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DIFFUSION NEAR AN EQUILIBRIUM
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ABSTRACT. This paper focuses on the 3D incompressible magnetohydrodynamic
(MHD) equations with mixed partial dissipation and magnetic diffusion. Our main
result assesses the global stability of perturbations near the steady solution given
by a background magnetic field. The stability problem on the MHD equations with
partial or no dissipation has attracted considerable interests recently and there are
substantial developments. The new stability result presented here is among the
very few stability conclusions currently available for ideal or partially dissipated
MHD equations. As a special consequence of the techniques introduced in this
paper, we obtain the small data global well-posedness for the 3D incompressible
Navier-Stokes equations without vertical dissipation.

1. INTRODUCTION

The magnetohydrodynamic (MHD) equations reflect the basic physics laws gov-
erning the motion of electrically conducting fluids such as plasmas, liquid metals, and
electrolytes. The velocity field obeys the Navier-Stokes equations with Lorentz forc-
ing generated by the magnetic field while the magnetic field satisfies the Maxwell’s
equations of electromagnetism. The MHD equations have played pivotal roles in the
study of many phenomena in geophysics, astrophysics, cosmology and engineering
(see, e.g., [3,15,37]).

The MHD equations are also mathematically significant. The MHD equations
share similarities with the Navier-Stokes equations, but they contain much richer
structures than the Navier-Stokes equations. They are not merely a combination of
two parallel Navier-Stokes type equations but an interactive and integrated system.
Their distinctive features make analytic studies a great challenge but offer new
opportunities.

Two fundamental problems on the MHD equations have recently attracted con-
siderable interests. The first is the existence and uniqueness of solutions while the
second concerns the stability of perturbations near physically relevant equilibrium.
There have been substantial developments on these problems, especially on those
MHD systems with only partial or fractional dissipation.
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This paper focuses on a stability problem concerning the following 3D incom-

pressible MHD system with mixed partial dissipation and magnetic diffusion,

o +u-Vu—Pu—093u+ VP =B VB,

B +u-VB—02B=DB-Vu, (1.1)

V-u=V-B=0,
where u represents the velocity field, P the total pressure and B the magnetic field.
We provide some relevant physical backgrounds for the MHD system in (1.1). The
Navier-Stokes equations with anisotropic viscous dissipation arise in several physical
circumstances. It can model the turbulent diffusion of rotating fluids in Ekman
layers. A standard reference is Chapter 4 of Pedlosky’s book [35]. In addition,
anisortropic viscous dissipation also arise in the modeling of reconnecting plasmas
(see, e.g., [13,14]). When the resistivity of electrically conducting fluids such as

certain plasmas and liquid metal is anisotropic and only in the vertical direction,
the vertical magnetic diffusion may be relevant (see, e.g., [36]).

It is clear that a special solution of (1.1) is given by the zero velocity field and the
background magnetic field B = e;, where e; = (1,0,0). The perturbation (u,b)
around this equilibrium with b = B — ey obeys

ou+u-Vu—Apu+ VP =0b-Vb+ 0:b,
Ohb+u-Vb—093b="0-Vu—+ o, (1.2)
V-u=V-b=0.
where, for notational convenience, we have written
Ap =07+ 05
and we shall also write V), = (04, 02).

This paper aims at the stability problem on the perturbation (u,b). Equivalently,
we establish a small data global well-posedness result for (1.2) supplemented with
the initial condition

u(x,0) = up(x), b(x,0) = bo(x).

Our main result can be stated as follows. The notation A < D means A < C' D for
a pure constant C.

Theorem 1.1. Consider (1.2) with the initial data (ug,by) € H*(R3) and V - ug =
V by =0, Then there exists a constant € > 0 such that, if

[uoll s + l[boll s <,

then (1.2) has a unique global classical solution (u,b) satisfying, for any t > 0,
t
[u(®)] s + 16() || s +/ (IVhullZs + 10s0l[3s + 1016 72) dr < e.
0

This new result constitutes an important contribution to the stability problem
on the MHD equations. Prior to this stability result, we only know the stability
of the background magnetic field for two cases, the ideal MHD equations and the
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MHD equations with kinematic dissipation and no magnetic diffusion. The nonlinear
stability for the ideal MHD equations was established in several beautiful papers [2,6,
23,34,42]. The stability problem for the MHD equations with no magnetic diffusion
was first studied in [32], which inspired many further investigations. The stability
has now been successfully established by several authors via different approaches
(see, e.g., [1,16,24-26,32,34,38-40,44,45,52]). To give a more complete view of
current studies on the stability and the global regularity problems, we also mention
some of the other exciting results in [9,17,18,20-22,27,29,30,43,46-51,53] and the
references therein.

A special consequence of Theorem 1.1 and its proof is the stability or small
data global well-posedness of the 3D Navier-Stokes equations with only horizontal
dissipation. It is not clear if the stability for the 3D Navier-Stokes still holds if there
is only one directional dissipation (say, in z; or x direction, but not both). The 3D
Navier-Stokes equations with full dissipation have small data global wellposedness
while the 3D incompressible Euler equations are ill-posed and have norm inflation
in any Sobolev space H* or C* for any positive integer k [4,5,19].

The proof of Theorem 1.1 is not trivial. A natural starting point is to bound
lu(t)|| gz + [|6(t)||gs via the energy estimates. However, due to the lack of the
vertical dissipation and the horizontal magnetic diffusion, some of the nonlinear
terms can not be controlled in terms of [|u(t)||zs + ||6(f)]| zs or the dissipative parts
|Vhu| gs and [|03b]| gs. Consequently we are not able to obtain a closed differential
inequality for

t
Eo() {1 + 18} +2 [ 19wl + 0500 e
0
This forces us to include suitable extra terms in the energy estimates. We discover
that the following term

= sup
0<r<t

Ey(t) = / |ub(r) 2 dr

serves our purpose perfectly. All nonlinear terms involved in the estimates of Ey(t)
can be bounded in terms of Ey(t) and E;(t). The selection of this term is based
on the structure of (1.2) and through trial and error. We remark that the process
of estimating Fy(t) involves many terms and is very lengthy. Even with the com-
bination of Ey(t) and FEi(t), it is still very difficulty to directly bound some of the
nonlinear terms. Two of the most difficult ones are

Ovuy Osby O3bg dr  and Ovusg Oaby O3bs da. (1.3)
R3 R3
It does not appear possible to bound them directly in terms of Fy(t) and F;(t). Our
1

strategy is to make use of the special structure of the equation for b in (1.2) and
replace Oyu; and Ojug in (1.3) via the equation of b,

Ou=0b+u-Vb—093b—b-Vu. (1.4)

Substituting (1.4) in (1.3) generates more terms, but fortunately all the resulting
terms can be bounded suitably by Ey(t) and FE;(t).
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In addition, in order to make most efficient usage of the anisotropic dissipation, we
employ extensively the following anisotropic bounds in the estimates of the nonlinear
terms. These anisotropic bounds are extremely powerful in the study of global
regularity and stability problems on partial differential equations with only partial
dissipation. Similar inequalities have previously been used in the investigation of
partially dissipated 2D MHD systems and related equations (see, e.g., [7,8]).

Lemma 1.2. The following estimates hold when the right-hand sides are all bounded.
1 1 1 1 1 1

/W [fghlde S FI 700172 91|72l 0291l 72 121 72 105 R ]| 2

/3 |fghvldz ([ fll 21101 I L2 102 F 11 1210102 £ £2 191l £2 1019l 22 1029l 121101 D29] £

R

1 1 1 1
Rl M10sh] z2 0] 22 (| Osv]| 2
) 2 1 1 1 1 1 1
([ 1ratac) " < UrIENox A1 Nou 1 hondu . ol ol

/RB [fahlde S AN Z 100N 21102 1| 2210102 f | 2 9 2210 122 1P 2

Combining all aforementioned ingredients, we are able to drive the following
energy inequalities

Ey(t) S Eo(0) + Ep(0)

(NI

+ Eo(t)% + Bi(1)? + Eo(t)? + Er(t)° (1.5)

and
Ei(t) S Eo(0) + Eo(t) + Bo(t)? + Ea(t)?. (1.6)

These inequalities, combined with the bootstrapping argument, allow us to prove
Theorem 1.1.

We remark that many important results on the stability problem concerning
the 3D anisotropic Navier-Stokes equations with horizontal dissipation have been
obtained (see, e.g., [10,11,28,33]). Since the equation of the magnetic field involves
only vertical dissipation, the situation here is different from two parallel Navier-
Stokes equations with horizontal dissipation. In fact, the stability problem on the 3D
Navier-Stokes equation with only vertical dissipation remains an outstanding open
problem. The stability on the MHD system studied here is only made possible by
fully exploiting the stabilizing effects of the background magnetic field and making
use of the hidden structure in the MHD system.

The rest of this paper is divided into three sections. Section 2 provides the proofs
of Theorem 1.1 and of Lemma 1.2. Section 3 derives the energy inequality (1.5) while
Section 4 proves (1.6).

2. Proors oF THEOREM 1.1 AND LEMMA 1.2

This section proves Theorem 1.1 and Lemma 1.2.
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Proof of Theorem 1.1. We employ the bootstrapping argument (see, e.g., [41, p.20]).
It follows from (1.5) and (1.6) that

Eo(t) + (1) S Eo(0) + Eo(0)? + Eo(t)? + Ex()? + Eo(t)” + Ex(t)”
or, for some pure constants Cy, C; and Cj,

Eo(t) + Ei(t) < Co(Eo(0) + Eo(0)2) + Cy(Eo(t)? + Ey(t)

Njw

)

+ Cy(Eo(t)? + By (t)?). (2.1)
To initiate the bootstrapping argument, we make the ansatz
1 1
Ey(t FEi(t) < mi — 7. 2.2
ot) + 1()_mm{16012’402} (22

We then show that (2.1) allows us to conclude that Ey(t) + E;(t) actually admits an
even smaller bound by taking the initial H3-norm Ey(0) sufficiently small. In fact,
when (2.2) holds, (2.1) implies

Eo(t) + Bi(t) < Co(Eo(0) + Eo(0)?) + Civ/Eo + Er(Eo(t) + Ei (1))
+ Co(Eo(t) + Ex(t))(Eo(t) + Ex(t))

< ColEo(0) + Eo(0)3) + 3 (Folt) + Fa (1)

or
Eo(t) + Ey(1) < 2Co(Eo(0) + Eo(0)?). (2:3)
Therefore, if we take Ey(0) sufficiently small such that
3 . 1 1
2CO(E0(O> + E(](O)Q) < min {TC?’ 4_6'2} , (24)

then Fy(t) + E1(t) actually admits an smaller bound in (2.3) than the one in the
ansatz (2.2). The bootstrapping argument then assesses that (2.3) holds for all time
when Ey(0) obeys (2.4). This completes the proof. O

Next we prove Lemma 1.2. A simple fact to be used in the proof is the following
version of Minkowski’s inequality, for any 1 < ¢ < p < oo,
I Nl 2oyl 2y < LNl 22 ey [l 22 @y

where f = f(x,y) with x € R™ and y € R™ is a measurable function on R”™ x R".
A more general version of Minkowski’s inequality and its proof can be found in [31].

Proof of Lemma 1.2.  The proof makes use of the following basic one-dimensional
inequality, for f € H'(R),

1@y < V21122 1112 (2.5)
By Holder’s inequality and Minkowski’s inequality;,

/ Fohldr < Iz re oo lgllie sere [hlliss 1 12
R3

r3Tre ey r3 T2 T r3Twp Ty

< N fllez, 2,05 Nl9llez, 22 1o NPllz2, 22 1s
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< 23

1 1
17 10 f117s.

1 1
2 2
L%ng H”g”L%Q ”anHL%? %113

1 1
< (I8l loshlz,

2
T1T2

3 1 1 1 1 1 1
< 22 [[fll 22 1001122 gl Z2 10291 22 1 2ll 22 1 0hl|Z-

Here || flz2,12 15 represents the L>-norm in the z;-variable, followed by the L2

norm in x5 and the L?-norm in 3. This finishes the proof of the first inequality.
The proof of the second inequality is very similar. In fact, by Holder’s inequality
and Minkowski’s inequality,

T2 r1%2 r1T2

/\fghv\dl’ <Wllez,eepe Mgl oo nes Allzz , nes l0llz ,, nes -

By (2.5) and Hélder’s inequality,

N

1 1
0122, 1owriiz,,

17l p05 - = 2 Iy

[N

< 25 | fllesy

1 1

2 2
%,

I (1

3 1 1 1 1
< 22 || flI 22 101 f Nl 22 1102 1|72 10102 f I 7

||g||L§3Lg<{Lg°2 obeys a similar bound. ||h||L§-1z2L§°3 and ||?)||L%1EQL;§ can be estimated

as in the proof of the first inequality. Combining all these estimates leads to the
desired second inequality in Lemma 1.2. The other two inequalities are obtained
similarly. This completes the proof of Lemma 1.2. 0

3. PROOF OF (1.5)

This section proves (1.5), namely
Eo(t) S Bo(0) + Eo(0)2 + Eo(t)? + Ea(1): + Eo(t)” + Ex(1)°.
The proof of this inequality is very lengthy and involves the estimates of many terms.

Proof of (1.5).  Due to the equivalence of ||(u, b)| gz with ||(u,d)|| 2 + [|(u, b)|| g3,
it suffices to bound the L? and the homogeneous H3-norm of (u,b). By a simple
energy estimate and V -u = V - b = 0, we find that the L?-norm of (u,b) obeys

t
lu(®)Z2 + ()72 + 2/0 IVhu(m) 22 + 195b(r)IZ2 d7 = [lu(0)[[72 + [6(0)IZ-.

The rest of the proof focuses on the H* norm. Applying 93 (i = 1,2,3) to (1.2) and
then dotting by (9?u, 37b), we find

| =

3
> UdFulge +1078l172) + 107V hullz +1070sb] 72 = L+ Lo+ Ts+ L+ 15, (3.1)
i=1

N | —
QL

t
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where

3
L :Z/Rsa?alb'ﬁfu"i_a?alu'8§bd$’
=1

3
I, :—Z/ 02 (u - Vu) - OPu du,
i—1 /R

3
1322/ [02(b- VD) — b - VD] - OPu da,
i=1 /R

3

Li==> [ 9¥u-Vb)- b dz,

i=1 /R

3
I :Z/ [02(b-Vu) —b-VdPu] - 92D du.
i=1 VR
By integration by parts, I; = 0. To bound Iy, we decompose it into two pieces,

12:—2 P(u-Vu)-Oudr — | 03(u-Vu)- Osu dx
i=1 /R RS
= I+ Io.
By Holder’s inequality,
Ly SlVi(u - V)l ol Vil o S Nl |Vl s (3.2)
By Holder’s inequality and Lemma 1.2,

Iy = — 03 (up, - Vyu) - O3u dx — 03 (uzOsu) - Osu dx
R3 R3

3
= — ZC!;”/ Oy, - VO3 Fu - O3u + Ohuzdy Fu - O3u da
k=1 R

3
1 1 1 1 1 1
D N5 unl 210105 unll 7 IV 03 ull 22 105 V05~ ull 2. 105wl 2 | 0205 ull 2

k=1
1 1 1 1
+ 11057 Vi - unl 721105057 Vi - un 221105 ull 72 10105 ull 2
1 1
x| 05ull 72110205 w72

S lullas [ Vaulls. (3-3)

~

N

Now we turn to the next term I3,

3 3
]3:ZZC§ 3fbvaf_kbaf’u dI:I371+13’2+1373.
i=1 k=1 R?
By Holder’s and Sobolev’s inequalities,

I < (Halbllmﬂvafblhz+||0fb||L3HV31bIIL2+||3f’b\|L2!\VbIIL3)|I3§’UHL6
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S 16l as]]010]| 2 || Orul| g3 (3.4)
By Lemma 1.2,
2
Iy S ) |05DlIZ. (1010501 2.1V 05 *bl| 2. |05V 05 *b]| 2, || 05l | 2. || 0205w 2.
k=1
- - 1 11 5 L
+[1050(1721103050| 72 ([ V]| 72|01 VD[ 72 [|05w| 2| 0205 | 7
S 0l 101011 3121950 s | Ot ]| s (3.5)
and
2

1 1 1 1 1 1
Iis < 105012, (101050 2.1 V05 b]| 2. |05V 05 *b]| 2, || 05 ul| 2. || 0205w 2.
k=1

+95011 2211050501 22 1V 0l1 72 101 VOl 72 (|95 21| 0205 7.2
1 1 1 1
S 10l el s 10061 7 185l s [| Ol s - (3.6)

Y

The next term I, is naturally split into three parts,
3

L==> [ 0}u-Vb)0fbde = Iy + Lo+ L.

i=1 /R3

I, and 1,3 involves the favorable partial derivatives in x; and x3, respectively, and
their handling is not very difficult. In contrast, I, has partials in terms of x5 and
the control of I, is extremely delicate. By Lemma 1.2,

3
Ly=-) C§ N Ou - VOF*y - b d,
k=1

3
S N0vull < [[VOFO 210700 12 + Y 1105 ull 1o VOF 0] 15| 07b] 12

k=2
S 110l 23 (| Ovue| ]| 016 a2
and
3
Ls = —Y C5 [ Oku-Voi™b-05bdu,
k=1 R3
3k% k. 13 (1~ a3—ku(3 3-k1113 (19303 3113
N Z||33UHL2||3233UHL2||V53 b||721|03V 0570} 1| 05| ;21| 01050} -
k=1
1 1 1 3
Sl Fs 1Bl 3 [| 02wl | 71| O3B]| 75 (3.7)

We now turn to I, one of the most difficult terms. We further decompose it into
three terms,

R3

=1I491+ Tu22+ Is23.
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By Lemma 1.2,

3
Lpi=—Y C5 [ 04u0,05"b- 03b du
k=1 R?

3

SZ |05 w1 16 10105 *]| 12| 030 12 + || Oatus || oo |01 D5b| 22 [| O30 12
k=2

S 1Bl 3 (| Q2w || g3 1| 01| 12

and

3
Lps=—)» C} / Oz 05057 b - B3b da
k=1 R3

3

< Z |05 us]| 1o [|0305*b]| 5 || O3b|| 12
k=1

S 0] ]| O2us || ]| O3b|| s

I, 55 is much more challenging and we further break it down,

3
Lpa=—)» Ci / 0 B de — 3 [ Byupdib - 93b da
k=2 R3

R3

3
—-3c / Kundi - B de+3 | Osusdlh - 9P da
k=2 R3

RS
+3 81u18§’b : 8§’b dr = 14091 + Lu222 + 14223
R?)
By Lemma 1.2,

3
1 1 1 1 1 1
Liz21 S ) l105usll2 10205 uallf2 105122 10105 0l 72 195D 22 | 955D 2
k=2
1 1
S 16l (| O2ua | (| 0101|772 || 95| s

By integration by parts and Lemma 1.2,
1 1 1 1 1 1
Lipoo S llus iz l|0vus|| (o] O2us| L2 ]| 0102us| 12| 0301 22 (| 0305b] | 22103 05b)| 1.2

1 1 3 1
S 100 s 1wl 773 1050l 773 102 s | 77 -

I;293 can not be directly estimated to yield a suitable bound. If we attempt to
directly apply Lemma 1.2 as follows,

1 1 1 1 1 1
01103005 dz < ||Ovu[| 72 [|0195ua || 7211051 2110505011 72110011 721101050 72,
R3
which involves [|01b| gz and the differential inequality would not be closed. Fortu-
nately the equations in (1.2) has a special structure. The equation of b allows us to
replace Juy via

Oyu=0b+u-Vb—02b—b-Vu
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and bring us the hope of controlling 1,5 2 3 suitably. We write I4923 as
Iy03 = 3/ O 95 - Db d
R3

R3
=h+ o+ Js+ Jy.

Jo, J3 and J, are relatively easier to deal with. By Lemma 1.2,

Jo S [ullf2 0vull f2[|O2ull £2 [ 0102ull 12 VBl £ 101 VO] 1
1 1
x[|02V0]| 1. ]|0102 V0| 1211 95b]| 2 [| 03950 2

1 3 1 1
el 273 1011 s 1V el £ 101611 772195 5.

By Holder’s inequality,
J3 < ||03by | Lo || 03050 121|056 12 S [|b]] ars]|Osbl| 7.

Again by Lemma 1.2,

1 1 1 1
Jo S IVl 2100V || £21]02Vua || 120102 Vs ||
1 1 1 1
X |[bl1 12110161 £ 1192011 2 [| 010201 £ (|05 2| 93950) 2

1 3 1 1
S Nl 100z [V nul s 01011 7 (| 9501 s

~Y

To deal with J;, we rewrite it as
d
Jl = 3—/ b1 |8§b|2 dr — 3/ b10t|8§’b|2 dr = Jl 1+ J1 2.
dt R3 R3 ' '
To estimate .J; 2, we use the equation of b in (1.2) again to write is as

Jig=—6 / b195b - (— 05 (u - Vb)+0503b + 05 (b - Vu) + 0501u) d
R3

=Jio1+ Ji22+ Ji23+ Ji24.

(3.8)

(3.9)
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By integrating by parts and applying Lemma 1.2, we have

Ji21 —62 C’“blﬁ?’ (O%u - VO3 ") dx—B/ w - Vb, |03b|? dx

]R3
1 1 1 1
S ||bl|\22||31b1||j{2||3zb1||£2||313251||22
1 1 1 1
X ||0zul| 12 (|01 02ul| 12| 0202l 12 || 010202ul| 5
1 1 1 1
x [|030]12, (| 0303b|| 2, || V30| 2, |05V D50 | 2.
3
1 1 1 1
+ 3 1Bl | O3B 2. | 9505D]1 2. || 05 ]| 2. | 0205l 2.

k=2
1 1
x V057401 22100V 0570 72 + | o]
1 3 1 1 1 1
S Null 2 00 s 11V wull 35 101011 212 950l s + [0l 7751 V wall 712 10101 72 19501 7o
By integration by parts and Holder’s inequality,
Ji00 = —3/ 03by|03b)? da:+6/ by|0305b* dx
R3 R3

S ||+ [[ball 2= 1956177
R
By Lemma 1.2,

3
J172’3 =—06 E Cé“blﬁg’b . 05() . V@g’*ku dx
R3

:—62 Ckbla3 (05b - VO3 u) dx — 6 / b1 03b-(03b - Vu) dw

R3

—6 / b103b-(b - VOsu) dw
R3
2 1 1 1 1 1 1
S X lIbu e 1030112 10505013 1056117 91056113 |V 95l 2. 102V 05~ u| 7
k=1

15100 | . 1921 | 2101921
% [V ul| 22 10y V]| 22 |02 V]| 4 | 0292V ]| 2 |92 2 | 95020 2
+ ||b103bb]| 2] O2ut]| =
S 11000 9l 10101 21055 2 + [l 011 s a2 91811 0B 1
(bl 101Dl = 9abll - 10102l £ 193011 . 050301 22 bl | Dol s
S 1100 9l 10101 21055 2 + [l 011 s a2 91811 0B 1
ol 1l 01011 1501
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The last term J; 2 4 can also be bounded via Lemma 1.2,
Tuna S 100l 1000 £ 19 20000 | 10301 £ 950301 £ 9301
S 0l N0nell s |48 9501

It remains to estimate I5,
3
I5 = Z/ (8?(6 . VU,) —b- V813U> . 81317 dx = ]571 + ]572 + 1573.
— JR3
By Holder’s and Sobolev’s inequalities,

3
La=>» C5 [ ofb-Voi " u-ofbdo
k=1 R3

2
S D N080l sl VO ul| o107 2 + 9FBIIZ2 | Vo
k=1
S bl 211 0vull 221010 ]| 2 + [lull 2 (19117

and

3
Ly=)» C§ | 05b-VO§ ™ u-08bde
k=1 R3

3
SO N0l sl VO3 ull 2 | 950 o
k=1
S Nl 0sbl -

The difficult term is I5 9, which is further decomposed into

R3
= [57271 + [572,2 + 157273'

The last two terms I522 and 523 can be directly bounded. By V - b =0,

3
Lpp=)» Cf 3 OEby0,05 " - D3b da
k=1 R

2
S 11057 (01by + Osbs)l| 1210205l 16| O5D]| 2
k=1

+ |03 (D161 + Osbs)|| 12 [|O2u]| oo [| O5b]| 2
S 110l 3 (|02 3 (1|01 2 + (| Osb]| 3 -
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By integration by parts and Lemma 1.2,

3
Lps =Y C5 | 05bs0s08 *u- 03b d
k=1 R3

R?)

3 3
==Y C5 [ 0k0sbs0f Fu-05bdr — > CY | 05bs05 Fudi - Osb da
k=1 R3 k=1

3
1 1 1
S 1050sbsll12 1105 ull 12110105 ull 2110205 "l

k=1
< 11013208 ul L 1936112, 1 0a 05012
1080 219005051122 1081l £2110108ull 2 19205l
< 010205 Ful| 2, 118504
< NallZ 8] 2 1Vl e 1050 o

The estimate for I5; is much more complex. We further break it down,

3
Lpi=)» C} O5i0h 03 O3b da
k=1 R

3
=3 C§ | 05010105 Fu105by + 0510105 Fua03by + 05110105 Fuzd3bs da
k=1 R3

=1Is011+ 15212+ I5213.

IR ] 4Ly

We estimate I5211 and I52 12 directly. By Lemma 1.2,

2
I5011 = ZC:I; 35618183"%185’191 dzr + 03b,0yu, 03, dx
k=1 R3

]R3

2
1 1 1 1 1 1
S 11050112, (101051 || 2110105 w1 || 2.]10201 05 Fua || 221|051 | 22 1| 0303 b1 | 22
k=1
+ Ly 2,2,3]

1 1
S Bl s |Vl g3 (1010 71211030l 7 + 42,23

By Holder’s inequality and 0yby = —01b7 — O3b3,

2
15’271,2 = ZC§ , 8§b1818§’_ku28§’b2 dx + 8§’b181u28§’bg dx
k=1 R

R3
2
S 1105011210105 Fua| 16| 05bal| 2 + 11051 ]| 2| Orusa| o | O3 o 2
k=1

S 1161z [ Ovul s (1| 910]| 22 + | 050l s )
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The last term 5 ;3 contains a part that can not be directly handled,
2
Ipis=» Ci / O5by0, 05 Fuz03bs da + / b1 01uz03by dx
Pt R3 R3

2
1 1 1 1
S 1050112101056 1210005 Fus]|2. || 020105 Fus| 2.

st
1 1
X [|03bs]|3. (| 0305bs]| 7. + Ky
1 1
S 0] ]| Onwel| g3 1| 01| 712 || O30 775 + K

where

Kl == 8§’b181u38§’bg dx.

R3

It does not appear to be possible to give a direct estimate on K;. As in the estimate
of I4553, we use the special structure of the equation for b in (1.2) and make the
substitution

81’&3 = 8tb3 +u- ng — 8§bg —b- VU:J,.

Then K, can be rewritten as
K = / (atbg Y- Vby — by —b- vug)agblagbg dx
RS
=Kig+ Ko+ K3+ K4
We estimate Ko, K3 and K, 4 similarly as J, Js, J4 to obtain

1 3 1 1
(Kol S llull 7s 10l Fra | Vil 75 101011 12 | O30 s,
| K1 3] S [1b]] 3] 03|37,

1 3 1 1
[Kval S Hlull s 100 7s [V nul | | 0101 2 || Oab] s
By integration by parts,

d . .
K171 = a bgagblagbg dr — / bgat(agblagbg) dr = K17171 + K17172.
R3 R3

According to the equation of b in (1.2),
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Hence,
K10 = /3 bsOsu - Vb — 93by — b - Vuy — O1up]05bs
+Rbg,0§ [u- Vb3 — 03b3 — b - Vug — Oyus|0sby dx
_ /R 05108 (u - V)03 + 03(u - V5)0tn] — b [08080103bs + 0R0Rs080]

— bg[@%(b . VUQ&SZ):}, + 8§(b . VU3)a§b1] — bg [ﬁg’ﬁlulﬁg’bg + (9381u36§’b1]
=Kiio1+ K120+ K123+ Ki124.

As in the estimate of the term J; 51, we have

1 3 1 1 1 1
Kiaon S lullZslbl Zsl Vaull s [1010)) 22 1030)| a2 + 1161175V awll 22|01 22 |03 Zs -

Similar to the terms JLQ,Z, J1’273 and J172,4, we have
K1’17272 _/ 2b38§83b18383b3 + 831)3[85’83()385’61 + (9383131823()3] dx
R3

S N6l 2o 110sbll 75 + [10sbs |l o | Osbll 2 |b] s
S N6l 195l s,

1 1
Ko S bl 7sl102ull (10161152 1050l s
1 3 1 1
+ llull 7 101 7a 1| Onwll £ 10161 772195 | 115

1 1
+ 1Bl 755 (| 02wl 112 (| 010]| 712 || 93D 25
and . )
Kiio4 S |0l msl|0vul| 3| 010 32 |0sD|| 3y -

Integrating (3.1) in time, namely

Eo(t) < Eu(0) +/0 (Iy(7) + I3(7) + L4(7) + I5(7)) dT

and inserting all the bounds obtained above for I5 through I, we obtain (1.5) after
applying Holder’s inequality. To be clear, we provide some details. The bounds for
I in (3.2) and (3.3) yield

t t
/ Lindr < / lalls [Vl dr
0 0

t 3
< sup Ju(r) e / IVaullZ dr < E3(2).
0<r<t 0

The bounds for I3 in (3.4), (3.5) and (3.6) lead to, by Holder’s inequality,
t t
[ i s [ iblwlowllowls dr
0 0

t | )
+/ [b]] rr2[| 0161 512 11930 s || Ol | s dr
0
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t 1 1 1 1
+ / 1811255 [l Z5 1|01b]| 22 1|35b]| 115 | Dae]| 35 dr
Eo(t)? Ey(t)? Ey(t)? + Eo(t)2 Ey(t)3 Eo(t)3 Eo(t)?

S
3 3
S Eo()+ EF(1).

The bounds for I involves a lot of terms and we shall just choose some typical ones
to bound the time integral of I,. For example, the time integrals of the bounds for

Iy5in (3.7), Jy in (3.8) and Jy; in (3.9) obeys, by Holder’s inequality,

O polw

¢ 1 1 1 3
/ ull 25 101125 Dol 3 |10l 25 dr - < Eo(t)2 Eo(t)T Eo(t)T = Eg(t),
0
t 1 3 1 1 1 1 1
/ ull 231101125 [ V| 21| 01D]| 2,2 | 05D || s dr - < Eio(£) Eo(t)T Ex(£)T Eo(t)
0
< EX(t) + EX(1)

and

t
/ J1,1 dr
0

3 / bi (20)? d — 3 / b1 (2, 0)(950)2(x, 0) d
R3 R3

S 162(0) |z [16C0) 17 + (B2 (8) | o< [16(E) 135

S Eo(0)? + E§(0).

The time integral of I is similarly bounded. This completes the proof of (1.5).

4. PROOF OF (1.6)

This section proves (1.6), namely

Er(t) < E1(0) + Eo(t) + Eo(t)2 + Ey(1)2.

O

Proof of (1.6). Due to the equivalence of the norm ||01b|| g2 and the norm ||01b]| 2 +
1010]| z72, it suffices to estimate the L?*-norm and the homogeneous H?-norm of d;b.

We make use of the velocity equation in (1.2) to write
O0b=0u+u-Vu—Ayu+ VP —b-Vb.

Therefore,
|O1b)7: = Oy - 01 dx+/ u-Vu-0bdx
R3 R3

—/ Ahu-ﬁlbdx—/ b-Vb-0bdx
R3

]R3

— N1+N2—|—N3—|—N4, (41)
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where we have eliminated the pressure term due to V -b = 0. We integrate by parts
and use the equation of b in (1.2) to obtain

dt
=N1g+ Nig+ Nig+ Nizg+ Nyg.

d
N, —/ u-@lbdx—/ u-81(—u-Vb+8§b+b-Vu+81u)dx
R3 R3

By Lemma 1.2 and Holder’s inequality,
N171 = — / u- (81“ -Vb +u- V@lb)da?
R3

1 1 1 1 1 1

Slovull 2 llull 22 0vull g2 | O2ull 22 01 0aull 12 | VO 72|V sb] £
1 1 1 1 1 1
+ llullZ2[|0vul Lo l[ull 22 102wl 22 [V O] 72 [V 91 05b] £

3 1 1 1
<IVnull gal|Osbll sl s 101 7o + IV nl[ s (| O] 2 |l s,

Nip— — / w- 0Bbdr < |[Vyul e 05D o,
]R3

Ny :/3(u (b V) +u- (b Vo)) da
R
1 1 1 1 1 1
§||u||22||81u||22||Vu||22||82Vu||22||81b||i2||8183b||22
+ IIU||Ez||51UI|E2IIbIIEQII(%bIIEz||V5‘1UI|22||V5132U||§2

3 1 1 1
IV wulls 010l 2wl s + [V null a1l Osbl £ 1l s 101l £

and
Ny = —/ u- 0w dr < || VipulFs.
R3
Similarly,
NQZ/ u-Vu-01bdx
R3
1 1 3 3 > 2
Sl 22 |9 2 1V ul| 22 | V0l 2. 910 2. 1101051 2
SHV}LUHH?:||alb||H2||u||H3>
Ny = _/ Apu - 01b dx < || Viul| gs||010]] pe
R3
and

R3

1 1 1 1 1 1
SOl ;2 11010]| 721V 0[] 72 [V Osb|| ;2 [| 010|172 [ 01020} -
3 1
<[|01b]|7,21|03b]| 73 1|6 25
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This finishes the L? estimate of &1b. Now we turn to the H? estimate. According
to the equation of u in (1.2), we have

3 3
;Hafalbuig = Z Safatu-afalb da
+Z 02 (u- Vu) - 0201b da
- Z OFAyu - 9201b dx
R3

—Z a% Vb) - 020,b dx

= M1 +M2—|—M3—|—M4. (42)

To bound M;, we integrate by parts and use the equation of b in (1.2) to obtain

d : 2 2
Mlzaz Sf)iu-é)ic?lbdx

—Z Ofu-0f0y(—u- Vb4 03+ b- Vut Oru) de

—Ml,(] + M1,1 + Mo+ My + M 4.

By Lemma 1.2,

My, = / Ot - O (u - Vb) + O3u - 030, (u - Vb) + 0301u - O3(u - Vb) dx
R3
< I¥ulrs (¥l Bl + 1930l el
+||VhU||H3<||33U||§2||5133U||§2||5233U||§z||31@233U||§2||Vb||32||V535||22

1 1 1 1 1 1
+||u||]§2||81u||22||32u||}i2 ||8162u||z2 ||33Vblliz ||V8§b||22>

A

1 1 1 1
< IIVhUIIHS(IIVWHHSIIme + (1000l 2 |ul[ s + IIVhUHi,s||8sb||§,3IIUI|}{3||bII§,3).

Clearly,

3
Ml’g = — Z/ 818;3u . 318§b dx S th'LLHHBHangHS
- R3



GLOBAL SOLUTIONS OF 3D MHD EQUATIONS WITH MIXED DISSIPATION 19

By Lemma 1.2,

RS

<I1¥allis (11 nealls 6320 -+ 1018l ] )
19l (190l 5210Vl 212Vl 2110005 7] 95D 15 -
1V Bl 10,5Vl . 9205V ul| | 0n0a0s Vel . o] 2 1951 7.
<l (Il Bl -+ 198zl + [l s 1050l ol 1635 )
Obviously,

2
afalu( dz < || Vaul/s.

3
M < /
14 ; N

By Lemma 1.2, M, is bounded by

M,y = y 0w - Vu) - 03+ 03 (u - Vu)oz - O1b+ 01 (u - Vu) - 95b da
<000l | s
+0sbls (Il 00Vl 025l 9105 Tl |9l . | on sl
S A CRA AR EA AR AN A ST HY
<||101b] g2 | Vil s [[ull zrs + |0l 23 |V awl| s || w]| s

The bound for Mj is straightforward,
3
My=> [ 92Audiorb dr < ||Oyul|s]|0rbl 2.
i=1 /R3

The last term M, can be bounded via Lemma 1.2,

M, = . (b~ Vb)-0ib+ 03 (b- Vb) - 030,b + 05 (b - Vb) - 030,b dw
<000 1815 + 1910l 21|l 0]
+ (1080001122 (17015210, VBl 11 02V 10,0,V . |01 | 03050 .
o 1105bl 2| n0ab 2 9312 191301152 |02 V] 2| 0s05 9D
S A AR A LA A RA PG ER A Y
<0003 bl + 1930 27 5Dl o 1D+ 0uDl a1l s 0] -

Adding (4.1) and (4.2), integrating in time, invoking the bound for N; through Ny
and M; through My, and applying Holder’s inequality to the time integrals, we
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obtain (1.6). For the sake of clarity, we provide the details. The time integrals of
N1 and M, o are bounded by

t
/ Nipdr = / u(zx,t) - 01b(z,t) dor — / u(zx,0) - hb(x,0) dz
0 R3 R3
< Eo(t) + Eo(0),

t
/Ml,odf = Z ) - 020,b(z,t) dx
0

- Z ) - 9201b(x,0) dx < Eo(t) 4+ Ey(0).

By Holder’s inequality,

= oleo

¢ 3 3 t 3
/ﬁmesaﬂﬂ+Eﬂw, M/AmMTSEﬂﬂ+E(ﬂ
0 0

Clearly,

¢ t
/ NLQ dr S Eo(t), / N174 dr S Eo(t)
0 0
and
¢ 3 3 t 3 3
/ Nodr < E§(t) + EZ(t), / Nydr < E§(t)+ EZ(t).
0 0
The integral of Nj is slightly different. By Hélder’s inequality,
1

/t N3 dr < Eo(t)2 Ey(t)? < 1 Ei(6) + C Eo(t).

-

Furthermore,

/MlldT /M12d7'<E2 —|—E2 /Mlng /M14dT<E0()

/A@T<E /AaT<E<>+E<>

and

1
A_LEl (t) + C Eo(t).

D=

/ Msdr < Ey(t)? Ey(t)
Combining all the bounds above yields
EA(t) < Bo(0) + 3 Bx(6) + O Bolt) +C Bo(t)} +C Eu(0),
which gives (1.6). This completes the proof of (1.6). O
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