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Abstract. This paper rigorously establishes the stabilization effect of a background mag-
netic field on electrically conducting fluids, a phenomenon that has been widely observed
in physical experiments and numerical simulations. This study is based on a special 2D
magnetohydrodynamic (MHD) system in which the velocity equation involves no dissi-
pation and there is only damping in the vertical component equation. Without the mag-
netic field, the corresponding vorticity equation is a 2D Euler-like equation with an extra
Riesz transform type term. The global in time regularity and the stability near the trivial
solution are well-known open problems. When coupled with the magnetic field through
the MHD system, the background magnetic field stabilizes the fluid, and the velocity as
well as the vorticity remain small if they are initially so and decay algebraically in time.
To overcome the difficulties due to the lack of full dissipation or damping, we construct
suitable Lyapunov functionals and reduce the system to wave-type equations.

1. Introduction

Well-known to the community of mathematical fluid mechanics is the open problem
of whether or not the 2D Euler-like equations,∂tω + (u · ∇)ω = R1ω, x ∈ R2, t > 0,

u = ∇⊥∆−1ω,
(1.1)

and ∂tω + (u · ∇)ω = R2
1ω, x ∈ R2, t > 0,

u = ∇⊥∆−1ω,
(1.2)

always possess global (in time) classical solutions. Here R1 = ∂1(−∆)−
1
2 denotes the Riesz

transform and the fractional Laplacian operator is defined via the Fourier transform,
̂(−∆)β f (ξ) = |ξ|2β f̂ (ξ).

∇⊥ = (−∂2, ∂1) and u = ∇⊥∆−1ω represents the Biot-Savart law recovering the velocity u
from the vorticity ω := ∇× u. The velocity formulation of the 2D Euler equation is given
by

∂tu + (u · ∇)u = −∇p, ∇ · u = 0, x ∈ R2, t > 0.
with the corresponding vorticity ω = ∇ × u satisfying∂tω + (u · ∇)ω = 0, x ∈ R2, t > 0,

u = ∇⊥∆−1ω.
(1.3)
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The global well-posedness of (1.3) has been well established [33]. Especially the classical
Yudovich theory [60] asserts that any initial data ω0 ∈ L1(R2) ∩ L∞(R2) leads to a unique
global weak solution ω ∈ L1(R2)∩ L∞(R2). The proof of this result relies crucially on the
fact that ω is conserved along the particle trajectory. However, the Yudovich framework
fails on (1.1) and (1.2). The terms R1ω and R2

1ω involve the Calderon-Zygmund type
singular integral operators and are not bounded on L∞. As a consequence, the L∞-norms
of the solutions to (1.1) and (1.2) are not known to be bounded. The Lq-norms of ω for
1 < q < ∞ are bounded, but these Lq-norms could grow exponentially in q, as pointed out
by T. Elgindi [17]. Therefore, the Yudovich approach and its refinements do not work for
(1.1) and (1.2). Whether or not solutions of (1.1) and (1.2) can blow up in a finite-time
remains an outstanding open problem. Some preliminary investigations on (1.1) and (1.2)
and two other closely related models have been conducted ( [9]).

The corresponding velocity formulation for (1.2) is given by
∂tu1 + (u · ∇)u1 = −∂1P,
∂tu2 + (u · ∇)u2 + u2 = −∂2P,
∇ · u = 0,

(1.4)

with damping only in the second component of the velocity equation. The global regu-
larity problem as well as the stability near the trivial solution of (1.4) remain open. As
we shall reveal in this paper, when the velocity is coupled with the magnetic field via
the MHD system, the background magnetic field actually stabilizes the fluid, and both
the velocity and vorticity remain small if they are initially so. In fact, they actually de-
cay algebraically in time. The magnetic field smooths and stabilizes the velocity through
coupling and interaction. The influence of an external magnetic field on the behavior of
electrically conducting fluids has been observed in many experiments and numerical sim-
ulations (see, e.g., [1–4, 21, 22]). One goal of this paper is to establish these observations
as mathematically rigorous facts.

We give a more precise description of what we achieve in this paper. Attention is
focused on the following 2D incompressible MHD equations

∂tu1 + (u · ∇)u1 = −∂1P + (B · ∇)B1, x ∈ R2, t > 0,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (B · ∇)B2, x ∈ R2, t > 0,

∂tB + u · ∇B = η∆B + B · ∇u, x ∈ R2, t > 0,

∇ · u = ∇ · B = 0, x ∈ R2, t > 0,

(1.5)

where u = (u1, u2)>, B = (B1, B2)> and P denote the velocity field of the fluid, the mag-
netic field and the scalar pressure, respectively. The parameters γ > 0 and η > 0 represent
the damping coefficient and the magnetic diffusivity, respectively. Clearly, (1.5) with
B ≡ 0 reduces to the velocity equation in (1.4). Our main goal here is to understand the
stability problem on perturbations near a background magnetic field and give a precise
description on the large-time behavior of the perturbations. It is easy to verify that the
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special steady state given by the background magnetic field, namely

u(0) ≡ 0, B(0) ≡ e2 := (0, 1)

solves (1.5). The perturbation (u, b) with b = B − B(0) near the steady state (u(0), B(0))
solves the MHD equations

∂tu1 + (u · ∇)u1 = −∂1P + (b · ∇)b1 + ∂2b1, x ∈ R2, t > 0,

∂tu2 + (u · ∇)u2 + γu2 = −∂2P + (b · ∇)b2 + ∂2b2, x ∈ R2, t > 0,

∂tb + (u · ∇)b = η∆b + (b · ∇)u + ∂2u, x ∈ R2, t > 0,

∇ · u = ∇ · b = 0, x ∈ R2, t > 0.

(1.6)

The system (1.6) supplemented with the initial data

u(x, 0) = u0(x), b(x, 0) = b0(x)

will be the centerpiece of our study. By taking the curl of (1.6), we find that ω = ∇ × u
and j = ∇ × b satisfy

∂tω + (u · ∇)ω = γR2
1ω + (b · ∇) j + ∂2 j,

∂t j + (u · ∇) j = η∆ j + (b · ∇)ω + ∂2ω + Q,
(1.7)

where

Q = 2∂1b1(∂2u1 + ∂1u2) − 2∂1u1(∂2b1 + ∂1b2).

The stability problem appears to be impossible on our first glance at the vorticity equation
alone. It is the 2D Euler equation with three forcing terms. As it is well-known, the
gradient of the Euler vorticity and more generally its Sobolev norm can grow rapidly (even
double exponentially) in time (see, e.g., [12, 28, 61]). The term γR2

1ω can only aggravate
the situation. Since Riesz transform type singular integral operators R2

1 are not bounded
on L∞, this term can actually inflate the L∞-norm of the vorticity, as demonstrated in [17].
The two other terms b · ∇ j and ∂2 j are related to the magnetic field b and the current
density j, and they do not appear to be useful when the vorticity equation is treated alone.

However, it is the smoothing and stabilization effects of the magnetic field via the cou-
pling and interaction that help stabilize the fluid and make this stability problem possible.
To reveal these effects, we first eliminate the pressure P by applying the Leray-Helmholtz
projection operator P := I − ∇∆−1∇· to the velocity equation in (1.6). Noticing that

P(0, u2)> = (0, u2)> − ∇∆−1∇ · (0, u2)> = ∆−1∂2
1u = −R2

1u,
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(1.6) is then converted into

∂tu = γR2
1u + ∂2b + N1, x ∈ R2, t > 0,

∂tb = η∆b + ∂2u + N2, x ∈ R2, t > 0,

∇ · u = ∇ · b = 0, x ∈ R2, t > 0,

(1.8)

where N1 and N2 are the nonlinear terms,

N1 = P((b · ∇)b − (u · ∇)u),
N2 = (b · ∇)u − (u · ∇)b.

By differentiating (1.8) in t and making several substitutions, we find

∂ttu − (η∆ + γR2
1)∂tu − (γη ∂11u + ∂22u) = N3,

∂ttb − (η∆ + γR2
1)∂tb − (γη ∂11b + ∂22b) = N4,

∇ · u = ∇ · b = 0,

(1.9)

where

N3 = (∂t − η∆)N1 + ∂2N2,

N4 = (∂t − γR
2
1)N2 + ∂2N1.

Similarly, we can rewrite (1.7) as
∂ttω − (η∆ + γR2

1)∂tω − (γη ∂11ω + ∂22ω) = N5,

∂tt j − (η∆ + γR2
1)∂t j − (γη ∂11 j + ∂22 j) = N6,

(1.10)

where

N5 = (∂t − η∆)(b · ∇ j − u · ∇ω) + ∂2(b · ∇ω − u · ∇ j + Q),
N6 = (∂t − γR

2
1)(b · ∇ω − u · ∇ j + Q) + ∂2(b · ∇ j − u · ∇ω).

Amazingly, all physical quantities u, b, ω and j satisfy exactly the same wave equations
with various nonhomogeneous terms. In comparison with the original system of (ω, j) in
(1.7), the wave equations (1.10) obeyed by (ω, j) exhibit much more smoothing and sta-
bilization properties, which make the stability and large-time behavior problem plausible.
By taking advantage of these dissipative and dispersive effects, we are able to establish
the desired global stability and provide sharp decay rates for the solution. The precise
statements of our results are given in the following two theorems.

Theorem 1.1. Let (u0, b0) ∈ H3(R2) with ∇ · u0 = 0 and ∇ · b0 = 0. Then there exists
sufficiently small δ = δ(γ, η) > 0 such that, if

‖∇u0‖H2(R2) + ‖∇b0‖H2(R2) ≤ δ,
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then (1.6) possesses a unique global solution (u, b) ∈ C
(
[0,∞); H3(R2)

)
satisfying

‖(u, b)(t)‖2H1(R2) +

∫ t

0

(
‖u2(τ)‖2L2(R2) + ‖∇u(τ)‖2L2(R2) + ‖∇b(τ)‖2H1(R2)

)
dτ

≤ C (‖u0‖
2
H1(R2) + ‖b0‖

2
H1(R2)). (1.11)

‖(∇u,∇b)(t)‖2H2(R2) +

∫ t

0

(
‖∂1u(τ)‖2L2(R2) + ‖∇2u(τ)‖2H1(R2) + ‖∇2b(τ)‖2H2(R2)

)
dτ

≤ C δ2 (1.12)

for any t > 0 and some constant C > 0. Furthermore, the following time decay estimate
holds

‖∇u(t)‖H2(R2) + ‖∇b(t)‖H2(R2) ≤ C (‖(u0, b0)‖L2(R2) + δ) (1 + t)−
1
2 , (1.13)

when δ is small enough. In particular, for any 2 < q < ∞, as t → ∞,

‖u2(t)‖L2(R2) → 0, ‖(u, b)(t)‖W2,q(R2) → 0, and ‖(u, b)(t)‖W1,∞(R2) → 0. (1.14)

As Theorem 1.1 states, the H1-norm of the solution is uniformly bounded by the ini-
tial H1-norm regardless of the size of the initial H1-norm. The smallness assumption is
not imposed on ‖(u0, b0)‖L2(R2). In the uniform bounds in (1.11) and (1.12), several time
integral bounds are not a direct consequence of the damping or dissipation in the original
system. For example,∫ t

0
‖∂2u‖2L2(R2) dτ ≤ C δ2,

∫ t

0
‖∂2ω(τ)‖2H1(R2) dτ ≤ Cδ2

are consequences of the smoothing effects due to the wave structure in (1.9).

Efforts are also devoted to establishing sharp decay rates for the solution established in
Theorem 1.1. The regularization effect of the wave structure is exploited to achieve this
goal. We solve the linearized system in (1.8) or equivalently (1.9) explicitly and represent
the nonlinear system in an integral form. More precisely, we convert (1.8) into the system

û(ξ, t) = M̂1(t)̂u0 + M̂2(t)̂b0 +

∫ t

0

(
M̂1(t − τ)N̂1(τ) + M̂2(t − τ)N̂2(τ)

)
dτ, (1.15)

b̂(ξ, t) = M̂2(t)̂u0 + M̂3(t)̂b0 +

∫ t

0

(
M̂2(t − τ)N̂1(τ) + M̂3(t − τ)N̂2(τ)

)
dτ, (1.16)

where the kernel functions are given by

M̂1 = η|ξ|2G1 + G2, M̂2 = iξ2 G1, M̂3 = −η|ξ|2G1 + G3,

with

G1(t) =
eλ2t − eλ1t

λ2 − λ1
, G2(t) =

λ2eλ2t − λ1eλ1t

λ2 − λ1
= eλ2t + λ1G1(t),

G3(t) =
λ2eλ1t − λ1eλ2t

λ2 − λ1
= eλ1t − λ1G1(t).

Here λ1 and λ2 are the roots of the characteristic equation

λ2 + (η|ξ|2 + γξ2
1 |ξ|
−2)λ + (γηξ2

1 + ξ2
2) = 0
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or, more explicitly,

λ1 =
−(γξ2

1 |ξ|
−2 + η|ξ|2) −

√
Γ

2
, λ2 =

−(γξ2
1 |ξ|

2 + η|ξ|−2) +
√

Γ

2
,

where
Γ = (γξ2

1 |ξ|
−2 + η|ξ|2)2 − 4(γηξ2

1 + ξ2
2).

The integral representation in (1.15) and (1.16) does not appear to be simple with the
kernel functions being nonhomogeneous and frequency dependent. By appropriately es-
timating the Sobolev norms of the solutions, we are able to obtain the sharp decay rates
stated in the following theorem.

Theorem 1.2. Assume (u0, b0) ∈ L1(R2)∩H3(R2) with ∇ · u0 = 0 and ∇ · b0 = 0 satisfying

‖(u0, b0)‖L1(R2) + ‖(u0, b0)‖H3(R2) ≤ δ,

for some δ small enough. Then for m = 0, 1, 2, the small global solution (u, b) of the
system (1.6) obeys

‖Dmu(t)‖L2(R2) + ‖Dmb(t)‖L2(R2) ≤ Cδ(1 + t)−
1+m

2 ,

where C > 0 is a constant independent of δ and t.

The decay rates obtained in Theorem 1.2 for the solution of the nonlinear system in
(1.6) are the same as those for the 2D heat equation as well as the Navier-Stokes equations
(see, e.g., [38,40]). They are optimal. This reaffirms the smoothing and stabilization effect
of the magnetic field on the fluids.

The results presented in Theorem 1.1 and Theorem 1.2 not only rigorously confirm
the smoothing and stabilization effects of the magnetic field on electrically conducting
fluids, they also advance the courses on how to understand the stability problem when the
underlying model involves only partial dissipation. The MHD equations have recently
attracted extensive interests due to their wide physical applicability and their mathemat-
ical significance. The MHD equations model electrically conducting in the presence of
a magnetic field and serve as the center piece of the magneto-hydrodynamics initiated
by the Nobel laureate Hannes Alfvén (see, e.g., [3, 10, 30]). The resistive MHD model
studied in this paper is applicable when the fluid viscosity can be ignored while the role
of resistivity is important such as in magnetic reconnection and magnetic turbulence [35].
Mathematically the MHD equations share many features with the Navier-Stokes and the
Euler equations; however, the MHD equations are not a combination of a pair of the
Navier-Stokes type equations, but an integrated and interactive system. The MHD equa-
tions can model much richer phenomena than the Navier-Stokes equations such as the
Alfvén waves.

There are substantial recent developments on fundamental issues concerning the MHD
equations such as the global regularity and stability problems. One recent focus is on the
MHD equations with only partial or fractional dissipation. Significant progress has been
made (see, e.g., [4–6,8,11,14–16,18–20,23–27,29,31,32,34,36,37,39,42,44,45,47–59]).
However, many important issues remain outstandingly open. One of them is the stability
problem on the MHD equations with only magnetic diffusion (without the viscous dissi-
pation). Theorem 1.1 and Theorem 1.2 presented in this paper solve this stability problem
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when the velocity equation also involves one component damping and obtain precise and
sharp large-time behavior on the solutions. These results are completely new and will be
useful for future investigations on PDE systems with only partial dissipation.

We briefly explain how we prove Theorem 1.1 and Theorem 1.2. The framework in
the proof of Theorem 1.1 is the bootstrapping argument (see, e.g., [43, p.21]). The first
step is to construct a suitable energy functional. In addition to the standard H3-energy
terms, we also include the regularization terms suggested by the wave structure in (1.10).
We set the energy functional E(t) to be

E(t) = E1(t) + E2(t) + E3(t)

where

E1(t) = sup
0≤τ≤t

(
‖ω(τ)‖2L2(R2) + ‖ j(τ)‖2L2(R2)

)
+

∫ t

0

(
‖∂1u(τ)‖2L2(R2) + ‖∇ j(τ)‖2L2(R2)

)
dτ,

E2(t) = sup
0≤τ≤t

(
‖∇ω(τ)‖2H1(R2) + ‖∇ j(τ)‖2H1(R2)

)
+

∫ t

0

(
‖∂1ω(τ)‖2H1(R2) + ‖∇2 j(τ)‖2H1(R2)

)
dτ,

E3(t) =

∫ t

0
‖∂2ω(τ)‖2H1(R2) dτ.

The inclusion of E3, suggested by (1.10), helps bound the nonlinear term (u · ∇)u in the
process of estimating the H3-norm of u. Otherwise, we would not be able to close the
estimates. An equivalent process is to design a Lyapunov functional given by

L(u, b)(t) = ‖(∇u(t),∇b(t))‖2H2(R2) + λ(∇u(t), ∂2∇b(t))H1(R2),

where λ > 0 is a small parameter and (F,G)H1 denotes the H1-inner product. The main
efforts are devoted to estimating E(t). This is a long and tedious process involving appli-
cations of various anisotropic inequalities. We are able to show that

E(t) ≤ C∗1E(0) + C∗2E
3
2 (t) + C∗3E

5
4 (t).

An application of the bootstrapping argument would lead to the desired stability.

To obtain the optimal decay rates stated in Theorem 1.2, we make use of the integral
representation in (1.15) and (1.16). By dividing the frequency space into suitable subdo-
mains, we pinpoint the exact behavior of the kernel functions M̂1, M̂2 and M̂3 and provide
upper bounds for them in each subdomain. Due to the nonlinearity in the system (1.15)
and (1.16), we employ the bootstrapping argument, which starts with the ansatz, for any
t ≤ T ,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤ C0δ (1 + t)−
1
2 ,

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤ C1δ (1 + t)−1,

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤ C2δ (1 + t)−
3
2 ,

for suitably chosen C0, C1 and C2. Inserting the ansatz bounds in the integral represen-
tation and invoking the upper bounds for the kernel functions, we obtain, after carefully
estimating the L2-norms on each subdomain,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤
C0

2
δ (1 + t)−

1
2 ,
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‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤
C1

2
δ (1 + t)−1,

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤
C2

2
δ (1 + t)−

3
2 . (1.17)

The bootstrapping argument then implies that T = ∞ and (1.17) holds for all time.

The rest of this paper is naturally divided into two sections. Section 2 proves Theorem
1.1 while Section 3 presents the proof of Theorem 1.2.

2. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. We start with several tools to be used
frequently in this section. The first provides an anisotropic upper bound for integrals
involving triple products. It was previously stated and proven in [7].

Lemma 2.1. Assume f , g, h, ∂1g, ∂2h ∈ L2(R2). Then, for a constant C > 0,"
f gh dx1 dx2 ≤ C‖ f ‖L2(R2)‖g‖

1
2
L2(R2)‖∂1g‖

1
2
L2(R2)‖h‖

1
2
L2(R2)‖∂2h‖

1
2
L2(R2). (2.1)

The second tool provides an easily verifiable condition under which a nonnegative and
integrable function actually approaches zero at infinity. It is Lemma 3.1 in [13].

Lemma 2.2. Let f = f (t) with t ∈ [0,∞) be a nonnegative and uniform continuous
function. Assume f is integrable on [0,∞),∫ ∞

0
f (t) dt < ∞.

Then
f (t)→ 0 as t → ∞.

We remark that the uniform continuity condition in Lemma 2.2 can be replaced by a
slightly weaker assumption that for any δ > 0, there is ρ > 0 such that, for any 0 ≤ t1 < t2

with t2 − t1 ≤ ρ,

either f (t2) ≤ f (t1) or f (t2) ≥ f (t1) and f (t2) − f (t1) ≤ δ.

The following lemma assesses the precise decay rate for a nonnegative integrable func-
tion when it decreases in a generalized sense.

Lemma 2.3. Let f = f (t) be a nonnegative continuous function satisfying, for two con-
stants a0 > 0 and a1 > 0,∫ ∞

0
f (τ) dτ ≤ a0 < ∞ and f (t) ≤ a1 f (s) for any 0 ≤ s < t. (2.2)

Then, for a2 = max{2a1 f (0), 2a0a1} and for any t > 0,

f (t) ≤ a2(1 + t)−1.

Since the proof of Theorem 1.1 is long, for the sake of clarity, we divide it into three
main parts. This section is split into three subsections. The first part establishes the
global uniform H1-bound for the solution (u, b) and related time integral bounds. Besides
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controlling the standard time integral terms, we are also able to bound the time integral of
‖∇u(t)‖2L2 . This is not a consequence of the original damping and the magnetic diffusion.
It is obtained by taking into the account of the wave structure in (1.9) and by evaluating
a mixed term, namely the inner product (∂2u, b). It is this bound that helps us obtain the
decay rate for ‖(∇u(t),∇b(t))‖L2 . This part of the proof is provided in the first subsection.

The second main part is to construct the energy function E(t), given by

E(t) = E1(t) + E2(t) + E3(t) (2.3)

where

E1(t) = sup
0≤τ≤t

(
‖ω(τ)‖2L2 + ‖ j(τ)‖2L2

)
+

∫ t

0

(
‖∂1u(τ)‖2L2 + ‖∇ j(τ)‖2L2

)
dτ,

E2(t) = sup
0≤τ≤t

(
‖∇ω(τ)‖2H1 + ‖∇ j(τ)‖2H1

)
+

∫ t

0

(
‖∂1ω(τ)‖2H1 + ‖∇2 j(τ)‖2H1

)
dτ,

E3(t) =

∫ t

0
‖∂2ω(τ)‖2H1dτ.

The inclusion of E3, suggested by (1.10), helps bound the nonlinear term (u · ∇)u in the
process of estimating the H3-norm of u. Otherwise, we would not be able to close the
estimates. An equivalent process is to design a Lyapunov functional given by

L(u, b)(t) = ‖(∇u(t),∇b(t))‖2H2 + λ(∇u(t), ∂2∇b(t))H1 ,

where λ > 0 is a small parameter and (F,G)H1 denotes the H1-inner product. The main
efforts are devoted to estimating E(t). This is a long and tedious process involving appli-
cations of various anisotropic inequalities such as Lemma 2.1 above. We are able to show
that

E(t) ≤ C∗1E(0) + C∗2E
3
2 (t) + C∗3E

5
4 (t). (2.4)

A bootstrapping argument is then applied to (2.4) to obtain the desired stability. The
second subsection provides the details.

The third main part is to prove the large-time behavior and decay estimates stated in
Theorem 1.1. Both Lemma 2.2 and Lemma 2.3 will be used. In order to obtain the decay
rate for ‖∇u(t)‖H2 and ‖∇b(t)‖H2 , according to Lemma 2.3, we need to verify that, for

f (t) := ‖∇u(t)‖H2 + ‖∇b(t)‖H2

and for any 0 ≤ t1 ≤ t2 and a uniform constant C > 0,∫ ∞

0
f (t) dt < ∞ and f (t2) ≤ C f (t1).

The time integrability part is a consequence of the first part and (2.4) in the second part,
but the generalized decreasing property takes some effort. The idea is to use E(t) defined
in (2.3) with τ ∈ [t1, t] as a bridge. Since f (t) is part of E(t), we have f (t2) ≤ E(t2). We
then show that, for some constant C > 0,

E(t2) ≤ C f (t1) + C E
3
2 (t2) + CE

5
4 (t2). (2.5)
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According to the second part, when the initial data or E(0) is sufficiently small, say,
E(0) ≤ δ2, then E(t) remains uniformly small, E(t) ≤ C δ2. By taking δ to be small, (2.5)
implies that

E(t2) ≤ C f (t1).
As a consequence, we obtain f (t2) ≤ C f (t1) and Lemma 2.3 leads to the desired decay
rates. This part, together with the completion of the proof for Theorem 1.1, is presented
in the third subsection.

2.1. Uniform bounds in H1. As described above, this subsection proves the uniform H1

and related time integral bounds stated in the following proposition.

Proposition 2.4. Assume the initial data (u0, b0) ∈ H1 with ∇ · u0 = ∇ · b0 = 0. Then the
corresponding solution (u, b) of (1.6) satisfies(

‖u(t)‖2H1 + ‖b(t)‖2H1

)
+

∫ t

0

(
‖u2(τ)‖2L2 + ‖∇u(τ)‖2L2 + ‖∇b(τ)‖2H1

)
dτ

≤ C (‖u0‖
2
H1 + ‖b0‖

2
H1).

Proof of Proposition 2.4. Taking the L2-inner product of (1.6) with (u, b), we obtain

‖(u, b)(t)‖2L2 + 2
∫ t

0
(γ‖u2(τ)‖2L2 + η‖∇b(τ)‖2L2) dτ = ‖u0‖

2
L2 + ‖b0‖

2
L2 .

To prove the H1-bound, we resort to the equation of (ω, j) with ω = ∇ × u, j = ∇ × b,
∂tω + (u · ∇)ω = γR2

1ω + (b · ∇) j + ∂2 j,

∂t j + (u · ∇) j = η∆ j + (b · ∇)ω + ∂2ω + Q,
(2.6)

where
Q = 2∂1b1(∂2u1 + ∂1u2) − 2∂1u1(∂2b1 + ∂1b2).

Multiplying (2.6) by (ω, j), integrating over R2 and applying Hölder’s inequality and
Gagaliardo-Nirenberg’s inequality, we obtain

1
2

d
dt
‖(ω, j)(t)‖2L2 + γ‖∇u2‖

2
L2 + η‖∇ j‖2L2 =

∫
Q j dx

≤ C‖∇b‖L4‖∇u‖L2‖ j‖L4

≤ C‖∇b‖
1
2
L2‖∇

2b‖
1
2
L2‖∇u‖L2‖ j‖

1
2
L2‖∇ j‖

1
2
L2

≤ C‖∇ j‖L2‖ j‖L2‖ω‖L2 ≤
η

2
‖∇ j‖2L2 + C‖ j‖2L2‖ω‖

2
L2 , (2.7)

where we have used the facts

‖R1ω‖L2 = ‖∂1u‖L2 = ‖∇u2‖L2 , ‖∇u‖L2 = ‖ω‖L2 , ‖∇b‖L2 = ‖ j‖L2 , ‖∇2b‖L2 = ‖∇ j‖L2 .

By Gronwall’s inequality,

‖(ω, j)(t)‖2L2 +

∫ t

0
(2γ‖∇u2(τ)‖2L2 + η‖∇ j(τ)‖2L2) dτ

≤ C(‖(u0, b0)‖L2) ‖(ω0, j0)‖2L2 . (2.8)
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Next we bound
∫ t

0
‖∂2u(τ)‖2L2dτ and show that∫ t

0
‖∂2u(τ)‖2L2dτ ≤ C (‖u0‖

2
H1 + ‖b0‖

2
H1)

The idea is to evaluate the L2-inner product (∂2u, b). It follows from (1.6) that

−
d
dt

(∂2u, b) + ‖∂2u‖2L2 − ‖∂2b‖2L2 =

∫
∂2(u · ∇u) · b dx

+

∫ (
∂2u · (u · ∇b) − ∂2(b · ∇b) · b

)
dx

−

∫
∂2u · (b · ∇u) dx

+

∫
(γ∂2u2 b2 − η∂2u · ∆b) dx

:= I1 + I2 + I3 + I4.

Further dividing I1 into two terms, and applying Hölder’s inequality and the Sobolev
imbedding inequality, we have

I1 = −

∫
(u1∂1u · ∂2b + u2∂2u · ∂2b) dx

≤ ‖u1‖L4‖∂1u‖L2‖∂2b‖L4 + ‖u2‖L4‖∂2u‖L2‖∂2b‖L4

≤ C‖u1‖H1‖∂1u‖L2‖∂2b‖H1 + C‖u2‖H1‖∂2u‖L2‖∂2b‖H1

≤ C‖u‖H1(‖∂1u‖2L2 + ‖∇b‖2H1) + C‖u‖2H1‖∇b‖2H1 +
1
8
‖∂2u‖2L2 .

Similarly, I2 and I3 can be bounded as follows.

I2 =

∫ (
∂2u · (u · ∇b) + (b · ∇b) · ∂2b

)
dx

≤ ‖∂2u‖L2‖u‖L4‖∇b‖L4 + ‖b‖L2‖∇b‖2L4

≤ C(‖u‖2H1 + ‖b‖L2)‖∇b‖2H1 +
1
8
‖∂2u‖2L2

and

I3 =

∫
(b1∂1u · ∂2u + b2∂2u · ∂2u) dx

≤ ‖b1‖L∞‖∂1u‖L2‖∂2u‖L2 + ‖b2‖L∞‖∂2u‖2L2

≤ C‖b‖
1
2
L2‖∇

2b‖
1
2
L2

(
‖∂1u‖L2‖∂2u‖L2 + ‖∂2u‖2L2

)
≤ C‖b‖L2‖∇2b‖L2‖∂1u‖2L2 + C‖b‖2L2‖∇

2b‖2L2‖∂2u‖2L2 +
1
8
‖∂2u‖2L2

≤ C‖b‖L2‖∇u‖L2(‖∇2b‖2L2 + ‖∂1u‖2L2) + C‖b‖2L2‖∇u‖2L2‖∇
2b‖2L2 +

1
8
‖∂2u‖2L2 ,
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where we have used the Gagaliardo-Nirenberg’s inequality ‖b‖L∞ ≤ C‖b‖
1
2
L2‖∇

2b‖
1
2
L2 in I3.

By integration by parts and Hölder’s inequality,

I4 = −γ

∫
u2 ∂2b2 dx − η

∫
∂2u · ∆b dx

≤
γ

2

(
‖u2‖

2
L2 + ‖∂2b2‖

2
L2

)
+

(1
8
‖∂2u‖2L2 + 2η2‖∆b‖2L2

)
.

Collecting all the estimates above for I1 through I4 leads to

− 2
d
dt

(∂2u, b) + ‖∂2u‖2L2 −
(
γ‖u2‖

2
L2 + (2 + γ)‖∂2b‖2L2 + 4η2‖∆b‖2L2

)
≤ C

(
‖u‖H1 + ‖u‖2H1 + ‖b‖L2 + ‖b‖L2‖∇u‖L2 + ‖b‖2L2‖∇u‖2L2

)(
‖∂1u‖2L2 + ‖∇b‖2H1

)
≤ C(η, ‖u0‖

2
H1 , ‖b0‖

2
H1)

(
‖∂1u‖2L2 + ‖∇b‖2H1

)
, (2.9)

Integrating (2.9) over [0, t] yields∫ t

0
‖∂2u(τ)‖2L2dτ≤

∫ t

0
(γ‖u2(τ)‖2L2 + (2 + γ)‖∂2b(τ)‖2L2 + 4η2‖∆b(τ)‖2L2) dτ

+ (‖∂2u‖2L2 + ‖b‖2L2) + (‖∂2u0‖
2
L2 + ‖b0‖

2
L2) + C (‖u0‖

2
H1 + ‖b0‖

2
H1)

≤ C (‖u0‖
2
H1 + ‖b0‖

2
H1).

This completes the proof of Proposition 2.4. �

2.2. Proof of (2.4). This subsection is devoted to the proof of (2.4). As aforementioned
at the beginning of this section, a crucial step in proving the desired stability is to prove
(2.4). We state it as a proposition for the purpose of easy reference later on.

Proposition 2.5. Assume (u0, b0) ∈ H3 obeys the conditions stated in Theorem 1.1. Let
(u, b) be the corresponding solution of (1.6). Let E(t) be defined as in (2.3). Then (2.4)
holds.

Proof of Proposition 2.5. According to (2.3), E(t) consists of three pieces E1 and E2 and
E3. The first piece E1 contains the homogeneous Ḣ-norm of (u, b) and has been estimated
in (2.8),

E1(t) ≤ CE1(0). (2.10)

E2 contains the Ḣ2 and Ḣ3-norms of (u, b). Its upper bound depends on E3. It does not
appear possible to bound E2 without E3. The estimate E3 is not trivial and it is the wave
structure in (1.9) that leads to its boundedness. The rest of this proof establishes the
following bounds,

E2(t) ≤ CE
3
2 (t) + E2(0) (2.11)

and

E3(t) −C∗0(η, γ)(E1(t) + E2(t)) ≤ C
(
E

3
2 (t) + E

5
4 (t)

)
+ E(0), (2.12)

where C > 0 and C∗0 are constants. (2.10), (2.11) and (2.12) yield the desired global bound
in (2.4). We start with the proof of (2.11).
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Taking the L2-inner product of (2.6) with (∆ω,∆ j) and integrating by parts yield
1
2

d
dt
‖(∇ω,∇ j)(t)‖2L2 + γ‖∂1ω‖

2
L2 + η‖∆ j‖2L2

= −

∫
(∇u · ∇)ω · ∇ω dx +

∫
(∇b · ∇) j · ∇ω dx −

∫
(∇u · ∇) j · ∇ j dx

+

∫
(∇b · ∇)ω · ∇ j dx +

∫
∇Q · ∇ j dx,

where we have used ‖R1∇ω‖L2 = ‖∂1ω‖L2 . By Hölder’s and Sobolev’s inequalities,
1
2

d
dt
‖(∇ω,∇ j)(t)‖2L2 + γ‖∂1ω‖

2
L2 + η‖∆ j‖2L2

≤ ‖∇u‖L∞
(
‖∇ω‖2L2 + ‖∇ j‖2L2

)
+ 2‖∇b‖L∞‖∇ j‖L2‖∇ω‖L2

+ 2
(
‖∇u‖L∞‖∇2b‖L2 + ‖∇b‖L∞‖∇2u‖L2

)
‖∇ j‖L2

≤ C(‖ω‖H2 + ‖ j‖H2)(‖∇ω‖2L2 + ‖∇ j‖2L2), (2.13)

where we have used the simple facts

‖∇u‖L2 = ‖ω‖L2 , ‖∇b‖L2 = ‖ j‖L2 , ‖∇2u‖L2 = ‖∇ω‖L2 , ‖∇2b‖L2 = ‖∇ j‖L2 .

Applying ∆ to (2.6) and taking the inner product with (∆ω,∆ j) leads to
1
2

d
dt
‖(∆ω,∆ j)‖2L2 + γ‖∂1∇ω‖

2
L2 + η‖∇∆ j‖2L2

= −

∫
∆(u · ∇)ω ∆ω dx +

∫
∆(b · ∇) j ∆ω dx −

∫
∆(u · ∇) j ∆ j dx

+

∫
∆(b · ∇)ω ∆ j dx +

∫
∆Q ∆ j dx := J1 + J2 + · · · + J5.

By integration by parts, Hölder’s inequality and Sobolev’s inequality,

J1 = −

∫
(∆u · ∇ω) ∆ω dx − 2

∫
∇u · ∇(∇ω) ∆ω dx

≤ ‖∆u‖L4‖∇ω‖L4‖∆ω‖L2 + 2‖∇u‖L∞‖∇2ω‖2L2

≤ C‖∆u‖H1‖∇ω‖H1‖∆ω‖L2 + C‖∇u‖H2‖∇2ω‖2L2

≤ C‖ω‖H2‖∇ω‖2H1 .

J1 would not be suitably bounded without E3. J3 can be bounded in a similar way

J3 = −

∫
(∆u · ∇ j) ∆ j dx − 2

∫
∇u · ∇(∇ j) ∆ j dx

≤ ‖∆u‖L4‖∇ j‖L4‖∆ j‖L2 + 2‖∇u‖L∞‖∇2 j‖2L2

≤ C‖ω‖H2‖∇ j‖2H1 .

We combine J2 and J4. By integration by parts,

J2 + J4 =

∫ (
∆b · ∇ j + 2∇b · ∇(∇ j)

)
∆ω dx +

∫ (
∆b · ∇ω + 2∇b · ∇(∇ω)

)
∆ j dx

≤ ‖∆b‖L4‖∇ j‖L4‖∆ω‖L2 + 4‖∇b‖L∞‖∇2 j‖L2‖∇2ω‖L2 + ‖∆b‖L4‖∇ω‖L4‖∆ j‖L2
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≤ C‖∆b‖H1‖∇ j‖H1‖∆ω‖L2 + C‖∇b‖H2‖∇2 j‖L2‖∇2ω‖L2 + C‖∆b‖H1‖∇ω‖H1‖∆ j‖L2

≤ C‖ j‖H2

(
‖∇ω‖2H1 + ‖∇ j‖2H1

)
.

By Hölder’s inequality and Sobolev’s inequality,

J5 ≤ C
∫ (
|∆∇b||∇u| + |∇2b||∇2u| + |∇b||∆∇u|) |∆ j| dx

≤ C
(
‖∆∇b‖L2‖∇u‖L∞ + ‖∇2b‖L4‖∇2u‖L4 + ‖∇b‖L∞‖∇∆u‖L2

)
‖∆ j‖L2

≤ C
(
‖∆∇b‖L2‖∇u‖H2 + ‖∇2b‖H1‖∇2u‖H1 + ‖∇b‖H2‖∇∆u‖L2

)
‖∆ j‖L2

≤ C(‖ω‖H2 + ‖ j‖H2)(‖∇ω‖2H1 + ‖∆ j‖2L2).

We have thus obtained
d
dt
‖(∆ω,∆ j)(t)‖2L2 + 2γ‖∂1∇ω‖

2
L2 + 2η‖∇∆ j‖2L2

≤ C(‖ω‖H2 + ‖ j‖H2)(‖∇ω‖2H1 + ‖∇ j‖2H1). (2.14)

Combining (2.13) with (2.14), we have
d
dt
‖(∇ω,∇ j)(t)‖2H1 + 2γ‖∂1ω‖

2
H1 + 2η‖∆ j‖2H1

≤ C(‖ω‖H2 + ‖ j‖H2)(‖∇ω‖2H1 + ‖∇ j‖2H1). (2.15)

Integrating in time leads to, for some constant C > 0,

E2(t) ≤ C sup
0≤τ≤t

(‖ω(τ)‖H2 + ‖ j(τ)‖H2)
∫ t

0
(‖∇ω(τ)‖2H1 + ‖∇ j(τ)‖2H1) dτ + ‖(∇ω0,∇ j0)‖2H1

≤ CE
3
2 (t) + E2(0),

which is (2.11).

We now turn to the proof of (2.12). Due to the wave structure in (1.9) and (1.10), we re-
alize that the time integral term

∫ t

0
‖∂2w(τ)‖H1 dτ in E3 can be generated as a consequence

of the inner products
(∂2∇u,∇b) and (∂2∇ω,∇ j).

We focus on the time evolution of these two inner products. Using (1.6), we have
d
dt

(∂2∇u,∇b) = (∂2∇ut,∇b) + (∂2∇u,∇bt)

=

∫
∂2∇

(
− (u · ∇)u − γ(0, u2)> + (b · ∇)b

)
· ∇b dx − ‖∂2∇b‖2L2

+

∫
∂2∇u · ∇

(
− (u · ∇)b + η∆b + (b · ∇)u

)
dx + ‖∂2∇u‖2L2 , (2.16)

where
∫
∂2∇(∇p) · ∇b dx = 0 due to ∇ · b = 0. Similarly, by (2.6),

d
dt

(∂2∇ω,∇ j) =

∫
∂2∇

(
− (u · ∇)ω + γR2

1ω + (b · ∇) j
)
· ∇ j dx − ‖∂2∇ j‖2L2

+

∫
∂2∇ω · ∇

(
− (u · ∇) j + η∆ j + (b · ∇)ω + Q

)
dx + ‖∂2∇ω‖

2
L2 . (2.17)



STABILITY PROBLEM ON THE 2D MHD EQUATIONS 15

Summing (2.16) and (2.17) yields

−
d
dt

[
(∂2∇u,∇b) + (∂2∇ω,∇ j)

]
+ ‖∂2ω‖

2
H1 − ‖∂2 j‖2H1

=

∫ (
∂2∇(u · ∇)u − ∂2∇(b · ∇)b

)
· ∇b dx

+

∫
∂2∇u · (∇(u · ∇)b − ∇(b · ∇)u) dx

+

∫ (
∂2∇(u · ∇)ω − ∂2∇(b · ∇) j

)
· ∇ j dx

+

∫
∂2∇ω ·

(
∇(u · ∇) j − ∇(b · ∇)ω

)
dx

−

∫
∂2∇ω · ∇Q dx

+

∫ [
γ(∂2∇u2 · ∇b2 − ∂2∇R

2
1ω · ∇ j) − η(∂2∇u · ∇∆b + ∂2∇ω · ∇∆ j)

]
dx

:= K1 + · · · + K6. (2.18)

We bound the terms in (2.18) one by one. By integration by parts, Hölder’s inequality,
the anisotropic inequality (2.1) and Sobolev’s inequality ‖v‖L4 ≤ C‖v‖

1
2
L2‖∇v‖

1
2
L2 ,

K1 =

∫
(u · ∇)u · ∂2∆b dx +

∫ (
∂2b · ∇b + b · ∇∂2b

)
· ∆b dx

≤ C‖u‖
1
2
L2‖∂1u‖

1
2
L2‖∇u‖

1
2
L2‖∂2∇u‖

1
2
L2‖∂2∆b‖L2 + ‖∂2b‖L4‖∇b‖L4‖∆b‖L2

+ ‖b‖L4‖∇∂2b‖L4‖∆b‖L2

≤ C‖u‖
1
2
L2‖∂1u‖

1
2
L2‖ω‖

1
2
L2‖∇ω‖

1
2
L2‖∂2∇ j‖L2

+ ‖∂2b‖
1
2
L2‖∂2∇b‖

1
2
L2‖∇b‖

1
2
L2‖∆b‖

3
2
L2 + ‖b‖

1
2
L2‖∇b‖

1
2
L2‖∇∂2b‖H1‖∆b‖L2

≤ C
(
‖u‖

1
2
L2‖ω‖

1
2
L2 + ‖ j‖L2 + ‖b‖

1
2
L2‖ j‖

1
2
L2

)(
‖∂1u‖2L2 + ‖∇ω‖2L2 + ‖∇ j‖2H1

)
≤ C

(
‖ω‖

1
2
L2 + ‖ j‖

1
2
L2 + ‖ j‖L2

)
(‖∂1u‖2L2 + ‖∇ω‖2L2 + ‖∇ j‖2H1), (2.19)

where we have used the uniform bound on ‖(u, b)‖L2 . Similarly, K2 can be bounded by

K2 = −

∫
(u · ∇)b · ∂2∆u dx −

∫ (
(∇b · ∇)u + (b · ∇)∇u

)
· ∂2∇u dx

≤ C‖u‖
1
2
L2‖∂1u‖

1
2
L2‖∇b‖

1
2
L2‖∂2∇b‖

1
2
L2‖∂2∆u‖L2 + ‖∇b‖L4‖∇u‖L4‖∂2∇u‖L2

+ ‖b‖L4‖∇2u‖L4‖∂2∇u‖L2

≤ C‖u‖
1
2
L2‖∂1u‖

1
2
L2‖ j‖

1
2
L2‖∇ j‖

1
2
L2‖∇

2ω‖L2 + ‖∇b‖
1
2
L2‖∇

2b‖
1
2
L2‖∇u‖

1
2
L2‖∇

2u‖
3
2
L2

+ ‖b‖
1
2
L2‖∇b‖

1
2
L2‖∇

2u‖H1‖∂2∇u‖L2

≤ C
(
‖ j‖

1
2
L2 + ‖ j‖

1
2
L2‖ω‖

1
2
L2

)
(‖∂1u‖2L2 + ‖∇ j‖2L2 + ‖∇ω‖2H1). (2.20)
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By integration by parts,

K3 =

∫
(u · ∇)ω ∂2∆ j dx −

∫
(b · ∇) j ∂2∆ j dx

≤
(
‖u‖L4‖∇ω‖L4 + ‖b‖L4‖∇ j‖L4

)
‖∂2∆ j‖L2

≤ C
(
‖u‖

1
2
L2‖∇u‖

1
2
L2‖∇ω‖H1 + ‖b‖

1
2
L2‖∇b‖

1
2
L2‖∇ j‖H1

)
‖∂2∆ j‖L2

≤ C
(
‖ω‖

1
2
L2 + ‖ j‖

1
2
L2

)
(‖∇ω‖2H1 + ‖∇ j‖2H2). (2.21)

For K4, we have

K4 =

∫ (
(∇u · ∇) j + (u · ∇)∇ j −

(
∇b · ∇)ω − (b · ∇)∇ω

)
∂2∇ω dx

≤
(
‖∇u‖L4‖∇ j‖L4 + ‖u‖L4‖∇2 j‖L4 + ‖∇b‖L4‖∇ω‖L4 + ‖b‖L∞‖∇2ω‖L2

)
‖∂2∇ω‖L2

≤ C
(
‖∇u‖H1‖∇ j‖H1 + ‖u‖

1
2
L2‖∇u‖

1
2
L2‖∇

2 j‖H1 + ‖∇b‖H1‖∇ω‖H1

+ ‖b‖
1
2
L2‖∇

2b‖
1
2
L2‖∇

2ω‖L2

)
‖∆ω‖L2

≤ C
(
‖ω‖

1
2
L2 + ‖∇ j‖

1
2
L2 + ‖ω‖H1 + ‖ j‖H1

)
(‖∇ω‖2H1 + ‖∇ j‖2H2). (2.22)

The terms in K5 are similar to the first and the third terms in (2.22),

K5 ≤ C
(
‖∇u‖L4‖∇2b‖L4 + ‖∇b‖L4‖∇2u‖L4

)
‖∂2∇ω‖L2

≤ C
(
‖ω‖H1 + ‖ j‖H1

)
(‖∇ω‖2H1 + ‖∇ j‖2H1). (2.23)

By Hölder’s inequality,

K6 =

∫ [
− γ(∂2u2 ∆b2 + ∂2∇R

2
1ω · ∇ j) − η(∂2∇u · ∇∆b + ∂2∇ω · ∇∆ j)

]
dx

≤
1
2

(
‖∂2u2‖

2
L2 + γ2‖∆b2‖

2
L2

)
+

(1
4
‖∂2∇R

2
1ω‖

2
L2 + γ2‖∇ j‖2L2

)
+

(1
2
‖∂2∇u‖2L2 +

η2

2
‖∇∆b‖2L2

)
+

(1
4
‖∂2∇ω‖

2
L2 + η2‖∇3 j‖2L2

)
≤

1
2

(‖∂1u1‖
2
L2 + 3γ2‖∇ j‖2L2) +

1
2
‖∂2ω‖

2
H1 + η2‖∆ j‖2H1 , (2.24)

where we have used ‖∂2∇R
2
1ω‖L2 ≤ ‖∂2∇ω‖L2 . Inserting the bounds (2.19-2.24) in (2.18),

we obtain

‖∂2ω‖
2
H1 −C∗0(‖∂1u1‖

2
L2 + ‖∇ j‖2H2)

≤ 2
d
dt

[
(∂2∇u,∇b) + (∂2∇ω,∇ j)

]
+ C

(
‖(ω, j)‖

1
2
H1 + ‖(w, j)‖H1

)(
‖∂1u‖2L2 + ‖∇ω‖2H1 + ‖∇ j‖2H2

)
(2.25)

for C∗0 = 2 + 2η2 + 3γ2. Integrating (2.25) over [0, t] yields∫ t

0
‖∂2ω(τ)‖2H1dτ −C∗0

∫ t

0
(‖∂1u1(τ)‖2L2 + ‖∇ j(τ)‖2H2) dτ

≤ (‖∂2∇u‖2H1 + ‖ j‖2H1) + (‖∂2∇u0‖
2
H1 + ‖ j0‖

2
H1)
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+ C sup
0≤τ≤t

(
‖(ω, j)(τ)‖

1
2
H1 + ‖(ω, j)(τ)‖H1

) ∫ t

0

(
‖∂1u(τ)‖2L2 + ‖∇ω(τ)‖2H1 + ‖∇ j(τ)‖2H2

)
dτ

≤ (‖∇ω‖2H1 + ‖ j‖2H1) + C(E
3
2 (t) + E

5
4 (t)) + E(0),

which implies

E3(t) −C∗0(E1(t) + E2(t)) ≤ C
(
E

3
2 (t) + E

5
4 (t)

)
+ E(0).

This completes the proof of (2.12). By taking a small number λ > 0 and considering the
combination

(2.10) + (2.11) + λ (2.12),
we find that there exist C∗1 > 0,C∗2 > 0 and C∗3 > 0 such that

E(t) ≤ C∗1E(0) + C∗2 E
3
2 (t) + C∗3E

5
4 (t),

which is (2.4). This completes the proof of Proposition 2.5. �

2.3. Proof of Theorem 1.1. This subsection completes the proof of Theorem 1.1 using
the bounds obtained in the previous two subsections. We first apply the bootstrapping
argument to show the stability and then prove the part on the large-time behavior of the
solution.

Proof of Theorem 1.1. We now combine the uniform bounds in Proposition 2.4 and Propo-
sition 2.5 to establish the global existence and stability of solutions to (1.6). Proposition
2.4 gives us the global uniform H1-bound regardless of the size of the initial data (u0, b0)
in H1, namely

‖(u(t), b(t))‖H1 ≤ C ‖(u0, b0)‖H1 .

The energy inequality obtained in Proposition 2.5,

E(t) ≤ C∗1E(0) + C∗2 E
3
2 (t) + C∗3E

5
4 (t) (2.26)

allows us to conclude that, if ‖(∇u0,∇b0)‖H2 is sufficiently small, say

‖(∇u0,∇b0)‖H2 ≤ δ :=

√
M

4C∗1
(2.27)

where
M := min

{
1,

1

(4C̃)4

}
with C̃ = max{C∗2, C∗3},

then the solution remains uniformly small,

E(t) ≤ 2C∗1δ
2 or ‖(∇u(t),∇b(t))‖H2 ≤

√
2C∗1 δ.

This is shown by applying the bootstrapping argument to (2.26). The argument starts with
the ansatz that, for t ≤ T ,

E(t) ≤ M.
By (2.26) and (2.27),

E(t) ≤ C∗1E(0) + C̃(E
1
2 (t) + E

1
4 (t))E(t)

≤ C∗1δ
2 + 2C̃E

1
4 (t)E(t)
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≤ C∗1δ
2 +

1
2

E(t).

Then

E(t) ≤ 2C∗1δ
2 = 2C∗1

M
4C∗1

=
M
2
.

The bootstrapping argument implies that T = ∞ and for any t < ∞,

E(t) ≤
1
2

M.

This completes the proof for the global existence and stability of solutions to (1.6).

We now prove the large-time behavior estimates stated in Theorem 1.1. First we show

‖(∇u(t),∇b(t))‖L2 ≤ C(‖u0‖H1 , ‖b0‖H1) (1 + t)−
1
2 and ‖u2(t)‖L2 → 0 as t → ∞.

The decay estimate is obtained by applying Lemma 2.3. We verify the conditions (2.2) in
Lemma 2.3. First of all, Proposition 2.4 implies∫ ∞

0

(
‖∇u(τ)‖2L2 + ‖∇b(τ)‖2L2

)
dτ ≤ C ‖(u0, b0)‖2H1 < ∞.

In addition, as in the proof of (2.8), for 0 ≤ t1 < t2,

‖∇u(t2)‖2L2 + ‖∇b(t2)‖2L2 ≤ e
1
2η (‖u0‖

2
L2 +‖b0‖

2
L2 )(
‖∇u(t1)‖2L2 + ‖∇b(t1)‖2L2

)
.

Lemma 2.3 then yields

‖(∇u(t),∇b(t))‖L2 ≤ C ‖(u0, b0)‖H1 (1 + t)−
1
2 .

Due to the Gagaliardo-Nirenberg’s inequality, for any 2 < q < ∞,

‖v‖Lq ≤ C‖v‖
2
q

L2‖∇v‖
1− 2

q

L2 , (2.28)

we find that ‖(u(t), b(t))‖Lq → 0 as t → ∞. Next we turn to the long-time behavior of
‖u2(t)‖L2 . We will use Lemma 2.2 to show that

‖u2(t)‖L2 → 0 as t → ∞.

By Proposition 2.4, ∫ ∞

0
‖u2(t)‖2L2 dt < ∞.

It then suffices to verify the uniform continuity part of Lemma 2.2. Multiplying the equa-
tion of u2 in (1.8) by u2 and integrating over R2, we have

1
2

d
dt
‖u2(t)‖22 + γ‖R1u2‖

2
L2 = −

∫
(P(u · ∇u))2 u2 dx

+

∫
(P(b · ∇b))2 u2 dx +

∫
∂2b2 u2 dx.

Recalling that P = I−∇∆−1∇· and using the fact that the singular integral operator ∆−1∇·∇·

is bounded on L2 (see [41]), we have∣∣∣∣ ∫ (P(u · ∇u))2 u2 dx
∣∣∣∣ =

∣∣∣∣ − ∫
∂2∆

−1∇ · (u · ∇u) u2 dx
∣∣∣∣
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=
∣∣∣∣ ∫ ∆−1∇ · ∇ · (u � u) ∂2u2dx

∣∣∣∣ ≤ ‖u � u‖L2‖∂2u2‖L2

≤ ‖u‖2L4‖∂2u2‖L2 ≤ C‖u‖L2‖∇u‖L2‖∂2u2‖L2 .

Similarly,∣∣∣∣ ∫ (P(b · ∇b))2 u2 dx
∣∣∣∣ =

∣∣∣∣ ∫ b · ∇b2 u2 dx +

∫
∆−1∇ · (b · ∇b) ∂2u2 dx

∣∣∣∣
≤ ‖b‖L4‖∇b‖L2‖u2‖L4 + ‖b‖2L4‖∂2u2‖L2

≤ C‖b‖2H1‖u2‖H1 .

By Hölder’s inequality, ∣∣∣∣ ∫ ∂2b2 u2 dx
∣∣∣∣ ≤ 1

2
(‖∂2b2‖

2
L2 + ‖u2‖

2
L2).

Invoking the uniform bound of ‖(u, b)‖H1 in Proposition 2.4, we have
1
2

d
dt
‖u2(t)‖2L2 + γ‖R1u2‖

2
L2 ≤ C‖u‖L2‖∇u‖2L2 + C‖b‖2H1‖u2‖H1 +

1
2

(‖∂2b2‖
2
L2 + ‖u2‖

2
L2)

≤ C∗(η, γ, ‖u0‖H1 , ‖b0‖H1),

which verifies the uniform continuity of Lemma 2.2. As a consequence,

‖u2(t)‖L2 → 0 as t → ∞.

Next we prove the decay estimate

‖(ω(t), j(t))‖H2 ≤ C (‖(u0, b0)‖L2 + δ) (1 + t)−
1
2 .

The tool is Lemma 2.3. We verify that

f (t) = ‖ω(t)‖2H2 + ‖ j(t)‖2H2

satisfies the conditions of Lemma 2.3. First of all, since E(t) ≤ C δ2 < ∞,∫ ∞

0
f (t)dt ≤ C (‖(u0, b0)‖2L2 + δ2) < ∞. (2.29)

It then suffices to show the generalized monotonicity that, for any 0 ≤ t1 < t2 < ∞,

f (t2) ≤ C f (t1).

The idea is to use E(t) as a bridge. With a slight abuse of notation, E(t) here is defined
as in (2.3) but with the starting time t1 instead of 0. Since f (t) is part of E(t), we have
f (t2) ≤ E(t2). We then show that, for some constant C > 0,

E(t2) ≤ C f (t1) + C E
3
2 (t2) + CE

5
4 (t2). (2.30)

According to the stability shown above, when the initial data or E(0) is sufficiently small,
E(t) remains uniformly small, E(t) ≤ C δ2. By taking δ to be small, (2.30) implies that

E(t2) ≤ C f (t1).

As a consequence, we obtain f (t2) ≤ C f (t1). We now verify (2.30). By (2.7),
d
dt
‖(ω, j)(t)‖2L2 + 2γ‖∇u2‖

2
L2 + η‖∇ j‖2L2 ≤ C‖ j‖2L2‖ω‖

2
L2 . (2.31)
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By Gronwall’s inequality,

‖ω(t2)‖2L2 + ‖ j(t2)‖2L2 ≤ (‖ω(t1)‖2L2 + ‖ j(t1)‖2L2)e
C(η)(‖u0‖

2
L2 +‖b0‖

2
L2 )
.

If we integrate (2.31) over [t1, t2] directly, we have

(‖ω(t2)‖2L2 + ‖ j(t2)‖2L2) +

∫ t2

t1
(2γ‖∂1u(τ)‖2L2 + η‖∇ j(τ)‖2L2) dτ

≤ (‖ω(t1)‖2L2 + ‖ j(t1)‖2L2) + sup
t1≤τ≤t2

‖ω(τ)‖2L2

∫ t2

t1
‖ j(τ)‖2L2 dτ

≤ C(η)
(
1 + (‖u0‖

2
L2 + ‖b0‖

2
L2)e

C(η)(‖u0‖
2
L2 +‖b0‖

2
L2 )

)
(‖ω(t1)‖2L2 + ‖ j(t1)‖2L2). (2.32)

Next integrating (2.15) over [t1, t2] yields(
‖∇ω(t2)‖2H1 + ‖∇ j(t2)‖2H1

)
+

∫ t2

t1

(
2γ‖∂1ω(τ)‖2H1 + 2η‖∆ j(τ)‖2H1

)
dτ

≤
(
‖∇ω(t1)‖2H1 + ‖∇ j(t1)‖2H1

)
+ C sup

t1≤τ≤t2
(‖ω(τ)‖H2 + ‖ j(τ)‖H2)

∫ t2

t1
(‖∇ω(τ)‖2H1 + ‖∇ j(τ)‖2H1) dτ

≤
(
‖∇ω(t1)‖2H1 + ‖∇ j(t1)‖2H1

)
+ CE

3
2 (t2). (2.33)

Similarly, we obtain from (2.25) that∫ t2

t1
‖∂2ω(τ)‖2H1 dτ −C∗0

∫ t2

t1
(‖∂1u1(τ)‖2L2 + ‖∇ j(τ)‖2H2) dτ

≤ (‖∂2∇u(t2)‖2H1 + ‖ j(t2)‖2H1) + (‖∂2∇u(t1)‖2H1 + ‖ j(t1)‖2H1)

+ C sup
t1≤τ≤t2

(
‖(ω, j)(τ)‖

1
2
H1 + ‖(ω, j)(τ)‖H1

) ∫ t2

t1

(
‖∂1u(τ)‖2L2 + ‖∇ω(τ)‖2H1 + ‖∇ j(τ)‖2H2

)
dτ

≤ (‖∇ω(t2)‖2H1 + ‖ j(t2)‖2H1) + (‖∇ω(t1)‖2H1 + ‖ j(t1)‖2H1) + C(E
3
2 (t2) + E

5
4 (t2)). (2.34)

(2.32), (2.33) and (2.34) imply that for some C∗4 > 0,C∗5 > 0,

E(t2) ≤ C∗4 f (t1) + C∗5(E
3
2 (t2) + E

5
4 (t2)). (2.35)

As we have shown in the stability part, for a uniform constant C and for all t ≥ 0,

E(t) ≤ C δ2

if the initial data is sufficiently small, or E(0) ≤ δ2 for small δ > 0. If δ > 0 is sufficiently
small, we have

C∗5(E
3
2 (t2) + E

5
4 (t2)) ≤

1
2

E(t2).

Then (2.35) yields

E(t2) ≤ C∗4 f (t1) +
1
2

E(t2)

or
E(t2) ≤ C f (t1).
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Combining with the simple fact that f (t2) ≤ E(t2), we obtain the generalized monotonicity

f (t2) ≤ C f (t1). (2.36)

Therefore, (2.29) and (2.36) verify the conditions of Lemma 2.3, which implies

f (t) ≤ C (‖(u0, b0)‖2L2 + δ2) (1 + t)−1.

That is, (1.13) holds,

‖∇u(t)‖H2 ≤ C (‖(u0, b0)‖L2 + δ) (1 + t)−
1
2 and ‖∇b(t)‖H2 ≤ C (‖(u0, b0)‖L2 + δ) (1 + t)−

1
2 .

The large-time behavior in (1.14) is a consequence of (2.28) and the Gagaliardo-Nirenberg
inequality ‖v‖L∞ ≤ C‖v‖

1
2
L2‖∇

2v‖
1
2
L2 . This completes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

This section proves Theorem 1.2, the sharp decay rates for the global solutions ob-
tained in Theorem 1.1. We are assuming that the initial data (u0, b0) satisfies

‖(u0, b0)‖H3 ≤ δ, ‖(u0, b0)‖L1 ≤ δ, (3.1)

and (u, b) is the corresponding global solution established by Theorem 1.1. We constantly
use the following properties of the solution (u, b),

‖(u, b)(t)‖2H3 +

∫ t

0
(‖u2(τ)‖2L2 + ‖∇u(τ)‖2H2 + ‖∇b(τ)‖2H3)dτ ≤ Cδ2 (3.2)

and

‖∇u(t)‖H2 + ‖∇b(t)‖H2 ≤ Cδ(1 + t)−
1
2 , (3.3)

where C are constants independent of δ.

The sharp decay rates can no longer be shown by energy estimates. We need more
explicit representation of the solution. The idea is to first convert (1.6) into an integral
representation. This is achieved by first solving the linearized system of (1.6) or (1.9) and
then applying Duhamel’s principle. The integral representation involves several kernel
functions and the large-time behavior of the solution replies crucially on them. These
Fourier multiplier operators are nonhomogeneous and depend crucially on the frequency.
Naturally we split the frequency space into subdomains suitably and classify the behavior
of these operators on each subdomain. Equivalently we provide upper sharp upper bounds
on their symbols. Once this is at our disposal, we then launch the bootstrapping argument
on the integral representation to deduce the desired decay rates.

The following two tools will be frequently used in the estimates. The first provides an
explicit decay rate for the heat kernel associated with a fractional Laplacian Λα (α ∈ R).
Here the fractional Laplacian operator can be defined through the Fourier transform

Λ̂α f (ξ) = |ξ|α f̂ (ξ).

The proof of the Lemma can be found in many references (see, e.g., [15, 46]).
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Lemma 3.1. Let α ≥ 0, β > 0 and 1 ≤ q ≤ p ≤ ∞. Then there exists a constant C such
that, for any t > 0,

‖Λαe−Λβt f ‖Lp(Rd) ≤ C t−
α
β−

d
β ( 1

q−
1
p )
‖ f ‖Lq(Rd). (3.4)

The following lemma provides upper bounds for a convolution type integral. Its proof
is straightforward.

Lemma 3.2. Assume 0 < s1 ≤ s2. Then, for some constant C > 0,

∫ t

0
(1 + t − τ)−s1(1 + τ)−s2 dτ ≤



C(1 + t)−s1 , if s2 > 1,

C(1 + t)−s1 ln(1 + t), if s2 = 1,

C(1 + t)1−s1−s2 , if s2 < 1.

We now derive an integral representation satisfied by the solution of (1.8). Taking the
Fourier transform of (1.8) yields

∂tV̂ = AV̂ + N̂,

where

V̂ =

(
û
b̂

)
, A =

(
−γξ2

1 |ξ|
−2 iξ2

iξ2 −η|ξ|2

)
, N̂ =

(
N̂1

N̂2

)
.

The solution of this nonhomogeneous ordinary differential equation can be represented as

V̂(t) = eAt V̂0 +

∫ t

0
eA(t−τ) N̂(τ)dτ.

In order to find a more explicit formula of eAt, we compute the eigenvalues and eigenvec-
tors of A. The characteristic polynomial associated with A is

λ2 + (γξ2
1 |ξ|
−2 + η|ξ|2)λ + (γηξ2

1 + ξ2
2) = 0.

The eigenvalues of the matrix A are given by

λ1 =
−(γξ2

1 |ξ|
−2 + η|ξ|2) −

√
Γ

2
, λ2 =

−(γξ2
1 |ξ|

2 + η|ξ|−2) +
√

Γ

2
,

where
Γ = (γξ2

1 |ξ|
−2 + η|ξ|2)2 − 4(γηξ2

1 + ξ2
2).

The corresponding eigenvectors are

ρ1 =

(
λ1 + η|ξ|2

iξ2

)
, ρ2 =

(
λ2 + η|ξ|2

iξ2

)
.

Therefore, the matrix A can be diagonalized as

A = (ρ1, ρ2)

 λ1 0
0 λ2

 (ρ1, ρ2)−1.
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Then

eAt =
1

(λ1 − λ2)iξ2

 λ1 + η|ξ|2 λ2 + η|ξ|2

iξ2 iξ2

  eλ1t 0
0 eλ2t

  iξ2 −(λ2 + η|ξ|2)
−iξ2 λ1 + η|ξ|2


=

 η|ξ|2G1(t) + G2(t) G1(t)iξ2

G1(t)iξ2 −η|ξ|2G1(t) + G3(t)

 (3.5)

where

G1(t) =
eλ2t − eλ1t

λ2 − λ1
, G2(t) =

λ2eλ2t − λ1eλ1t

λ2 − λ1
= eλ2t + λ1G1(t),

G3(t) =
λ2eλ1t − λ1eλ2t

λ2 − λ1
= eλ1t − λ1G1(t).

Therefore, if we write

M̂1(t) = η|ξ|2G1(t) + G2(t), M̂2(t) = iξ2 G1(t), M̂3(t) = −η|ξ|2G1(t) + G3(t), (3.6)

then (u, b) can be represented as

û(ξ, t) = M̂1(t)̂u0 + M̂2(t)̂b0 +

∫ t

0

(
M̂1(t − τ)N̂1(τ) + M̂2(t − τ)N̂2(τ)

)
dτ, (3.7)

b̂(ξ, t) = M̂2(t)̂u0 + M̂3(t)̂b0 +

∫ t

0

(
M̂2(t − τ)N̂1(τ) + M̂3(t − τ)N̂2(τ)

)
dτ. (3.8)

When λ1 = λ2, the representation in (3.7) and (3.8) remains valid if we replace G1 by its
limiting form

G1(t) = lim
λ2→λ1

eλ2t − eλ1t

λ2 − λ1
= t eλ1t.

More precisely, when λ1 = λ2, we replace G1(t) by its limit teλ1t, G2(t) by eλ1t + λ1teλ1t,
and G3(t) by eλ1t − λ1teλ1t in (3.5) to get

eAt =

 η|ξ|2teλ1t + (1 + λ1t)eλ1t iξ2teλ1t

iξ2teλ1t −η|ξ|2teλ1t + (1 − λ1t)eλ1t

. (3.9)

This can also be obtained by a direct calculation. When λ1 = λ2, the associated eigenvec-
tor of A is

ρ =

(
λ1 + η|ξ|2

iξ2

)
,

and the general solution of ∂tV̂ = AV̂ is given by

a3 ρ eλ1t + a4 (ρ t + σ)eλ1t, (3.10)

where a3 and a4 are to be determined by the initial data, and σ solves

(A − λ1I)σ = ρ.
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After some simple computation, we find

σ =

(
1
0

)
.

We determine a3 and a4 by the initial data û0 and b̂0. Setting t = 0 in (3.10) yields

a3 ρ + a4 σ =

 û0

b̂0

. (3.11)

Solving (3.11) gives

a3 =
1

iξ2
b̂0, a4 = û0 −

λ1 + η|ξ|2

iξ2
b̂0.

Inserting a3 and a4 in (3.10) yields

1
iξ2

b̂0

 λ1 + η|ξ|2

iξ2

eλ1t +
(
û0 −

λ1 + η|ξ|2

iξ2
b̂0

)[  1
0

 +

 λ1 + η|ξ|2

iξ2

t]eλ1t

=

 eλ1t + (λ1 + η|ξ|2)teλ1t − 1
iξ2

(λ1 + η|ξ|2)2 teλ1t

iξ2teλ1t −(λ1 + η|ξ|2)teλ1t + eλ1t


 û0

b̂0

.
Using the simple fact Γ = 0 or − 1

iξ2
(λ1 +η|ξ|2)2 = iξ2, we can see that the coefficient matrix

is the same as the one in (3.9).

The kernels M̂i(ξ, t) (i = 1, 2, 3) play a crucial role in the decay rates of u and b.
Clearly the behavior of M̂i(ξ, t) (i = 1, 2, 3) depends on the frequency ξ. We classify their
behavior and provide upper bounds by dividing the frequency space into subdomains.

Proposition 3.3. We divide R2 into two subdomains, R2 = S 1 ∪ S 2 with

S 1 :=

ξ ∈ R2 : either Γ < 0 or 0 ≤ Γ ≤

(
γξ2

1 |ξ|
−2 + η|ξ|2

2

)2
S 2 :=

ξ ∈ R2 : Γ >

(
γξ2

1 |ξ|
−2 + η|ξ|2

2

)2

or 3(γξ2
1 |ξ|
−2 + η|ξ|2)2 > 16(γηξ2

1 + ξ2
2)

 .
Then we have

(1) There are two constants C > 0 and c0 > 0 such that, for any ξ ∈ S 1,

Reλ1 ≤ −
γξ2

1 |ξ|
−2 + η|ξ|2

2
, Reλ2 ≤ −

γξ2
1 |ξ|
−2 + η|ξ|2

4
,

|G1(t)| ≤ te−
γξ21 |ξ|

−2+η|ξ|2

4 t, |M̂i(ξ, t)| ≤ Ce−c0 |ξ|
2t, i = 1, 2, 3.
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(2) There is a constant C > 0 such that, for any ξ ∈ S 2,

λ1 < −
3(γξ2

1 |ξ|
−2 + η|ξ|2)
4

, λ2 ≤ −
γηξ2

1 + ξ2
2

γξ2
1 |ξ|
−2 + η|ξ|2

,

|G1(t)| <
2

γξ2
1 |ξ|
−2 + η|ξ|2

e− 3(γξ21 |ξ|
−2+η|ξ|2)
4 t + e

−
C|ξ|2

γξ21 |ξ|
−2+η|ξ|2

t
 ,

|M̂i(t)| < C(e−
3
4 (γξ2

1 |ξ|
−2+η|ξ|2)t + e

−
C|ξ|2

γξ21 |ξ|
−2+η|ξ|2

t
), i = 1, 2, 3.

If we further write S 2 = S 21 ∪ S 22 with

S 21 := {ξ ∈ S 2 : |ξ| ≤ 1} ,
S 22 := {ξ ∈ S 2 : |ξ| > 1} ,

Then, for i = 1, 2, 3 and some constants C > 0, c1 > 0, c2 > 0,

|M̂i(ξ, t)|<C e−c1 |ξ|
2t, if ξ ∈ S 21,

|M̂i(t)|<C e−c1 |ξ|
2t + C e−c2t, if ξ ∈ S 22.

Proof of Proposition 3.3. For notational convenience, we denote B = γξ2
1 |ξ|
−2 + η|ξ|2.

Then λ1, λ2, Γ can be rewritten as

λ1 =
−B −

√
Γ

2
, λ2 =

−B +
√

Γ

2
, Γ = B2 − 4(γηξ2

1 + ξ2
2).

For ξ ∈ S 1,
√

Γ ≤ B
2 . It is then clear that

−
3B
4
≤ Reλ1 ≤ −

B
2
, Reλ2 ≤ −

B
4
, |G1(T )| ≤ te−

B
4 t,

where we have used the mean-value theorem in bounding G1(t). If λ1 is a real number, by
the simple fact that x e−x ≤ C for x ≥ 0, we have

|M̂1(t)| =
∣∣∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣∣∣ ≤ Bte−
B
4 t + CBte−

B
4 t + e−

B
4 t ≤ Ce−c0 |ξ|

2t

for some pure constant c0 dependent of γ and η. If λ1 is an imaginary number, namely
Γ < 0 or

B2 − 4(γηξ2
1 + ξ2

2) < 0,

we further divide the consideration into two subcases:
√
γηξ2

1 + ξ2
2 ≤ |

√
Γ | and

√
γηξ2

1 + ξ2
2 ≥

|
√

Γ | . In the case when
√
γηξ2

1 + ξ2
2 ≤ |

√
Γ|, by the definition of G1, we have

|λ1G1(t)| =

√
γηξ2

1 + ξ2
2

|
√

Γ|
|eλ1t − eλ2t| ≤ Ce−

B
4 t.

In the case when
√
γηξ2

1 + ξ2
2 ≥ |

√
Γ |, we have

γηξ2
1 + ξ2

2 ≥ 4(γηξ2
1 + ξ2

2) − B2,

or

3(γηξ2
1 + ξ2

2) ≤ B2.



26 NICKI BROADMAN, HONGXIA LIN AND JIAHONG WU

Then

|λ1G1(t)| =
√
γηξ2

1 + ξ2
2 |G1(t)| ≤ CBte−

B
4 t ≤ Ce−

B
4 t.

As a consequence, if λ1 is an imaginary number, we obtain

|M̂1(t)| =
∣∣∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣∣∣ ≤ Bte−
B
4 t + Ce−

B
4 t ≤ Ce−c0 |ξ|

2t.

In summary, for ξ ∈ S 1,

|M̂1(t)| ≤ Ce−c0 |ξ|
2t. (3.12)

Similarly,

|M̂3(t)| =
∣∣∣∣ − η|ξ|2G1(t) − λ1G1(t) + eλ1t

∣∣∣∣ ≤ Ce−c0 |ξ|
2t.

The proof of the bound
|M̂2(t)| ≤ Ce−c0 |ξ|

2t (3.13)
is similar to that for M1(t). By the definition of M̂2 in (3.6) and the upper bound for G1 in
(3.12), we have

|M̂2(t)| ≤ |ξ2|t e−
B
4 t.

To prove (3.13), we consider two cases |ξ2| ≤ |
√

Γ| and |ξ2| ≥ |
√

Γ|. In the first case
|ξ2| ≤ |

√
Γ |, we have

M̂2(t)| =
∣∣∣∣ ξ2
√

Γ

∣∣∣∣ |eλ1t − eλ2t| ≤ C e−c0 |ξ|
2t,

where we have used x e−x ≤ C for x ≥ 0. In the second case, |ξ2| ≥ |
√

Γ | or∣∣∣B2 − 4(γηξ2
1 + ξ2

2)
∣∣∣ ≤ ξ2

2,

which is equivalent to
−ξ2

2 ≤ B2 − 4(γηξ2
1 + ξ2

2) ≤ ξ2
2.

In particular,
B2 ≥ 4(γηξ2

1 + ξ2
2) − ξ2

2 ≥ ξ
2
2.

Therefore,
|M̂2(t)| ≤ B |G1(t)| ≤ Bte−

B
4 t ≤ C e−c0 |ξ|

2t.

Now we assume ξ ∈ S 2. Then B
2 <
√

Γ ≤ B and

− B ≤ λ1 < −
3
4

B,

λ2 =
Γ − B2

2(B +
√

Γ)
≤ −

γηξ2
1 + ξ2

2

B
≤ −

C|ξ|2

B
,

|G1(t)| ≤
1

λ2 − λ1
(eλ1t + eλ2t) <

2
B
(
e−

3
4 Bt + e−

C|ξ|2
B t).

As a consequence,

|M̂1(t)| =
∣∣∣∣η|ξ|2G1(t) + λ1G1(t) + eλ2t

∣∣∣∣ ≤ 2B|G1(t)| + eλ2t < C
(
e−

3
4 Bt + e−

C|ξ|2
B t

)
,

|M̂3(t)| =
∣∣∣∣ − η|ξ|2G1(t) − λ1G1(t) + eλ1t

∣∣∣∣ < C
(
e−

3
4 Bt + e−

C|ξ|2
B t

)
.
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Since
√

Γ > B
2 ,

3
4

B2 > 4(γηξ2
1 + ξ2

2) ≥ ξ2
2.

Therefore,

|M̂2(t)| < CB |G1(t)| < C(e−
3
4 Bt + e−

C|ξ|2
B t

)
.

The upper bound for |M̂i(ξ, t)| with ξ ∈ S 21 or ξ ∈ S 22 is a consequence of the following
estimate

|ξ|2

B
=

|ξ|2

γξ2
1 |ξ|
−2 + η|ξ|2

≥
|ξ|2

γ + η|ξ|2
≥


C|ξ|2, if |ξ| ≤ 1,

C, if |ξ| > 1.

This complete the proof of Proposition 3.3. �

With the integral representation in (3.7) and (3.8) and the upper bounds for the kernels
in Proposition 3.3 at our disposal, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By differentiating (3.7) and (3.8), we find, for k = 1, 2 and m =

0, 1, 2,

∂̂m
k u(ξ, t) = M̂1(t)∂̂m

k u0 + M̂2(t)∂̂m
k b0

+

∫ t

0

(
M̂1(t − τ)∂̂m

k N1(τ) + M̂2(t − τ)∂̂m
k N2(τ)

)
dτ, (3.14)

∂̂m
k b(ξ, t) = M̂2(t)∂̂m

k u0 + M̂3(t)∂̂m
k b0

+

∫ t

0

(
M̂2(t − τ)∂̂m

k N1(τ) + M̂3(t − τ)∂̂m
k N2(τ)

)
dτ. (3.15)

We apply the bootstrapping argument to (3.14) and (3.15) to establish the sharp decay
rates stated in Theorem 1.2. First we recall that the initial data (u0, b0) is assumed to
satisfy (3.1), namely

‖(u0, b0)‖H3 ≤ δ and ‖(u0, b0)‖L1 ≤ δ

for sufficiently small δ > 0. The bootstrapping argument makes the ansatz that, for t ≤ T ,

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤ C0δ (1 + t)−
1
2 , (3.16)

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤ C1δ (1 + t)−1, (3.17)

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤ C2δ (1 + t)−
3
2 , (3.18)

where Cm (m = 0, 1, 2) will be specified later. We then show via (3.14) and (3.15) that
(Dmu(t),Dmb(t)) admits a smaller upper bound

‖u(t)‖L2(R2) + ‖b(t)‖L2(R2) ≤
C0

2
δ (1 + t)−

1
2 , (3.19)

‖Du(t)‖L2(R2) + ‖Db(t)‖L2(R2) ≤
C1

2
δ (1 + t)−1, (3.20)

‖D2u(t)‖L2(R2) + ‖D2b(t)‖L2(R2) ≤
C2

2
δ (1 + t)−

3
2 . (3.21)
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The bootstrapping argument then assesses that T = ∞ and (3.19), (3.20) and (3.21) ac-
tually hold for all time. The rest of the proof focuses on verifying (3.19), (3.20) and
(3.21).

We start with the estimate of ‖∂m
k u‖L2(R2). Taking the L2 norm on both side of (3.14),

we have

‖∂m
k u‖L2(R2) = ‖∂̂m

k u(t)‖L2(R2) ≤ ‖M̂1(t)∂̂m
k u0‖L2(R2) + ‖M̂2(t)∂̂m

k b0‖L2(R2)

+

∫ t

0
‖M̂1(t − τ)∂̂m

k N1(τ)‖L2(R2) dτ +

∫ t

0
‖M̂2(t − τ)∂̂m

k N2(τ)‖L2(R2) dτ. (3.22)

We will estimate only the first term and the third term since the estimates for the other
two terms are similar. Without loss of generality, we assume t > 1. By Proposition 3.3
and Lemma 3.1, the first term on the right-hand side of (3.22) can be bounded as

‖M̂1(t)∂̂m
k u0‖L2(R2) ≤ C‖e−c̃0 |ξ|

2t∂̂m
k u0 ‖L2(R2) + ‖e−c2t ∂̂m

k u0‖L2(R2)

= ‖ |ξ|me−c̃0 |ξ|
2t ̂Λ−m∂m

k u0‖L2(R2) + e−c2t‖ ∂̂m
k u0 ‖L2(R2)

≤ C(1 + t)−
1+m

2 ‖u0‖L1(R2) + C(1 + t)−
1+m

2 ‖u0‖L2(R2)

≤ C(1 + t)−
1+m

2 δ, (3.23)

where c̃0 = min{c0, c1} and we have used e−c2t(1 + t)s ≤ C(c2, s) for any s ≥ 0. Now
we bound the third term in (3.22). Invoking Proposition 3.3 and using the fact that the
projection operator P is bounded in L2, we have∫ t

0
‖M̂1(t − τ)∂̂m

k N1(τ)‖L2(R2) dτ ≤
∫ t

0
‖M̂1(t − τ)∂̂m

k Q1(τ)‖L2(R2) dτ

≤ C
∫ t

0
‖e−c̃0 |ξ|

2(t−τ)∂̂m
k Q1(τ)‖L2(R2) dτ + C

∫ t

0
e−c2(t−τ)‖∂̂m

k Q1(τ)‖L2(R2) dτ, (3.24)

where Q1 = u · ∇u − b · ∇b. When m = 0, we split the time integral in the first term into
two parts,∫ t

0
‖ e−c̃0 |ξ|

2(t−τ)Q̂1(τ) ‖L2 dτ =

∫ t
2

0
‖ e−c̃0 |ξ|

2(t−τ)Q̂1(τ) ‖L2 dτ +

∫ t

t
2

‖ e−c̃0 |ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ.

By Lemma 3.1, the ansatz (3.16) and (3.2), we get∫ t
2

0
‖ e−c̃0 |ξ|

2(t−τ)Q̂1(τ) ‖L2 dτ =

∫ t
2

0
‖ |ξ| e−c̃0 |ξ|

2(t−τ)Λ̂−1Q1(τ) ‖L2 dτ

≤ C
∫ t

2

0
(t − τ)−1(‖u(τ) ⊗ u(τ)‖L1 + ‖b(τ) ⊗ b(τ)‖L1) dτ

≤ C
( t
2

)−1
sup
0≤τ≤t

(‖u(τ)‖L2 + ‖b(τ)‖L2)
∫ t

2

0
(‖u(τ)‖L2 + ‖b(τ)‖L2) dτ

≤ CC0

( t
2

)−1
δ2

∫ t
2

0
(1 + τ)−

1
2 dτ ≤ CC0δ

2(1 + t)−
1
2 ,
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where we have used u ·∇u = ∇· (u⊗u) and b ·∇b = ∇· (b⊗b). The estimate of the second
integral is slightly different.∫ t

t
2

‖ e−c̃0 |ξ|
2(t−τ)Q̂1(τ) ‖L2 dτ ≤ C

∫ t

t
2

(t − τ)−
1
2 ‖u · ∇u − b · ∇b‖L1 dτ

≤ C
∫ t

t
2

(t − τ)−
1
2 (‖u(τ)‖L2‖∇u(τ)‖L2 + ‖b(τ)‖L2‖∇b(τ)‖L2) dτ

≤ CC0δ
2
∫ t

t
2

(t − τ)−
1
2 (1 + τ)−1 dτ

≤ CC0δ
2
(
1 +

t
2

)−1
∫ t

t
2

(t − τ)−
1
2 dτ ≤ CC0δ

2(1 + t)−
1
2 ,

where we have used (3.3) for ‖(∇u,∇b)‖L2 . Due to the fact e−c2t(1 + t)s ≤ C(c2, s) for any
s > 0, the second term in (3.24) can be estimated as∫ t

0
e−c2(t−τ)‖Q̂1(τ)‖L2 dτ

≤ C
∫ t

0
(1 + t − τ)−s‖u(τ)‖

1
2
L2‖∇u(τ)‖L2‖∇2u(τ)‖

1
2
L2 dτ

≤ CC
1
2
0 δ

2
∫ t

0
(1 + t − τ)−s(1 + τ)−

1
2 dτ ≤ CC

1
2
0 δ

2(1 + t)−
1
2 ,

where s > 1 and we have used (3.16) and (3.3). In summary, when m = 0, the third term
in (3.22) is bounded by∫ t

0
‖M̂1(t − τ)N̂1(τ)‖L2 dτ ≤ C(C0 + C

1
2
0 )δ2(1 + t)−

1
2 .

The second term in (3.22) admits the same bound as the first term while the fourth shares
the bound with the third term. Therefore, we have shown that there exist C3 > 0 and
C4 > 0 such that

‖u(t)‖L2 ≤ C3δ(1 + t)−
1
2 + C4(1 + C0)δ2(1 + t)−

1
2 .

If C0 and δ satisfy

C3 ≤
C0

4
, C4(1 + C0)δ ≤

C0

4
,

then

‖u(t)‖L2 ≤
C0

2
(1 + t)−

1
2 . (3.25)

We now turn to the case when m = 1, 2. We again focus on the third term in (3.22).
First of all, we split the first time integral in (3.24) into two terms. The first term is further
estimated via (3.4) and the fact that

(t − τ)−
m+1

2 ≤ C (1 + t − τ)−
m+1

2 for any τ ∈ [0, t − 1]
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while we use the fact 1 + t − τ ≤ 2 for τ ∈ [t − 1, t] in the second term. We obtain∫ t

0
‖ e−c̃0 |ξ|

2(t−τ)∂̂m
k Q1(τ) ‖L2 dτ

≤

∫ t−1

0
‖ |ξ|m+1e−c̃0 |ξ|

2(t−τ) ̂Λ−(m+1)∂m
k Q1(τ) ‖L2 dτ +

∫ t

t−1
‖∂̂m

k Q1(τ) ‖L2 dτ

≤ C
∫ t−1

0
(1 + t − τ)−

m+1
2 ‖Λ−1Q1(τ)‖L2 dτ + C(m)

∫ t

t−1
(1 + t − τ)−

m+1
2 ‖∂̂m

k Q1(τ) ‖L2 dτ

≤ C
∫ t

0
(1 + t − τ)−

m+1
2 ‖Λ−1Q1(τ)‖L2 dτ + C(m)

∫ t

0
(1 + t − τ)−

m+1
2 ‖∂̂m

k Q1(τ) ‖L2 dτ.

Thanks to the estimates e−c2t(1 + t)s ≤ C(c2, s) for any t > 0 and any constant s > 0, the
second integral term in (3.24) can be bounded by∫ t

0
e−c2(t−τ)‖∂̂m

k Q1(τ)‖L2 dτ ≤ C(m)
∫ t

0
(1 + t − τ)−

m+1
2 ‖∂̂m

k Q1(τ)‖L2 dτ.

Thus,∫ t

0
‖M̂1(t − τ)∂̂m

k N1(τ)‖L2 dτ

≤ C
∫ t

0
(1 + t − τ)−

m+1
2 ‖Λ−1Q1(τ)‖L2 dτ + C(m)

∫ t

0
(1 + t − τ)−

m+1
2 ‖∂̂m

k Q1(τ) ‖L2 dτ.

(3.26)

For m = 1, by Hölder’s inequality and Sobolev inequality, we have∫ t

0
(1 + t − τ)−1‖Λ−1Q1(τ)‖L2 dτ

≤ C
∫ t

0
(1 + t − τ)−1(‖u(τ)‖2L4 + ‖b(τ)‖2L4) dτ

≤ C
∫ t

0
(1 + t − τ)−1(‖u(τ)‖L2‖∇u(τ)‖L2 + ‖b(τ)‖L2‖∇b(τ)‖L2) dτ.

Then, by (3.25), the ansatz (3.17) and Lemma 3.2,∫ t

0
(1 + t − τ)−1‖Λ−1Q1(τ)‖L2 dτ ≤ CC0C1δ

2
∫ t

0
(1 + t − τ)−1(1 + τ)−

3
2 dτ

≤ CC1δ
2(1 + t)−1.

Similarly,∫ t

0
(1 + t − τ)−1‖∂kQ1(τ)‖L2 dτ

≤

∫ t

0
(1 + t − τ)−1(‖∇u(τ)‖2L4 + ‖u(τ)‖L4‖∇2u(τ)‖L4 + ‖∇b(τ)‖2L4 + ‖b(τ)‖L4‖∇2b(τ)‖L4) dτ

≤ C
∫ t

0
(1 + t − τ)−1(‖∇u(τ)‖L2‖∇2u(τ)‖L2 + ‖u(τ)‖

1
2
L2‖∇u(τ)‖

1
2
L2‖∇

2u(τ)‖H1

+ ‖∇b(τ)‖L2‖∇2b(τ)‖L2 + ‖b(τ)‖
1
2
L2‖∇b(τ)‖

1
2
L2‖∇

2b(τ)‖H1) dτ
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≤ C(C1 + C
1
2
0 C

1
2
1 )δ2

∫ t

0
(1 + t − τ)−1(1 + τ)−

5
4 dτ ≤ C(C1 + C

1
2
1 )δ2(1 + t)−1,

where we have used (3.25), the ansatz (3.17) and the decay estimate ‖(∇2u(t),∇2b(t))‖H1 ≤

Cδ(1 + t)−
1
2 . Therefore, the third term in (3.22) for m = 1 can be bounded by∫ t

0
‖M̂1(t − τ)∂̂kN1(τ)‖L2 dτ ≤ C(1 + C1)δ2(1 + t)−1. (3.27)

Collecting the estimates (3.23) and (3.27) yields

‖∇u‖L2 ≤ C5δ(1 + t)−1 + C6(1 + C1)δ2(1 + t)−1

for some constants C5 > 0 and C6 > 0. Therefore, if C1 and δ satisfy

C5 ≤
C1

4
, C6(1 + C1)δ ≤

C1

4
,

then

‖∇u‖L2 ≤
C1

2
δ(1 + t)−1 (3.28)

and the bootstrapping argument implies T = ∞. Thus, the decay rate (3.28) indeed holds
for all time. Finally, we bound (3.26) for m = 2. With a similar argument as m = 1, we
get ∫ t

0
(1 + t − τ)−

3
2 ‖Λ−1Q1(τ)‖L2 dτ ≤ CC0C1δ

2
∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−

3
2 dτ

≤ Cδ2(1 + t)−
3
2 .

Also, by Hölder’s inequality and Sobolev’s inequality,∫ t

0
(1 + t − τ)−

3
2 ‖∂2

kQ1(τ)‖L2 dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 (‖∇u(τ)‖L4‖∇2u(τ)‖L4 + ‖u(τ)‖L∞‖∇3u(τ)‖L2

+ ‖∇b(τ)‖L4‖∇2b(τ)‖L4 + ‖b(τ)‖L∞‖∇3b(τ)‖L2) dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 (‖∇u(τ)‖

1
2
L2‖∇

2u(τ)‖L2‖∇3u(τ)‖
1
2
L2 + ‖u(τ)‖

1
2
L2‖∇

2u(τ)‖
1
2
L2‖∇

3u(τ)‖L2

+ ‖∇b(τ)‖
1
2
L2‖∇

2b(τ)‖L2‖∇3b(τ)‖
1
2
L2 + ‖b(τ)‖

1
2
L2‖∇

2b(τ)‖
1
2
L2‖∇

3b(τ)‖L2) dτ.

Then using (3.25), (3.28), the ansatz (3.18) and ‖ (∇3u,∇3b) ‖L2 ≤ Cδ(1 + t)−
1
2 , we have∫ t

0
(1 + t − τ)−

3
2 ‖∂2

kQ1(τ)‖L2 dτ

≤ C(C
1
2
1 C2 + C

1
2
0 C

1
2
2 )δ2

∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−

3
2 dτ

≤ C(C2 + C
1
2
2 )δ2(1 + t)−

3
2 .
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Therefore, ∫ t

0
‖M̂1(t − τ)∂̂2

kN1(τ)‖L2 dτ ≤ C(1 + C2)δ2(1 + t)−
3
2 .

As a consequence,

‖∇2u‖L2 ≤ C7δ(1 + t)−
3
2 + C8(1 + C2)δ2(1 + t)−

3
2

for the constant C7 > 0 and C8 > 0. Then the decay rate for ‖∇2u‖L2 follows from a
similar argument as Case m = 0, 1. This completes the proof of Theorem 1.2.
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