function f = f(x1, x2, x3) on Ω, we define the
vertical average by

f̄(x1, x2) =

∫
T
f(x1, x2, x3) dx3,

and set the oscillation part as

f̃ = f − f̄ .
It is clear that the horizontal average f̄ represents the zeroth vertical Fourier mode

while f̃ consists of all non-zero vertical frequencies.

The decomposition f = f̄ + f̃ is very special. First of all, this decomposition is
orthogonal in the Sobolev space Hk(Ω) for any k ≥ 0. As a special consequence,

the Hk-norms of f̄ and f̃ are bounded by the Hk-norm of f . Furthermore, this

decomposition commutes with derivatives, and f̄ and f̃ of a divergence-free vector
field f are also divergence-free. A crucial property to be frequently used in our

estimates is that f̃ satisfies a strong Poincare type inequality

‖f̃‖L2(Ω) ≤ C ‖∂3f̃‖L2(Ω).

Besides these special properties, this decomposition also allows us to distinguish
the different behaviors of the different parts of the solutions to (1.3). For example,

the decomposition θ = θ̄ + θ̃ helps distinguish the behavior of θ̄ and θ̃. It is not
difficult to see from (1.3) that the vertical dissipation actually vanishes for θ̄ due
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to the zeroth Fourier mode. In contrast, the vertical dissipation damps θ̃ and may

cause θ̃ to decay, even exponentially in time. This decomposition is employed in the
estimates of the nonlinear terms.

We assume the initial velocity u0 = (u01, u02, u03) and the initial temperature θ0

in (1.3) have the following symmetries:

u01, u02 are even in x3, and u03 and θ0 are odd in x3.

As demonstrated in Corollary 3.2, these symmetries are preserved in time and the
corresponding solution (u, θ) with u = (u1, u2, u3) obeys the same symmetries

u1, u2, p are even in x3, and u3 and θ are odd in x3.

As a special consequence of these symmetries,

ū3 =

∫
T
u3(x1, x2, x3, t) dx3 = 0, θ̄ =

∫
T
θ(x1, x2, x3, t) dx3 = 0

Therefore,

u3 = ũ3, θ = θ̃. (1.4)

The equations in (1.4) facilitate the estimates of several terms when we bound the
derivatives of θ.

With the basic ingredients at our disposal, we now state our main results.

Theorem 1.1. Consider (1.3) with ν > 0 and η > 0. Assume that (u0, θ0) ∈ H2(Ω)
satisfies ∇ · u0 = 0, and

u01, u02 are even in x3, and u03 and θ0 are odd in x3, (1.5)

where u01, u02 and u03 are the three components of u0. Then there exists ε = ε(ν, η) >
0 such that, if

‖u0‖H2 + ‖θ0‖H2 ≤ ε(ν, η),

then (1.3) has a unique global solution (u, θ) ∈ L∞(0,∞;H2) satisfying

‖u(t)‖2
H2 + ‖θ(t)‖2

H2 + ν

∫ t

0

‖∇hu‖2
H2 dτ + η

∫ t

0

‖∂3θ‖2
H2dτ ≤ C ε2, (1.6)

u1, u2, p are even in x3, and u3 and θ are odd in x3. (1.7)

Furthermore, if the initial datum is in a more regular Sobolev space, then the corre-
sponding solution is also more regular. More precisely, if (u0, θ0) ∈ H3 is sufficiently
small and has the symmetries in (1.5), then the solution (u, θ) remains small in H3,
and satisfies (1.6) with H2 replaced by H3 and (1.7).

We remark that, as explained in the proof of Theorem 1.1, ε(ν, η) is of the form
ε(ν, η) = c min{ν, η} for some pure small constant c independent of ν and η. The-
orem 1.1 rigorously assesses that any small initial perturbation satisfying the sym-
metries specified in (1.5) leads to a unique global solution of (1.3) that preserves the
symmetries and remains small in H2 for all time. This result appears to be the very
first stability result for a three-dimensional Boussinesq equations with anisotropic
velocity dissipation and with only one directional thermal diffusion. The stability
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and large-time behavior problems on perturbations near several physically impor-
tant steady states have recently attracted considerable interest due to their practical
applications and mathematical significance. Progress has been made on the stability
of two special steady states, the hydrostatic equilibrium and shear flows (see, e.g.,
( [5, 7, 9, 21, 25, 27, 28]). The work of Doering, Wu, Zhao and Zheng [9] investigated
the stability of the hydrostatic equilibrium to the 2D Boussinesq system with only
kinematic dissipation (without thermal diffusion) and rigorously proved the global
asymptotic stability of any perturbation near the hydrostatic equilibrium [9]. In
addition, extensive numerical simulations are performed in [9] to corroborate the
analytical results and predict some phenomena that are not proven. The work of
Tao, Wu, Zhao and Zheng [21] resolves several important issues left open in [9]. In
particular, [21] provides a precise description of the final buoyancy distribution in
the case of general initial conditions and the explicit decay rate of the velocity field
or the total mechanical energy. The paper of Castro, Córdoba and Lear successfully
established the stability and large time behavior on the 2D Boussinesq equations
with velocity damping instead of dissipation [5]. More recent work on the hydro-
static equilibrium can be found in [1, 11, 23, 25]. There are very significant recent
developments on the stability of shear flow to the Boussinesq equations with various
partial dissipation [2, 7, 20,27–29].

Efforts are also made here to understand the large-time behavior of the pertur-
bations. Mathematically this is a challenging problem when the velocity equation
in (1.3) lacks the vertical dissipation and the temperature equation lacks the dis-
sipation in two horizontal directions. Powerful classical tools such as the Fourier
splitting methods designed for the systems with full dissipation no longer apply
here [16–18]. Our approach here is to treat the vertical average of the solution (ū, θ̄)

differently from the oscillation part (ũ, θ̃). Unfortunately this process would break
down if the velocity equation does not involve the vertical dissipation. To success-
fully implement our strategy, we consider the following Boussinesq system with full
velocity dissipation,

∂tu+ u · ∇u = −∇p+ ν∆u+ θ e3, x ∈ Ω, t > 0,

∇ · u = 0,

∂tθ + u · ∇θ + u3 = η ∂33θ,

u(x, 0) = u0(x), θ(x, 0) = θ0(x).

(1.8)

The only difference between (1.3) and (1.8) is that (1.8) also involves ∂33u, which
plays a crucial role in the decay rates. Clearly, Theorem 1.1 carries over to the
system in (1.8). We are now ready to state our result on the large-time behavior of
solutions to (1.8).

Theorem 1.2. Assume that the initial datum (u0, θ0) ∈ H3(Ω) satisfies the small-
ness and the symmetry conditions stated in Theorem 1.1, namely

‖(u0, θ0)‖H3 ≤ ε(ν, η) for sufficiently small ε(ν, η) > 0

and

u01, u02 are even in x3, and u03 and θ0 are odd in x3.
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Let (u, b) be the corresponding solution of (1.8). Let (ũ, θ̃) be the oscillation part of

(u, θ). Then (ũ, θ̃) decays exponentially in time in H1, namely

‖(ũ, θ̃)(t)‖H1 ≤ ‖(u0, θ0)‖H1 e−ct, (1.9)

where c = min{ν, η}. As a consequence, the limiting system of (1.8) is the following
system of (ū1, ū2), 

∂tū1 + ∂1u2
1 + ∂2u1u2 = −∂1p̄+ ν∆hū1,

∂tū2 + ∂1u1u2 + ∂2u2
2 = −∂2p̄+ ν∆hū2,

∂1ū1 + ∂2ū2 = 0.

Theorem 1.2 states that the oscillation part of any perturbation governed by the
Boussinesq system in (1.8) decays exponentially in time to zero and the eventual
system is a 2D flow obeying the 2D Navier–Stokes equation. This is consistent with
the mathematics and physics of the system in (1.8) governing the buoyancy-driven
fluids. Mathematically, according to the governing equations on perturbations in
(1.8), the dissipation associated with the vertical average or the zeroth vertical
frequency vanishes while the dissipation for the non-zero vertical frequencies plays
the role of damping. The vertical dissipation plays a crucial role in damping those
non-zero vertical frequencies. We also remark that, as shown in the proof of Theorem
1.2, ε(ν, η) is of the form ε(ν, η) = c min{ν, η} for some pure small constant c
independent of ν and η.

We briefly outline the proofs of Theorems 1.1 and 1.2. Since the local (in time)
well-posedness on (1.3) in the Sobolev setting H2(Ω) or H3(Ω) can be shown via
standard approaches (see, e.g., [13]), the proof of Theorem 1.1 is reduced to estab-
lishing the global (in time) bounds for the solutions. The tool is the bootstrapping
argument. An abstract bootstrapping argument can be found in T. Tao’s book [22,
p.20]. To set it up, we define the following energy functional for the H2-solution,

E(t) = sup
0≤τ≤t

‖(u(τ), θ(τ))‖2
H2 + ν

∫ t

0

‖∇hu(τ)‖2
H2 dτ + η

∫ t

0

‖∂3θ(τ)‖2
H2dτ.

Our main efforts are devoted to proving the inequality

E(t) ≤ E(0) + C E(t)
3
2 , (1.10)

where C = C(ν, η) > 0 is a constant depending on ν and η. More explicit dependence
will be provided in the proof of Theorem 1.1. The bootstrapping argument then
implies that if

E(0) = ‖(u0, θ0)‖2
H2 ≤ ε2

for suitable ε = ε(ν, η) > 0, then E(t) remains uniformly bounded for all time, for
0 < t <∞,

E(t) ≤ Cε2 (1.11)

for some pure constant C > 0. In particular, (1.11) yields the desired global H2-
bound on the solution (u, θ). The proof of (1.10) makes use of the decomposition

u = ū+ ũ, θ = θ̄ + θ̃
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in order to distinguish different behaviors of ū and ũ, and of θ̄ and θ̃. We develop
various anisotropic inequalities to deal with the triple products resulting from the
nonlinear terms. In particular, the strong Poincaré inequality

‖f̃‖L2(Ω) ≤ C ‖∂3f̃‖L2(Ω)

and the anisotropic upper bound on the triple product∫
Ω

f g h̃ dx ≤ C ‖f‖
1
2

L2‖∂1f‖
1
2

L2 ‖g‖
1
2

L2 ‖h̃‖
1
2

L2 ‖∂3h̃‖
1
2

L2

are frequently used. More anisotropic inequalities and their proofs can be found in
Section 2. In addition, we also use special properties on the averages of functions
with symmetries such as f̄ = 0 if f is odd in x3. Details of the proof of Theorem 1.1
are provided in Section 2. The global upper bound on the solution in H3 is obtained
similarly.

To prove Theorem 1.2, we take the difference of (1.3) and its average to obtain

the system governing the oscillation (ũ, θ̃),

∂tũ1 + ∂1(u2
1 − u2

1) + ∂2(u1u2 − u1u2) + ∂3(ũ3u1) = −∂1p̃+ ν∆ũ1,

∂tũ2 + ∂1(u1u2 − u1u2) + ∂2(u2
2 − u2

2) + ∂3(ũ3u2) = −∂2p̃+ ν∆ũ2,

∂tũ3 + u · ∇ũ3 = −∂3p̃+ ν∆ũ3 + θ̃,

∂tθ̃ + u · ∇θ̃ = η∂33θ̃ − ũ3,

∇ · ũ = 0.

The estimate of the H1-norm of (ũ, θ̃) is separated into controlling the L2-norm of

(ũ, θ̃) and that of (∇ũ,∇θ̃). By invoking various anisotropic inequalities stated in
Section 2, we are able to show that

d

dt
‖(ũ, θ̃)‖2

H1 + (2 min{ν, η} − C‖(u, θ)‖H3) ‖(ũ, θ̃)‖2
H1 ≤ 0,

which leads to the desired exponential decay in Theorem 1.2.

The rest of this paper is divided into three sections. The second section develops

several properties associated with the decomposition f = f̄ + f̃ , the Poincaré and
various anisotropic inequalities. This section serves as preparation. Section 3 proves
Theorem 1.1, while Section 4 proves Theorem 1.2.

2. Decomposition and anisotropic inequalities

This section serves as preparation for the proofs of Theorems 1.1 and 1.2. First,
we provide several properties associated with the aforementioned decomposition.
In particular, a strong version of the Poincaré inequality is supplied. Second,
anisotropic inequalities for the whole space R3 and for the domain Ω = R2 × T
are presented and compared.



8 JIAHONG WU AND QIAN ZHANG

We start by recalling f̄ and f̃ . Let Ω = R2×T. Assume that, for every (x1, x2) ∈
R2, f(x1, x2, x3) is integrable in x3 on T. Then, f̄ = f̄(x1, x2) is defined by

f̄(x1, x2) =

∫
T
f(x1, x2, x3) dx3 (2.1)

and we decompose f as

f = f̄ + f̃ . (2.2)

f̃ will be called the oscillation part of f . f̄ also represents the zeroth vertical Fourier

mode while f̃ contains all other vertical frequencies. The decomposition in (2.2)
possesses many fine properties. First of all, (2.2) is an orthogonal decomposition in

Hk(Ω) for any integer k ≥ 0. Clearly, the L2-inner product (f̄ , f̃) satisfies

(f̄ , f̃) =

∫
Ω

f̄(x1, x2) f̃(x1, x2, x3) dx

=

∫
R2

f̄(x1, x2)

∫
T
f̃(x1, x2, x3) dx3 dx1dx2

= 0

due to the fact that the average of f̃ is zero. Similarly, for any differential operator
Dα := ∂α1

1 ∂α2
2 ∂α3

3 , the L2-inner product

(Dαf̄ , Dαf̃) = 0.

That is, f̄ and f̃ are orthogonal in any Sobolev space Hk(Ω) with k ≥ 0 being an
integer. In summary, the following lemma holds.

Lemma 2.1. Let k ≥ 0 be an integer. The decomposition f = f̄ + f̃ is orthogonal
in Hk(Ω),

(f̄ , f̃)Hk = 0, ‖f‖2
Hk = ‖f̄‖2

Hk + ‖f̃‖2
Hk .

As a special consequence,

‖f̄‖Hk ≤ ‖f‖Hk , ‖f̃‖Hk ≤ ‖f‖Hk .

It is a direct consequence of the definition in (2.2) that the average operator and
the oscillation operator commute with the derivatives.

Lemma 2.2. The average operator and the oscillation operator commute with the
derivatives, namely, for k = 1, 2, 3,

∂kf = ∂kf̄ , ∂̃kf = ∂kf̃ .

As a special consequence, if ∇ · u = 0, then

∇ · ū = 0, ∇ · ũ = 0.

One very important property about the oscillation part is that f̃ obeys a strong
version of the Poincaré type inequality.
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Lemma 2.3. Let f̄ and f̃ be defined as in (2.1) and (2.2). Let k ≥ 0 be an integer.

If ∂3f̃ ∈ Hk(Ω). Then f̃ ∈ Hk(Ω) and

‖f̃‖Hk(Ω) ≤ C ‖∂3f̃‖Hk(Ω),

where C > 0 is a constant depending on Ω and k only.

Proof of Lemma 2.3. By Lemma 2.2, it suffices to consider the case when k = 0.
Since any function in L2(Ω) can be approximated by smooth functions, we can
assume f is smooth without loss of generality. Since, for each (x1, x2) ∈ R2, the

average of f̃ is zero, there exists ρ = ρ(x1, x2) such that

f̃(x1, x2, ρ) = 0.

Then

f̃(x1, x2, x3) = f̃(x1, x2, ρ) +

∫ x3

ρ

∂zf̃(x1, x2, z) dz

=

∫ x3

ρ

∂zf̃(x1, x2, z) dz.

By Hölder’s inequality,∣∣∣f̃(x1, x2, x3)
∣∣∣ ≤ [∫

T
(∂zf̃(x1, x2, z))2 dz

] 1
2

.

Squaring each side and integrating over Ω yields

‖f̃‖L2(Ω) ≤ C ‖∂3f̃‖L2(Ω).

This completes the proof of Lemma 2.3. �

For a one-dimensional function f ∈ H1(R), we have the elementary inequality

‖f‖L∞(R) ≤
√

2 ‖f‖
1
2

L2(R) ‖Df‖
1
2

L2(R), (2.3)

where Df denotes the derivative of f . When the spatial domain is T instead of R,
(2.3) needs to be modified. More precisely, for any f ∈ H1(T), we have the following
lemma.

Lemma 2.4. Let f ∈ H1(T) and let f̃ be its oscillation part. Then

‖f‖L∞(T) ≤
√

2 ‖f‖
1
2

L2(T)

(
‖f‖L2(T) + ‖Df‖L2(T)

) 1
2 , (2.4)

‖f̃‖L∞(T) ≤
√

2 ‖f̃‖
1
2

L2(T) ‖Df̃‖
1
2

L2(T). (2.5)

Proof of Lemma 2.4. For any x3 ∈ T,

f 2(x3) = f 2(ρ) +

∫ x3

ρ

D(f 2(z)) dz. (2.6)

Integrating in ρ over T yields

f 2(x3) ≤
∫
T
f 2(ρ) dρ+ 2

[∫
T
|f(z)|2 dz

] 1
2
[∫

T
|Df(z)|2 dz

] 1
2

.
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Integrating over T and then applying Hölder’s inequality for the last term on the

right yields (2.4). To prove (2.5), we replace f by f̃ in (2.6) and choose ρ such that
f(ρ) = 0. Then

(f̃)2(x3) =

∫ x3

ρ

D((f̃)2(z)) dz.

Integrating over T and applying Hölder’s inequality yields (2.5). �

Several anisotropic upper bounds on the integrals of triple products have been
extremely useful in dealing with partial differential equations with anisotropic dis-
sipation. The following two inequalities for the spatial domains R2 and R3 are two
outstanding examples of such upper bounds,∣∣∣∣∫

R2

f g h dx

∣∣∣∣ ≤ C ‖f‖L2(R2) ‖g‖
1
2

L2(R2) ‖∂1g‖
1
2

L2(R2) ‖h‖
1
2

L2(R2) ‖∂2h‖
1
2

L2(R2),∣∣∣∣∫
R3

f g h dx

∣∣∣∣ ≤ C ‖f‖
1
2

L2(R3) ‖∂1f‖
1
2

L2(R3)‖g‖
1
2

L2(R3) ‖∂2g‖
1
2

L2(R3)

×‖h‖
1
2

L2(R3) ‖∂3h‖
1
2

L2(R3).

These inequalities can be found in [4] and [26]. When the spatial domain is Ω =
R2 × T, these inequalities need to be modified suitably.

Lemma 2.5. Let Ω = R2 × T. Assume that f, ∂1f, g ∂2g, h, ∂3h ∈ L2(Ω). Then,∣∣∣∣∫
Ω

f g h dx

∣∣∣∣ ≤ C ‖f‖
1
2

L2 ‖∂1f‖
1
2

L2 ‖g‖
1
2

L2 ‖∂2g‖
1
2

L2 ‖h‖
1
2

L2 (‖h‖L2 + ‖∂3h‖L2)
1
2 .

When h is replaced by its oscillation part h̃, then the lower-order term ‖h‖L2 in the
last part of the inequality above can be dropped, namely∣∣∣∣∫

Ω

f g h̃ dx

∣∣∣∣ ≤ C ‖f‖
1
2

L2 ‖∂1f‖
1
2

L2 ‖g‖
1
2

L2 ‖∂2g‖
1
2

L2 ‖h̃‖
1
2

L2 ‖∂3h̃‖
1
2

L2 .

This lemma is a direct consequence of Lemma 2.4 and Minkowski’s inequality.

3. Proof of Theorem 1.1

This section proves Theorem 1.1. Since the local (in time) well-posedness of (1.3)
can be established via a standard approach (see [13]), our attention is focused on
the global bound of (u, θ). We need to prepare two key ingredients. The first is the
uniqueness of two H2-solutions to (1.3). As a special consequence, the symmetries
of the initial data in (1.5) are preserved for all time, and the corresponding solution
possesses the same symmetries. The second main ingredient is the global a priori
estimates stated in Propositions 3.3 and 3.4 below. Once these two ingredients are
at our disposal, the proof of Theorem 1.1 is then completed via a bootstrapping
argument.

We first establish the uniqueness of H2-solutions to (1.3).
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Proposition 3.1. Assume that (u(1), θ(1)) and (u(2), θ(2)) are two solutions of (1.3)
in the regularity class

(u(1), θ(1)), (u(2), θ(2)) ∈ L∞(0, T ;H2).

Then, for any 0 < t ≤ T ,

(u(1), θ(1)) = (u(2), θ(2)).

The proof of Proposition 3.1 is not difficult, but the uniqueness is important and
would guarantee the preservation of the symmetries of the initial data.

Corollary 3.2. Assume (u0, θ0) ∈ H2(Ω) satisfies ∇·u0 = 0 and the symmetries in
(1.5). Let T > 0. Let (u, θ) ∈ L∞(0, T ;H2) be the corresponding solution of (1.3).
Then, for any t ≤ T , (u(t), θ(t)) obeys the same symmetries as in (1.5).

It is easy to check that Corollary 3.2 follows from Proposition 3.1. In fact, if
(u, p, θ) = (u1, u2, u3, p, θ) is a solution (1.3), then (U, P,Θ) with

U1 = u1(x1, x2,−x3, t), U2 = u2(x1, x2,−x3, t), U3 = −u3(x1, x2,−x3, t),

P = p(x1, x2,−x3, t), Θ = −θ(x1, x2,−x3, t)

also satisfies the same Boussinesq equations with the initial datum (U0,Θ0) given
by

U01 = u01(x1, x2,−x3), U02 = u02(x1, x2,−x3), U03 = −u03(x1, x2,−x3),

Θ0 = −θ0(x1, x2,−x3).

Due to the symmetries of the initial datum, we have

(U0,Θ0) = (u0, θ0).

By the uniqueness stated in Proposition 3.1,

(U, P,Θ) = (u, p, θ)

or

u1(x1, x2, x3, t) = u1(x1, x2,−x3, t),

u2(x1, x2, x3, t) = u2(x1, x2,−x3, t),

u3(x1, x2, x3, t) = −u3(x1, x2,−x3, t),

p(x1, x2, x3, t) = p(x1, x2,−x3, t),

θ(x1, x2, x3, t) = −θ(x1, x2,−x3, t).

Therefore, (u, p, θ) has the desired symmetries.

We now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. The difference (δu, δθ) with

δu := u(1) − u(2) and δθ = θ(1) − θ(2)
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satisfies 
∂tδu+ u(1) · ∇δu+ δu · ∇u(2) = ν∆hδu−∇δp+ δθ e3,

∇ · δu = 0,

∂tδθ + u(1) · ∇δθ + δu · ∇θ(2) + (δu)3 = η∂33δθ,

δu(x, 0) = 0, δθ(x, 0) = 0,

(3.1)

where δp = p(1) − p(2) represents the pressure difference. Testing (3.1) with (δu, δθ)
yields

1

2

d

dt

(
‖δu‖2

L2 + ‖δθ‖2
L2

)
+ ν‖∇hδu‖2

L2 + η‖∂3δθ‖2
L2 = I1 + I2, (3.2)

where we have used
∫

(δθ e3) · δu + (δu)3δθ dx = 0, and

I1 = −
∫
δu · ∇u(2) · δu dx, I2 = −

∫
δu · ∇θ(2) δθ dx.

By Lemma 2.5,

|I1| ≤ C ‖∇u(2)‖
1
2

L2

(
‖∇u(2)‖L2 + ‖∂3∇u(2)‖L2

) 1
2

×‖δu‖
1
2

L2 ‖∂1δu‖
1
2

L2 ‖δu‖
1
2

L2 ‖∂2δu‖
1
2

L2

≤ C ‖u(2)‖H2 ‖δu‖L2 ‖∇hδu‖L2

≤ 1

4
ν‖∇hδu‖2

L2 + C ‖u(2)‖2
H2 ‖δu‖2

L2 .

Similarly,

|I2| ≤ ‖∇θ(2)‖
1
2

L2 ‖∂1∇θ(2)‖
1
2

L2 ‖δu‖
1
2

L2 ‖∂2δu‖
1
2

L2

×‖δθ‖
1
2

L2 (‖δθ‖L2 + ‖∂3δθ‖L2)
1
2

≤ C ‖∇θ(2)‖
1
2

L2 ‖∂1∇θ(2)‖
1
2

L2

(
‖δu‖

1
2

L2 ‖δθ‖L2 ‖∂2δu‖
1
2

L2

+‖δu‖
1
2

L2 ‖δθ‖
1
2

L2 ‖∂2δu‖
1
2

L2‖∂3δθ‖
1
2

L2

)
≤ 1

4
ν‖∂2δu‖2

L2 +
1

2
η‖∂3δu‖2

L2

+C (1 + ‖θ(2)‖2
H2) (‖δu‖2

L2 + ‖δθ‖2
L2)

Inserting the upper bounds for I1 and I2 in (3.2) yields

d

dt

(
‖δu‖2

L2 + ‖δθ‖2
L2

)
+ ν‖∇hδu‖2

L2 + η‖∂3δθ‖2
L2

≤ C (1 + ‖u(2)‖2
H2 + ‖θ(2)‖2

H2) (‖δu‖2
L2 + ‖δθ‖2

L2).

Gronwall’s inequality implies

‖δu(t)‖2
L2 + ‖δθ(t)‖2

L2 ≤ (‖δu(0)‖2
L2 + ‖δθ(0)‖2

L2) e
∫ t
0 M(τ) dτ ,

where

M(t) = C (1 + ‖u(2)‖2
H2 + ‖θ(2)‖2

L2).
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For (u(2), θ(2)) ∈ L∞(0, T ;H2), the time integral of M(t) with 0 ≤ t ≤ T is bounded,∫ t

0

M(τ) dτ <∞

and therefore, δu(t) = δθ(t) = 0. This completes the proof of Proposition 3.1. �

Next we state and prove our main propositions.

Proposition 3.3. Assume the initial datum (u0, θ0) satisfies the regularity and sym-
metry conditions in Theorem 1.1. Let T > 0. Let (u, θ) be the corresponding solution
of (1.3) on [0, T ]. Define the energy functional E(t) by

E(t) = sup
0≤τ≤t

‖(u, θ)(τ)‖2
H2 + ν

∫ t

0

‖∇hu‖2
H2 dτ + η

∫ t

0

‖∂3θ‖2
H2dτ.

Then, for a constant C > 0 and for 0 ≤ t ≤ T ,

E(t) ≤ E(0) + C E(t)
3
2 . (3.3)

Proof of Proposition 3.3. According to Corollary 3.2, (u, θ) obeys the following sym-
metries 

u1(x1, x2, x3, t) = u1(x1, x2,−x3, t),

u2(x1, x2, x3, t) = u2(x1, x2,−x3, t),

u3(x1, x2, x3, t) = −u3(x1, x2,−x3, t),

θ(x1, x2, x3, t) = −θ(x1, x2,−x3, t).

(3.4)

As in (2.1), we define ū and θ̄ to be the horizontal averages of u and θ, respectively,

and ũ = u− ū and θ̃ = θ − θ̄. As a special consequence of the symmetries in (3.4),

ū3 =

∫
T
u3(x1, x2, x3, t) dx3 = 0, θ̄ =

∫
T
θ(x1, x2, x3, t) dx3 = 0

and thus
u3 = ũ3, θ = θ̃.

We now prove (3.3). Due to the equivalence of the norms

‖(u, θ)‖2
H2 ∼ ‖(u, θ)‖2

L2 +
3∑
i=1

‖(∂2
i u, ∂

2
i θ)‖2

L2 ,

it suffices to estimate ‖(u, θ)‖L2 and
∑2

i=1 ‖(∂2
i u, ∂

2
i θ)‖L2 . First of all, we have the

global L2-bound. Dotting the equations in (1.3) by (u, θ) and integrating by parts,
we find

‖(u, θ)‖2
L2 + 2ν

∫ t

0

‖∇hu‖2
L2 dτ + 2η

∫ t

0

‖∂3θ‖2
L2dτ ≤ ‖(u0, θ0)‖2

L2 . (3.5)

Applying the differential operator ∂2
i to the equations in (1.3), testing the resulting

equations by (∂2
i u, ∂

2
i θ), and integrating by parts, we have

d

dt

3∑
i=1

(
‖∂2

i u‖2
L2 + ‖∂2

i θ‖2
L2

)
+ 2ν

3∑
i=1

‖∇h∂
2
i u‖2

L2 + 2η
3∑
i=1

‖∂3∂
2
i θ‖2

L2
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= J1 + J2, (3.6)

where we have used the fact that∫
(∂2
i θe3 · ∂2

i u− ∂2
i u3∂

2
i θ) dx = 0

and

J1 = −
3∑
i=1

∫
∂2
i (u · ∇u) · ∂2

i u dx,

J2 = −
3∑
i=1

∫
∂2
i (u · ∇θ) · ∂2

i θ dx.

Due to the anisotropic dissipation in (1.3), we need to decompose the terms into
component terms to distinguish the derivatives in the horizontal direction from those
in the vertical direction. In addition, due to ∇ · u = 0,∫

(u · ∇∂2
i u) · ∂2

i u dx = 0, i = 1, 2, 3.

Therefore, J1 can be written as

J1 =−
2∑
i=1

∫
∂2
i (u · ∇u) · ∂2

i u dx−
∫
∂2

3(u · ∇u) · ∂2
3u dx

=−
2∑
i=1

∫
∂2
i (u · ∇u) · ∂2

i u dx−
2∑

k=1

∫
∂2

3(uk · ∂ku) · ∂2
3u dx

−
∫
∂2

3(u3 · ∂3u) · ∂2
3u dx

=−
2∑
i=1

2∑
m=1

Cm2
∫
∂mi u · ∂2−m

i ∇u · ∂2
i u dx

−
2∑

k=1

2∑
m=1

Cm2
∫
∂m3 uk · ∂2−m

3 ∂ku · ∂2
3u dx

−
2∑

m=1

Cm2
∫
∂m3 u3 · ∂2−m

3 ∂3u · ∂2
3u dx

:=J11 + J12 + J13,

where Cm2 denotes the combinatorial number,

Cm2 =
2!

m!(2−m)!
.

Since the derivatives in J11 are all in the horizontal direction, we can directly apply
Lemma 2.5 to obtain

|J11| ≤ C

2∑
i=1

2∑
m=1

‖∂mi u‖
1
2

L2

(
‖∂mi u‖L2 + ‖∂3∂

m
i u‖L2

) 1
2
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× ‖∂2−m
1 ∇u‖

1
2

L2‖∂1∂
2−m
1 ∇u‖

1
2

L2 ‖∂2
i u‖

1
2

L2 ‖∂2∂
2
i u‖

1
2

L2

≤ C ‖u‖H2 ‖∇hu‖2
H2 .

To deal with J12, we realize that the middle term in the integral ∂2−m
3 ∂ku with

k = 1 or 2 has at least one horizontal derivative. Thus, we can still use Lemma 2.5
to generate enough time integrability parts,

|J12| ≤ C

2∑
k=1

2∑
m=1

‖∂m3 uk‖
1
2

L2 ‖∂1∂
m
3 uk‖

1
2

L2 ‖∂2−m
3 ∂ku‖

1
2

L2

×
(
‖∂2−m

3 ∂ku‖L2 + ‖∂3∂
2−m
3 ∂ku‖L2

) 1
2 ‖∂2

3u‖
1
2

L2 ‖∂2∂
2
3u‖

1
2

L2

≤ C ‖u‖H2 ‖∇hu‖2
H2 .

To deal with J13, we use the divergence-free condition ∂3u3 = −∇h · uh and Lemma
2.5 to obtain

|J13| ≤ C
2∑

m=1

2∑
k=1

Cm2 ‖∂m−1
3 ∇h · uh‖

1
2

L2

(
‖∂m−1

3 ∇h · uh‖L2 + ‖∂3∂
m−1
3 ∇h · uh‖L2

) 1
2

× ‖∂3−m
3 u‖

1
2

L2 ‖∂1∂
3−m
3 u‖

1
2

L2 ‖∂2
3u‖

1
2

L2 ‖∂2∂
2
3u‖

1
2

L2

≤ C ‖u‖H2 ‖∇hu‖2
H2 .

In summary, we have shown that

|J1| ≤ C ‖u‖H2 ‖∇hu‖2
H2 . (3.7)

We now turn to J2. First, we distinguish the horizontal derivatives from the vertical
derivatives to decompose J2 as

J2 = −
2∑
i=1

∫
∂2
i (u · ∇θ) · ∂2

i θ dx−
∫
∂2

3(u · ∇θ) · ∂2
3θ dx

= −
2∑
i=1

2∑
k=1

∫
∂2
i (uk · ∂kθ) · ∂2

i θ dx−
2∑
i=1

∫
∂2
i (u3 · ∂3θ) · ∂2

i θ dx

−
2∑

k=1

∫
∂2

3(uk · ∂kθ) · ∂2
3θ dx−

∫
∂2

3(u3 · ∂3θ) · ∂2
3θ dx

= −
2∑
i=1

2∑
k=1

2∑
m=1

Cm2
∫
∂mi uk · ∂2−m

i ∂kθ · ∂2
i θ dx

−
2∑
i=1

2∑
m=1

Cm2
∫
∂mi u3 · ∂2−m

i ∂3θ · ∂2
i θ dx

−
2∑

k=1

2∑
m=1

Cm2
∫
∂m3 uk · ∂2−m

3 ∂kθ · ∂2
3θ dx
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−
2∑

m=1

Cm2
∫
∂m3 u3 · ∂2−m

3 ∂3θ · ∂2
3θ dx

:= J21 + J22 + J23 + J24,

where we have used the fact that, due to ∇ · u = 0,∫
(u · ∇∂2

i θ) ∂
2
i θ dx = 0, i = 1, 2, 3.

Since the temperature equation involves only vertical dissipation, we need to make
use of the decomposition

θ = θ̄ + θ̃ = θ̃

where we have used θ̄ = 0 due to the symmetry in θ. Therefore,

J21 = −
2∑
i=1

2∑
k=1

2∑
m=1

Cm2
∫
∂mi uk · ∂2−m

i ∂kθ̃ · ∂2
i θ̃ dx.

It then follows from the second inequality in Lemma 2.5 that

|J21| ≤
2∑
i=1

2∑
k=1

2∑
m=1

Cm2 ‖∂mi uk‖
1
2

L2 ‖∂1∂
m
i uk‖

1
2

L2 ‖∂2−m
i ∂kθ̃‖

1
2

L2 ‖∂2∂
2−m
i ∂kθ̃‖

1
2

L2

× ‖∂2
i θ̃‖

1
2

L2 ‖∂3∂
2
i θ̃‖

1
2

L2

By the strong Poincaré type inequality in Lemma 2.3,

‖∂2
i θ̃‖L2 ≤ C ‖∂3∂

2
i θ̃‖L2 .

Therefore, by the basic facts in Lemma 2.1,

|J21| ≤ C ‖∇hu‖H2 ‖θ‖H2 ‖∂3θ‖H2 .

The estimate of J22 is similar,

|J22| ≤ C
2∑
i=1

2∑
m=1

Cm2 ‖∂mi u3‖
1
2

L2 ‖∂1∂
m
i u3‖

1
2

L2 ‖∂2−m
i ∂3θ̃‖

1
2

L2 ‖∂2∂
2−m
i ∂3θ̃‖

1
2

L2

× ‖∂2
i θ̃‖

1
2

L2 ‖∂3∂
2
i θ̃‖

1
2

L2

≤ C ‖∇hu‖H2 ‖θ‖H2 ‖∂3θ‖H2 .

To bound J23, we first change θ to θ̃,

J23 = −
2∑

k=1

2∑
m=1

Cm2
∫
∂m3 uk · ∂2−m

3 ∂kθ̃ · ∂2
3 θ̃ dx.

By Lemma 2.5,

|J23| ≤ C

2∑
k=1

2∑
m=1

Cm2 ‖∂m3 uk‖
1
2

L2 ‖∂1∂
m
3 uk‖

1
2

L2 ‖∂2−m
3 ∂kθ̃‖

1
2

L2 ‖∂3∂
2−m
3 ∂kθ̃‖

1
2

L2

× ‖∂2
3 θ̃‖

1
2

L2 ‖∂2∂
2
3 θ̃‖

1
2

L2

≤ C ‖u‖
1
2

H2 ‖∇hu‖
1
2

H2 ‖θ‖
1
2

H2 ‖∂3θ‖
3
2

H2
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≤ C (‖u‖H2 + ‖θ‖H2)
(
‖∇hu‖2

H2 + ‖∂3θ‖2
H2

)
.

The estimate of J24 is similar to that for J23 and

|J24| ≤ C (‖u‖H2 + ‖θ‖H2)
(
‖∇hu‖2

H2 + ‖∂3θ‖2
H2

)
.

Collecting the bounds for J2, we obtain

|J2| ≤ C (‖u‖H2 + ‖θ‖H2)
(
‖∇hu‖2

H2 + ‖∂3θ‖2
H2

)
. (3.8)

Inserting (3.10) and (3.11) in (3.6), integrating in time over [0, t] and adding to
(3.5), we deduce

E(t) ≤ E(0) + C

∫ t

0

(
‖u‖H2 ‖∇hu‖2

H2

+ (‖u‖H2 + ‖θ‖H2)
(
‖∇hu‖2

H2 + ‖∂3θ‖2
H2

) )
dτ

≤ E(0) + C E(t)
3
2 ,

which is the desired inequality (3.3). Here C = C(ν, η) > 0 is a constant depending
on ν and η. According to the definition of E(t), C = c/min{ν, η} for a pure constant
c > 0 independent of ν and η. This completes the proof of Proposition 3.3. �

Our last proposition concerns itself with an a priori bound for the H3 solutions
of (1.3).

Proposition 3.4. Assume the initial datum (u0, θ0) ∈ H3 satisfies the symmetry
conditions (1.5) in Theorem 1.1. Let T > 0. Let (u, θ) be the corresponding solution
of (1.3) on [0, T ]. Define the energy functional E(t) by

E(t) = sup
0≤τ≤t

‖(u, θ)(τ)‖2
H3 + ν

∫ t

0

‖∇hu‖2
H3 dτ + η

∫ t

0

‖∂3θ‖2
H3dτ.

Then, for a constant C > 0 and for 0 ≤ t ≤ T ,

E(t) ≤ E(0) + C E(t)
3
2 . (3.9)

Proof of Proposition 3.4. Due to the norm equivalence

‖f‖H3 ∼ ‖f‖L2 +
3∑
i=1

‖∂3
i f‖L2

and the global L2-bound in (3.5), it suffices to estimate

3∑
i=1

(
‖∂3

i u‖2
L2 + ‖∂3

i θ‖2
L2

)
.

By the equations of (u, θ) in (1.3),

d

dt

3∑
i=1

(
‖∂3

i u‖2
L2 + ‖∂3

i θ‖2
L2

)
+ 2ν

3∑
i=1

‖∇h∂
3
i u‖2

L2 + 2η
3∑
i=1

‖∂3∂
3
i θ‖2

L2

= K1 +K2,
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where

K1 = −
3∑
i=1

∫
∂3
i (u · ∇u) · ∂3

i u dx,

K2 = −
3∑
i=1

∫
∂3
i (u · ∇θ) · ∂3

i θ dx.

To cope with the anisotropic dissipation, we decompose K1 into three terms, as we
did in the previous proof. The situation here is more complex due to the higher-order
derivatives.

K1 = −
2∑
i=1

3∑
m=1

Cm3
∫
∂mi u · ∂3−m

i ∇u · ∂3
i u dx

−
2∑

k=1

3∑
m=1

Cm3
∫
∂m3 uk · ∂3−m

3 ∂ku · ∂3
3u dx

−
3∑

m=1

Cm3
∫
∂m3 u3 · ∂3−m

3 ∂3u · ∂3
3u dx

: = K11 +K12 +K13.

By Lemma 2.5,

|K1| ≤ C
2∑
i=1

3∑
m=1

‖∂mi u‖
1
2

L2

(
‖∂mi u‖L2 + ‖∂3∂

m
i u‖L2

) 1
2

× ‖∂2−m
1 ∇u‖

1
2

L2‖∂1∂
2−m
1 ∇u‖

1
2

L2 ‖∂3
i u‖

1
2

L2 ‖∂2∂
3
i u‖

1
2

L2

≤ C ‖u‖H3 ‖∇hu‖2
H3 .

|K12| ≤ C

2∑
k=1

3∑
m=1

‖∂m3 uk‖
1
2

L2 ‖∂1∂
m
3 uk‖

1
2

L2 ‖∂3−m
3 ∂ku‖

1
2

L2

×
(
‖∂3−m

3 ∂ku‖L2 + ‖∂3∂
3−m
3 ∂ku‖L2

) 1
2 ‖∂3

3u‖
1
2

L2 ‖∂2∂
3
3u‖

1
2

L2

≤ C ‖u‖H3 ‖∇hu‖2
H3 .

By the divergence-free condition ∂3u3 = −∇h · uh and Lemma 2.5,

|K13| ≤ C

3∑
m=1

2∑
k=1

‖∂m−1
3 ∇h · uh‖

1
2

L2

(
‖∂m−1

3 ∇h · uh‖L2 + ‖∂3∂
m−1
3 ∇h · uh‖L2

) 1
2

× ‖∂3−m
3 u‖

1
2

L2 ‖∂1∂
3−m
3 u‖

1
2

L2 ‖∂3
3u‖

1
2

L2 ‖∂2∂
3
3u‖

1
2

L2

≤ C ‖u‖H3 ‖∇hu‖2
H3 .

In summary, we have shown that

|K1| ≤ C ‖u‖H3 ‖∇hu‖2
H3 . (3.10)
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To deal with K2, we divide K2 into four terms,

K2 = −
2∑
i=1

2∑
k=1

3∑
m=1

Cm3
∫
∂mi uk · ∂3−m

i ∂kθ · ∂3
i θ dx

−
2∑
i=1

3∑
m=1

Cm3
∫
∂mi u3 · ∂3−m

i ∂3θ · ∂3
i θ dx

−
2∑

k=1

3∑
m=1

Cm3
∫
∂m3 uk · ∂3−m

3 ∂kθ · ∂3
3θ dx

−
3∑

m=1

Cm3
∫
∂m3 u3 · ∂3−m

3 ∂3θ · ∂3
3θ dx

:= K21 +K22 +K23 +K24,

To bound these terms, we invoke the fact that

θ̄ = 0, θ = θ̃

and apply Lemma 2.5 to obtain

|K21| ≤ C
2∑
i=1

2∑
k=1

3∑
m=1

Cm3 ‖∂mi uk‖
1
2

L2 ‖∂1∂
m
i uk‖

1
2

L2 ‖∂3−m
i ∂kθ̃‖

1
2

L2 ‖∂2∂
3−m
i ∂kθ̃‖

1
2

L2

× ‖∂3
i θ̃‖

1
2

L2 ‖∂3∂
3
i θ̃‖

1
2

L2

≤ C
2∑
i=1

2∑
k=1

3∑
m=1

Cm3 ‖∂mi uk‖
1
2

L2 ‖∂1∂
m
i uk‖

1
2

L2 ‖∂3−m
i ∂kθ̃‖

1
2

L2 ‖∂2∂
3−m
i ∂kθ̃‖

1
2

L2

× ‖∂3∂
3
i θ̃‖

1
2

L2 ‖∂3∂
3
i θ̃‖

1
2

L2

≤ C ‖∇hu‖H3 ‖θ‖H3 ‖∂3θ‖H3 ,

|K22| ≤ C
2∑
i=1

3∑
m=1

Cm3 ‖∂mi u3‖
1
2

L2 ‖∂1∂
m
i u3‖

1
2

L2 ‖∂3−m
i ∂3θ̃‖

1
2

L2 ‖∂2∂
3−m
i ∂3θ̃‖

1
2

L2

× ‖∂2
i θ̃‖

1
2

L2 ‖∂3∂
2
i θ̃‖

1
2

L2

≤ C ‖∇hu‖H3 ‖θ‖H3 ‖∂3θ‖H3 ,

|K23| ≤ C
2∑

k=1

3∑
m=1

Cm3 ‖∂m3 uk‖
1
2

L2 ‖∂1∂
m
3 uk‖

1
2

L2 ‖∂3−m
3 ∂kθ̃‖

1
2

L2 ‖∂3∂
3−m
3 ∂kθ̃‖

1
2

L2

× ‖∂3
3 θ̃‖

1
2

L2 ‖∂2∂
2
3 θ̃‖

1
2

L2

≤ C ‖u‖
1
2

H2 ‖∇hu‖
1
2

H2 ‖θ‖
1
2

H2 ‖∂3θ‖
3
2

H2

≤ C (‖u‖H3 + ‖θ‖H3)
(
‖∇hu‖2

H3 + ‖∂3θ‖2
H3

)
and

|K24| ≤ C (‖u‖H3 + ‖θ‖H3)
(
‖∇hu‖2

H3 + ‖∂3θ‖2
H3

)
.
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Collecting the bounds for J2, we obtain

|K2| ≤ C (‖u‖H3 + ‖θ‖H3)
(
‖∇hu‖2

H3 + ‖∂3θ‖2
H3

)
. (3.11)

Collecting the upper bounds for K1 and K2 and integrating in time lead to the
desired inequality (3.9). This completes the proof of Proposition 3.4. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. As we mentioned at the beginning of this section, it suffices
to establish a global a priori bound on the norm of (u, θ) to prove Theorem 1.1.
This is achieved by applying the bootstrapping argument on (3.3) in Proposition
3.3. An abstract bootstrapping argument can be found in T. Tao’s book [22, p.20].

We rely on the inequality (3.3), namely

E(t) ≤ E(0) + C0 E(t)
3
2 , (3.12)

where C0 = c/min{ν, η} > 0 for a pure constant c > 0 independent of ν > 0 and
η > 0. We take ‖(u0, θ0)‖H2 to be sufficiently small, say

E(0) = ‖(u0, θ0)‖2
H2 ≤

1

16C2
0

:= ε2.

The bootstrapping argument starts with the ansatz that

E(t) ≤ 1

4C2
0

. (3.13)

It then follows from (3.12) that

E(t) ≤ E(0) + C0 E(t)
1
2 E(t) ≤ E(0) + C0

1

2C0

E(t) = E(0) +
1

2
E(t)

or

E(t) ≤ 2E(0) ≤ 1

8C2
0

,

which is half of the upper bound in (3.13). The bootstrapping argument then implies
that, for any t ≥ 0,

E(t) ≤ 1

8C2
0

.

In particular,

‖(u(t), θ(t))‖H2 ≤ 1

2
√

2C0

=
√

2 ε.

The global existence and stability of H3 solutions are obtained similarly by using the
inequality (3.9) in Proposition 3.4. This completes the proof of Theorem 1.1. �
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4. Proof of Theorem 1.2

This section is devoted to the proof of the decay estimates in Theorem 1.2.

Proof of Theorem 1.2. Assume that the initial datum (u0, θ0) ∈ H3 satisfies the
regularity, symmetry and smallness assumptions stated in Theorem 1.1. Let (u, θ)
be the corresponding solution of (1.8), namely

∂tu+ u · ∇u = −∇p+ ν∆u+ θ e3, x ∈ Ω, t > 0,

∇ · u = 0,

∂tθ + u · ∇θ + u3 = η ∂33θ.

(4.1)

As established by Theorem 1.1, (u, θ) remains small in H3 for all time and obeys the
same symmetries. As a special consequence of the symmetries, the vertical averages
of u3 and θ are zero, namely

ū3 = θ̄ = 0. (4.2)

By taking the vertical average of (4.1), and using (4.2) and the basic properties in
Lemma 2.1, we obtain the equations of ū,

∂tū1 + ∂1u2
1 + ∂2u1u2 = −∂1p̄+ ν∆hū1,

∂tū2 + ∂1u1u2 + ∂2u2
2 = −∂2p̄+ ν∆hū2,

∂1ū1 + ∂2ū2 = 0.

(4.3)

Taking the difference of (4.1) and (4.3), we find that (ũ, θ̃) satisfies

∂tũ1 + ∂1(u2
1 − u2

1) + ∂2(u1u2 − u1u2) + ∂3(ũ3u1) = −∂1p̃+ ν∆ũ1,

∂tũ2 + ∂1(u1u2 − u1u2) + ∂2(u2
2 − u2

2) + ∂3(ũ3u2) = −∂2p̃+ ν∆ũ2,

∂tũ3 + u · ∇ũ3 = −∂3p̃+ ν∆ũ3 + θ̃,

∂tθ̃ + u · ∇θ̃ = η∂33θ̃ − ũ3,

∇ · ũ = 0.

(4.4)

As we shall see below, we do not really need the full dissipation in the velocity
equation, but the dissipation in the vertical direction is crucial. The nonlinear terms
will be controlled without using the dissipation in the x1-direction. We estimate the

L2-norms of (ũ, θ̃) and (∇ũ,∇θ̃) separately. Our goal is to achieve the following
inequalities

d

dt
‖(ũ, θ̃)‖2

L2 + (2ν − C‖u‖H2)‖(∂2, ∂3)ũ‖2
L2 + 2η‖∂3θ̃‖2

L2 ≤ 0

and

d

dt
‖(∇ũ,∇θ̃)‖2

L2 + 2ν‖∂1∇ũ‖2
L2

+ (2ν − C1(‖u‖H2 + ‖θ‖H2)) ‖(∂2, ∂3)∇ũ‖2
L2

+ (2η − C2(‖u‖H3 + ‖θ‖H2)) ‖∂3∇θ̃‖2
L2 ≤ 0.
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Dotting (4.4) by (ũ, θ̃) and integrating by parts, we obtain

d

dt
‖(ũ, θ̃)‖2

L2 + 2ν‖∇ũ‖2
L2 + 2η‖∂3θ̃‖2

L2

:= L1 + L2 + L3 + L4 + L5 + L6,

where

L1 = −
∫
ũ1∂1(u2

1 − u2
1) dx, L2 = −

∫
ũ1∂2(u1u2 − u1u2) dx,

L3 = −
∫
ũ1∂3(ũ3u1) dx, L4 = −

∫
ũ2∂2(u1u2 − u1u2) dx,

L5 = −
∫
ũ2∂2(u2

2 − u2
2) dx, L6 = −

∫
ũ2∂3(ũ3u2) dx.

It is easy to check that

u2
1 − u2

1 = 2ū1 ũ1 + (ũ1)2 − (ũ1)2 = 2ū1 ũ1 + (̃ũ1)2, (4.5)

u1u2 − u1u2 = ū1 ũ2 + ū2 ũ1 + ˜̃u1 ũ2. (4.6)

Therefore, we can further decompose L1 into three parts,

L1 = 2

∫
ũ1∂1ū ũ1 dx+ 2

∫
ũ1∂1ũ ū1 dx+

∫
ũ1 ∂1(̃ũ1)2 dx

:= L11 + L12 + L13.

By Lemma 2.5 and Lemma 2.3,

L11 ≤ 2‖ũ1‖
1
2

L2 ‖∂2ũ1‖
1
2

L2 ‖∂1ū1‖
1
2

L2 ‖∂1∂1ū1‖
1
2

L2 ‖ũ1‖
1
2

L2 ‖∂3ũ1‖
1
2

L2

≤ C ‖ū1‖H2 ‖∂2ũ1‖
1
2

L2 ‖∂3ũ1‖
3
2

L2

≤ C ‖ū1‖H2 (‖∂2ũ1‖2
L2 + ‖∂3ũ1‖2

L2).

By Hölder’s inequality and Lemma 2.3,

L12 ≤ 2‖ũ1‖L2 ‖ū1‖L∞‖∂1ũ1‖L2

≤ C ‖∂3ũ1‖L2 ‖ū1‖H2 ‖∂2ũ2 + ∂3ũ3‖L2

≤ C ‖ū1‖H2 (‖∂2ũ‖2
L2 + ‖∂3ũ‖2

L2).

By Lemma 2.1 and Lemma 2.3,

L13 ≤ ‖ũ1‖L2 ‖∂1(̃ũ1)2‖L2 ≤ ‖ũ1‖L2 ‖∂1(ũ1)2‖L2

≤ C ‖ũ1‖L2 ‖ũ1‖L∞ ‖∂1ũ1‖L2

≤ C ‖∂3ũ1‖L2 ‖ũ1‖H2 ‖∂2ũ2 + ∂3ũ3‖L2

≤ C ‖ũ1‖H2 (‖∂2ũ‖2
L2 + ‖∂3ũ‖2

L2).

Therefore,
|L1| ≤ C ‖u1‖H2 (‖∂2ũ‖2

L2 + ‖∂3ũ‖2
L2).

Invoking (4.6), we can rewrite L2 as

L2 = −
∫
ũ1∂2(ū1ũ2 + ũ1ū2 + ˜̃u1 ũ2) dx.
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The three terms in L2 can be estimated similarly to those terms in L1 and the upper
bound is

|L2| ≤ C ‖u‖H2 (‖∂2ũ‖2
L2 + ‖∂3ũ‖2

L2).

By integration by parts,

L3 = −
∫
ũ3 u1 ∂3ũ1 dx

≤ ‖u1‖L∞ ‖ũ3‖L2 ‖∂3ũ1‖L2

≤ C ‖u1‖H2 ‖∂3ũ3‖L2 ‖∂3ũ1‖L2

≤ C ‖u1‖H2 ‖∂3ũ‖2
L2 .

Similarly we have

|L4|, |L5|, |L6| ≤ C ‖u‖H2 (‖∂2ũ‖2
L2 + ‖∂3ũ‖2

L2).

Collecting the upper bounds for L1 through L6, we find

d

dt
‖(ũ, θ̃)‖2

L2 + 2ν‖∇ũ‖2
L2 + 2η‖∂3θ̃‖2

L2 ≤ C ‖u‖H2 (‖∂2ũ‖2
L2 + ‖∂3ũ‖2

L2).

or

d

dt
‖(ũ, θ̃)‖2

L2 + (2ν − C‖u‖H2)‖(∂2, ∂3)ũ‖2
L2 + 2η‖∂3θ̃‖2

L2 ≤ 0.

When the initial data (u0, θ0) is sufficiently small such that

C‖u‖H2 ≤ ν,

we have

d

dt
‖(ũ, θ̃)‖2

L2 + ν ‖∂3ũ‖2
L2 + 2η‖∂3θ̃‖2

L2 ≤ 0.

Invoking the Poincaré inequality in Lemma 2.3,

‖ũ‖L2 ≤ C ‖∂3ũ‖L2 , ‖θ̃‖L2 ≤ C ‖∂3θ̃‖L2

leads to
d

dt
‖(ũ, θ̃)‖2

L2 + C min{ν, η}‖(ũ, θ̃)‖2
L2 ≤ 0. (4.7)

We now estimate the H1-norm. Taking the gradient of (4.4) and then dotting the

resulting equations with (∇ũ,∇θ̃), we have

d

dt
‖(∇ũ,∇θ̃)‖2

L2 + 2ν‖∇2ũ‖2
L2 + 2η‖∂3∇θ̃‖2

L2

:= M1 + · · ·+M8,

where

M1 = −
∫
∇ũ1 · ∇∂1(u2

1 − u2
1) dx, M2 = −

∫
∇ũ1 · ∇∂2(u1u2 − u1u2) dx,

M3 = −
∫
∇ũ1 · ∇∂3(ũ3u1) dx, M4 = −

∫
∇ũ2 · ∇∂2(u1u2 − u1u2) dx,

M5 = −
∫
∇ũ2 · ∇∂2(u2

2 − u2
2) dx, M6 = −

∫
∇ũ2 · ∇∂3(ũ3u2) dx,
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M7 = −
∫
∇ũ3 · ∇(u · ∇ũ3) dx, M8 = −

∫
∇θ̃ · ∇(u · ∇θ̃) dx.

To estimate M1, we first invoke (4.5) to write M1 as

M1 = −2

∫
∇ũ1 · ∂1∇(ū1 ũ1) dx−

∫
∇ũ1 · ∂1∇(̃ũ1)2 dx := M11 +M12.

By integration by parts and ∇ · ũ = 0,

M11 = 2

∫
∇∂1ũ1 · (∇ũ1 ū1 + ũ1∇ū1) dx

= −2

∫
∇(∂2ũ2 + ∂3ũ3) · (∇ũ1 ū1 + ũ1∇ū1) dx.

Noticing that ū1 is a 2D function independent of x3, and applying Hölder’s inequality
and Lemma 2.3, we have

M12 ≤ C ‖(∂2, ∂3)∇ũ‖L2

(
‖∇ũ1‖L2 ‖ū1‖L∞ + ‖ũ1‖L4

hL
2
x3
‖∇ū1‖L4

h

)
≤ C ‖(∂2, ∂3)∇ũ‖L2 ‖∇ũ1‖L2 ‖ū1‖H2

+C ‖(∂2, ∂3)∇ũ‖L2 ‖ũ1‖
1
2

L2‖∇hũ1‖
1
2

L2‖ū1‖H2

≤ C ‖(∂2, ∂3)∇ũ‖L2 ‖∂3∇ũ1‖L2 ‖ū1‖H2

+C ‖(∂2, ∂3)∇ũ‖L2 ‖∂3∂3ũ1‖
1
2

L2‖∂3∇hũ1‖
1
2

L2‖ū1‖H2 ,

where we have used the following Sobolev inequalities

‖f‖L4
h
≤ C ‖f‖

1
2

L2
h
‖∇hf‖

1
2

L2
h
≤ C ‖f‖H1

h
.

Here ‖f‖Lq
h

denotes the Lq-norm of f over the horizontal 2D space and ‖f‖L4
hL

2
x3

=

‖‖f‖L2
x3
‖L4

h
. By Lemma 2.1 and then Lemma 2.3,

|M12| ≤ C ‖∂1∇ũ1‖L2‖∇(̃ũ1)2‖L2

≤ C ‖(∂2, ∂3)∇ũ‖L2‖∇(ũ1)2‖L2

≤ C ‖(∂2, ∂3)∇ũ‖L2 ‖∇ũ1‖L2‖ũ1‖L∞

≤ C ‖(∂2, ∂3)∇ũ‖L2 ‖∂3∇ũ1‖L2‖u1‖H2 .

Therefore,
|M1| ≤ C ‖u‖H2 ‖|(∂2, ∂3)∇ũ‖2

L2 .

To estimate M2, we use (4.6) to split M2 into three terms,

M2 = −
∫
∇ũ1 · ∇

(
ū1 ũ2 + ū2 ũ1 + ˜̃u1 ũ2

)
dx := M21 +M22 +M23.

These terms can be bounded similarly as M1. The upper bound for M2 is

|M2| ≤ C ‖u‖H2 ‖|(∂2, ∂3)∇ũ‖2
L2 .

By integrating by parts, applying Sobolev’s inequality and Lemma 2.3,

M3 =

∫
∂3∇ũ1 · ∇(ũ3u1) dx

≤ C ‖∂3∇ũ1‖L2 (‖∇ũ3‖L2‖u1‖L∞ + ‖ũ3‖L4‖∇u1‖L4)
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≤ C ‖∂3∇ũ1‖L2 (‖∇ũ3‖L2‖u1‖H2 + ‖ũ3‖H1‖∇u1‖H1)

≤ C ‖∂3∇ũ1‖L2 ‖∂3∇ũ3‖L2‖u1‖H2

≤ C ‖u‖H2 ‖∂3∇ũ‖2
L2 ,

where we have used the inequalities

‖f‖L4 ≤ C ‖f‖H1 ,

‖ũ3‖H1 = ‖ũ3‖L2 + ‖∇ũ3‖L2 ≤ ‖∂3∂3ũ3‖L2 + ‖∂3∇ũ3‖L2 .

M4 can be estimated similarly as M2, M5 as M1 and M6 as M3. It remains to bound
M7 and M8. Because ∇ · u = 0,

M7 = −
3∑

k,m=1

∫
∂kũ3∂kum∂mũ3 dx.

Again we intend to bound this nonlinear term without using the dissipation in the
x1-direction. We decompose the terms in the summation into several parts,

M7 = −
∫
∂1ũ3∂1u1∂1ũ3 dx−

3∑
k=2

∫
∂kũ3∂ku1∂1ũ3 dx

−
3∑

k=1

3∑
m=2

∫
∂kũ3∂kum∂mũ3 dx

:= M71 +M72 +M73.

By ∇ · u = 0 or ∂1u1 = −∂2u2 − ∂3u3 and integrating by parts,

M71 =

∫
(∂1ũ3)2 (∂2u2 + ∂3u3) dx

= −
∫
u2 ∂1ũ3 ∂2∂1ũ3 dx−

∫
u3∂1ũ3 ∂3∂1ũ3 dx.

Therefore,

|M71| ≤ ‖u2‖L∞‖∂1ũ3‖L2 ‖∂2∂1ũ3‖L2 + ‖u3‖L∞‖∂1ũ3‖L2 ‖∂3∂1ũ3‖L2

≤ C ‖u‖H2‖|(∂2, ∂3)∇ũ‖2
L2 .

By Lemma 2.5 and then Lemma 2.3,

|M72| ≤ C

3∑
k=2

‖∂kũ3‖
1
2

L2 ‖∂1∂kũ3‖
1
2

L2 ‖∂1ũ3‖
1
2

L2 ‖∂2∂1ũ3‖
1
2

L2

× ‖∂ku1‖
1
2

L2 (‖∂ku1‖L2 + ‖∂3∂ku1‖L2)
1
2

≤ C ‖u1‖H2

3∑
k=2

‖∂3∂kũ3‖
1
2

L2 ‖∂1∂kũ3‖
1
2

L2 ‖∂3∂1ũ3‖
1
2

L2 ‖∂2∂1ũ3‖
1
2

L2

≤ C ‖u‖H2‖|(∂2, ∂3)∇ũ‖2
L2 .

M73 can be bounded similarly as M72, and

|M73| ≤ C ‖u‖H2‖(∂2, ∂3)∇ũ‖2
L2 .
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We now estimate the last term M8. There is only dissipation in the x3-direction in
the θ-equation, so M8 is estimated differently. Because ∇ · u = 0,

M8 = −
∫
∇θ̃ · ∇u · ∇θ̃ dx.

To pinpoint the main difficulty, we decompose M8 into three parts,

M8 = −
2∑

k=1

2∑
m=1

∫
∂kθ̃ ∂kum ∂mθ̃ dx−

2∑
k=1

∫
∂kθ̃ ∂ku3 ∂3θ̃ dx

−
2∑

m=1

∫
∂3θ̃ ∂3um ∂mθ̃ dx−

∫
∂3θ̃ ∂3u3 ∂3θ̃ dx

:= M81 +M82 +M83 +M84.

The terms M82, M83 and M84 all contain at least one ∂3θ̃ and they are relatively
easy to estimate. By Lemma 2.5 and then Lemma 2.3,

|M82| ≤ C
2∑

k=1

‖∂kθ̃‖
1
2

L2 ‖∂3∂kθ̃‖
1
2

L2 ‖∂ku3‖
1
2

L2 ‖∂2∂ku3‖
1
2

L2 ‖∂3θ̃‖
1
2

L2 ‖∂1∂3θ̃‖
1
2

L2

≤ C ‖u‖H2 ‖∂3∇θ̃‖2
L2 .

Similarly,

|M83| ≤ C ‖u‖H2 ‖∂3∇θ̃‖2
L2 , |M84| ≤ C ‖u‖H2 ‖∂3∇θ̃‖2

L2 .

The terms in M81 do not contain the favorable derivative ∂3θ̃. We write

∂kum = ∂kūm + ∂kũm

and M81 becomes

M81 = −
2∑

k=1

2∑
m=1

∫
∂kθ̃ ∂kũm ∂mθ̃ dx−

2∑
k=1

2∑
m=1

∫
∂kθ̃ ∂kūm ∂mθ̃ dx

:= M811 +M812.

By Lemma 2.5 and then Lemma 2.3,

|M811| ≤ C

2∑
k=1

2∑
m=1

‖∂kθ̃‖
1
2

L2 ‖∂3∂kθ̃‖
1
2

L2 ‖∂kũm‖
1
2

L2 ‖∂2∂kũm‖
1
2

L2

× ‖∂mθ̃‖
1
2

L2 ‖∂1∂mθ̃‖
1
2

L2

≤ C
2∑

k=1

2∑
m=1

‖∂3∂kθ̃‖
1
2

L2 ‖∂3∂kθ̃‖
1
2

L2 ‖∂kũm‖
1
2

L2 ‖∂2∂kũm‖
1
2

L2

× ‖∂3∂mθ̃‖
1
2

L2 ‖∂1∂mθ̃‖
1
2

L2

≤ C ‖∇u‖
1
2

L2 ‖θ̃‖
1
2

H2 ‖∂3∇θ̃‖
3
2

L2 ‖∂2∇ũ‖
1
2

L2

≤ C (‖u‖H2 + ‖θ‖H2) (‖∂2∇ũ‖2
L2 + ‖∂3∇θ̃‖2

L2).
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M812 has to be estimated differently. Since ūm is only a function of x1 and x2,

|M812| ≤
2∑

k=1

2∑
m=1

‖∂kūm‖L∞
h
‖∂kθ̃‖L2 ‖∂mθ̃‖L2

≤
2∑

k=1

2∑
m=1

‖∂kūm‖H2 ‖∂3∂kθ̃‖L2 ‖∂3∂mθ̃‖L2

≤ C ‖u‖H3 ‖∂3∇θ̃‖2
L2 .

It is this last term that needs the H3-norm of u. The other upper bounds only
involve ‖u‖H2-norm. Putting together the bounds for M1 through M8, we obtain

d

dt
‖(∇ũ,∇θ̃)‖2

L2 + 2ν‖∂1∇ũ‖2
L2

+ (2ν − C1(‖u‖H2 + ‖θ‖H2)) ‖(∂2, ∂3)∇ũ‖2
L2

+ (2η − C2(‖u‖H3 + ‖θ‖H2)) ‖∂3∇θ̃‖2
L2 ≤ 0.

When the initial data (u0, θ0) ∈ H3 is sufficiently small such that

C1(‖u‖H2 + ‖θ‖H2) ≤ ν, C2(‖u‖H3 + ‖θ‖H2) ≤ η,

we have

d

dt
‖(∇ũ,∇θ̃)‖2

L2 + 2ν‖∂1∇ũ‖2
L2 + ν‖(∂2, ∂3)∇ũ‖2

L2 + η‖∂3∇θ̃‖2
L2 ≤ 0.

Invoking the Poincaré inequalities in Lemma 2.3,

‖∇ũ‖L2 ≤ C ‖∂3∇ũ‖L2 , ‖∇θ̃‖L2 ≤ C ‖∂3∇θ̃‖L2

leads to
d

dt
‖(∇ũ,∇θ̃)‖2

L2 + C min{ν, η}‖(∇ũ,∇θ̃)‖2
L2 ≤ 0. (4.8)

(4.7) and (4.8) then imply (1.9). This completes the proof of Theorem 1.2. �
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