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Abstract. Stability and large-time behavior are essential properties of solutions
to many partial differential equations (PDEs) and play crucial roles in many prac-
tical applications. When there is full Laplacian, many techniques such as the
Fourier splitting method have been created to obtain the large-time decay rates.
However, when a PDE is anisotropic and involves only partial dissipation, these
methods no longer apply and no effective approach is currently available. This
paper aims at the stability and large-time behavior of the 3D anisotropic Navier-
Stokes equations. We present a systematic approach to obtain the optimal decay
rates of the stable solutions emanating from a small data. We establish that, if
the initial velocity is small in the Sobolev space H4(R3) ∩ H−σ

h (R3), then the
anisotropic Navier-Stokes equations have a unique global solution, and the solu-
tion and its first-order derivatives all decay at the optimal rates. Here H−σ

h with
σ > 0 denotes a Sobolev space with negative horizontal index.

1. Introduction

The goal of this paper is to understand the stability and more importantly the
precise large-time behavior of solutions to the 3D Navier-Stokes equations with only
horizontal dissipation

∂tu+ u · ∇u = −∇p+ ν∆hu, x ∈ R3, t > 0,

∇ · u = 0,

u(x, 0) = u0(x),

(1.1)

where u = (u1(x, t), u2(x, t), u3(x, t)) denotes the velocity field, p = p(x, t) the pres-
sure and ν > 0 the kinematic viscosity. Here ∆h = ∂2

x1
+ ∂2

x2
. For notational conve-

nience, we shall write ∂j for ∂xj with j = 1, 2, 3. In addition, we use ∇h := (∂1, ∂2)
for the horizontal gradient. (1.1) arises in the modeling of anisotropic geophysical
fluids for which the vertical diffusion is much smaller than the horizontal one (see,
e.g., [12, Chapter 4])).

Solutions of (1.1) emanating from general large initial data are not known to exist
for all time. Whether or not large smooth solutions can blow up in a finite time
is an outstanding open problem. However, any sufficiently small initial data with
suitable regularity always leads to a unique global solution. Significant progress
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has been made on the small data global well-posedness and on the scaling invariant
regularity criteria for (1.1) (see, e.g., [3–5, 7, 9–11, 20, 21]). For the convenience of
the readers, we provide a simple proof for the global well-posedness of small data in
Hk(R3) with any k ≥ 2 (see Proposition 1.1). The real issue concerned here is the
precise large-time behavior. The solutions in some the aforementioned references
may grow in time due to the application of Osgood type inequalities.

This paper aims at the exact large-time behavior and optimal decay rates of
small global solutions to (1.1). When there is full Laplacian dissipation, Schonbek
and her collaborators have developed powerful tools such as the Fourier splitting
method to obtain the large-time behavior of solutions to the Navier-Stokes and
related equations with full dissipation (see, e.g., [13–16]). However, these tools do
not appear to work for the anisotropic Navier-Stokes equations like the one in (1.1).
New approaches have to be developed in order to extract the precise large-time
behavior for (1.1). This paper offers an efficient but not very sophisticated method
for the anisotrophic Navier-Stokes equations. The discoveries of this paper may help
understand the large-time behavior of many other anisotropic systems.

Before we describe our main ideas, we explain a basic fact about the decay of the
heat equation. For any v0 ∈ L2, the solution of the heat equation

∂tv = ν∆v,

v(x, 0) = v0(x)

is known to decay to zero in the L2-norm,

‖v(t)‖L2 → 0 as t→∞.

But this decay can be slow and there is no uniform rate [2]. In order to obtain
an explicit decay rate, extra assumptions on v0 must be imposed. Two types of
conditions are normally inserted, either v0 ∈ Lq with 1 ≤ q < 2 or v0 in a Sobolev
space with negative index, namely v0 ∈ H−σ with σ > 0. This explains why we shall
choose our initial data to be in the intersection of two Sobolev spaces, one with
positive index and one with negative index. Since (1.1) involves only horizontal
dissipation, the negative Sobolev setting involves only negative derivatives in the
horizontal direction. To be more precise, we define H−σh (R3) with σ > 0 to be the
space of distributions f satisfying

‖Λ−σh f‖2
L2(R3) :=

∫
R3

|ξh|−2σ|f̂(ξ)|2 dξ <∞,

where ξh = (ξ1, ξ2) and the fractional Laplacian operator Λ−σh is defined via the
Fourier transform

Λ̂−σh f(ξ) = |ξh|−σ f̂(ξ).

The exact functional setting for our initial data u0 is

u0 ∈ H4(R3) ∩H−σh (R3), ∂3u0 ∈ H−σh (R3),
3

4
≤ σ < 1.
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We will explain the range of σ later. Our aim is to achieve the optimal decay rates,
namely the rates for the corresponding heat equation,{

∂tu = ν∆hu, x ∈ R3, t > 0,

u(x, 0) = u0(x).
(1.2)

For u0 ∈ H4(R3) ∩H−σh (R3), the solution of (1.2) satisfies

‖u(t)‖H4 ≤ ‖u0‖H4 , ‖u(t)‖H−σh ≤ ‖u0‖H−σh .

Furthermore, using the representation of the solution to (1.2),

u(t) = eν∆ht u0,

we find

‖u(t)‖L2 = ‖Λσ
h e

ν∆ht Λ−σh u0‖L2 ≤ C (νt)−
σ
2 ‖Λ−σh u0‖L2 , (1.3)

‖∂3u(t)‖L2 ≤ C (νt)−
σ
2 ‖∂3Λ−σh u0‖L2 , (1.4)

‖∇h∂3u(t)‖L2 ≤ C (νt)−
σ+1
2 ‖Λ−σh u0‖L2 . (1.5)

We are able to show that the solution of the anisotropic Navier-Stokes equation
(1.1) obeys the same decay rates as those for the heat equation (1.2). More precisely,
we obtain the following theorem.

Theorem 1.1. Consider (1.1) with ν > 0. Let 3
4
≤ σ < 1. Assume

u0 ∈ H4(R3), ∇ · u0 = 0, Λ−σh u0, Λ−σh ∂3u0 ∈ L2(R3).

Then, there is ε > 0 such that, if

‖u0‖H4(R3) + ‖Λ−σh u0‖L2(R3) + ‖Λ−σh ∂3u0‖L2(R3) ≤ ε,

then (1.1) has a unique global solution u satisfying

‖u(t)‖H4(R3) ≤ Cε, (1.6)

‖Λ−σh u(t)‖L2(R3) ≤ C ε, (1.7)

‖u(t)‖L2(R3) ≤ C ε(1 + t)−
σ
2 , ‖∂3u(t)‖L2(R3) ≤ C ε(1 + t)−

σ
2 , (1.8)

‖∇hu(t)‖L2(R3) ≤ C ε(1 + t)−
σ+1
2 . (1.9)

The decay rates in (1.8) and (1.9) coincide with those for the corresponding heat
equation of (1.1) and are thus optimal.

The decay rates in (1.8) and (1.9) are exact the same as those for the heat
equations in (1.3), (1.4) and (1.5), and are thus optimal. In addition, Theorem
1.1 assesses that the solution u remains bounded and small in H−σh , namely (1.7)
for all time when u0 ∈ H−σh is small. This especially implies that the anisotropic
Navier-Stokes equation concerned here preserves and actually improves the regular-
ity setting of the initial data. This distinguishes Theorem 1.1 from many existing
decay results, which provides no information on the boundedness of the solution in
the Sobolev space with negative index even though the initial data is required to
be in this space. In general it is not trivial to show that the solutions of partially
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dissipated systems remain in the negative Sobolev setting for all time. Normally the
solution regularity of such systems deteriorates as time evolves.

Since the local-in-time well-posedness can be established by standard approaches
(see, e.g. [8]), we focus on the global a priori bounds on the solution. We adopt
the bootstrapping argument (see, e.g., [17, p.21]). Assuming that u0 ∈ H4 ∩ H−σh
satisfies

‖u0‖H4 ≤ ε and ‖u0‖H−σh ≤ ε

for sufficiently small ε > 0, the bootstrapping argument starts with the ansatz that,
for t < T ,

‖u(t)‖H4 ≤ C0 ε, (1.10)

‖Λ−σh u(t)‖L2 ≤ C0 ε, (1.11)

‖u(t)‖L2 , ‖∂3u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 , (1.12)

‖∂1u(t)‖L2 , ‖∂2u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2
− 1

2 (1.13)

for suitably selected C0 > 0. We then show via (1.1), (1.10), (1.11), (1.12) and
(1.13) that

‖u(t)‖H4 ≤ C0

2
ε, (1.14)

‖Λ−σh u(t)‖L2 ≤ C0

2
ε, (1.15)

‖u(t)‖L2 , ‖∂3u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (1.16)

‖∂1u(t)‖L2 , ‖∂2u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2
− 1

2 . (1.17)

The bootstrapping argument then assesses that T = ∞ and (1.14), (1.15), (1.16)
and (1.17) hold for all t <∞.

Since the assertion that any small initial data in H4 yields a unique global small
solution u ∈ L∞(0,∞;H4) itself represents an important fact, we take out this part
and state it as a proposition.

Proposition 1.1. Consider (1.1) with ν > 0. Let k ≥ 2 be an integer. Assume
u0 ∈ Hk(R3) with ∇ · u0 = 0. Then there exists ε > 0 such that, if

‖u0‖Hk(R3) ≤ ε,

then (1.1) has a unique global solution u ∈ L∞(0,∞;Hk(R3)) satisfying

‖u(t)‖Hk(R3) ≤ C ε

for some constant C > 0 and for all t > 0.

As a special consequence of Proposition 1.1, we obtain (1.14). To show (1.15),
we perform energy estimates on ‖Λ−σh u(t)‖L2 . By invoking various anisotropic in-
equalities, we are able to obtain a suitable upper bound for the nonlinear term∫

R3

Λ−σh (u · ∇u) · Λ−σh u dx
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≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3u‖L2 ‖Λ−σh u‖L2 .

As a consequence, the time integral of this bound, together with the ansatz, yields
the desired upper bound in (1.15). In order to obtain the decay bounds in (1.16)
and (1.17), we make use of the integral representation of (1.1),

u(t) = eν∆h tu0 −
∫ t

0

eν∆h(t−τ)P(u · ∇u)(τ) dτ,

where P = I −∇∆−1∇· is the Leray projection onto divergence vector fields. This
representation helps facilitate the estimates of ‖u(t)‖L2 , ‖∂3u(t)‖L2 and ‖∇hu(t)‖L2 .
The estimates of the nonlinear terms are technical and involves many anisotropic
inequalities. We shall leave the technical details to the next section, which provides
the proof of Theorem 1.1.

2. Proof of Theorem 1.1

This section is devoted to the proofs of Theorem 1.1 and of Proposition 1.1. We
need several tools stated in the following lemmas.

The first lemma provides an upper bound for the Lp-norm of a one-dimensional
function, which serves as a basic ingredient for anisotropic upper bounds. A proof
can be found in [19].

Lemma 2.1. Let 2 ≤ p ≤ ∞. Let s > 1
2
− 1

p
. Then, there exists a constant

C = C(p, s) such that, for any 1D functions f ∈ Hs(R),

‖f‖Lp(R) ≤ C ‖f‖
1− 1

s(
1
2
− 1
p)

L2(R) ‖Λsf‖
1
s(

1
2
− 1
p)

L2(R) .

In particular, if p =∞ and s = 1, then any f = f(x3) ∈ H1(R) satisfies

‖f‖L∞(R) ≤ C ‖f‖
1
2

L2(R) ‖∂3f‖
1
2

L2(R).

The second lemma provides an anisotropic upper bound for the integral of a triple
product. It is a very powerful tool in dealing with anisotropic equations. A simple
proof of this lemma can be found in [18].

Lemma 2.2. The following estimates hold when the right-hand sides are all bounded.∫
R3

|fgh|dx . ‖f‖
1
2

L2‖∂1f‖
1
2

L2‖g‖
1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂3h‖
1
2

L2 ,∫
R3

|fgh|dx . ‖f‖
1
4

L2‖∂1f‖
1
4

L2‖∂2f‖
1
4

L2‖∂1∂2f‖
1
4

L2‖g‖
1
2

L2‖∂3g‖
1
2

L2‖h‖L2 .

The third lemma states Minkowski’s inequality. It is an elementary tool that
allows us to estimate the Lebesgue norm with larger index first followed by the
Lebesgue norm with a smaller index. The following version is taken from [1, p.4]
and a more general statement can be found in [6, p.47].
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Lemma 2.3. Let (X1, µ1) and (X2, µ2) be two measure spaces. Let f be a nonneg-
ative measurable function over X1 ×X2. For all 1 ≤ p ≤ q ≤ ∞, we have∥∥‖f(·, x2)‖Lp(X1,µ1)

∥∥
Lq(X2,µ2)

≤
∥∥‖f(x1, ·)‖Lq(X2,µ2)

∥∥
Lp(X1,µ1)

.

In particular, for a nonnegative measurable function f over Rm × Rn and for 1 ≤
p ≤ q ≤ ∞, ∥∥‖f‖Lp(Rm)

∥∥
Lq(Rn)

≤
∥∥‖f‖Lq(Rn)

∥∥
Lp(Rm)

.

The next lemma provides an exact Lp − Lq decay estimate for the generalized
heat operator associated with a fractional Laplacian.

Lemma 2.4. Let σ ≥ 0, α > 0, ν > 0, 1 ≤ p ≤ q ≤ ∞. Then

‖Λσ e−ν(−∆)αtf‖Lq(Rd) ≤ C t−
σ
2α
− d

2α( 1
p
− 1
q )‖f‖Lp(Rd).

We introduce a few notation. We write ‖f‖Lpxj with j = 1, 2, 3 for the Lp-norm

with respect to xj on R, and ‖f‖Lpxjxk with j, k = 1, 2, 3 for the Lp-norm with

respect to (xj, xk) on R2. We also write ‖f‖Lqh for ‖f‖Lqx1x2 to shorten the notation.
In addition, the anisotropic norm

‖f‖LphLqx3 := ‖‖f‖Lqx3‖Lph
is also frequently used.

We are ready to prove the proposition and Theorem 1.1.

Proof of Proposition 1.1. First of all, any initial data u0 ∈ Hk with k ≥ 2 leads to a
local-in-time solution. This is the consequence of the standard contraction mapping
principle and a local a priori bound on the norm ‖u‖Hk . The contraction mapping
part can be verified via a standard procedure and can be found in many references
such as the book by Majda and Bertozzi [8]. We focus on the global-in-time a priori
bound for ‖u(t)‖Hk . Due to the norm equivalence

‖f‖2
Hk ∼ ‖f‖2

L2 +
3∑

m=1

‖∂kmf‖2
L2 (2.1)

and the uniform bound for the L2-norm of u,

‖u(t)‖2
L2 + 2ν

∫ t

0

‖∇hu(τ)‖2
L2 dτ = ‖u0‖2

L2 , (2.2)

it suffices to evaluate the last part in (2.1). Applying ∂km to the equation in (1.1)
and then taking the inner product with ∂kmu yields

d

dt

3∑
m=1

‖∂kmu‖2
L2 + 2ν

3∑
m=1

‖∇h∂
k
mu‖2

L2 = −2
3∑

m=1

∫
∂km(u · ∇u) · ∂kmu dx := I. (2.3)

To estimate I, we rewrite it as

I = −2
3∑

m,i,j=1

k∑
α=1

(
k
α

)∫
∂αmuj ∂j∂

k−α
m ui ∂

k
mui dx, (2.4)
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where

(
k
α

)
= k!

α!(k−α)!
is the binomial coefficient, and we have used the fact that

the term with α = 0 vanishes due to ∇ · u = 0. We divide the terms in (2.4)
into two types, the terms with at least one of m and j being 1 or 2 and the terms
with m = j = 3. The first type can be handled directly by using the anisotropic
inequalities in Lemma 2.2. Without loss of generality, we consider the term with
j = 1 and m = 3. By Lemma 2.2, this term can be bounded by, for any 1 ≤ α ≤ k,∣∣∣∣∫ ∂α3 u1 ∂

k−α
3 ∂1ui ∂

k
3ui dx

∣∣∣∣
≤ C ‖∂α3 u1‖

1
2

L2 ‖∂1∂
α
3 u1‖

1
2

L2 ‖∂k−α3 ∂1ui‖
1
2

L2 ‖∂3∂
k−α
3 ∂1ui‖

1
2

L2 ‖∂k3ui‖
1
2

L2 ‖∂2∂
k
3ui‖

1
2

L2

≤ C ‖∇hu‖2
Hk ‖u‖Hk .

For the second type of terms, we have m = j = 3 and use the divergence-free
condition ∂3u3 = −∂1u1 − ∂2u2. Therefore, these terms can be bounded by∣∣∣∣∫ ∂α3 u3 ∂

k−α
3 ∂3ui ∂

k
3ui dx

∣∣∣∣
=

∣∣∣∣∫ ∂α−1
3 (∂1u1 + ∂2u2) ∂k−α3 ∂3ui ∂

k
3ui dx

∣∣∣∣
≤ C ‖∂α−1

3 ∂1u1‖
1
2

L2 ‖∂α3 ∂1u1‖
1
2

L2 ‖∂k+1−α
3 ui‖

1
2

L2 ‖∂1∂
k+1−α
3 ui‖

1
2

L2

×‖∂k3ui‖
1
2

L2 ‖∂2∂
k
3ui‖

1
2

L2

+C ‖∂α−1
3 ∂2u2‖

1
2

L2 ‖∂α3 ∂2u2‖
1
2

L2 ‖∂k+1−α
3 ui‖

1
2

L2 ‖∂1∂
k+1−α
3 ui‖

1
2

L2

×‖∂k3ui‖
1
2

L2 ‖∂2∂
k
3ui‖

1
2

L2

≤ C ‖∇hu‖2
Hk ‖u‖Hk .

Thus any term of either type admits the same upper bound. Therefore,

|I| ≤ C ‖∇hu‖2
Hk ‖u‖Hk .

Inserting this upper bound in (2.3), integrating in time, adding to (2.2) and invoking
the equivalence, we find

‖u(t)‖2
Hk + 2ν

∫ t

0

‖∇hu(τ)‖2
Hk ≤ ‖u0‖2

Hk + C0

∫ t

0

‖∇hu‖2
Hk ‖u‖Hk dτ (2.5)

When the initial data u0 is taken to be sufficiently small, say

‖u0‖Hk < C−1
0 ν,

then (2.5) implies

‖u(t)‖2
Hk + ν

∫ t

0

‖∇hu(τ)‖2
Hk ≤ ‖u0‖2

Hk ,

which yields the desired global uniform bound and the stability for ‖u(t)‖Hk .
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We now briefly explain the uniqueness at the H2-level, which can be quickly
established. Assume that u(1) and u(2) are two solutions of (1.1) in the regularity
class, for T > 0,

u(1), u(2) ∈ L∞(0, T ;H2).

The difference ũ = u(1) − u(2) satisfies
∂tũ+ u(1) · ∇ũ+ ũ · ∇u(2) = −∇p̃+ ν∆hũ, x ∈ R3, t > 0,

∇ · ũ = 0,

ũ(x, 0) = 0,

(2.6)

where p̃ = p(1)−p(2) with p(1) and p(2) being the pressures corresponding to u(1) and
u(2), respectively. Taking the inner product of ũ with (2.6) yields

d

dt
‖ũ‖2

L2 + 2ν‖∇hũ‖2
L2 = −

∫
ũ · ∇u(2) · ũ dx. (2.7)

Since the dissipation involves only the horizontal dissipation, we need an anisotropic
upper bound for the term on the right. By Hölder’s inequality and Lemma 2.1

−
∫
ũ · ∇u(2) · ũ dx ≤ ‖ũ‖2

L4
hL

2
x3
‖∇u(2)‖L2

hL
∞
x3

≤ C ‖ũ‖L2‖∇hũ‖L2 ‖∇u(2)‖
1
2

L2 ‖∂3∇u(2)‖
1
2

L2

≤ ν‖∇hũ‖2
L2 + C(ν) ‖u(2)‖2

H2‖ũ‖2
L2

Incorporating this upper bound in (2.7) yields

d

dt
‖ũ‖2

L2 + ν‖∇hũ‖2
L2 ≤ C(ν) ‖u(2)‖2

H2‖ũ‖2
L2 ,

which leads to the uniqueness due to u(2) ∈ L∞(0, T ;H2). This completes the proof
of Proposition 1.1. �

Proof of Theorem 1.1. The proof focuses on the global bounds in (1.6), (1.7), (1.8)
and (1.9). As pointed out in the introduction, the framework of the proof is the
bootstrapping argument. Assume that u0 ∈ H4 ∩H−σh satisfies

‖u0‖H4 + ‖u0‖H−σh + ‖∂3u0‖H−σh ≤ ε (2.8)

for sufficiently small ε > 0. We make the ansatz that, for t < T ,

‖u(t)‖H4 ≤ C0 ε, (2.9)

‖Λ−σh u(t)‖L2 ≤ C0 ε, (2.10)

‖u(t)‖L2 , ‖∂3u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 , (2.11)

‖∂1u(t)‖L2 , ‖∂2u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2
− 1

2 (2.12)

for suitably selected C0 > 0. We then show via (1.1), (2.8), (2.9), (2.10), (2.11) and
(2.12) that

‖u(t)‖H4 ≤ C0

2
ε, (2.13)
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‖Λ−σh u(t)‖L2 ≤ C0

2
ε, (2.14)

‖u(t)‖L2 , ‖∂3u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (2.15)

‖∂1u(t)‖L2 , ‖∂2u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2
− 1

2 . (2.16)

The bootstrapping argument then assesses that T = ∞, and (2.13), (2.14), (2.15)
and (2.16) hold for all t <∞.

As in the statement and proof of Proposition 1.1, if

‖u0‖H4 ≤ C1 ν

for some pure constant C1 > 0, then, for all time t > 0,

‖u(t)‖H4 ≤ ‖u0‖H4 .

As a special consequence, if

ε ≤ C1ν and ‖u0‖H4 ≤ ε,

then, for C0 ≥ 2,

‖u(t)‖H4 ≤ ‖u0‖H4 ≤ ε ≤ C0

2
ε,

which is (2.13). We now show (2.14). Applying Λ−σh to (1.1) and dotting with Λ−σh u,
we obtain

d

dt
‖Λ−σh u‖2

L2 + 2ν‖Λ1−σ
h u‖2

L2 = −2

∫
Λ−σh (u · ∇u) · Λ−σh u dx

= M. (2.17)

M can be written as

M = −2

∫
Λ−σh (u1∂1u+ u2∂2u) · Λ−σh u dx− 2

∫
Λ−σh (u3∂3u) · Λ−σh u dx. (2.18)

Clearly the first two terms in (2.18) are better than the last term in (2.18) in the
sense that they contain the favorable horizontal derivatives. Therefore, the worst
term is

M3 := −
∫

Λ−σh (u3∂3u1) · Λ−σh u1 dx.

We set
1

2
+
σ

2
=

1

q
or q =

2

1 + σ
.

Clearly, for 3
4
≤ σ < 1, we have

1 < q < 2.

By Hölder’s inequality, the Hardy-Littlewood-Sobolev inequality and Lemma 2.3,

|M3| ≤ ‖Λ−σh (u3∂3u1)‖L2 ‖Λ−σh u1‖L2

=
∥∥∥‖Λ−σh (u3∂3u1)‖L2

h

∥∥∥
L2
x3

‖Λ−σh u1‖L2

=
∥∥∥‖u3∂3u1‖Lqh

∥∥∥
L2
x3

‖Λ−σh u1‖L2 (2.19)
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≤
∥∥∥‖u3∂3u1‖L2

x3

∥∥∥
Lqh

‖Λ−σh u1‖L2

≤
∥∥∥‖u3‖L∞x3‖∂3u1‖L2

x3

∥∥∥
Lqh

‖Λ−σh u1‖L2

≤ ‖u3‖
L

2
σ
h L
∞
x3

‖∂3u1‖L2
hL

2
x3
‖Λ−σh u1‖L2 .

The first part on the right-hand side can be further bounded as follows. By Hölder’s
inequality with σ

2
= 1

4
+ 2σ−1

4
,

‖u3‖
L

2
σ
h L
∞
x3

≤ C
∥∥∥‖u3‖

1
2

L2
x3

‖∂3u3‖
1
2

L2
x3

∥∥∥
L

2
σ
h

≤ C
∥∥∥‖u3‖

1
2

L2
x3

∥∥∥
L

4
2σ−1
h

∥∥∥‖∂3u3‖
1
2

L2
x3

∥∥∥
L4
h

≤ C ‖∂3u3‖
1
2

L2 ‖u3‖
1
2

L
2

2σ−1
h L2

x3

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
1
2

L2
x3
L

2
2σ−1
h

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 .

Thus we have obtained the following bound

|M3| ≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3u1‖L2 ‖Λ−σh u1‖L2 .

Similarly, the first two terms in (2.18) can be bounded by

− 2

∫
Λ−σh (u1∂1u+ u2∂2u) · Λ−σh u dx

≤ C ‖∂3u1‖
1
2

L2 ‖u1‖
σ− 1

2

L2 ‖∇hu1‖1−σ
L2 ‖∂1u‖L2 ‖Λ−σh u‖L2

+ C ‖∂3u2‖
1
2

L2 ‖u2‖
σ− 1

2

L2 ‖∇hu2‖1−σ
L2 ‖∂2u‖L2 ‖Λ−σh u‖L2 .

Integrating in time in (2.17) yields

‖Λ−σh u‖2
L2 + 2ν

∫ t

0

‖Λ1−σ
h u‖2

L2dτ ≤ N, (2.20)

where

N : = C

∫ t

0

‖∂3u1‖
1
2

L2 ‖u1‖
σ− 1

2

L2 ‖∇hu1‖1−σ
L2 ‖∂1u‖L2 ‖Λ−σh u‖L2 dτ

+ C

∫ t

0

‖∂3u2‖
1
2

L2 ‖u2‖
σ− 1

2

L2 ‖∇hu2‖1−σ
L2 ‖∂2u‖L2 ‖Λ−σh u‖L2 dτ

+ C

∫ t

0

‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3u1‖L2 ‖Λ−σh u1‖L2 dτ.

We then invoke the ansatz in (2.9) through (2.12) to bound N .

N ≤ C

∫ t

0

(
C0ε(1 + τ)−

σ
2

)σ (
C0ε(1 + τ)−

σ+1
2

)2−σ
C0ε dτ
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+ C

∫ t

0

(
C0ε(1 + τ)−

σ+1
2

) 1
2 (
C0ε(1 + τ)−

σ
2

)σ− 1
2

·
(
C0ε(1 + τ)−

σ+1
2

)1−σ
C0ε(1 + τ)−

σ
2 C0ε dτ

= C C3
0ε

3

∫ t

0

(1 + τ)−
σ
2
−1 dτ + C C3

0ε
3

∫ t

0

(1 + τ)−
σ
2
− 3

4 dτ (2.21)

≤C C3
0ε

3, (2.22)

where we have used the fact that the time integrals in (2.21) are bounded for any
3
4
≤ σ < 1. If we choose ε > 0 to be sufficiently small such that

CC0ε ≤
1

4
, (2.23)

then (2.22) and (2.23) implies

N ≤ 1

4
C2

0ε
2.

Inserting this bound in (2.20) yields

‖Λ−σh u‖2
L2 ≤

1

4
C2

0ε
2.

This completes (2.14).

To prove (2.15), we represent (1.1) in the integral form

u(t) = eν∆htu0 −
∫ t

0

eν∆h(t−τ)P(u · ∇u)(τ) dτ. (2.24)

where P denotes the Leray projection. Taking the L2-norm of (2.24) and noticing
the boundedness of P on L2 functions, we have

‖u(t)‖L2 ≤ ‖eν∆htu0‖L2 +

∫ t

0

‖eν∆h(t−τ)(u · ∇u)(τ)‖L2 dτ. (2.25)

The linear part in (2.25) can be easily bounded. In fact, by Lemma 2.4,

‖eν∆htu0‖L2 ≤ C (1 + t)−
σ
2

(
‖u0‖H−σh + ‖u0‖L2

)
≤ C0

4
ε(1 + t)−

σ
2 , (2.26)

where C0 is selected to satisfy C0 ≥ 4C. We bound the nonlinear part. Writing
u · ∇u = u1∂1u + u2∂2u + u3∂3u, we realize that the worst terms are u3∂3u1 and
u3∂3u2, which would yield the worst decay rate. We should estimate them first. By
Lemma 2.1 and Lemma 2.4,∫ t

0

‖eν∆h(t−τ)u3∂3u1(τ)‖L2 dτ

≤
∫ t

0

‖‖eν∆h(t−τ)u3∂3u1(τ)‖L2
h
‖L2

x3
dτ

≤
∫ t

0

‖(t− τ)−
1
2‖u3∂3u1(τ)‖L1

h
‖L2

x3
dτ
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≤
∫ t

0

(t− τ)−
1
2

∥∥∥‖u3(τ)‖L2
h
‖∂3u1(τ)‖L2

h

∥∥∥
L2
x3

dτ

≤
∫ t

0

(t− τ)−
1
2‖u3(τ)‖L∞x3L2

h
‖∂3u1(τ)‖L2

x3
L2
h
dτ

≤
∫ t

0

(t− τ)−
1
2‖u3(τ)‖L2

hL
∞
x3
‖∂3u1(τ)‖L2 dτ

≤
∫ t

0

(t− τ)−
1
2‖u3(τ)‖

1
2

L2
hL

2
x3

‖∂3u3(τ)‖
1
2

L2
hL

2
x3

‖∂3u1(τ)‖L2 dτ

≤
∫ t

0

(t− τ)−
1
2‖u3(τ)‖

1
2

L2
hL

2
x3

‖(∂1u1 + ∂2u2)(τ)‖
1
2

L2
hL

2
x3

‖∂3u1(τ)‖L2 dτ.

Invoking the ansatz in (2.9) through (2.12) yields∫ t

0

‖eν∆h(t−τ)u3∂3u1(τ)‖L2 dτ

≤ C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4
− 1

4 (1 + τ)−
σ
2 dτ

= C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−σ−

1
4 dτ

≤


C2

0 ε
2 (1 + t)

1
4
−σ if σ < 3

4

C2
0 ε

2 (1 + t)−
1
2 if σ > 3

4

C2
0 ε

2 (1 + t)−
1
2 ln(1 + t) if σ = 3

4

≤ C2
0 ε

2 (1 + t)−
σ
2

for any 1
2
≤ σ < 1. If ε is taken to be small such that

C0 ε ≤
1

128
, (2.27)

then ∫ t

0

‖eν∆h(t−τ)u3∂3u1(τ)‖L2 dτ ≤ C0

128
ε (1 + t)−

σ
2 . (2.28)

Similarly, ∫ t

0

‖eν∆h(t−τ)u3∂3u2(τ)‖L2 dτ ≤ C0

128
ε (1 + t)−

σ
2 . (2.29)

The terms with u1∂1u or u2∂2u actually produce better decay rates. In fact,∫ t

0

‖eν∆h(t−τ)u1∂1u(τ)‖L2 dτ

≤
∫ t

0

‖‖e∆h(t−τ)u1∂1u(τ)‖L2
h
‖L2

x3
dτ

≤
∫ t

0

‖(t− τ)−
1
2‖u1∂1u(τ)‖L1

h
‖L2

x3
dτ
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≤
∫ t

0

(t− τ)−
1
2‖‖u1(τ)‖L2

h
‖∂1u(τ)‖L2

h
‖L2

x3
dτ

≤
∫ t

0

(t− τ)−
1
2‖u1(τ)‖L∞x3L2

h
‖∂1u(τ)‖L2

x3
L2
h
dτ

≤
∫ t

0

(t− τ)−
1
2‖u1(τ)‖L2

hL
∞
x3
‖∂1u(τ)‖L2 dτ

≤
∫ t

0

(t− τ)−
1
2‖u1(τ)‖

1
2

L2
hL

2
x3

‖∂3u1(τ)‖
1
2

L2
hL

2
x3

‖∂1u(τ)‖L2 dτ

≤
∫ t

0

(t− τ)−
1
2‖u1‖

1
2

L2‖∂3u1‖
1
2

L2‖∂1u(τ)‖L2 dτ.

Invoking the ansatz in (2.9) through (2.12) yields, for any σ > 1
2
,∫ t

0

‖eν∆h(t−τ)u1∂1u(τ)‖L2 dτ

≤ C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4 (1 + τ)−

σ
2
− 1

2 dτ

= C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−σ−

1
2 dτ

≤ C2
0 ε

2
(

(1 + t)−
1
2 + (1 + t)−σ

)
≤ C2

0 ε
2 (1 + t)−

σ
2

≤ C0

128
ε (1 + t)−

σ
2 , (2.30)

where we have invoked (2.27). Inserting the upper bounds in (2.26), (2.28), (2.29)
and (2.30) in (2.25), we find

‖u(t)‖L2 ≤ C0

2
ε (1 + t)−

σ
2 . (2.31)

We now estimate ‖∂3u(t)‖L2 . Applying ∂3 to (2.24) and then taking the L2-norm,
we have

‖∂3u(t)‖L2 ≤ ‖eν∆ht∂3u0‖L2 +

∫ t

0

‖eν∆h(t−τ)∂3(u · ∇u)(τ)‖L2 dτ. (2.32)

As in (2.26), we have

‖eν∆ht∂3u0‖L2 ≤ C (1 + t)−
σ
2

(
‖∂3u0‖H−σh + ‖u0‖L2

)
≤ C0

4
ε (1 + t)−

σ
2 . (2.33)

To estimate the second part in (2.32), we write

∂3(u · ∇u) = ∂3u1 ∂1u+ u1∂3∂1u+ ∂3u2∂2u+ u2∂3∂2u

+∂3u3∂3u+ u3∂33u (2.34)



14 RUIHONG JI, JIAHONG WU AND WANRONG YANG

and realize that u3∂33u1 and u3∂33u2 are the terms with the worst possible decay
rates. We deal with them first.∫ t

0

‖eν∆h(t−τ)u3 ∂33u(τ)‖L2 dτ

≤
∫ t

0

∥∥∥‖eν∆h(t−τ)u3 ∂33u(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖u3 ∂33u(τ)‖L1
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖u3‖L2
h
‖∂33u(τ)‖L2

h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2‖u3‖L2

hL
∞
x3
‖∂33u‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖u3‖

1
2

L2 ‖∂3u3‖
1
2

L2 ‖∂33u‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖u3‖

1
2

L2 ‖∂1u1 + ∂2u2‖
1
2

L2 ‖∂3u‖
2
3

L2 ‖∂4
3u‖

1
3

L2 dτ.

We now invoke the ansatz in (2.9) through (2.12) to obtain, for 3
4
≤ σ < 1,∫ t

0

‖eν∆h(t−τ)u3 ∂33u(τ)‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

1
4
−σ

4 (1 + τ)−
σ
3 dτ

= C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

5
6
σ− 1

4 dτ

≤ C C2
0 ε

2 (1 + t)−
5
6
σ+ 1

4

≤ C C2
0 ε

2 (1 + t)−
σ
2 .

The last inequality is exactly where we need σ ≥ 3
4
. That is, σ ≥ 3

4
is imposed to

ensure that

−5

6
σ +

1

4
≤ −σ

2
.

The other terms in (2.34) can be dealt with similarly. For example, the first term
can be bounded by∫ t

0

‖eν∆h(t−τ)∂3u1 ∂1u(τ)‖L2 dτ

≤
∫ t

0

∥∥∥‖eν∆h(t−τ)∂3u1 ∂1u(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖∂3u1 ∂1u(τ)‖L1
h

∥∥∥
L2
x3

dτ
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≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖∂3u1‖L2
h
‖∂1u(τ)‖L2

h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2‖∂3u1‖L2

hL
∞
x3
‖∂1u(τ)‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖∂3u1‖

1
2

L2 ‖∂33u1‖
1
2

L2 ‖∂1u(τ)‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖∂3u1‖

5
6

L2 ‖∂4
3u1‖

1
6

L2 ‖∂1u(τ)‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

5
12
σ(1 + τ)−

1
2
−σ

2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

11
12
σ− 1

2 dτ

≤ C C2
0 ε

2 (1 + t)−
11
12
σ.

Therefore, ∫ t

0

‖eν∆h(t−τ)∂3(u · ∇u)(τ)‖L2 dτ ≤ C C2
0 ε

2 (1 + t)−
σ
2

≤ C0

4
ε (1 + t)−

σ
2 . (2.35)

when ε is take to be sufficiently small. Combining (2.33) and (2.35) yields

‖∂3u(t)‖L2 ≤ C0

2
ε (1 + t)−

σ
2 . (2.36)

(2.31) and (2.36) together verify (2.15).

It remains to prove (2.16). Applying ∇h to (2.24) and then taking the L2-norm,
we have

‖∇hu(t)‖L2 ≤ ‖∇he
ν∆htu0‖L2 +

∫ t

0

‖∇he
ν∆h(t−τ)(u · ∇u)(τ)‖L2 dτ. (2.37)

As in (2.26), we have, for ε sufficiently small,

‖∇he
ν∆htu0‖L2 ≤ C (1 + t)−

σ+1
2

(
‖u0‖H−σh + ‖u0‖L2

)
≤ C0

4
ε (1 + t)−

σ+1
2 .

To estimate the second part in (2.37), we first apply Lemma 2.4 to obtain∫ t

0

‖∇he
ν∆h(t−τ)(u · ∇u)(τ)‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2 ‖eν∆h(t−τ)(u · ∇u)(τ)‖L2 dτ. (2.38)

To distinguish between the horizontal and the vertical derivatives, we write u ·∇u =
u1∂1u+u2∂2u+u3∂3u. We remark that we cannot directly invoke the same estimates
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as those in (2.25). For example, if we use the bound

‖eν∆h(t−τ)u3∂3u‖L2 ≤ C (t− τ)−
1
2

∥∥∥‖u3∂3u‖L1
h

∥∥∥
L2
x3

as before, the integrand in (2.38) would involve (t − τ)−1, which is not integrable!
To avoid this, we perform different estimates. Let q satisfy

1

q
=

1

2
+
σ

2
or q =

2

1 + σ
.

For 3
4
≤ σ < 1, we have 1 < q < 2. We bound the worst term u3∂3u in (2.38).

Applying Lemma 2.4 yields,∫ t

0

(t− τ)−
1
2 ‖eν∆h(t−τ)u3∂3u(τ)‖L2 dτ

=

∫ t

0

(t− τ)−
1
2

∥∥∥‖eν∆h(t−τ)u3∂3u(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤
∫ t

0

(t− τ)−
1+σ
2

∥∥∥‖u3∂3u(τ)‖Lqh
∥∥∥
L2
x3

dτ.

We then bound
∥∥∥‖u3∂3u(τ)‖Lqh

∥∥∥
L2
x3

as in (2.19) to obtain∥∥∥‖u3∂3u(τ)‖Lqh
∥∥∥
L2
x3

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3u‖L2 .

The term with u3∂3u in (2.38) is thus bounded by, for any 3
4
≤ σ < 1,∫ t

0

‖∇he
ν∆h(t−τ)u3∂3u(τ)‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1+σ
2 ‖∇h · uh‖

1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3u‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1+σ
2 (1 + τ)−( 3

2
−σ)( 1

2
+σ

2
) (1 + τ)−

σ
2

(σ+ 1
2

) dτ

= C C2
0 ε

2

∫ t

0

(t− τ)−
1+σ
2 (1 + τ)−

3
4
−σ

2 dτ

≤ C C2
0 ε

2 (1 + t)−
1+σ
2

≤ 1

128
C0 ε (1 + t)−

1+σ
2 .

The terms with u1∂1u and u2∂2u in (2.38) can be bounded similarly and they admit
the same upper bound. Therefore, we have verified that

‖∇hu(t)‖L2 ≤ C0

2
ε (1 + t)−

1+σ
2 .

This completes the proof of Theorem 1.1. �
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