INFLUENCE OF A BACKGROUND MAGNETIC FIELD ON A 2D
MAGNETOHYDRODYNAMIC FLOW
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ABSTRACT. Physical experiments and numerical simulations have demonstrated
that background magnetic fields stabilize electrically conducting fluids. This paper
establishes these observations as mathematically rigorous facts on a 2D magne-
tohydrodynamic system. This system is anisotropic with the velocity equation
involving only the vertical dissipation. Flows governed by the 2D Navier-Stokes
equations with only vertical dissipation are not known to be stable. Under the in-
fluence of a background magnetic field, the velocity field is shown here to stabilize
and decay in time through the coupling and the interaction. Mathematically we
reduce the MHD system concerned here to a system of degenerate and damped
wave equations and exploit the smoothing and stabilizing effects of the wave struc-
ture. We are able to prove that any perturbation near a background magnetic field
remains asymptotically stable. In addition, certain explicit large time behavior is
also established.

1. INTRODUCTION

The stabilization and smoothing effect of a background magnetic field on elec-
trically conducting fluids has been observed in physical experiments and numerical
simulations, and demonstrated in theoretical analysis (see, e.g., [1-4,16,17]). In
addition, the stabilization effect of a strong magnetic field has been employed in the
development of magnetic polymers and paints (see, e.g., [24]). One goal of this paper
is to understand the mechanism of the stabilization and establish the observations
as a mathematically rigorous fact on a system modeling the electrically conducting
fluids. We consider the following 2D incompressible magnetohydrodynamic (MHD)
system

O+ u-Vu+ VP =vdypu+b-Vb+ Ohb,
ob+u-Vb+nb=10b-Vu+ Ou,
V-u=V-b=0,
u(z,0) = ug(x), b(x,0) = by(x).
where u denotes the velocity field, b the magnetic field and P the pressure, and
v > 0 and 7 are the viscosity and the damping coefficient, respectively. Here the
velocity u obeys a degenerate Navier-Stokes equation with only vertical dissipation

vOsou and with a Lorentz forcing term. The magnetic field b satisfies the induction
equation. The extra two terms 01b and 0,u are created when we write the original

(1.1)
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magnetic field as the sum of a background magnetic field and a perturbation, namely
(1,0) + b. The system focused here governs the motion of the perturbation near a
background magnetic field.

The justification for including only one-directional dissipation in (1.1) is two
fold. The first is that the Laplacian dissipation in some partial differential equation
systems modeling fluids reduces to the degenerate case in certain physical regimes
and after suitable scaling. One prominent example is Prandtl’s boundary layer
equation. The second justification is to demonstrate the smoothing and stabilization
effect of the magnetic field. Mathematically only one directional dissipation in the
Navier-Stokes equations makes the stability problem much more difficult. Without
the coupling with the magnetic field, the velocity of the Navier-Stokes equation with
only vertical dissipation

Ou+u-Vu+ VP =vdpu, xcR?t>0, (1.2)

V-u=0. ’
is not known to be stable near the trivial solution. Some physically relevant infinite
energy solutions of (1.2) can grow rather rapidly [9]. One expects the solution of
(1.2) in the Sobolev space setting to be unstable, but a proof is currently lacking.
When there is no dissipation at all, the 2D Euler equation

Ou+u-Vu+VP =0, z€R?t>0,
V-u=0.
can generate solutions that grow exponentially or even double exponentially in time

(see, e.g., [11,23,51]). In contrast, solutions to the 2D Navier-Stokes equations with
full dissipation

ou+u-Vu+VP=vAu, xcR%t>0,
V.-u=0.

in the Sobolev spaces are always asymptotically stable with explicit decay rates
(see [31,33]).

Since the partially dissipated Navier-Stokes equation itself alone is not known to
be stable, we must seek the stabilizing effect from the magnetic field in order to
achieve any stability. The two terms in (1.1) related to the magnetic field, namely
b- Vb and 0,b, do not appear to be helpful at first glance, but the smoothing and
damping effect would emerge when we convert the MHD system in (1.1) into an
equivalent form. To do so, we first apply the Helmholtz-Leray projection operator

P:=1-VA'V.
to eliminate the pressure term to obtain
Oyu = vOoou + 010 + Ny, Ny =P(—u-Vu+b-Vb). (1.3)

By separating the linear terms from the nonlinear ones in (1.1), the equation of b
can be written as

Ob = —nb + 01u + N, No=—u-Vb+b-Vu. (1.4)
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Differentiating (1.3) and (1.4) in time and making several substitutions, we find

{&tu — (V092 — n)Oyu — (O11u + Nrdsgu) = N,

1.5
6ttb — (Vagg — n)@tb — (anb + nuﬁggb) = N4, ( )

where N3 and N4 are given by
N3 = (0, +1)Ny + 01 Na, Ny = (0; — v02) N2 + 01 Ny.

Surprisingly, both u and b are found to satisfy nonhomogeneous wave equations with
exactly the same linear parts. Clearly, (1.5) exhibits much more regularization than
its original counterpart in (1.1). Similarly, the equations of the vorticity w = V X u
and the current density 7 =V x b given by

{atw+u~vcu:u822w+b~Vj+<91j, (1.6)

Oj+u-Vi+nj=>b-Vw+Q+ ow,
with
Q = 281[)1 (82u1 + 81UQ) — 2(91/&1 (82171 + 81[)2)

can also be converted into the following system of wave equations

{&tw — (1/(922 — n)@tw — (811w + T]Vaggu}) = N5, (1 7)

Oj — (VOa2 — m)0sj — (O11J + nrdazj) = N,
where N5 and Ny are given by

Ns = (0 +n)(-u-Vw+b-Vj)+ (b Vw—u-Vj+Q),
Again w and j share the same wave structure as that for v and b. In particular,

(1.5) and (1.7) brings in the much-need horizontal regularization even though it is
lacking in the original system (1.1).

Our first effort is devoted to understanding how the wave structure affects the
regularity and large-time behavior. For simplicity, we consider the linearized portion
of (1.5), namely

8ttu — (V822 — n)&tu — (811u + 'r]u@zzu) = O,
attb — (Vagg — n)@tb — (31117 + 77V822b) = O,

1.8
V-u=V-b=0, (18)
u(x,0) =ug(z), b(x,0) = bo(x)
or equivalently, the linearization of the original system
Qtu = VaQQU + alb,
b= —nb
8t n +81u, (19)
V-u=V-0=0,

u(x,0) = ug(x), b(x,0) = by(x).
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The goal here is to obtain all possible regularization due to the dissipation and
dispersion effects and to provide a sharp large-time decay rate. To give a precise
statement of our result, we define a Fourier multiplier operator ®,

() = V(&) J(©). (1.10)
A very important class of @ is the fractional Laplacian operator (—A)Y with v € R,
which can be defined in terms of the Fourier transform,

(FA)F(E) = € F(é).
It is clear that the norm in the standard homogeneous Sobolev space H*® with s € R
is given by

1f 1l s = 1(=2)> fllz2.

For the sake of conciseness, we shall write ||(f,g)|7. for || f|3. + [lg]%..

Theorem 1.1. Consider the linearized system (1.8). Let ® be a given Fourier
multiplier operator. Assume the initial data (ug, by) satisfies

(IDUO, (I)bo, V(I)UO, V(I)bo, 822(13160 S L2, V- Uy = V- bo =0.

Let (u,b) be the corresponding solution of (1.8). Then (u,b) obeys the following
reqularization and decay estimates.

(1) (u,b) is uniformly bounded for all time with the following explicit bounds,
2 n? 2 2 5 2
10:25(t) [z + - [12b(t) 72 + 2[[01P0(E) |72 + Sv 1102 2b(E) L2

t
+/ (4u||8287<13b||i2 +3n|0- 0|72 + 1|01 PD||72 + 1/772|]82<I>b\|%2) dr
0

< C(vm) (19bo]72 + 101 (o, bo) |72 + 102@bolI72) - (1.11)

and

2
U 5
10:@u()lIZ2 + < |Pw(B)[z2 + 21 Pu(t) |72 + S (|0 2u(D)]2

t
+ [ (wlou0 vl + 300 ul + nloul + v a2 dr
0

< C(v,n) ([Puollz2 + 019 (uo, bo) |72 + |02Puo |72 + |022Puol|72) - (1.12)

Especially, for any s € R and for ® = (=A)2, we have the uniform bounds
in Sobolev (or L?) spaces,

2
5
10:6(6) 1% + %Ilb(t)II%S + 201010017, + 5w 10:0(8) 117

t
= [ (o0 + a0
0
S C(V777> (||b0|

and

[0 (t)]

2 o], + vntloblZ, ) dr

%Is + ||al(u0a bO)l

7 T 10200l - (1.13)

2

2.+ 2[|0ru(t)]

2 772 2 )
2+ L ut) 2+ S Opu(t)
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t
+ / (4y||aQaTu|
0

< C(vyn) (lluoll e + 1101 (uo, bo)[[3;. + |02uoll ;. + [|9a2uo]
(2) (u,b) obeys the following decay properties, as t — oo,
(L+1) (0:2b(t) 72 + | @b(1)]|72 + [VOD(t)[1Z2) — O,
(14 1)[|VOPu(t)|3. — 0.
In particular, the following pointwise estimates hold,
10:R0(E)[| 22 + [|PO(E) |2 + [[VRO(E) |2
< C(v,n) (| ®bollz2 + (|01 (uo, bo)l| 2 + [[02®bollz2) (1+1) 2. (1.15)

2+ 300

i T 1ll0vul

%S + yn2H82u] ?{s) dr

) - (1.14)

and
IVOu(t)| 2 < C(v,n)

% (@ (o, bo) 2 + |®(Vug, Vbo)l| 2 + |OnaPuigl 12) (1+1)72.  (1.16)
When ® = (—=A)z, we obtain, as t — 0o,

(14 6) (1200 + DI + IVbO113.) — 0.
(L +)IVu(®)|lF. — 0,
which especially imply
10eb() | 7+ + 6] g+ + IVO(E)] 515
< C(v,n) (lboll g« + 1101 (uo, bo)l g7+ + l|O2boll =) (1 + )72
and
IVu(t)]l4. < Clv,m)
% ([|(uo, bo) | g« + (Vo Vbo)ll g« + [|aztiol ) (1 +1¢)72.

We notice from the statement of Theorem 1.1 that u and b obey slightly differ-
ent regularization upper bounds and exhibits slightly different large-time behavior.
When (ug, bg), (Vug, Vby) and Osqug are all in the homogeneous Sobolev space He
for a real number s, then b, Vb and 0,;b are all bounded uniformly in H* and their
Hé-norms are all square time integrable. The Hé-norms of b, Vb and 0;b all decay
faster than the rate (1 + ¢)~2. However, the H*-norm of u itself is not known to
be square time integrable and we do not have a decay rate for it. Another remark
is that, if the initial data is more regular, we can establish higher time regularity
estimates and decay bounds for ||0;Vu(t)|| g, .

Next we explore the large-time behavior of the frequency piece of the solution
(u,b) to (1.8) that is supported away from the origin. We take advantage of the
wave structure in (1.8) to derive energy inequalities that imply an exponential decay
rate for the frequency piece away from the origin. These inequalities also allow us to
conclude that if the Fourier transform of the initial data (ug, by) is supported away
from the origin, then the solution (u,b) decay exponentially in time. To state our
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result precisely, we define a Fourier cutoff function. Let a > 0 be arbitrarily fixed

and define
~. )1 if [§l>a,
P(§) = {0 i el <a (1.17)

Theorem 1.2. Consider the linearized system in (1.8). Assume that the initial data
(uo, bo) satisfies

Ug, bo, VUO, Vbo, 822U0 < Lz, V- Uy = V- bo =0.
Then (u,b) decays exponentially in time in the following sense

106( % w) (t) || 22 + [|(@ 5 w) (£)]

< C(,n) (1((& * uo), (¢ bo))ll 1 + 1| 0o2( * o) [[g2) ™", (1.18)
10¢( % D) (E) | 2 + [|(& % b) (2) | 22

< C(,n) (¢ uo), (¢ * bo)) [l e, (1.19)

where H' denotes the inhomogeneous H'-norm and cy > 0 is a constant.

Theorem 1.1 and Theorem 1.2 tell us about how much regularity we can extract
from the wave structure and how fast the solution decays. To deal with the full
nonlinear system in (1.1), we take full advantage of the smoothing and stabilization
effect generated by the wave structure to control the nonlinearity. We are able to
establish the following nonlinear stability and large-time behavior result.

Theorem 1.3. Let n and v > 0. Consider (1.1) with the initial data (ug,by) €
H?*(R?), and V -ug = V - by = 0. Then there exists a constant € = €(v,n) > 0 such
that, iof

[uollzz + [[boll 2 < e,

then (1.1) has a unique global classical solution (u,b) satisfying, for any t > 0,

t
lu(®)[1Z= + 16(t) 1172 +/O (10vullZ + 102ullfs + [1Bll32) dr < €'

for some universal constant. In addition, the solution obeys the following large-time
decay estimates, for some constant C,

IVu(t)||z2 + VB ||z < C(1+1)72. (1.20)

Theorem 1.3 is a consequence of the smoothing and stabilization effect of the
magnetic field. In particular, the time integrability

/ |Bvu(t) |2 dt < C &
0

is not a consequence of the vertical dissipation in the velocity equation, but an exhi-
bition of the smoothing effect of the magnetic field. We explain why the stability for
the 2D Navier-Stokes equation with only vertical dissipation, namely (1.2) remains
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open and what makes the stability problem for the MHD system solvable. It follows
from (1.2) and the corresponding vorticity equation

Oww + u - Vw = vdgw (1.21)
that the H'-norm of u is uniformly bounded,

[u() ]l < lluoll -

The difficulty is how to control the H?-norm of u or ||Vw||z2. When we estimate
|Vw||g2 via (1.21), the nonlinear term becomes an insurmountable hurdle. In fact,
it follows from (1.21) that

d
L9l + 2010V, = —/Vw V- Vuwds,
The right-hand side can be further decomposed into four terms

/Vw -Vu-Vwdr = /81u1 (O1w)* dx (1.22)

+/31u281w Oy da7+/82u1 01w82wdx+/82u2(62w)2 dx.

Due to the lack of the horizontal dissipation, the first two terms can not be suitably
bounded. When we deal with the stability problem on the MHD system (1.1), we
need to control exactly the same nonlinearity. It is the coupling and interaction in
the MHD system that allows us to have more maneuver. When we estimate the
H?-norm via the equations of the vorticity and current density in (1.6), we also
encounter the term (1.22). The idea of bounding the first two terms in (1.22) is to
replace Ojw by the equation of j,

Ow=0)+u-Vi+nj—>b-Vw—Q.
For example, the first term on the right of (1.22) would become

/81u1 (O\w)?*dx = /éhul Ow(Oj+u-Vj+nj—b-Vw—Q)dx. (1.23)
We further shift the time derivative in the first term in (1.23), namely

/61u1 Owoyjdr = %/811“ O\w jdx

—/aﬁlul 810.de33' — /81u1j8t81w dzx. (124)

By substituting dyu; and dw by their corresponding equations in (1.24), we find
that the first term in (1.22) is then converted to

d
/alul (81w)2 dr = E/alul 81wj dx
— / éhwj 31(—u . Vu1 — 81P + l/agzul + b- Vbl + 81b1> dx

—/81u1j81(—u -Vw + V@QQW + b- V] + @13) dx
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+/81u181w(u-Vj—|—77j—b-Vw—Q)da:. (1.25)

Even though the original one term is converted into fourteen terms, but all of the
terms can be bounded suitably by applying anisotropic inequalities such as the one
stated in the following lemma. The second terms on the right of (1.22) can be
treated similarly. Estimating all these terms is a tedious and long process.

Lemma 1.4. Assume that f, g, Oag, h and O1h are all in L*(R?). Then, for some
constant C' > 0,

/RQ [fghl de < C|Ifl|2 917110291 2o 1A 221101l 2

This lemma is taken from [7]. Tt is very useful in dealing with partial differential
equations with anisotropic dissipation and allows us to selectively put directional
derivatives on the components of a triple product.

To prove the stability part of Theorem 1.3, we use the bootstrapping argument
(see, e.g., [35, p.21]). It starts with the definition of a suitable energy functional
E(t). We set

t t
B() i= sup {Ju(r)le + [0} + 20 [ 0wl dr+20 [ ol dr
0<r<t 0 0
The main efforts are then devoted to proving that for some constants C,
E(t) < E(0) + CE?(0) + CE*(t) + CE2(t). (1.26)

This is a long process including estimating the term (1.22) and making the sub-
stitution as in (1.25). The bootstrapping argument applied to (1.26) allows us to
conclude that, if F(0) or ||(uo, bo)|| g2 is sufficiently small, say

E(0) <€ or |[(uo,bo)llnz <
for some sufficiently small € > 0, then E(t) remains small for all time ¢ > 0 and
E(t) < Cé? (1.27)
for some constant C' > 0.

In order to prove the large-time decay estimates stated in Theorem 1.3, we further
show that the solution (u,b) obtained above has the following properties,

| oo e < o2 (1.28)
0
and

|(Vu(t), Vb(t))|| 2 < C|[(Vu(s), Vb(s))||rz forany 0 < s <t (1.29)

(1.28) is not a direct consequence of the dissipation in the velocity equation. It is
shown by taking into account of the coupling of the system. We replace d,u by

ou=0ob+u-Vb+nb—>b-Vu
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in the L?-norm,
/ /81u-(Otb+u-Vb+nb—b-Vu)d:vdt.
0

By shifting the time derivative and applying various anisotropic inequalities, we
are able to prove (1.28). The generalized monotonicity in (1.29) is established by
estimating ||w||z2 and ||j]/z2 via (1.6). Then (1.27) and (1.28) together leads to the
time integrability of

/OOO (IVu(®)||72 + [IVO(1)|72) dt < C €. (1.30)

(1.29) and (1.30) then fulfill the two conditions of Lemma 2.1 and the desired decay
estimate in (1.20) follows as a consequence.

Finally we remark that there are substantial recent developments on fundamental
issues concerning the MHD equations such as the global regularity and stability
problems. One recent focus is on the MHD equations with only partial or fractional
dissipation. Significant progress has been made (see, e.g., [4-8,10,12-15,18-22,25~
30,32, 34,36-50]).

The rest of this paper is divided into two sections. Section 2 presents the proofs
of Theorem 1.1 and Theorem 1.2 while Section 3 proves Theorem 1.3.

2. PROOFS OF THEOREM 1.1 AND THEOREM 1.2

This section is devoted to proving Theorem 1.1 and Theorem 1.2. The proof of
Theorems 1.1 makes use of the wave structure to construct a suitable Lyapunov
functional, which allows us to eliminate some unfavorable terms. The decay esti-
mates are obtained by using a tool lemma stated below and the key components are
the verification on the conditions of the lemma. The proof of Theorem 1.2 also in-
volves the combination of energy estimates to form a suitable Lyapunov functional.
The frequency part of the solution that is supported away from the origin allows
the application of Poincare type inequalities.

The following lemma provides a precise decay rate for a nonnegative integrable
function, which is also monotonic in a generalized sense.

Lemma 2.1. Let f = f(t) be a nonnegative function satisfying, for two constants
ag > 0 and a; > 0,

/Oof(T)dTSCLo<OO and f(t) <ay f(s) forany0<s<t. (2.1)
0

Then f(t) decays at a rate faster than (1+t)7%, or
(14+¢t) f(t) =0 ast— oo.
In particular, for ay = max{2a; f(0),4aga} and for any t > 0,

flt) <ax(1+t)7L



10 WEN FENG, FARZANA HAFEEZ AND JIAHONG WU

Proof of Theorem 1.1. We start with the estimates on the norms of b. Let ® be the
Fourier multiplier defined in (1.10). Applying ® to the equation of b in (1.8) and
then taking the L%inner product with 0,®b, we obtain after integrating by parts
and invoking V - b = 0,
1d
2dt

Applying @ to the equation of b in (1.8) and then taking the L?-inner product with
®b, we have

1d
2dt
We further rewrite the last term as

(19@BI2 + 18] + |0s@bl3: ) + V|0 BH- + n|a®bIE: =0 (2.2

(T]HCI)bHLQ + V||32<I)b||L2) + ||81<I>b||L2 nu||82<I>bHL2 /815,5(1)1? Ob dx = 0.

d
= < (0:2b, ©b) — |0, b][7,

where we have introduced the notation for the L2-inner product,

(fr9)= [ f-gdz.
RQ

Therefore,

&.lg‘

- (nll @3 + V|2 b3 + 2(00b, @)
+[01®b] 72 + np[| 022072 — (10,27, = 0.

Let A > 0 be a parameter to be determined later. Then, (2.2)+\(2.3) yields

1d
S <||8t<1>b||L2 F|30Db]22 + (A + )| 32D 22 + Agl| D22 + 27 (D, Db, cpb))

+0]|020:®b||72 + (7 — N)||0: @072 + N[|O1®b]|72 + Anv||0®b]|7. =0..  (2.4)
By Holder’s and Young’s inequality,
10:b[ 72 + Anl| b7 + 2A(0, Db, Db)
> [10:@0||7> + Anl| PDIIZ> — 2X[[0:@b(t) | 2| BB .2

N | —

(2.3)

1
> o013 + Mlovl3: ~ ( Gloolzs + 2o
1
> S[10:20]172 + (An = 2X%) | D7z (2.5)
In particular, for A = 7, (2.5) becomes
2
Ui
10:2b|I7 + —||‘1’b||L2 +5 (3@6 o) > —||3t¢b||%2 + g I1®blz.. (2:6)
Integrating (2.4) in time and 1nvok1ng (2.6), we find, for any 0 < s <'t,

2
i 5
[0,Pb(t)]|72 + ZH‘Pb(t)Hiz +2[|0,®b(t)[ 7 + S 10290(1) 172
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t
4 [ (100,03 + 300,08 + OB + v a2 ) dr

3n? )
< 3[[(2®b) ()72 + —~[12b(s) 172 + 2/ 01®b(s)I[72 + 1w |0:0(s) I 72, (2.7)

where we have used the following upper bound to obtain the right-hand side

2 3 3 2
1220 (s) 32 + | @b(s)]172 + 3 (A1b, Bb)(5) < S[(DPB)(3)]I72 + = [10B(s) 3.

Since u and b satisfy exactly the same wave equation, the bound above also holds
for u,

2
n 5
1 u()[I72 + | Pu)l[72 + 2O Pu(t)[72 + S (10 2u(t)]:
t
+ [ (whou0 vl + 300 0ul + nlouls + v fouul.) dr

3n? 5
< 3(000)(5) [ + L[ a3 +2A0hPu(s) s + 2w [ nu(s) [ (25)

Invoking the original linearized system of (u,b), namely (1.9) and letting ¢ — 0, we
obtain

(&u) (0) = 1/822’&0 -+ albo, (8tb)(0) = —T]bo + 61’&0. (29)

By setting s = 0 in (2.7) and (2.8), and using (2.9), we obtain the desired global
bound in (1.11) and (1.12). By taking the Fourier multiplier operator ® to be the
fractional Laplacian operator,

Of = (-A)f
and identifying the homogeneous Hé-norm as the following L?-norm,
11l = 1(=2)% £l e,
we can then reduce (1.11) and (1.12) to (1.13) and (1.14), respectively.

Next we show the decay rates in (1.15) and (1.16). The idea is to apply Lemma
2.1. We set,

2
5
F(t) = [|0,2b(t)|7- + %H@b(t)\lia + 2101 25(0)|72 + 5w [|0:20(2) 72

and verify that F(t) obeys the conditions in (2.1). It is clear from (2.7) that, for
any 0 < s <t < o0, there is a constant C' independent of s and ¢ satisfying

F(t) < CF(s). (2.10)
In addition, by taking s = 0 in (2.7) and invoking (2.9), we have
| (sulon00lz + nlovoni + v jouab.) ar
0

2
<1577
- 4

5)
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In addition, a simple L2-energy estimate on (1.9) leads to

t
1D (u(t), b(t)) 72 + 2/0 (V]| @0aull72 + nl|®D||72) dT = [|D(uo, bo) 7.
In particular,

0 [ I0bE dt < 00 e 212
0
Adding (2.11) and (2.12) yields

/ F(t) dt S C(l/, 77) (HCI)(U(),bQ)H%Q + ||81(P(U0,b0)||%2 + ||62q)b0||%2) . (213)
0

(2.10) and (2.13) then verify (2.1). Lemma 2.1 then implies
(1+t)F(t) >0 ast— oc. (2.14)
As a special consequence,
F(t) < Cliyn) (|(ug, bo) |2 + 191 ®(uo, bo) 22 + |0sDbo]2:) (1 + 1),

which is (1.15). The process of showing the decay rate for b does not work for w.
The reason is that we do not have the corresponding time integrability bound (2.12)
for u. We do not know if ||Pu(t)||.2 decays or not. What we can obtain is an explicit
decay rate for ||V®u(t)|| 2. According to (1.9) and (2.14), we have

(14 t)|o1Pu(t)]|3: < C (1 +1) (H@t@b(t)H%z + 77||(I)b(t)|’%2) —0 ast—o00
and
101 ®u(t)||L2> < [|0:P0(E)]| L2 + 0| Pb(E)| 2
< Cv,m) (@ (uo, bo)llz2 + |00 (o, bo) 12 + [[02Dbo | 2) (1 +1)72. (2.15)

To obtain the decay rate for d,®u, we apply 0o® to (1.9) and then dot with
(OsPu, 0, Pb) to obtain
1d
5%“\82@“”%2 + [|02@b]172) + 1|02 ®ul|72 + 1| 02Pb]7. = 0.
Therefore, for 0 < s <'t,
182 Pu(t)[|72 + |0:@() |72 < [|02Pu(s)[|72 + [|O2PD(s) |72

Furthermore, (2.8) with s = 0, together with (2.9), gives
| 1oauo a
< C(v,n) ([Puollzz + IVOuo|[Z> + 01 Dbl 72 + [[O22Puoll72)  (2.16)
Combining (2.11) and (2.16) leads to
| (lostutol: + lasebee) i)

< C(v,n) (12 (o, bo)lI72 + |2(Vuo, Vbo) |72 + [|022Puol|72) -
It then follows from Lemma 2.1 that
(L+t) (|02Pu(®)]|72 + |02Pb(E)[|72) — 0 ast— oo
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and
102@u(t)[I72 + [10:P0(2) 172
< C(v,n) ([2(uo, bo)lIZ2 + |2(Vuo, Vbo) |72 + 002 Puol72) (1+14)7".(2.17)
(2.15) and (2.17) yield (1.16). This completes the proof of Theorem 1.1. O

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We make use of some of the estimates from the proof of
Theorem 1.1. Recall the definition of ¢ in (1.17). By taking ® to be the convolution
operator ¢, namely

~

Df=¢xf or BF(E)=5(0) f&).
we obtain from (2.4) that

d
— G (t) + 20]|020,(¢ * b)|IZ> + 2(n — N)[|0n(d * b) |7

dt
+2X[01(¢ * D)[|72 + 2| 02(¢ # b) |72 = O,
where
G(t) = 1100 *D)l[72 + 0u(¢ * b)[[72 + (Av + nw)[|92(6 % D) |72
+A0[ (¢ % 0)[[72 + 2A(:(¢ % D), (¢ % D)).
By setting A = 7, we find

d 3 vn?
SO + o6 <O + JN01(@ D)7 + - 0a(@x D)7 <0. (2.18)

In particular, if we set

. [3n n vp?
C p— e —
1 m1n{2,2, 2 y

then (2.18) yields

d
Z GO+ C1 ([0.0 V)72 + V(6 +D)l[72) < 0.

By Plancherel’s Theorem and the definition of gg,

waé=Wﬂm=AP@%%m

€ a2
< [ S a < G

Therefore,

d 2 1 2 a? 2
—G@+{h@&w*whr+ﬂVW*®Mr+5M¢ﬂwm)SO

dt
Cy = min{ﬁ ﬁcﬂ},

If we write
272
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then
d
aG(t) + Co(10:(d % )17 + V(¢ % b) |72 + [ (¢ % b)[172) <O.

Clearly, for A = 7,

(2.19)

2
G(1) < 1000 * D) + 216 * D) + 1101 (6 % B) s + "2 10u(6 * ). (2.20)

For any constant C satisfying

0 < Cy Smin{202 8Ch 4C2}7

3 " 3n2  5un
(2.20) implies
Co([|0(¢ + b)I[72 + IV (¢ % b)I[72 + (& x B)IIZ2) > CoG(1).
(2.19) then implies
%G(t) LG <0 or G(t) < G0)eCot,

By the definition of G,
onv
G(0) = [1(0:(¢ * b)) (072 + [101(¢ % bo)l[z2 + == 192(6 * bo) |72

v ”ZQW xbo)||22) + g((ﬁt(sﬁ +0))(0), (¢ * bo))-

By (1.9),
(0:(¢ x8))(0) = —n(¢ * bo) + 91 (¢ * uo).

Setting A = 7 and applying Holder’s and Young’s inequalities, we have

G(0) < 311040 * )OI + - (65 bl

onv
+ 11016 % o)l + 21926 * bo)
< Ca(w,m) (6 * w0, 6 % bo) .
Clearly, for A = 7, G(t) admits the lower bound

G(t) > Cu(|0:( * D) 172 + 1I(¢ % b) [1771),

where Cy = Cy(v,n) is a constant. Hence, (2.21), (2.22) and (2.23) lead to
10:(6 D) 12 + (& % D)7 < Cs(ll(¢ % wo) I + 11(6  bo) 17 )e ™,

(2.21)

(2.22)

(2.23)

which is (1.19). The proof for (1.18) is very similar and we omit the details. This

completes the proof of Theorem 1.2.

O
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3. PROOF OF THEOREM 1.3

This section proves Theorem 1.3. This theorem consists of two main parts, the
stability and the large-time behavior estimate. Naturally our proof is divided into
two main parts with the first devoted to the stability and the second to the proof
of (1.20). Due to the lack of the horizontal dissipation in the velocity equation, the
main difficulty in the proof of the stability is how to bound the velocity nonlinear
term, namely (1.22). This is the reason that the 2D Navier-Stokes with degen-
erate dissipation is not known to be stable. We fully exploit the smoothing and
stabilization effect of the magnetic field to overcome this difficulty.

The proof of the decay estimate (1.20) focuses on the time integrability
/ |O1ul|72 dt < C €2,
0

which is not a consequence of the vertical dissipation in the velocity equation. It is
established by making use of the regularization effect of the magnetic field through
the coupling and interaction.

In order to make efficient use of the anisotropic dissipation, we employ several
anisotropic tools to control the nonlinear terms. One of them is Lemma 1.4 stated
in the introduction. Another anisotropic inequality we also use extensively is given
in the following lemma. A proof is also presented for the convenience of readers.

Lemma 3.1. The following estimates hold when the right-hand sides are all bounded.
1 1 1 1
Hf||L°°(R2) < CHsz%W)Half|’i2(R2)Ha2in2(R2)H812f”22(R2)-

Consequently,
1 1
[fllzee < CUAN Zn1OLF g1

1o < CUFNE 1021 -

Proof. We recall the following inequality, for a one-dimensional function g € H!(R),

1 1
gl < V29Il 19'1122m)- (3.1)
By (3.1) and Minkowski’s inequality,
I e = [ lasgem ]

1 1
3 2
<V2 HfHLgQ(R)“a2fHL§2(R)HLgo1(R)

< V2l fllzz, @

1
S (ot
2/ 1Lz, (R)
Lg (R) 2 Lg (R)

<V2 11| 222 ()

102 || s ()

1 1
2 H | 2
Lz, (R) Lz, (R)

1
2
L2, (R)

1 1
12115 ) 1010212 s

1
1 1 2
<2171, o 0011 |
= ||f||L%1(R) I 1f||L§1(R) L2, (R)
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1 1 1 1
< 2 sy 100 gy 1021 ey 1012

Here we have written || f||ze®) with j = 1,2 to denote the L*-norm of f in terms
J

of z; on R, and, similarly, ||‘f||Lazc_(R) denotes the L?-norm. O
J

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The framework of the proof is the bootstrapping argument.
We define the energy functional to be

t t
B(0) = sup (lulr) e + [0} + 20 [ ol dr+2n [ e dr (32
STt 0 0

an show that
E(t) < E(0) + C1E2(0) + CLE*(t) + C3E* (1) (3.3)

(3.3) is established by estimating the H*norm of (u,b). As aforementioned in the
introduction, it is extremely difficult to obtain suitable upper bounds for some of the
terms such as the nonlinear term in the momentum equation. We can only control
them through the coupling with the equation of the magnetic field. Equivalently we
exploit the regularization and damping effects of the wave structure derived from
the coupling and interaction of the velocity and the magnetic fields. The estimates
of ||(u, b) ||z will involves various operations such as repeated substitutions to take
the full advantage of the wave structure.

Due to the equivalence of the inhomogeneous norm ||(u, b)||z2 with the sum of
the L?-norm and the homogeneous norm ||(u,b)|| 72, it suffices to bound the ho-
mogeneous norm ||(u, b)| 2. The uniform L?-bound is an easy consequence of the
system in (1.1) itself. Taking the inner product of (1.1) with (u, b), we obtain, after
integrating by parts and using V-u =V -b =0,

t t
lu()Z2 + 6172 + 27//0 102z dr + 277/0 IBIIZ> dr = lluollZ2 + [Ibol|Z- (3.4)

To estimate the homogeneous norm ||(u, b)|| g2, we make use of the equations of the
vorticity w = V x u and the current density j = V x b, namely (1.6),

{8tw+u-Vw:V822w+b~Vj+81j, (35)

O +u-Vj+nj=>b-Vw+Q+ 0w,
where Q = 281()1 (82u1 + 81u2) - 281111 (agbl + albg). Due to
1(w, D)l g2 = [[(Vw, V)| 2,

we focus on ||(Vw, Vj)||r2. Applying the gradient V to (3.5) and taking the inner
product of the resultant with (Vw, Vj), we find, after integration by parts and the
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divergence-free conditions,

1d , .
5 7 IVelze + 1VillZ) + v 0:Vwlzz +nl[ Vil

:—/Vw-Vu-dex—/Vj-Vu-Vjdx—i—/Vw-Vb-dem (3.6)

+/Vj-Vb-dex+/VQ-dex
=J+K+L+ M+ N.

J is the most difficult term and its estimate is long and tedious. We start with the
easy terms. Even though L and M are not exactly the same, they obviously admit
the same upper bound. To bound L, we further decompose it into four terms in
order to make use of the anisotropic dissipation,

L:/Vw-Vb-dex
:/alwalbl 81j dx—i—/alw@lbg agj dx

+ /(92w 8261 81] dx + /82&) (92b2 82] dx
Z:L1+L2+L3+L4.
By Lemma 1.4,
1 1 1
Ly = /31w Ohbr 01j da < OO 21|06 || 7211050172 |10 |72 D201 0| 7

1 1 1 3
< Cllull g2 1101 21 0zull 72 1011 72

Ly = /31W O1by 02§ du < C||02j||12/|01b2 || 22|05 ba 172 ]| Orw ]| 22 [| 201w | 2.

1 1 1 3
< Cllull F2 101 2 | B2l 72 [[b]| 772
where we have used the basic facts,

1017l 22 = 101Vl 2 < [[blla2, (|01l 2 = |00 Vul[r2 < [ull g2,
||0281w||L2 = ||8281VU||L2 S ||82U||H2

L3 and L4 can be bounded similarly. Therefore,

1 1 1 3
L < Cllull a1l 5211 Ol 22101 = (3.7)
Similarly,
1 1 1 3
M < Cllull g6l f2 | 02wl 1211l - (3.8)

We now turn to K. Again, in order to make efficient use of the anisotropic dissipa-
tion, we decompose K into four terms,

K:—/Vj-Vu-dex



18 WEN FENG, FARZANA HAFEEZ AND JTAHONG WU
= —/81j81u1 81j dr — /61] 81’&2 62] dx

— /82j(92u1 81j dr — /82j82u282j dx
=K+ Ky + K3+ Kjy.
By Holder’s inequality and Lemma 3.1,

K = - / B1j Orun Brj d < 0vuar]| e 100 2 01 o

1 1 1 3 1 1
< l[0ru || 7 [1020vua || 7 1011772 < 102ull 712 101 7 [l 72 1111 7=
The other three terms K5, K3 and Ky all admit the same upper bound. Therefore,
1 3 1 1
K < C|0yull o |1/ 7o [l = N[B]1 7o - (3.9)

We now bound N. We write out all the component terms in () explicitly,
N = / V@ -Vjdx
= 2/ <6%b182U18%b2 + 8%(71811@8%61 — 8%1)1821“8182[)1 — a§b181U28182b1

+ (9161(91821&18%2 + 81b1(912u18fb2 — 81618182u181(92b1 — 81b185u26’182b1
— 8%1“821)18%[?2 — a%UQﬁlbgabe + 812u182b18132bl + 312u181b28132bl

— 81’&101626163172 — 81’&18%528%[72 + 81U18182518102b1 + Glulﬁfbgé?lﬁgbl> dx.

Even though N contains sixteen terms, but all of them can be bounded suitably
using Holder’s inequality, Lemma 1.4 and Lemma 3.1. Since the details are quite
similar to those in the estimates of K, we omit them for conciseness. The upper
bound is

1 1
N < Cblize [l 2 ll02ull 7. (3.10)
We now turn to the most difficult term J. Again, we split J into four terms,

J:—/Vw-Vu-dex
= —/81w81u1 81w dx—/81w81u2 82&) dx

— /82w 82U1 61w dx — /agw 62u2 82w dx
=S+ S+ J3+ J4 (3.11)

As we have explained in the introduction, due to the lack of the horizontal dissipa-
tion, J; and Jy can not be bounded suitably. It is the smoothing and stabilization
effect of the magnetic field that makes it possible to control these two terms. To
incorporate this effect, we make use of the equation for the magnetic field. By
replacing dyw by the second equation in (3.5), namely

dw=0j+u-Vj+nj—b-Vw—0Q,
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then Jp is converted into five terms,
J = —/81u1(8tj—l—u-Vj+nj—b-Vw—Q)81wdyc
= Jig+Jig+ iz +Jia+ Jis

We shift the time derivative in J; ;, namely

J171 = — /81u1 at] 810.) dx

d
= /aluljalw dx + /81(8tu1)j31w dx + /aluljal(atw) dx
=Jia+Jiie + Jiags.
Replacing dyu; by the first equation of (1.1), we have

JLLQ = /jalw (—(91(u . Vul) — (911P + 1/8221161 + 81(6 . Vb1> + 81161) dx

= Ji21+ 122+ Ji123 + S+ Ji2s
Similarly, we replace dyw by the first equation in (3.5),

J1,1’3 = /alulj (—81 (u . Vw) + I/agglw + 61 (b . VJ) + 811j) dx

=Ji131 + Ji132 + J1133 + J1134
We thus have rewritten J; as
Jio = JiatJig+Jigt+Jia+Jis
= Jigg+die+ s+ Jig+ g+ Jia+ Jis
= Jigp1+Jii22+ 1123+ Jii24+ Ji125
+J1131 + Ji32 T J1133 + J1134
+Jia+Jig+ i+ Jia+ Jis (3.12)
We estimate the fourteen terms on the right of (3.12). By Holder’s inequality,
Lemma 1.4 and Lemma 3.1,

J1717271 = — /j@lwﬁlu . Vu1 dr — /jalwu . V81u1 dx

< 0vullioe [l 2 Vun 1210V |12, 1512 1045112
oo 10nell 2V Dhs 12210V Breas | 22 1512210111
< 10null 2 10a0ru] 2 0ol 2 |V |22 102V a2 1511221015112
a2 1ol 2 1910 2211V By | 221182V By [ 2 151122 1047122
<l Bl g ] =

Applying the divergence operator V- to the first equation of (1.1) and invoking
V - u =0, we have

P =0 (=A) 'V - (u-Vu—b- Vb) (3.13)
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By substituting (3.13) into Ji 1 9.,
Ji129 = —/j(‘)lwan(—A)_lv (u-Vu—0b-Vb) dr
= —/j@lwall(—A)_lé?l(u~Vu1) dx — /j@lwall(—A)_lag(u-VuQ) dx
+/j81w811(—A)181(b~Vb1) dx+/j81w811(—A)182(b~Vb2) dz
= —/j@lwan(—A)_l(alu-Vul) d:p—/j(‘?lw@n(—A)_l(u-Vﬁlul) dx
—/j@lw(?ll(—A)l((?ngug) dx—/j@lwan(—A)1(u-V82u2) dx
+/j81w811(—A)‘1(81b~Vb1) dm+/j81w811(—A)‘1(b-V&lbl) dx
+/j81w811(—A)_1(82b-Vb2) dx+/j81w(911(—A)‘1(b-Vagbg) dx
__ / 10100 (—A) " (O - V) da — / 101wd (—A) " (O - Vi) da
+/j81w811(—A)‘1(61b-Vb1) dx+/j81w811(—A)_1(8gb-ng) dz
= —2/jalwan(—A)—l(alulalul) d:L’—Q/jalwall(—A)_l(GluQGQul) dx
+2 / OO (—A) " H(O1b101b1) dx + 2 / OO (—A) " (D1byDaby) da.

The four terms on the right can be estimated as follows. We use Holder’s inequality,
Lemma 1.4 and Lemma 3.1, and the fact that the double Riesz transform 9;; A~ is
bounded on L? for any 1 < p < oo.

Jiaza S 1312000112 101002, 192010125 011 (=A) ™ (Breasran) 12
1512100125 [01e0l1 22 19201012 (101 (—A) " (Dyusdaar) | 12
1512100125 01el12 192012, 191 (—A) " (Dybydiby) 12
15121000125 01eol12 192012, 101 (= A) " (D1badaby) 12

S 511 10012 18]l [10s0h0] 2
X (H81U181u1||L2 + ||O1u209us || 12 + ||01010161]| L2 + ||31b23251||L2)
S 121007112 181022 192010 22 10rul e (1Dt 1
131209012 1Ol 2, (1001 2. V5] 24

1 1 1 1 1 1
S 311 Z2l1005 1 22 10wl 22 0201wl 72 | Ovull g [|020vull s (|02 2
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1 o1 1 1
+ 221001 22 (10wl 22 [|02010] Lo [ VO] 22 | A 22
1 3 1 3
S N10sull sz 1Bz l[ull 2 + 192wl 32 101 7 [l 2 1011 7o
By Lemma 1.4,
1 1 1 1
Ji123 = V/j61W8221u1 dr < ”8221U1||L2||61W||z2||8281W||z2||j||z2||6lj”zz

S 0ol 2 |6l 22 || ]| 12

By Lemma 1.4 and Sobolev’s inequality,
J1’1,274 = /jalwﬁl(b . Vbl) dr = /j@lwalb : Vbl dx + /]81&)[? : 61Vb1 dx

S 0nb - Va2 (1312100112 1010 22| 9a0he0] 2
16 bl 15122 1017122 101w 122 | oD
< (10124 + (]l 0 Tu 22 1Bl 2z 1l 1l
S 11ble lull s 10sull 2.
The last term J; ;25 can also be bounded via Lemma 1.4,

1 11 1
Ji125 = /]0100811171 dr < ||811bl||L2||81WHz2"8201‘*0"22HJ“zzHalJsz

1 3 1 1
S 19zl Fa 10l 2 Nl 2 1011 2 -
We rewrite Ji 131 as

Jia31 = —/81u1j81u -Vw dx — /81u1ju -0 Vw dz

=Ji1311+ 11312
By Holder’s inequality, Lemmas 1.4 and 3.1,

Ji1311 = /81U1j81Udex

1 1 1 1
S 10vul| L= [Vwl| 22| v || 22| 020vua || 72 71 22 10011 72

1 1 1 1 1 1
S 0wl l|020vull i [[Veol| L2 101 ua || 72 1920vua || 22 N1 72 1917 £
S 11Ozl a2 1] 122l =

By integration by parts, Lemma 1.4 and Lemma 3.1,

Jii1312 = —/31u1ju -0 Vw dz
= /811u1ju -Vw dx + /alulﬁlju -Vw dx + /Gluljﬁlu -Vw dx

1 1 1 1 1 1
S Nullzll0zull | Ovua || 2 [Vl 22102 Vel | L1511 72 19171 2

~J
1 1 1 1 1 1
+ lullfp 102wl |00 | 2 101w [| 22|01 Orua || £ [ V]l £ 02 V]| 22

21
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1 1 1 1 .
+ 01wl 7 [[0201ul| F [V 22 [ O1ua || £ 2| G201 ua [| 2[5 72 M| 9151 7 2
S N0l 2| b 2 || 72

Similarly,
J1717372 = l//aluljagglu} dxr = —V/@lluljﬁggw dx — V/@lulﬁljﬁggw dx

1 1 1 1
S 1022w ]| 22 |15 2211011 72 1011 ua || 72 (| 02011 s || 2
1 1
+ [|0vua || f1 |02 01 un || 71 (|01 || L2 | Oaaww || 2
3 1 1 1
S Noaul bl sl s 101
By integration by parts, Lemma 1.4 and Lemma 3.1,
Ji133 = /aluljal(b -Vj) dx
= —/811u1jb . VJ dx — /81U181jb : VJ dx
. i L 1 1
Sl el Vil 2 171172110072 (|01 ua ]| 72| 02011 ua || -
+ [10vua ][ oo [[0]| oo |01 ]| 22| V5 || 2
1 1 ) 1 1 1 1
S oIz 10101 7 [Vl 22151 22 1013 11 22 [ O11wa || [| 02011 s || 2
1 1 1 1
+ [10vua || 71 [| 0201 un || 71 (1011 71 1920 7 1017 | 22 [ V5 | 22
1 3 1 3
S [ Oaull 2 1Bl Fr2 llwll 21101 772
By integration by parts and Lemma 1.4,

Ji134 = /aluljallj dr = —/511U1j81j dx — /81U131ja1j dx

1 1 1 1
S 10151l c2ll O || 7211 Oa0raua | 2217172 10151172 + [19ruall o< 1015117
1 3 1 1 1 1
SN 02ull G 100 e el B 1011 72 + 11020 17 [| 0201 | [B]1
1 3 1 1
S 12wll 2 101 £ el 72 1011 7=

The next term in (3.12) is Jy 11, which involves the time derivative. Its handling is
easy and it will be bounded after we take the time integral. We turn to the next
term in (3.12), namely J; 5. By Lemma 1.4 and then Lemma 3.1,

JLQ = /81u1u : Vjalw dx

1 1 1 1
S Nl V512 | 0rual 7 07|17 |01 | 72 | 8201 £

1 1 ) 1 1 1 1
< Mull 7 102ul 2 1Vl 22 10|72 10w [ 721|010l 72 | 02010 .

< [|02u]| g2 |[B]] g2 || w2
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By integration by parts, V - v = 0, and Lemma 1.4,

J173 = — /n@luljﬁlw dx

= /n@fuljw dl’+/7]82U281jw dzx
. 2 1 9 1 1 1
S Ml eel|0run || (10207 un || 25 |wl| £2 (| 1wl 7 5

1 1 1 1
+ 1101712211 Oz | 2 105 uall 72 | 72 |00 22
S 1102l g2 |[bl] 2 ]| 22

By Lemmas 1.4 and 3.1,
J174 = /61ulb : Vw@lw dx

1 1 1 1
S [0vur | o= [[Vwl| 2|1l 72 | 8201w ]| 72 1] 22 [| 91| 7

1 1 1 1 1 1
S [10vwn | 10:0vun || f [ Vol 22| 01wl 22 | 0201 Lo 1Bl 22 [| 9101 22
S l102ull 2 bl 22l 7o

J1,5 is written more explicitly into four pieces by the definition of @),
J175 = /61u1Q81w dx

= /81’&1810) (281[)1 (81U2 + agul) — 281'&1 (albz + agbl)) dx
= Jisa+Jis2+ Jiss+ Jisa.
By Lemmas 1.4 and 3.1,
J175,1 = 2/6171481()181’11,28160 dx

1 1 1 1
S [01us]| oo || 01w || 2 || Ovua || 2 (| 0201 s || 72 | 0101 |2 [ 01 01 b | 7 2
1 1 1 1 1 1
S 101us ]| 21| 0201us2 || 12 [|O1w]| L2 | Orun || £ 2 | 201 ua || 2| O1b1 || 72 | 0101 b1 || 7
< [|Oou]| gr2][B] rr2 || w32
It is easy to check that Ji 529, Ji53 and Ji 54 all obey the same bound. Therefore,
| sl S 110wl 2|6l 2]l 72

We have completed the estimates of the terms of J; in (3.12). Collecting the upper
bounds leads to

d .
Ji< =5 [ o iow do -+ C ol el

1 3 1 3
+ Cl|Oaull F2 6] e llwll 72 101 72 + C |02l a2 ][0 22 | ]| mr2
1 3 1 1
+ C||62U||12{2||b”12{2||u||12{2||b||12{2 (3.14)
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We now turn to the second term J; in (3.11). As we have explained before, we need
to invoke the smoothing and regularization effect of the magnetic field in order to
bound this term suitably. By replacing d;us by (1.1), namely

81U2 == 6tb2 +u - ng + ’f]bg —b- VUQ,

we can write
Jo = —/81w (Opby + w - Vb +nby — b - Vuy) ow dx
= Jo1 + Jag + Jaz+ Jau.
We bound Jy9, Jo3 and Jy 4 first. By Lemmas 1.4 and 3.1,
Joo = —/01wu - VbyOow dx

1 1 1 1
S l[ullze< 02| 22| 1]l 72 18201 | 22 [V b2 | 22 1|01 Vb | 7

1 1 1 1 1 1
S Ml g | 02wl |02 | 22 1010 22 [| 02010 | 22 |V b2 | 2 101 Vs
S N102ull32 1Bl 22l =

By Lemma 1.4,
J273 = —7]/81(,0 bg @Qw dx

1 1 1 1
S 10wl 2 101wl £ (| 0201w]l 12 (|02 [ 221|012 £
3 1 1 1
S 10aull o 111 o Nl = 111] 72

Again, by Lemmas 1.4 and 3.1,

J2’4 = /810)[) . V'ngagw dx

1 1 1 1

S bl |020| 21010l 72 | 0201wl 72 |V iz 22 |01 Vo] | 7
1 1 1 1 1 1
S 0l 72 192611 772 1020 22 | 0re0 [ 22 M| D201 72 | Va1 72101 V|| 72

3 1 3 1
S 1awll 2 101 72 el 72 1011 72

To deal with Js;, we shift the time derivative,

)

J2 1= —/81w0t6262w dx

= —%/wag@gw dr + /al(ﬁtw)bgﬁgw dr + /alwbgé?g(@tw) dx
=Jo11+ 212+ Jois.
By invoking the vorticity equation in (3.5), we can write
Joq2 = /81(—u - Vw + v0ypw + b+ Vj+ 017)by0sw dz
= Ja1p1 + Joi22+ Jo123+ Joi24
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By integration by parts, and Lemmas 1.4 and 3.1,
J27172,1 = /U . Vwalbgagw dx +u- Vwbgﬁlagw dx

1 1 1 1
S Nullzo [Vl 22 [|0aw] 2 | 0202] 22 191621 71|05 a1 .

1 1 1 1
+ [lullze 101020 ]| L2 [ VW | 2210 Vel 22 [[ba| 22 D1 ba | 2

S 02ull a2 bl 2 |l + 1102l Bl 2 [l 12,

and
J2,172’2 = —1//822w81b282w dr — V/822w620132w dx
1 1 1 9 1
S 1|0aaw|| L2 [|Oaw | 72 [|0202w]| 72 [| 0102 72 [| 97 D2 |7 5
+ [[b2]| Lo || O2ow]| 2|01 Dot || 12
S N0zl 321l 122 + 102 71101021 71 |90 e
< 102wl [72 10l 2
Similarly,
J2’17273 = —/b . Vjalbgagw dZL‘ — /b . ijg@lﬁgw d!L‘
S 10l < [Vl 22 [|0aw]l 72102021 72 [| 9102172 1052 72
+ bl [1b2]| oo [[ V]| £2 (| 0102w ]| 12
1 1
S IBI 7 110100 2 Ozl 22 11172 + (101|212 10101 a1 |61 22 | D ]| 2
S (102l 2 [[b1 32
and

Ja124 = /311jb282w dx

= —/81j01b282w dr — /81jb28182w dx
1 1 1 1
< 10012210211 721102020 72111621 72 1|05 ba | 72
+ [b2| o 101 ]| 22 [| 0102w ] 12

1 1
S 10sull 2 1Bl 72 + 1121l 7 10102 2 1072 [| O 72

< wull e -
To bound Jy; 3, we invoke the vorticity equation in (3.5) again,
J27173 = /82(—’& -Vw + V@QQW + b- Vj + 81j)b281w dx
= Ja131+ o132+ Ja133+ Jo134.

25
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By integration by parts, and Lemmas 1.4 and 3.1,

J271,371 = /u . Vw821)281w +u- VWanQalw dz

1 1 1 1
S ullzee [ Vwl| 2 [|01w]] ;2 | 02010 7 2| O2b2]| £ 2 | 0102b2 | 7

1 1 1 1
+ [|ul| Lo | 02010 || L2 [| VW | ;2 |02 VW || 2 (| b2 || 72 [| 012 £

S N 0vull a2 1B 2 |l 2 + 1102l 1Bl 22 ] 2,

J27173,2 = —l//aQQ(JJ82b281w dr — V/@QQWanQalw dx
1 1 1 1
S 0w 22| 01w || 72| 0201w]| 72| O2b2 || ;2 [| 010262 | ;.-
+ (|62l oo | O2ow || L2 [| 0201w | L2

3 1 1 1 1 1
S 0wl Gz 100 e el F 11 772+ 11021152 19162l 5 19l 2,

Ja133 = — /b - VjOaboOyw dx — /b - Vjby0y01w dx
< 11bll e 1951 2210160 22 801601 2 |82 2161 Do
bl 1ol 2 V51 2 182010 1
S 1Bl 1001 9ol el 2 0112 + 1810 0101 181 e
< 110 2 ol el 2 1811 + N9l B3
and

J2,1,3,4 = /812jb281w dx
= —/81j82b281w dr — /8ljb28281w dx
_ 1 1 1 1
S 1011100 21020112 0l | n0bel
+ |02l Lo [[017 || 22 [| 201w 2
1 1 1 1
S N02ull el 22 101772 + B2 1 10002171 1011 72 (| Oel|
1 3 1 1
S 1102ull 72 100 22 [l B2 1011 772 + 102l 772 101172
Collecting the estimates for Jo, we obtain
d
Jy < —a/é’lwbﬁw dz + C')|Ogul[32[0l| 2 | ull 122 + C (| Do 2 [0 2
) 1 1 3 1 1 1
+ C [ Oxullz2|b2ll 71 (10102l 2+ C 1Ol o \[Bl e Nl 7 101 7

3 1 3 1
+ C 10| Za 10| 7 [[ull 72 101 72 + C |0 2 1B eI

+ C'[|0gul| 2 [1b]| 32 + C'1| Ozl = BII3-
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1 3 1 1
+ Cl|0yull g2 10l o el 72 1011 7= (3.15)

The last two terms in (3.11) are J5 and J;. We now evaluate them. By Lemma 1.4,

J3 = — /82008216181&] dz

1 1 1 1
S Oaw]| 2| Opur || 72| 0100un || 72| 1w 7 21| 0201w} -
< [|0ul| 32wl a2 (3.16)

and

J4 = —/82w82u262w dx

1 1 1 1
S |0aw]| 2| Opuia ]} 2 | 0102wz || 72| Oow || 7 2| 0202w} -
< [|02ul 2 || wl 122 (3.17)

Adding (3.4) and (3.6), integrating in time, and recalling the definition of F in (3.2),
we have

E(t)SE(O)+/t(J+K+L+M+N)dT.

Collecting the upper bounds in (3.7), (3.8), (3.9), (3.10), (3.14), (3.15), (3.16) and
(3.17), we find

E(t) S E(O) — /81u1j81w dx + /61U01 jo 81w0 dz (318)
— /81&) bg c%wdm + /81(.{)0 bOQ ang dz (319)
+ CE*(t) + C E2 (). (3.20)

The last two terms on (3.18) come from the time integral of the first term in (3.14),
and the two terms on (3.19) are from the time integral of the first term in (3.15). The
two terms on (3.20) are obtained by integrating the aforementioned upper bounds
and applying Holder’s inequality. For example, when we integrate one of the upper
bounds in (3.14), say C'[|0xul| g2 ||| m2 ||| 3,

t t
/CHazulle [llz72 JullZ dr < € sup IIU(T)II?p/ 10zul| 2 [[0]] > d7
0 0<7<t 0

t L .
< CE(t (/ Hazuuipdf) (/ ||by\§{2d7)
0 0

)
< C E*(t).

The four terms on (3.18) and (3.19) can be further bounded as follows. By Holder’s
inequality and Lemma 1.4,

— /81u1j81w dx + /81U01 jo 81w0 dx

1 1 1 1
< Cllovwll 210w | 2211 020vua || 72 171 22 10011 72
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+ C|0vwoll 21| 01uor ||7 21| 0201101 || 72 [l Jol| 72 101 o I 7.2
< CE2(t)+CE*(0).

By Holder’s and Sobolev’s inequalities,

— /81w by Oow dax + /810.10 bo2 Oawy dx
< C|bo][ e |O1w] 22| Oaw][ 2 4+ C'[|bo2]| Lo [| D100 || 22 || Dawo | 22
< Cl|bllar [[01w][ r2]|Oow]| 2 + C [[boll a2 [|[O1wo| £2]|Oawol| 2
< CE*(t)+ CE*(0).
We have finally obtained (3.3), namely
E(t) < E(0) + C1E2(0) + CoE2(t) + C3E? (2). (3.21)

A bootstrapping argument applied to (3.21) would lead to the desired stability. We
show, by the bootstrapping argument, that if the initial data is sufficiently small,
say

[[(uo, bo) |2 < e,

with e satisfying

1 1
2 3 — i
4e” + 4015 S (50 = 1min {E, (403)2} s

then, for any 0 <t < oo,
1(u(), b)) 72 < E(t) < do.
In fact, if we make the ansatz that, for 0 <t < T,
E(t) < b,
then (3.21) implies
E(t) < &2+ C1e® + CLE(t) E(t) + C3Ex (1) E(1)

1 1
S € +018 +CQ —402E(t)+03 403 E(t)

or
1 1
§E(t) <4+ 0 or E(t) <22 +206° = 550_

The bootstrapping argument then implies that 7" = oo and E(t) < §p. This com-
pletes the proof for the stability part of Theorem 1.3.

Next we prove the large-time behavior estimates stated in Theorem 1.3, namely
(1.20). We make use of Lemma 2.1. The main efforts are devoted to verifying that

ft) = [IVut)|z2 + [VO()|1Z:
satisfies (2.1), namely

/OO ft)ydt < Ce* < (3.22)
0
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and, for any 0 < s < t,
F(t) < Cf(s). (3.23)
The proof of (3.23) is relatively easy while the proof of (3.22) is more complex. Since
IVu()]|z2 = llwllze and  [[Vo(£)[L> = [lj]lz2,
we resort to the equations of w and j in (3.5). By taking the inner product of (3.5)
with (w, ), we find
1d
57
== 2/81b182u1j d(lf+2/81b181@b2]d1’

(wIlZz + 171Z2) + vl 9awllZ + mllillZ2 = /Qj da

— 2/81%182b1j dx — 2/81U181()2j dx. (324)

The four terms on the right-hand side can be estimated very similarly. We bound
the second term as an example. By Lemma 1.4,

1 1 1 1

2/315131U2jd$ < O|01by || 2| Ovua || 72 110201us || F2 |71 21 OLd 1] 7 2
v 2 12 3 13
< 1_6“8281“2”L2 + Cllllzz lwll 72101 72

2 2
02|22 + CljllZelwl 22110151 2

IN

=
16
The other three terms obey the same bound. Invoking these bounds in (3.24) yields

d .
7 UlllZz + [171172) +

According to the first part of our proof, if the initial data (ug, by) satisfies

[ (w0, bo)||g> < €

for sufficiently small € > 0, the solution (u, b) remains small,
[(u(®), b(t))[| 2 < Ce.
When € > 0 is taken to be small enough such that

3v 2 2 .
Flowlt +2 (n=Cllwl 01312 ) Il < 0. (325)

0= Clwlildulfs = n—Ces 2 0,
then (3.25) implies, for any 0 < s < t,
lw@N1Z2 + 1O < lws)lZe + ()72 o f(t) < f(s).

We now prove (3.22). We have shown in the previous part that
/ 10530 dt < C'2, / 16|32 dt < C2. (3.26)
0 0
To prove (3.22), it remains to prove

/ |O1ul|32 dt < C & (3.27)
0



30 WEN FENG, FARZANA HAFEEZ AND JIAHONG WU

The proof for this upper bound is not trivial. We need to take advantage of the
regularization of the magnetic field. We replace one of dyu in (3.27) by the equation
of the magnetic field

ou=0b+u-Vb+nb—>b-Vu

and obtain
|O1ul|72 = /81u -0 dr = /81u (Ob+u-Vb+nb—>b-Vu) dx
= N1+N2+N3—|—N4. (328)

We first estimate Ny, N3 and N, and then come back to N;. We write out all
component terms explicitly,

N, = /8lu- (u-Vb) doe = /(alul(u -V)by + Oyugu - Vby) dx

= [ (0um) )01+ yalundit + wa0it))
= No1+ Noo+ Nas.
By Lemma 1.4,
Ng’l = /(-82U2)(U . V)bl dx

1 1 1 1
< Ol Ozusl| 2wl 22 [102ull 22 [V Or | 72|01 Vbu[ L2 < Cllul[ g2 | Ogul| a2 |[b]] 22

By integration by parts and Lemma 1.4,

N272 = — /(u281u181b2 d[E + u2u1011b2) de‘

1 1 1 1
< C'|ual| 2 ||0aus ||} 2 || 0202us]| 72 (|01 b2 | ;2| 010162 |} -

1 1 1 1
+ C [|011b2]| 2| Opuia | f 2 [|uz || 72 |wa || 2 |01 v || 7 2
< Ollul| g2 || 02wl g2 |b]| 222

Again, by integration by parts and Lemma 1.4,

2
N273 = /81U2U28252 dx = /81(%)8262 dx

2
= /82(%)81[)2 dr = /u282u281b2 dx
< Cllull g2 |02ul| 1r2][b]| 2

Clearly,
1
No=n [ oru-b do < Cloyul e < f0uls + CloE
To bound N4, we again write out the component terms explicitly,

N4 — _/alu. (b VU) dr = —/81u1(b' V)Ul dx — /8111,2(17 V)UQ dx
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= /82U2(b : V)Ul dx — /81U2b181’d2 dr — /81U2b282ﬂ2 dx
= N1+ Nyo+ Nys.
By Lemma 1.4,

N471 + N473 == /@QUQ(b . V)Ul dr — /81u2b282u2 dz

1 1 1 1
< C|Oyus]| 2 |6l L2 | 01b[| Lo Vun | 22 02V ua | -

1 1 1 1
+ C[|9zus | 22 |[ba| L2 O1b2| L2 | v ua || 12 [| 020w | 72
< Cllull 2|0zl 52 [b]| 122

By Sobolev’s inequality,

Nip = — / (Oyuz)?by dax < Cb] 201 ua] s

1
< C|1b] 2]|0rusl| 2| VOrus || 2 < = ||O1us2|| 72 + C|[bl1 72 [|ullp-

We now return to estimate Nj. Shifting the time integral and invoking (1.1), we
obtain

N1 = /aluatb dx

= N1+ Nia+Nisg+Niag+ Nis+ Nig.

Ny is the time derivative term and we bound it later after we integrate it in time.
To estimate N 2, we rewrite it into sums of component terms to reveal the terms
with favorable partial derivative such as Oyu,

Nl,g:/81(u-Vu)-bdx:/(81u-Vu)-bd:U+/(u-V01u)-bdx
= /alulf)lu ~bdx + /31UQ82U ~bdx + /u1811u1b1 dx
+/u1811u262 dx+/uQ8281u-bdx
= /(—Ggug)alu ~bdx + /Glugagu ~bdx + /ul(—821U2)b1 dx
+ / (91 (urBrun) by — Dyur Druusbs) d: + / UsDaditt - bz
= /(—Gguz)alu . bdx+/01uQ82u ~bdx + /u1(_621u2)b1 dx

— /(u181u2)81b2 dx + /82U281U2b2 dx + /u28281u -bdx.



32 WEN FENG, FARZANA HAFEEZ AND JIAHONG WU
By Sobolev’s inequality and Lemma 1.4,
Nia < [|O2usl|r2 [Ovul| s [[bl £s + [|Ovus|| 4] Oowl| L2 [|b]| s

1 1 1 1
+ [Jur || o || Oarual| 2|1 ]| Lo + [Jua || 72 [|O1us ]|} | Orual| 2 [[0201us | 2 || O1ba | L2
+ | Oausa|| 2 [|Orua || Lal|b2|| Lo + ||uz||p4 ||O201w| 2 [|D]| £4
< O ||Oaul| g2 ||b]] 22 [Jw]| 2

N3 contains the pressure term P. By (3.13),
Nyg= /81VP-b dr = —/VP-@lbdx
= /V(—A)—lv (u-Vu—b-Vb)- b dx
= —/V(—A)‘1V (u-Vu)-0b dx+/V(—A)‘1V - (b-Vb)-0:b dx
= /V( A) 10101 (u?) + 20105 (urus) + D20s(ud)) - 1b da
/v (b-Vb) - 01b dx.

By Holder’s inequality and using the fact that the singular integral operators are
bounded on LP for 1 < p < oo, namely

IV(=A) "0 flle S C N fllee,  IV(=A) 0o fllr < C| e,
we have

Nis < O ([101(ui)]l 2 + 102 (uruz) || 22 + 1|02(u3)l|22) (|90 22
+C[b- Vbl > [|91b]] 12
< C([[wrllze|Ovm ]|z + [Jull L= [|Oul] 22) [|91D]| 2
+ C[blloe V0] 2 (|91 22
< C'[|0pus || 2wl 2|6l 2 + C|[D[22-

We now estimate the rest of the terms. By integration by parts,

Ny = —y/ﬁlagzu -bdr = 1//322u -O1b dx
< C|Oyull| |6 12,

Nis= —/81(b-Vb)-bdmz—/(@lb-Vb)-bdx—(b-(‘?lVb)-bdx
< Clbll,

Nyg = — /8111) b de < C|fb|%e.
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Collecting the upper bounds for N; through N4 and inserting them in (3.28), we
find

d ,
lou(®)]z: < = /f‘M +bdz + C'||Ogul| g2 [[bl 2 [Jull 2 + C (1Dl

1
+ Cllosull i [Bll = + C (1Bl + S 10vullz2 + C l1bl5e 1wl

Combining some of the terms and integrating in time, we obtain, for any 7" > 0,
T
/ lO1u(t)]|72 dt < 2/(81u b)(x,T) dx — 2/81u0 by dx
0

T
+C/0 (I!82UHH2 1]l 72 llllzz2 + 1Bl 32 + 1022 | 1[5

o+ 1Bl + lble Nl ) dt
< 2[|0vu(T) || g2 [[b(T) || 2 + 2| O1uol| 2 [[bo]| 2

+C sup H(u,b)(t)HHz/o (102 (t) 17 + [1b(t)II32) dt

0<t<T
T
+C(1+ sup [Ju(t)]3) / (102u(®)lI7= + 116(t)[172) dt
0<t<T 0
<O 48+ &Y. (3.29)

Since the upper bound in (3.29) is uniform in time, we have thus verified (3.27),
which, together with (3.26), confirms (3.22). This completes the proof of Theorem
1.3. 0
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