STABILIZATION OF A BACKGROUND MAGNETIC FIELD ON A 2D
MAGNETOHYDRODYNAMIC FLOW

NICKI BOARDMAN!, HONGXIA LIN?, JIAHONG WU?

AssTrACT. This paper rigorously establishes the stabilization effect of a background mag-
netic field on electrically conducting fluids, a phenomenon that has been widely observed
in physical experiments and numerical simulations. This study is based on a special 2D
magnetohydrodynamic (MHD) system in which the velocity equation involves no dissi-
pation and there is only damping in the vertical component equation. Without the mag-
netic field, the corresponding vorticity equation is a 2D Euler-like equation with an extra
Riesz transform type term. The global in time regularity and the stability near the trivial
solution are well-known open problems. When coupled with the magnetic field through
the MHD system, the background magnetic field stabilizes the fluid, and the velocity as
well as the vorticity remain small if they are initially so and decay algebraically in time.
To overcome the difficulties due to the lack of full dissipation or damping, we construct
suitable Lyapunov functionals and reduce the system to wave-type equations.

1. INTRODUCTION

Well-known to the community of mathematical fluid mechanics is the open problem
of whether or not the 2D Euler-like equations,

Ow+ - Vo =R o, xeR% >0, (L1

u=ViAlw, '
and

o,w + (u;Y)w = R%w, xeR?, t>0, (1.2)

u=VA'w,

always possess global (in time) classical solutions. Here R; = 81(—A)‘% denotes the Riesz
transform and the fractional Laplacian operator is defined via the Fourier transform,

(AP = P F ().
V+ = (=0,,0,) and u = V*A~'w represents the Biot-Savart law recovering the velocity u
from the vorticity w := V X u. The velocity formulation of the 2D Euler equation is given
by
ou+ w-Vyu=-Vp, V-u=0, xeR% t>0.
with the corresponding vorticity w = V X u satisfying

Ow+ (u-Vw =0, xeR? >0, (13)
u=Valw. '
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The global well-posedness of (1.3) has been well established [33]. Especially the classical
Yudovich theory [60] asserts that any initial data wy € L'(R?) N L*(R?) leads to a unique
global weak solution w € L!(R?) N L*(R?). The proof of this result relies crucially on the
fact that w is conserved along the particle trajectory. However, the Yudovich framework
fails on (1.1) and (1.2). The terms R w and Riw involve the Calderon-Zygmund type
singular integral operators and are not bounded on L*. As a consequence, the L*-norms
of the solutions to (1.1) and (1.2) are not known to be bounded. The L?-norms of w for
1 < g < oo are bounded, but these L?-norms could grow exponentially in g, as pointed out
by T. Elgindi [17]. Therefore, the Yudovich approach and its refinements do not work for
(1.1) and (1.2). Whether or not solutions of (1.1) and (1.2) can blow up in a finite-time
remains an outstanding open problem. Some preliminary investigations on (1.1) and (1.2)
and two other closely related models have been conducted ( [9]).

The corresponding velocity formulation for (1.2) is given by

ouy + (u-Vyu, = -0,P,
8,%2 + (u - V)I/t2 +u, = —BZP, (14)
V-u=0,

with damping only in the second component of the velocity equation. The global regu-
larity problem as well as the stability near the trivial solution of (1.4) remain open. As
we shall reveal in this paper, when the velocity is coupled with the magnetic field via
the MHD system, the background magnetic field actually stabilizes the fluid, and both
the velocity and vorticity remain small if they are initially so. In fact, they actually de-
cay algebraically in time. The magnetic field smooths and stabilizes the velocity through
coupling and interaction. The influence of an external magnetic field on the behavior of
electrically conducting fluids has been observed in many experiments and numerical sim-
ulations (see, e.g., [1-4,21,22]). One goal of this paper is to establish these observations
as mathematically rigorous facts.

We give a more precise description of what we achieve in this paper. Attention is
focused on the following 2D incompressible MHD equations

Btul + (l/t . V)l/ll = —81P + (B . V)B], X € Rz, t> 0,

Oty + (- Vi + yuy = —0,P + (B-V)B,, x€R? t>0,
(1.5)

OB+u-VB=nAB+B-Vu, xeR?* t>0,

V-u=V-B=0, xeR> t>0,

where u = (u;,us)", B = (B, B;)" and P denote the velocity field of the fluid, the mag-
netic field and the scalar pressure, respectively. The parameters y > 0 and n > O represent
the damping coefficient and the magnetic diffusivity, respectively. Clearly, (1.5) with
B = 0 reduces to the velocity equation in (1.4). Our main goal here is to understand the
stability problem on perturbations near a background magnetic field and give a precise
description on the large-time behavior of the perturbations. It is easy to verify that the
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special steady state given by the background magnetic field, namely
u® =0, BO=e¢,:=(0,1)

solves (1.5). The perturbation (u,b) with b = B — B near the steady state (1, B©)
solves the MHD equations

(9,141 + (Lt . V)Ml = —(91P+ (b . V)b] +(92b], X € Rz, t>0,
6;”2 + (I/t . V)I/tz + yu; = —(92P + (b . V)bz + 62b2, X € Rz, t>0,

(1.6)
Ob+w-Vb=nAb+(b-Vu+du, xeR> t>0,

V-u=V-b=0, xeR? t>0.

The system (1.6) supplemented with the initial data
u(x,0) = up(x),  b(x,0) = bo(x)

will be the centerpiece of our study. By taking the curl of (1.6), we find that w = V X u
and j = V X b satisty

ow+ (u-Viw = yﬂfa)+ (b-V)j+0,j,
(1.7)

0, j+w-V)j=nAj+ b -V)v+ow+ 0,

where
Q = 20,b1(0u) + 01u) — 201u1(0,b, + 0,bs).

The stability problem appears to be impossible on our first glance at the vorticity equation
alone. It is the 2D Euler equation with three forcing terms. As it is well-known, the
gradient of the Euler vorticity and more generally its Sobolev norm can grow rapidly (even
double exponentially) in time (see, e.g., [12,28,61]). The term y Riw can only aggravate
the situation. Since Riesz transform type singular integral operators R? are not bounded
on L™, this term can actually inflate the L*-norm of the vorticity, as demonstrated in [17].
The two other terms b - Vj and 0, are related to the magnetic field b and the current
density j, and they do not appear to be useful when the vorticity equation is treated alone.

However, it is the smoothing and stabilization effects of the magnetic field via the cou-
pling and interaction that help stabilize the fluid and make this stability problem possible.
To reveal these effects, we first eliminate the pressure P by applying the Leray-Helmholtz
projection operator P := I — VA~!V.- to the velocity equation in (1.6). Noticing that

PO, uy)" = (0,uy)" = VA'V - (0,u2)" = A™'&u = —Rlu,
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(1.6) is then converted into
a,u:yﬂ%u+62b+N1, xeR% t>0,

0b=nAb+du+N,, xeR? t>0, (1.8)

V-u=V-b=0, xeR?* t>0,

where N; and N, are the nonlinear terms,

Ny =P(b-V)b—(u-Vu,
No=(b-Vyu—(u-V)b.

By differentiating (1.8) in  and making several substitutions, we find

Oyt — (A + y RDOu — (yn d11u + dpu) = Ns,

9ub — (A +y RDOb — (yn 811b + b) = Ny, (1.9)

V-u=V-5=0,
where

N3 = (0; —n AN + 0LN,
Ny = (6, - ’)/R%)Nz + (?2N1.

Similarly, we can rewrite (1.7) as

duw — A + yRDOw — (yn 11w + Oxw) = Ns,
(1.10)

Ouj— (A +y R, j — (ynd11j + 02)) = N,
where

Ns=0,—nA)b-Vj—u-Vw)+0,(b-Vw—u-Vj+ Q),
N6:(6,—77%?)(b-Vw—u-Vj+Q)+62(b-Vj—u-ch).

Amazingly, all physical quantities u, b, w and j satisfy exactly the same wave equations
with various nonhomogeneous terms. In comparison with the original system of (w, j) in
(1.7), the wave equations (1.10) obeyed by (w, j) exhibit much more smoothing and sta-
bilization properties, which make the stability and large-time behavior problem plausible.
By taking advantage of these dissipative and dispersive effects, we are able to establish
the desired global stability and provide sharp decay rates for the solution. The precise
statements of our results are given in the following two theorems.

Theorem 1.1. Let (uy,by) € H*R*) with V - uy = 0 and V - by = 0. Then there exists
sufficiently small 6 = 6(y,n) > 0 such that, if

IVuoll w2y + [IVbollp2g2y < 6,
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then (1.6) possesses a unique global solution (u, b) € C([0, c0); H*(R?)) satisfying

!
1, DYOIP a2, + f Utz (DI, + IV, + VDO ) T
0

2 2
< C (HMOHHI(RZ) + ||b0”H1(R2))'

(1.11)

t
1Vit, VOOl s, + f (191 s, + VDI g2y + VDO ) T
0

< Cé¢* (1.12)

for any t > 0 and some constant C > 0. Furthermore, the following time decay estimate
holds

IVl + VB2 < C (o, bz, +6) (1 + 172, (1.13)
when 6 is small enough. In particular, for any 2 < g < oo, ast — oo,

2Ol 22y = 0, (I, DYOllw2awey = 0, and ||, D)YOllwrow2y = 0. (1.14)

As Theorem 1.1 states, the H'-norm of the solution is uniformly bounded by the ini-
tial H'-norm regardless of the size of the initial H'-norm. The smallness assumption is
not imposed on ||(uo, bo)||;2g2). In the uniform bounds in (1.11) and (1.12), several time
integral bounds are not a direct consequence of the damping or dissipation in the original
system. For example,

t !
2 2 2 2
fo 102ull}> g2, dT < C 67, fo 100Dl g2, dT < €S
are consequences of the smoothing effects due to the wave structure in (1.9).

Efforts are also devoted to establishing sharp decay rates for the solution established in
Theorem 1.1. The regularization effect of the wave structure is exploited to achieve this
goal. We solve the linearized system in (1.8) or equivalently (1.9) explicitly and represent
the nonlinear system in an integral form. More precisely, we convert (1.8) into the system

WE ) = Myt + Ma(0)by + f (M\(t — T)N\(T) + Ma(t — T)N2(D)) dr,  (1.15)
0

BE, 1) = Myt + Ms(D)bg + f (My(t — T)N\(T) + Ms(t = N2 (D)) dr,  (1.16)
0

where the kernel functions are given by

M, = qiéPG + Gy, My=i& Gy, Ms = —nléGy + G,

with
e/lzl _ e/l]l /lze/lzl _ /lle/l]l
Gi(t) = ————, Gt=—=/12t+/th,
1(0) Lo 2(1) Py e 1G1(1)
el = et
G )= — = 1 —/l G 7).
3(1) Lo e 1G1(1)

Here A, and A, are the roots of the characteristic equation

2+ (IR +yENEDA+ (ynEl +€3) = 0
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or, more explicitly,

_ — &N + nlél?) - NT L - O + i) + V[
- s A2 — 5

A
! 2 2

where

T = (1167 +nlél) — 4y + ).
The integral representation in (1.15) and (1.16) does not appear to be simple with the
kernel functions being nonhomogeneous and frequency dependent. By appropriately es-
timating the Sobolev norms of the solutions, we are able to obtain the sharp decay rates
stated in the following theorem.

Theorem 1.2. Assume (uy, by) € L'(R*) N H3(R*) with V -ug = 0 and V - by = 0 satisfying

(40, Do)l L1 2y + [I(uto, DOl 3 R2) < 6,

for some 6 small enough. Then for m = 0, 1,2, the small global solution (u,b) of the
system (1.6) obeys

_Lim
D" (Dl 22, + ID"bOllze2) < C5(L+ 1),
where C > 0 is a constant independent of 6 and t.

The decay rates obtained in Theorem 1.2 for the solution of the nonlinear system in
(1.6) are the same as those for the 2D heat equation as well as the Navier-Stokes equations
(see, e.g., [38,40]). They are optimal. This reaffirms the smoothing and stabilization effect
of the magnetic field on the fluids.

The results presented in Theorem 1.1 and Theorem 1.2 not only rigorously confirm
the smoothing and stabilization effects of the magnetic field on electrically conducting
fluids, they also advance the courses on how to understand the stability problem when the
underlying model involves only partial dissipation. The MHD equations have recently
attracted extensive interests due to their wide physical applicability and their mathemat-
ical significance. The MHD equations model electrically conducting in the presence of
a magnetic field and serve as the center piece of the magneto-hydrodynamics initiated
by the Nobel laureate Hannes Alfvén (see, e.g., [3,10,30]). The resistive MHD model
studied in this paper is applicable when the fluid viscosity can be ignored while the role
of resistivity is important such as in magnetic reconnection and magnetic turbulence [35].
Mathematically the MHD equations share many features with the Navier-Stokes and the
Euler equations; however, the MHD equations are not a combination of a pair of the
Navier-Stokes type equations, but an integrated and interactive system. The MHD equa-
tions can model much richer phenomena than the Navier-Stokes equations such as the
Alfvén waves.

There are substantial recent developments on fundamental issues concerning the MHD
equations such as the global regularity and stability problems. One recent focus is on the
MHD equations with only partial or fractional dissipation. Significant progress has been
made (see, e.g., [4-6,8,11,14-16,18-20,23-27,29,31,32,34,36,37,39,42,44,45,47-59]).
However, many important issues remain outstandingly open. One of them is the stability
problem on the MHD equations with only magnetic diffusion (without the viscous dissi-
pation). Theorem 1.1 and Theorem 1.2 presented in this paper solve this stability problem



STABILITY PROBLEM ON THE 2D MHD EQUATIONS 7

when the velocity equation also involves one component damping and obtain precise and
sharp large-time behavior on the solutions. These results are completely new and will be
useful for future investigations on PDE systems with only partial dissipation.

We briefly explain how we prove Theorem 1.1 and Theorem 1.2. The framework in
the proof of Theorem 1.1 is the bootstrapping argument (see, e.g., [43, p.21]). The first
step is to construct a suitable energy functional. In addition to the standard H>-energy
terms, we also include the regularization terms suggested by the wave structure in (1.10).
We set the energy functional E(f) to be

E(t) = E1(1) + Ex(2) + E5(0)
where

E (1) = sup (lo()Isge, + 1OIas,) + f (1012 g2, + IV SOz g2y ) T,

0<t<t

Ex(t) = sup (V@2 gz, + IV @I e2)) + f (101N a2y + IV2 IR 2, )

0<r<t

E(1) = f 1020(0 ),y ) T
0

The inclusion of Ej3, suggested by (1.10), helps bound the nonlinear term (z - V)u in the
process of estimating the H>-norm of u. Otherwise, we would not be able to close the
estimates. An equivalent process is to design a Lyapunov functional given by

L(u, b)(1) = I(Vu(®), VD)2 2, + A1), V(D) 12,

where A > 0 is a small parameter and (F, G); denotes the H'-inner product. The main
efforts are devoted to estimating E(¢). This is a long and tedious process involving appli-
cations of various anisotropic inequalities. We are able to show that

E@®) < CIE0) + CiE*(f) + CLE(1).
An application of the bootstrapping argument would lead to the desired stability.

To obtain the optimal decay rates stated in Theorem 1.2, we make use of the integral
representation in (1.15) and (1.16). By dividing the frequency space into suitable subdo-
mains, we pinpoint the exact behavior of the kernel functions M,, M> and M; and provide
upper bounds for them in each subdomain. Due to the nonlinearity in the system (1.15)
and (1.16), we employ the bootstrapping argument, which starts with the ansatz, for any
t<T,

|22y + 1B 22R2) < Co6 (1 + 02,

I1Du(®)l| 22y + IDb(O)||2r2) < C16 (1 + n,
3

||D2M(f)||L2(R2) + ||D2b(f)||L2(R2) <C(l+1)72,

for suitably chosen Cy, C; and C,. Inserting the ansatz bounds in the integral represen-
tation and invoking the upper bounds for the kernel functions, we obtain, after carefully
estimating the L?>-norms on each subdomain,

C 1
(D)l 22y + 16Ol 22 < 70 S(1+17,



8 NICKI BROADMAN, HONGXIA LIN AND JIJAHONG WU
C] -1
1Du@®)ll2z) + I1DDD 2y < == 6 (L + 07,

C 3
nD%mmW@+mﬂmmmwﬁp§5a+ni. (1.17)
The bootstrapping argument then implies that 7 = oo and (1.17) holds for all time.

The rest of this paper is naturally divided into two sections. Section 2 proves Theorem
1.1 while Section 3 presents the proof of Theorem 1.2.

2. ProoF oF THEOREM 1.1

This section is devoted to proving Theorem 1.1. We start with several tools to be used
frequently in this section. The first provides an anisotropic upper bound for integrals
involving triple products. It was previously stated and proven in [7].

Lemma 2.1. Assume f,g,h,0,g,0.h € L*(R?). Then, for a constant C > 0,
1 1 1 1
ff fgh dxl d-xz S Cl|f||L2(R2)||g||22(R2)”81g||22(R2)||h||22(R2)||02h”22(R2)' (21)

The second tool provides an easily verifiable condition under which a nonnegative and
integrable function actually approaches zero at infinity. It is Lemma 3.1 in [13].

Lemma 2.2. Let f = f(t) witht € [0,00) be a nonnegative and uniform continuous
function. Assume f is integrable on [0, o),

foo f(t)dt < oo.
0

f@®) =0 ast— oo.

Then

We remark that the uniform continuity condition in Lemma 2.2 can be replaced by a
slightly weaker assumption that for any ¢ > 0, there is p > 0 such that, forany 0 < #, <1,
witht, —#; < P,

either f(x,) < f(1;) or f(t) = f(t)) and f(1,) — f(t;) < 6.

The following lemma assesses the precise decay rate for a nonnegative integrable func-
tion when it decreases in a generalized sense.

Lemma 2.3. Let f = f(t) be a nonnegative continuous function satisfying, for two con-
stants aog > 0 and a; > 0,

f‘” f(mdr<ay<oo and f(t)<a;f(s) foranyOQ<s<t. 2.2)
0
Then, for a, = max{2a, f(0),2aga,} and for any t > 0,

fO<a(1+07".

Since the proof of Theorem 1.1 is long, for the sake of clarity, we divide it into three
main parts. This section is split into three subsections. The first part establishes the
global uniform H'-bound for the solution (u, b) and related time integral bounds. Besides
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controlling the standard time integral terms, we are also able to bound the time integral of
||Vu(t)||i2. This is not a consequence of the original damping and the magnetic diffusion.
It is obtained by taking into the account of the wave structure in (1.9) and by evaluating
a mixed term, namely the inner product (d,u, b). It is this bound that helps us obtain the
decay rate for ||(Vu(t), Vb(¢))||;2. This part of the proof is provided in the first subsection.

The second main part is to construct the energy function E(), given by
E(t) = E\(1) + Ex(1) + E5(1) (2.3)

where

Ei(1) = sup (oI, + ILi(@)IE) + fo (101u@IE, + IV i) )dr,

0<r<t

Ex(t) = sup (IVo@I3, + IViDIF ) + f (Il01@IE, + IV IR, )dr,
0

0<r<t
!

Ex(1) = f |20 dr.
0

The inclusion of E3, suggested by (1.10), helps bound the nonlinear term (u - V)u in the
process of estimating the H>-norm of u. Otherwise, we would not be able to close the
estimates. An equivalent process is to design a Lyapunov functional given by

L(u, b)(2) = (Vu(t), VD)l + AVu(?), 3,Vb(0) 1,

where A > 0 is a small parameter and (F, G); denotes the H'-inner product. The main
efforts are devoted to estimating E(¢). This is a long and tedious process involving appli-
cations of various anisotropic inequalities such as Lemma 2.1 above. We are able to show
that

E(®) < CIE) + CiE*(f) + CLEL (1). (2.4)

A bootstrapping argument is then applied to (2.4) to obtain the desired stability. The
second subsection provides the details.

The third main part is to prove the large-time behavior and decay estimates stated in
Theorem 1.1. Both Lemma 2.2 and Lemma 2.3 will be used. In order to obtain the decay
rate for ||Vu(?)||z2 and ||VbH(?)||z2, according to Lemma 2.3, we need to verify that, for

@ = IVu@llg2 + VOOl

and for any 0 < #; < f, and a uniform constant C > 0,

foof(f)df< oo and f(r) < C f(1y).
0

The time integrability part is a consequence of the first part and (2.4) in the second part,
but the generalized decreasing property takes some effort. The idea is to use E(¢) defined
in (2.3) with 7 € [#1,1] as a bridge. Since f(¢) is part of E(t), we have f(t,) < E(t;). We
then show that, for some constant C > 0,

E(t) < C f(t;) + CEi(t,) + CEi(t). (2.5)
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According to the second part, when the initial data or E(0) is sufficiently small, say,
E(0) < 6%, then E(f) remains uniformly small, E(f) < C §>. By taking ¢ to be small, (2.5)
implies that

E(1) < C f(t).
As a consequence, we obtain f(#,) < C f(¢;) and Lemma 2.3 leads to the desired decay
rates. This part, together with the completion of the proof for Theorem 1.1, is presented
in the third subsection.

2.1. Uniform bounds in H'. As described above, this subsection proves the uniform H'
and related time integral bounds stated in the following proposition.

Proposition 2.4. Assume the initial data (uy, by) € H' with V - ug = V - by = 0. Then the
corresponding solution (u, b) of (1.6) satisfies

()l + 1B +f(; (Ol + IVu(IZ, + IVBDIZ,) dT
< C (lluoli3,, + Iboll7).

Proof of Proposition 2.4. Taking the L*-inner product of (1.6) with (u, b), we obtain

t
(e, YOI + 2f(7||”2(7')”iz + lIVB(OII7) dr = lluoll7, + bl
0

To prove the H'-bound, we resort to the equation of (w, j) with w = V X u, j = V X b,

dw+ u-Vw =yRiw+ (b-V)j+ s,
(2.6)

0 j+w-V)j=nAj+ b - Vv + 0w+ Q,

where

Q = 20,b1(0ruy + 01u2) — 20,u1(02b1 + 0,b7).
Multiplying (2.6) by (w, j), integrating over R? and applying Holder’s inequality and
Gagaliardo-Nirenberg’s inequality, we obtain

%%u(w, DO + YVl +lIVIEs = f Qj dx

< CIIVBslIVall 21l

< CIVBIZIV2BIE IVull 2121V 11,

< IV lalillzloliz < 21V R + CIARIWIE:, 2.7)
where we have used the facts

Rl = 18l = IViollyz, [Vullz = lwllzz, IVBlL = Iz, (1925l = IV 2.

By Gronwall’s inequality,

w, HOIR, + fo YV + TV dr

< C(ll(uo, bo)llz2) 1€, jo)ll7.- (2.8)
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Next we bound [} [|9,u(7)|1%,dr and show that

t
f 182u(D)I[;2dt < C (lluollz, + 1boll2,)
0
The idea is to evaluate the L*-inner product (6,u, b). It follows from (1.6) that

d
== (0o, b) + 116,ull7, — 116b1l] fé’z(u-Vu)- bdx

2 =
+ f(azu (- Vb) = 0y(b - Vb) - b) dx
- f(')zu -(b-Vu)dx
+ f()/(?zuz by — noLu - Ab) dx

=hL+L+L5L+1,.

Further dividing /; into two terms, and applying Holder’s inequality and the Sobolev
imbedding inequality, we have

L =- f(ulﬁlu . 62b + l/tzazl/l . 6219) dx

< leerllzsll01ull21102D11 s + ezl |00l 21102 | 4
< Cllu [l l01ullr211020lgr + Clluaall 1026l 211021

1
< Cllullzr (1027, + VDI, + Clludl 7, IVBI, + gllﬁzulliz-

Similarly, /; and /5 can be bounded as follows.

L= f(azu (- Vb) + (b~ Vb) - drb) dx
< 1@l ol VBl + 1Bl 2 VDI,
< C(lullyy + IBIIVBIE, + éuazuniz
and
I; = f(blalu - Ohu + by0hu - Oru) dx
< byl N0yl 210l 2 + ol Bl
< CIBIEIVBI, (16, ul Bl 2 + 185 2.)

1
< Clbll IVl 118y ull7, + CIBIITIIVBIIZI12ully, + gllazulliz

1
< Clibll2Vull 2 (V2 + 101ull7,) + ClBILIVullL V2], + §||<92M||2

L L2°
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1 1
where we have used the Gagaliardo-Nirenberg’s inequality |||~ < C||b|| z2||V2b|| 12} in Is.
By integration by parts and Holder’s inequality,

14:—yfuzazbzdx—nfazu-Abdx

1
< 2l + obll) + (gld2ulf: + 2P IABIE,).
Collecting all the estimates above for /; through I, leads to
d
- ZE(azu, b) +110xully, — (Ylluall2> + 2 + PNBabII7. + 4 lIABI,)
< C(IIMIIH1 + ez, + 1Bl + 16N V]2 + ”b”iz”V“”iz)(”all/‘”iz +IVBI2,)

< C@, NuollZ» bollz, (IO ull7, + VA1), (2.9)
Integrating (2.9) over [0, t] yields

t t
f 182u(T)II7.dT < f Az (DI + 2 + PN, + 4P Ab(DI7,) dT
0 0

+ (102ull7, + 1I17.) + (102uoll7 + 1boll72) + C (lluollz, + 1boll7)

< C (lluoll: + 1boll7,)-
This completes the proof of Proposition 2.4. O
2.2. Proof of (2.4). This subsection is devoted to the proof of (2.4). As aforementioned

at the beginning of this section, a crucial step in proving the desired stability is to prove
(2.4). We state it as a proposition for the purpose of easy reference later on.

Proposition 2.5. Assume (1o, by) € H? obeys the conditions stated in Theorem 1.1. Let
(u, b) be the corresponding solution of (1.6). Let E(t) be defined as in (2.3). Then (2.4)
holds.

Proof of Proposition 2.5. According to (2.3), E(t) consists of three pieces E; and E, and
E;. The first piece E; contains the homogeneous H-norm of (u, b) and has been estimated
in (2.8),

E(2) < CE(0). (2.10)

E, contains the H? and H3-norms of (u, b). Its upper bound depends on Ej. It does not
appear possible to bound E; without E5. The estimate E; is not trivial and it is the wave
structure in (1.9) that leads to its boundedness. The rest of this proof establishes the
following bounds,

Es(1) < CE3 (1) + E5(0) (2.11)
and
Es(t) — Ci(n. YIEi(0) + Ex(1)) < C(E> (1) + E3 (1)) + E(0), (2.12)

where C > 0 and Cj are constants. (2.10), (2.11) and (2.12) yield the desired global bound
in (2.4). We start with the proof of (2.11).
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Taking the L2-inner product of (2.6) with (Aw, Aj) and integrating by parts yield
1d _ .
5 71V, V)OI + Hrwlly, +nllAji,
:—f(Vu-V)a)-Va)dx+f(Vb-V)j-Va)dx— f(Vu-V)j-dex

+f(Vb-V)a)~dex+fVQ~dex,
where we have used ||R; V|2 = ||0)w||;2. By Holder’s and Sobolev’s inequalities,

%%II(V& VHOIZ. + YIdrwli7, + nllA
< IVull= (VIR +19117.) + 20961V jll 21Vl 2
+ 2(IVudl = IV?Bll 2 + VDIl IV2atll )1V il 2
< Clwllge + i) IVl + IV iI7.), (2.13)
where we have used the simple facts
IVullz = llwllz, VBN = lllze, IVulle = IVl V2Bl = IV Iz
Applying A to (2.6) and taking the inner product with (Aw, Aj) leads to

1d ) :
EE”(AM’ APIZ + Y6, Vollr, + nllVAIZ,
:—fA(u-V)a)Awdx+fA(b-V)jAwdx—fA(u-V)jAjdx

+fA(b-V)a)Ajdx+fAQAjdx =Ji+hHh++ s
By integration by parts, Holder’s inequality and Sobolev’s inequality,
J=- f(Au -Vw) Awdx — ZfVu -V(Vw) Awdx

2912
< NAull sVl llAwllrz + 20 Vull |V wll7,
2,12
< CllAullm [IVollg lAwllzz + ClIVullp V7wl
2
< Cllwllm|Volly:

J1 would not be suitably bounded without E3. J3 can be bounded in a similar way
J3 = —f(Au-Vj) Ajdx—ZfVu-V(Vj) Ajdx
< AUl 1V 1Al + 20 Vull]192 117
< Cllwllz IVl
We combine J, and J,;. By integration by parts,
Jo+Jy = f(Ab -Vj+2Vh-V(V))) Awdx + f(Ab Vo +2Vb - V(Vw)) Ajdx

< IABILAV fllslAwllz + 4IVBI= IVl IV 0l + 1ABH IVl 1A ]2
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< ClAbI IV jlla 1Al + CIVBIIIV2 jll 2V 0l + ClIAbI g IVl l|A ]2
< Clljll (V) + 1V12,)-

By Holder’s inequality and Sobolev’s inequality,

Js<C f (IAVD||Vu| + [V?b||V?u| + |VB||AVul) |Ajl dx

< C(||AVb||L2||VM||L°° + V2|1V 0l s + ||Vb||L°°||VAM||L2)||AJ||L2
< C(IIAVZ?IILzIIVMIIH2 + Vbl IVull 1 + ”Vb||H2||VAM||L2)||Aj||L2

< C(lwllg + Nillz)UVWIZ, + IAI,).
‘We have thus obtained

%II(Aw, APz + 27118, Voll7, + 271V A7,
< Clllwlle + 1)UVl + 1V IE). (2.14)
Combining (2.13) with (2.14), we have
%II(Vw, V)OI + 2/1010l117, + 27llAj117,
< Clllwlle + 1)UVl + 1V IE). (2.15)

Integrating in time leads to, for some constant C > 0,

Er(1) < C sup (lw(@llz2 + [1j(Dllr2) ; (V0@ + Vi@ dr +11(Vwo, Vol

0<r<t
< CEX(f) + Ex(0),
which is (2.11).

We now turn to the proof of (2.12). Due to the wave structure in (1.9) and (1.10), we re-

alize that the time integral term fot ||0,w(T)||5 dT in E3 can be generated as a consequence
of the inner products
(0,Vu,Vb) and (0,Vw,V)).

We focus on the time evolution of these two inner products. Using (1.6), we have
dit(azvu, Vb) = (3,Vu,, Vb) + (3,Vu, Vb,)
= f 0V( = (- Vyu=y(0,u2)" + (b - V)b) - Vb dx — 0,VBI,
+ f 0.Vu - V(= (u- V)b +nAb + (b Vyu)dx + 10, Vull. (2.16)
where f@zV(Vp) -Vbdx =0dueto Vb =0. Similarly, by (2.6),
d%(azva), Vj) = fazv( — (- V)w+yRiw+ (b - V)j)- Vjdx 0.V,

+fasz-v(—(u-V)j+nAj+(b-V)w+Q)dx+||azvu)||§2. (2.17)
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Summing (2.16) and (2.17) yields
- %[((%VM, Vb) + (0:Vw, V)| + 18200113, — 110217,
= f((?ﬂ(u -V)u—0,V(b-V)b)-Vbdx
+ f&)zVu -(V(u-V)b—-V(b-Vu)dx
+ f 0,V (- VIw—8,V(b-V)j)-Vjdx
+ f@zVa) -(Vu-V)j-V(b- - Vw)dx

- f@sz-Vde

+ f 702V - Vby = 0,VRiw - V.j) = (0, Vu - VA + 8,V w - VAj) | dx
=K+ + K. (2.18)
We bound the terms in (2.18) one by one. By integration by parts, Holder’s inequality,
1 1

2

the anisotropic inequality (2.1) and Sobolev’s inequality ||v|[;+ < C ||v||zzlle|| 12

K, = f(u -Vu - 0,Abdx + f(&zb Vb +b-Vo,b) - Abdx
< Cllull L 110,ul1 2,1V ull 110, Vadl |2, 110286 2 + 11026114 IV DI 4| AD 2
+ [1Dl| 411V O2DI| 14| ADI| 2
< CllullZ, 181l Il IVl 102V il 2
1 1 1 3 1 1
+ 1026117, 1102 VBN LIVDILIADI ., + 1BV DI IVOD n [|AB 2
! ol + [ TP TAvIER > ViR
< C(llall llolly, + 10l + IBIE L1 (181l + Vel + 19112
1 1
< C(Ilwllzz + 1l + ||j||L2)(||alu||i2 + IVl + IVl (2.19)
where we have used the uniform bound on ||(u, b)||;2. Similarly, K, can be bounded by
K, = - f(u -V)b - 0,Audx — f((Vb -Vu+ (b-V)Vu) - 9,Vudx
1 1 1 1
< Cllull 10, ull LIVBI 102 VDN L 102 Aullrz + IVB| 4l Vull |02 Vul| 2
+ 161l 11V 2 ull 31102 Vil 2
1 TRt 1 1 1 1 3
< CllullZ 10l NIV IVl + VBV Va2 1V 2ul
1 1
+ (111, VDIVl 111102 Vil 2

1 1 1
< C(IJ1;, + 71Nl )ABalZs + IV 2. + IV el,): (2.20)
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By integration by parts,
K; = f(u~V)w62Ajdx—f(b-V)jé?zAjdx
< (el 19l + BV e 18282
< C(E IVl IV @l + BB il 18241
< C(lllls, + 11 )AVR, + 19 1.): (221)
For K,, we have
K, = f((Vu-V)j+(u-V)Vj—(Vb-V)w—(b-V)Va)) 8, Vwdx
< IVl 171l + Wl 19l + IVBI IV elzs + 1Bl IV20l12)l10: Vol
< C(UVulln 19l + Wl NVl N2l + [l Vol
+ BB V0l IAwl,2
< (s + 19112, + ol + il YV, + 171122). (2.22)

The terms in K5 are similar to the first and the third terms in (2.22),
Ks < C(IIVulls[IV2Bll s + VB3]V ull 41|02 Vel 2

< C(llllg + il JAV @I + IV 11)- (2.23)
By Hoélder’s inequality,

K = f | = Y21 Aby + 0, VR w - V) = (02 Vu - VAb + 6,Vw - VAj)| dx
1 1 .
<5 (10210272 + VIABaIG ) + (10 VR, + VIV I72)
1 2 1 .
+ (S 10:Vul, + TIVABIE,) + (F10:V 6l + nIV° 1)
1 a1 .
<5 Udallz; + 3V + 020l +mPlIAGIE (2.24)

H!

where we have used ||62VR%w||Lz < |10, Vwl|;2. Inserting the bounds (2.19-2.24) in (2.18),
we obtain

18200117, = Colldnully, + IVl

d .
< 22[(@:Vu, Vb) + (3w, V)|

1
+ C(ll(w, Dl + 11w, ]')||H')(||(91M||iz +IVeliz,: + IV2,) (2.25)
for C; = 2 + 2n* + 3y*. Integrating (2.25) over [0, ¢] yields
! !
L 1020(0)|[7,dT = Cy ](; (101 OII7. + IV j(DIl;) dT

< (10 Vully, + 1jll7) + (182 VuoliZ, + jollz)
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+C sup (Il(w, j)(T)II,%,l +[l(w, J')(T)Ilhrl)f0 (101 u@IIZ, + V@)l + IV jOI.) dr

0<r<t
< (IVelly, + 1717 + CEX (@) + EX ) + E(0),
which implies
E5(1) - Cy(Ex(1) + Ex(t) < C(E3 (1) + E* (1)) + E(0).
This completes the proof of (2.12). By taking a small number A > 0 and considering the

combination
(2.10) + (2.11) + 1(2.12),

we find that there exist C > 0,C; > 0 and C; > 0 such that

E(t) < CIE0) + C, E3 (1) + CLE (D),
which is (2.4). This completes the proof of Proposition 2.5. m|
2.3. Proof of Theorem 1.1. This subsection completes the proof of Theorem 1.1 using
the bounds obtained in the previous two subsections. We first apply the bootstrapping

argument to show the stability and then prove the part on the large-time behavior of the
solution.

Proof of Theorem 1.1. We now combine the uniform bounds in Proposition 2.4 and Propo-
sition 2.5 to establish the global existence and stability of solutions to (1.6). Proposition
2.4 gives us the global uniform H'-bound regardless of the size of the initial data (u, by)
in H', namely

l(ue(®), Ol < C |2t bo)llgr-

The energy inequality obtained in Proposition 2.5,
E(t) < CIE0) + C, E3 (1) + CIE (1) (2.26)
allows us to conclude that, if ||(Vug, Vby)||z2 is sufficiently small, say

M
4C7

(Vutg, Vo)l < 6 := (2.27)

where |
M :=min{l,——| with C = max{C3, C},
4C)*

then the solution remains uniformly small,
E(1) <2C;6* or  [[(Vu(t), Vb([@)llg2 < J2C} 6.

This is shown by applying the bootstrapping argument to (2.26). The argument starts with
the ansatz that, fort < T,
E(t) < M.
By (2.26) and (2.27),
E(t) < CIE0) + C(E*(t) + E*(t))E(1)

< C:6% + 2CE+(1)E(t)
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1
< Ci6% + SE®.

Then Y Iy
E(t) < 2C*6* = 2CF = —.
(1) = 26, b4cr 2

The bootstrapping argument implies that 7 = oo and for any 7 < oo,

1
E@®) < =M.
(1 < >
This completes the proof for the global existence and stability of solutions to (1.6).

We now prove the large-time behavior estimates stated in Theorem 1.1. First we show

(Ve(t), V)2 < Cllluollza. Ibollzn) (1 +072 and  [lus(t)llz > 0 ast — .

The decay estimate is obtained by applying Lemma 2.3. We verify the conditions (2.2) in
Lemma 2.3. First of all, Proposition 2.4 implies

f (IVuIZ, + IVB@II3,) dr < Cll(uo, bo)ll2; < oo.
0
In addition, as in the proof of (2.8), for 0 < #; < t,,
IVu()IR, + VB2, < el ) (1Vu(e)|2, + [VB()IR).
Lemma 2.3 then yields
I(Vu(®), VB2 < C (g, bo)llgp (1 + 1)

Due to the Gagaliardo-Nirenberg’s inequality, for any 2 < g < oo,

Ve < CIIVII‘ZIIVVIILZ ; (2.28)

we find that [|(u(?), b(?))||z« — 0 as t — oco. Next we turn to the long-time behavior of
|2 (0)|;2. We will use Lemma 2.2 to show that

llupy(D)]|;2 > 0 ast — oo,

By Proposition 2.4,
f|mw@m<w
0

It then suffices to verify the uniform continuity part of Lemma 2.2. Multiplying the equa-
tion of u, in (1.8) by u, and integrating over R?, we have

d
EE”L‘Z(I)”% + 7||R1M2||iz == f(P(u ~Vu)) up dx

+ f(P(b . Vb))z U dx + fazbz 175 dx.

Recalling that P = I-VA~'V- and using the fact that the singular integral operator A~'V-V.
is bounded on L? (see [41]), we have

| f (P(u - Vu)), Mzdx f HAV - (u- Vu) uzdx|
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| [4719 -V e ] <l ulloels

2

< el

l02ulr2 < Cllull 2| Vull2l102ua |2

Similarly,

'f(IP(b Vb)), uzdx‘ - ‘fb - Vby s dx + fA“V (b - Vb) dyity dx
< 164 IVD|| 2 [|ua |+ + ”b”i4||62u2”L2
< C”b”i]l”I/tZHHl-

By Holder’s inequality,
1
| [ 02 2] < 500515, + .
Invoking the uniform bound of ||(«, b)||;;1 in Proposition 2.4, we have
%%Iluz(l)lliz + YIRuall7, < Cllull 2 1Vully, + CIBIT ol + %(Ilazbzlliz + uall2)
<@, v Nuollar, 1bollg),

which verifies the uniform continuity of Lemma 2.2. As a consequence,

lluz2®ll2 = O as 1 — co.
Next we prove the decay estimate

I(w(®), jEDllge < € (l(uo, bo)llz2 +8) (1 + )77

The tool is Lemma 2.3. We verify that

F@ = @)l + 1@,

satisfies the conditions of Lemma 2.3. First of all, since E(f) < C §*> < o,

f f(ndt < C(l|(uo, bo)ll7> + 6°) < oo (2.29)
0
It then suffices to show the generalized monotonicity that, for any 0 < #; < £, < o0,

f(r) < C f(1).

The idea is to use E(f) as a bridge. With a slight abuse of notation, E(7) here is defined
as in (2.3) but with the starting time #; instead of 0. Since f(¢) is part of E(¢), we have
f(ty) < E(t;). We then show that, for some constant C > 0,

E(t) < C f(t)) + CEX(ty) + CE3(1y). (2.30)

According to the stability shown above, when the initial data or E(0) is sufficiently small,
E(t) remains uniformly small, E(f) < C 6°. By taking ¢ to be small, (2.30) implies that

E(t) < C f(11).
As a consequence, we obtain f(t,) < C f(t;). We now verify (2.30). By (2.7),

d ) . .
@, DOIT + 2/IVuallg, + nllVli7. < ClAIG NI (2.31)
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By Gronwall’s inequality,

2 iR 2 i, Cnul, +bol,)
w7, + 1N, < (lwllz, + 1jll,)e "m0,

If we integrate (2.31) over [#4, t,] directly, we have

(Ul + 1)) + f IO (DI, + iV j(@II7) dr

5]
< (oI + 11N + sup llw@)I2 f 1N dr
1

1<t
U, 2 2 .
< Cap(1 + (ol + 1bol22)e Ml ) flao(e I 2, + L)1), (2.32)
Next integrating (2.15) over [t;, t;] yields

5]
(V@I + IV jE)I7:) + f (201w + 2nllA (DI, ) de
141

< IVt + IV j)IE,)
5]

+C sup (lo@llg + 1/@lle2) | (V0@ + IV i@l dr

n<t<t hH
< (V@12 + IVj)IE,) + CEX (). (2.33)
Similarly, we obtain from (2. 25) that

f 18207, (Halul(T)” +IVj(Ol}2) dr
< (102 Vi)l + ”](tZ)”Hl) + (10 Vue)I + 1iDIE)

+C sup (Il(w, j)(T)IIf,l +[|(w, j)(T)”H') (1017, + IVo@)II7,) + IVj©IE,) dr

Hh<t<t f

< (VI3 + LI + AV + L)) + CE (12) + E (1)) (2.34)
(2.32), (2.33) and (2.34) imply that for some C; > 0,C% > 0,
E(ty) < Cif (1) + CHE3 (1) + Ei (1,)). (2.35)
As we have shown in the stability part, for a uniform constant C and for all > 0,
En<C¢

if the initial data is sufficiently small, or £(0) < 6> for small § > 0. If § > 0 is sufficiently
small, we have

5 1
CUE (1) + E¥ (1)) < SE(®).
Then (2.35) yields

1
E(t) < Cyf(t) + EE(lz)

or
E(t) < Cf(t).
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Combining with the simple fact that f(#,) < E(t,), we obtain the generalized monotonicity

f(r) < Cf(t). (2.36)
Therefore, (2.29) and (2.36) verify the conditions of Lemma 2.3, which implies

f@ < C (o, bo)ll7, + 6% (1 + 17"
That is, (1.13) holds,

IVu()llze < C (l(uto, bz +8) (1 + 07> and Vbl < C (o, bo)llzz +6) (1 + )72

The large-time behavior i in (1. 14) is a consequence of (2.28) and the Gagaliardo-Nirenberg
inequality ||V~ < C|]V|| 2||V2v|| . This completes the proof of Theorem 1.1. O

3. PrOOF oF THEOREM 1.2

This section proves Theorem 1.2, the sharp decay rates for the global solutions ob-
tained in Theorem 1.1. We are assuming that the initial data (u, by) satisfies

(20, Lol < 6, [I(uo, bo)llLt <6, (3.1

and (u, b) is the corresponding global solution established by Theorem 1.1. We constantly
use the following properties of the solution (u, b),

G, YOI, + f(lluz(T)lliz + VU@l + IVb(D)Il7)dT < C* (3.2)
0

and
IVu(@)llzz + IVB@) 2 < COA +1)72, (3.3)
where C are constants independent of 6.

The sharp decay rates can no longer be shown by energy estimates. We need more
explicit representation of the solution. The idea is to first convert (1.6) into an integral
representation. This is achieved by first solving the linearized system of (1.6) or (1.9) and
then applying Duhamel’s principle. The integral representation involves several kernel
functions and the large-time behavior of the solution replies crucially on them. These
Fourier multiplier operators are nonhomogeneous and depend crucially on the frequency.
Naturally we split the frequency space into subdomains suitably and classify the behavior
of these operators on each subdomain. Equivalently we provide upper sharp upper bounds
on their symbols. Once this is at our disposal, we then launch the bootstrapping argument
on the integral representation to deduce the desired decay rates.

The following two tools will be frequently used in the estimates. The first provides an
explicit decay rate for the heat kernel associated with a fractional Laplacian A* (a € R).
Here the fractional Laplacian operator can be defined through the Fourier transform

AF(E) = [E°F ().

The proof of the Lemma can be found in many references (see, e.g., [15,46]).
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Lemma 3.1. Leta > 0,8 > 0and 1 < g < p < oo. Then there exists a constant C such
that, for any t > 0,

1_1

_AB _a_dcl_1
A% ™ fll ey < C 575 || fll Loay (3.4)

The following lemma provides upper bounds for a convolution type integral. Its proof
is straightforward.

Lemma 3.2. Assume 0 < s; < s5. Then, for some constant C > 0,
C+n™, if s5>1,
!
f(l +1-0)' (A +D)™dT <] C(1+0)™ In(l +0), if 55 =1,
0

C(L+ 1575, if 5, < L.

We now derive an integral representation satisfied by the solution of (1.8). Taking the
Fourier transform of (1.8) yields

6,V =AV+N. ,
where
7o (% Ao (e i o (M
bf &> ~nléf | N, |
The solution of this nonhomogeneous ordinary differential equation can be represented as

73
V(1) =" Vo + f A N(r)dr.
0

In order to find a more explicit formula of ¢*’, we compute the eigenvalues and eigenvec-
tors of A. The characteristic polynomial associated with A is

A+ (ELET + DA+ (yné] + &) = 0.
The eigenvalues of the matrix A are given by

_ —EIE + nlél?) - NT - ~(yENER +mlé) + VT
- 2 s 2 = D) P

A

where
[ = & + ey’ — 40mél +&).
The corresponding eigenvectors are

2 2
o = (/11 ‘lfgfzﬂﬂ ), 0y = (/lz ‘:§727|§| )

Therefore, the matrix A can be diagonalized as

A0

-1
0 ﬂz](pl,/h) .

A= (pl’pZ) (
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Then

I [ﬂmﬂflz /lz+77|§|2) (e“ 0] ( ié —(/12+77|f|2)]
(i —iea | i& iés 0 &) (=& A +nléP

_ (nlflzGl(t) +G) G ] 35)
G (0)i&, -nléPG (1) + G3(1)
where
e/lzt _ e/ht /126/121 _ /lle/llt
GiHh="—"""" G =22_""1% _ L 0G,0).
1(1) Lo 2(1) oA e + 1,G (1)
/1 At /l Aot
Gyt) = 25— C1C _ 0 0,G4().
L

Therefore, if we write
M (1) = 7IEPG (1) + Go(t),  My(t) = i&,Gy(1),  M5(1) = —nléPGi(1) + Gs(1),  (3.6)

then (u, b) can be represented as

WE 1) = My(t)iko + Ma(1)bo + fo (My(t — TNy (7) + My(t = T)Ny(0)) d7,  (3.7)

!
b(&,1) = My(Huy + M5(t)by + f (My(t — T)N1 (1) + M3(t — T)N» (7)) dT. (3.8)
0
When A; = A, the representation in (3.7) and (3.8) remains valid if we replace G, by its
limiting form

. e e
Gi(t) = lim ——— =re'.
Lot Ay — A4

More precisely, when A; = A,, we replace G,(¢) by its limit te'’, G,(¢) by e’ + A;te!,
and Gs(t) by e''' — A;tet" in (3.5) to get

24,1t At . At
A (nlfl el + (1 + e iéste 59)

i&> et —nléPteM + (1 = )M )

This can also be obtained by a direct calculation. When 4; = A,, the associated eigenvec-
tor of A is

i&
and the general solution of 8,V = AV is given by
aspet +ay(pt+o)e', (3.10)
where a3 and a4 are to be determined by the initial data, and o solves

(A-N4Do =p.

o= (/11 "“77|§|2 )’
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After some simple computation, we find

- (3}

We determine a3 and a4 by the initial data iy and l;;). Setting # = 0 in (3.10) yields

a3 p+aso = ”E’] 3.11)
bo
Solving (3.11) gives
1 ~ A 2 _
a3 = —by, a4 =up- ﬂbo-
i&> i&>

Inserting a3 and ay4 in (3.10) yields

15 (41 v 77|§|2]e/11z (- A oy ( 1) . [al + e’ )t]eal,
182 ié, 1

_ [e41f+ul+n|f|2>rew —L (A + Py et J[fo)

iéte —(Ay + nlgPytet’ + ettt ) by

Using the simple factI' = 0 or —igiz(/ll +1léP)? = i&,, we can see that the coefficient matrix
is the same as the one in (3.9).

The kernels M,-(f, 1 (i = 1,2,3) play a crucial role in the decay rates of u and b.
Clearly the behavior of M;(&,1) (i = 1,2, 3) depends on the frequency &. We classify their
behavior and provide upper bounds by dividing the frequency space into subdomains.

Proposition 3.3. We divide R? into two subdomains, R*> = S| U S, with

yEE2 + e )2}

Slzz{geRZ:eitherl"<0 or OSFS( >

SZ::{feRZ:F>(

21 &2 22
PELERL) or s + et > 16 + §§>}~

Then we have

(1) There are two constants C > 0 and cy > 0 such that, for any £ € S,

YENE + nlél Rell < YELE? + mlel?
- 5 R
D~ 2

G <te 7 1, |M(& D) < Ce ¥ i =1,2,3.

Re/h < -
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(2) There is a constant C > 0 such that, for any € € S5,
3067 4l i+ 8

/ll < , h £ ————F—,
4 YELE + mlél
2162 e ___ceP
|G1(t)| < m (e_w[ +e 75%|€2+17Ifzt) ,
Y&ilel= +n

. B o,
IM.(D)| < C(e—%(y_fflfl S LRV e ), i=1,2,3.

If we further write S, = S,; U S 2, with

Sor:={£€ 8,y [ <1},
Syp:={£€S,: |§|>1},
Then, fori = 1,2,3 and some constants C > 0,c; > 0,c; > 0,

IM(&,0|<C e ¥ if £e8,y,
IMi(0)|<C e+ C e, if £€8y.

Proof of Proposition 3.3. For notational convenience, we denote B = y&|€|™ + nlél.
Then A;, A, I can be rewritten as

_-B-\T _ -B+ A\l
- 2 B 2 — 2 )
Forée Sy, VT < g. It is then clear that

3B B B
~ SReli <2, Relys-7. 1GI(T)I< te 1,

A [ = B - 4(yné} + &).

where we have used the mean-value theorem in bounding G (#). If 4, is a real number, by
the simple fact that x e < C for x > 0, we have

(M, (D] = [nIEPG (1) + LG (£) + e®!| < Bte %' + CBte ' + 74" < Ce 0k

for some pure constant ¢, dependent of v and 5. If A; is an imaginary number, namely
I'<Oor

B> —4(ynél + &) <0,

we further divide the consideration into two subcases: /ynff + f% <|vT|and , /ynff + f% >

| VT | . In the case when . [ynét + & <| VI, by the definition of G, we have

e+ &

| VT

In the case when ([yné? + & > | VT |, we have

ynér + & > 4ynét + &) — B,

B
4G ()] = eVt — e < Ce™ 7",

or
3(yné; + &) < B
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Then
LG = [yné? + E21G1(H)| < CBte™3' < Ce™ 3!
101D = YIS 2 11l = < .
As a consequence, if A is an imaginary number, we obtain

\M, (1) = ‘n|§|2G1(1) + L,G(f) + | < Bte™ ' + Ce 4! < Ce 0k,

In summary, for £ € §,

|M, (1) < Ce™ 0k, (3.12)
Similarly,
\Ms(0)] = | - nléPG (1) — L,G (1) + V| < Ce e,
The proof of the bound
\M,(1)] < Ce <0kt (3.13)

is similar to that for M,(z). By the definition of Mz in (3.6) and the upper bound for G; in
(3.12), we have

IMo(0)] < Il e,
To prove (3.13), we consider two cases |&;| < | VI| and &) > | VI|. In the first case
&) < | VT |, we have

My(0)| = ‘%| ettt — M| < C om0k,

where we have used x e™ < C for x > 0. In the second case, |&] > | \T | or

B>~ 4(mét + )| < &,

which is equivalent to

—& < B —4(ypEl +E) < &,
In particular,

B > 4(ynéi + &) - & 2 &.
Therefore,

\My(1)] < B|G(1)] < Bte %' < C e 0",
Now we assume & € S,. Then £ < VI' < B and

3
—B< /11 < —ZB,
_ -8 ynéL + & . _Clep
2= = = = ’
2(B+ VI B B
2 e
IG1(0)] < yR— (e’“t n e/lzt) < E(e—%Bz +e—%z)'

Asa consequence,

2
cE”,

|M, (1) = ‘nlflzGl(t) + 1Gi(1) + ™| < 2BIGi(1)] + €™ < C(e7i + &7 5 ),

cie

FEa(0) = | - nigPGA(D) = G (1) + €] < (e 4 & F),
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Since VI > g,

3
ZBZ >A(ymEl +E) = &.

Therefore,
Cle?

IMa(0)] < CB [G1(1)] < C(e ¥ + &~ 5),

The upper bound for Iﬂi(f, 1| with & € §,; or € € S, is a consequence of the following
estimate

'3% |7 12 CIEP, if 1&g < 1,
S > S
B 21£1-2 2 = + 2 =
YENE2 +mlél — v +nlél Ciflel> 1.
This complete the proof of Proposition 3.3. O

With the integral representation in (3.7) and (3.8) and the upper bounds for the kernels
in Proposition 3.3 at our disposal, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By differentiating (3.7) and (3.8), we find, for k = 1,2 and m =
0,1,2,

opuE,n) = M0} u, + Mx(®)d}h,

+ fo t (My(t = TN (1) + Ma(t = DI'N, (1)) d, (3.14)
ObED = Mandu,+ Ms1)0}b,

+ fo (st - DI'N (1) + Myt — DN (7)) d. (3.15)

We apply the bootstrapping argument to (3.14) and (3.15) to establish the sharp decay
rates stated in Theorem 1.2. First we recall that the initial data (ug, bg) is assumed to
satisfy (3.1), namely

(o, bz <6 and  ||(ug, bo)llpr <6

for sufficiently small 6 > 0. The bootstrapping argument makes the ansatz that, forr < 7,

lee(0)llz2qg2) + 1622y < Co6 (1 +1)77, (3.16)
IDu(ll 2@2) + IDbD)|2e2) < €16 (1 + )7, (3.17)
ID2u(®)ll2e2) + ID*BOll2e2) < Co8 (1+1)72, (3.18)

where C,, (m = 0, 1,2) will be specified later. We then show via (3.14) and (3.15) that
(D™u(t), Db(t)) admits a smaller upper bound

C 1
()|l 22y + 16Ol 22 < 7" S(L+072, (3.19)
C
DUl 22 + IDBO)|| 22y < 71 sA+17, (3.20)

C _3
ID*u()ll22) + ID*b(D)ll 22y < 72 §(L+1)73. (3.21)
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The bootstrapping argument then assesses that 7 = oo and (3.19), (3.20) and (3.21) ac-
tually hold for all time. The rest of the proof focuses on verifying (3.19), (3.20) and
(3.21).

We start with the estimate of ||0]"ul|;2g2). Taking the L? norm on both side of (3.14),
we have

1y ull2ce2y = 107Uty < MY (D tll22) + IMa(OF by ll2e)
! t
+ f ”Ml(t - T)(?ZNl(T)HLz(Rz) dr + f ”Mz(t - T)a;:lNz(T)”LZ(RZ) dr. (322)
0 0

We will estimate only the first term and the third term since the estimates for the other
two terms are similar. Without loss of generality, we assume ¢ > 1. By Proposition 3.3
and Lemma 3.1, the first term on the right-hand side of (3.22) can be bounded as

—_— —_— _~ 2 —_— _ —_—
||M; (l)akmu()”Lz(RZ) <Clle okl [azquo ||L2(R2) + [le™ akmu()”LZ(RZ)
FERE A — S R —
= |£]"e ok tA_mazil/lO”LZ(RZ) + e Y| aguo Il 22(r2)
_Ll+m _l+m
< CA + 077 luollprrey + C(1 + 1) 2 luoll 2wy

<C(+0)""s, (3.23)

where ¢y = min{cy, c;} and we have used e (1 + 1)* < C(c,, s) for any s > 0. Now
we bound the third term in (3.22). Invoking Proposition 3.3 and using the fact that the
projection operator P is bounded in L%, we have

! !
f M (2 = )N (Dl 2g2) dT < f My (2 — 1) O, (Dl 2 g2y dT
0 0

t !
<C f le™ ™ OF0 (Dl 22, dt + C f e N0 Q, (D22 dr, (3.24)
0 0

where Q) = u-Vu — b - Vb. When m = 0, we split the time integral in the first term into
two parts,

fo t | KD Q) (1) 2 d = fo % | D0, (2) |,z d + f t | KO, (1) |2 .
By Lemma 3.1, the ansatz (3.16) and (3.2), we get 2
fo % | D0, (1) |2 dr = fo % I11€] e K OATO, (1) ||, d

< Cfoé(t =) (lu(®) @ u(®)llp + 11b(1) ® b(T)||L1) dT

< C(é)‘1 sup (lu(0)llz2 + 1b(2)]];2) Oé(uu(r)an + b)) dr

0<r<t

1, [ i ) .
SCCO(E) 2 | (1+7)2dr <CCy3(1+1)72,
0
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where we haveused u-Vu = V-(u®u) and b- Vb = V- (b®b). The estimate of the second
integral is slightly different.

t !
f || e P0G (1) |2 dT < C f (t—7) 3 u-Vu—b- Vbl dr
2 2t 1

<C f (¢ = D72 (2 IVullz2 + 16NV 2) dT

2 . 1
< CCy6° f t-7)2(1+7)"dr

%
2 SN E -1 2 -1
< CCy6 (1+§) (t—7)72dr < CCo6*(1 + 1) 2,
%

where we have used (3.3) for [|[(Vu, Vb)||;2. Due to the fact e*(1 + 1)* < C(c,, s) for any
s > 0, the second term in (3.24) can be estimated as

!
f e 2N (D2 dr
0
! 1 1
<C f (1 + 1= D) u@ll LI Vu@ll 2NV ull,, dr
0
1 ! 1 L 1
<CC:é f (L+t-17(1+7)2dr <CCl*(1+1)77,
0

where s > 1 and we have used (3.16) and (3.3). In summary, when m = 0, the third term
in (3.22) is bounded by

o — 1 1
f [|M(t — T)N{ (D2 dt < C(Cy + Cg)éz(l +1)72.
0

The second term in (3.22) admits the same bound as the first term while the fourth shares
the bound with the third term. Therefore, we have shown that there exist C3; > 0 and
C,4 > 0 such that

lu(@)ll2 < C36(1 + )72 + Ca(1 + Co)82(1 + 1),
If Cyy and ¢ satisfy
C() CO
Cs< =22 Ci1+Cs <=2,
35 4(1 + Cop) 1
then

C |
()l < 7()(1 +1)72 (3.25)

We now turn to the case when m = 1,2. We again focus on the third term in (3.22).
First of all, we split the first time integral in (3.24) into two terms. The first term is further
estimated via (3.4) and the fact that

t-1)"" <CA+t-1)0"" foranyte[0,7— 1]
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while we use the fact 1 + ¢ — 7 < 2 for 7 € [t — 1, ¢] in the second term. We obtain

t
f 1 e G0 (1) |2 de
0
11 I o A

< f | [+ e~ kMDD A=D1 Q) (7) |2 dT + f 107 @, () |2 dT

0 -1

-1 m+1 tt m+l
< Cf 1+1—7)" 2 |IA'O (D2 dT + C(m)f (I+r=7)" 20107 0Q,(®) |l dr
0 t—1

! !
scf(l+z—r)-'”31||A—1Q1(r)||deT+C(m)f(l +1-0) N30, (@) |2 dr.
0 0

Thanks to the estimates e~*(1 + £)* < C(c,, s) for any ¢t > 0 and any constant s > 0, the
second integral term in (3.24) can be bounded by

JE———

; !
f e 2|97 Q, (Dl d < C(m) f (1+ =0 170, (2 d.
0 0
Thus,

t
f IV, — DTN (Ol d
0

scf(l+t—r)-’”z“||A-1Q1(T)||deT+C(m)f(l+z—r)—’"z“||a,g"/\Ql(r)||deT.
’ ’ (3.26)

For m = 1, by Holder’s inequality and Sobolev inequality, we have

!
[ase-orntomis ar
0
t
< Cf(l +1 =) (@I, + 167 dr
0
!
< Cf(l + 1 =77 (@l 2 IVull2 + 12 lIVE)|12) d.
0
Then, by (3.25), the ansatz (3.17) and Lemma 3.2,

A A
f(l+t—r)—‘||A-‘Q1(T)||dersccoclazf(l+z—r)—‘(1+r)—3 dr
0 0
<CC&*(1+0nh.

Similarly,

fo(l + 1= 1) 01 (D2 d
< f(l + 1= 1) (Va7 + @IV (@)l + VBN + 1D IVb(T)0) dT
0

< Cf(;(l + 1= 1) (IVu@ll2 IVl 2 + IIM(T)IIEZIIVM(T)II,%;IIVZM(T)IIH1

1 1
+ IVO@I IVl + 1@ LIVEON LIV h(D)lg1) dT
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1o ! 1
< C(C, +CiC}H)S° f (+1-1)7 ' A+ Fdr < C(Cy +CHEA+1)7",
0

where we have used (3.25), the ansatz (3.17) and the decay estimate |[(V2u(t), V>b(1))|| g1 <
Co(l + t)‘%. Therefore, the third term in (3.22) for m = 1 can be bounded by

f M, (t = )N, (D2 dr < C(1 + C)SX(1 + 1)\ (3.27)
0

Collecting the estimates (3.23) and (3.27) yields
IVull2 < Cs6(1 + )" + Ce(1 + CS*(1 + 1)
for some constants Cs > 0 and C¢ > 0. Therefore, if C; and ¢ satisfy
C C
Cs < Tl’ Co(1+Cy)d < Tl’
then
C] -1

[[Vull2 < 7(5(1 +1) (3.28)

and the bootstrapping argument implies 7" = co. Thus, the decay rate (3.28) indeed holds

for all time. Finally, we bound (3.26) for m = 2. With a similar argument as m = 1, we
get

! t
[as-ointe@isdrscced [(avi-niasnia
0 0

<C(1+1)72.

Also, by Holder’s inequality and Sobolev’s inequality,
fo (4 1= B0 @z dr
<C fo (14 1= D VU@ + Ol IVl
VBT BE s + 1@V dr
<cC fo (14 1= D IV IO AT U@ + @IV uol
VDOV BOIAIVBOI, + IOV BOILIVBEL) dr.
Then using (3.25), (3.28), the ansatz (3.18) and || (V3u, V3b) ||;2 < C5(1 + 1)"2, we have
fo (4 1= B0 @z dr
< C(CIC, +C2CH fot(l ri-0 1 +0 tdr

L k
< C(Cy+CHS(1 +1)72,
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Therefore,
t —
f 1M, (1 = )N, (Dll2 dv < C(1 + C)6*(1 + )73,
0

As a consequence,
IV2ull2 < Co6(1 +1)7% + Cg(1 + C)6%(1 + 1) 3

for the constant C; > 0 and Cg > 0. Then the decay rate for ||V?ul|;>» follows from a
similar argument as Case m = 0, 1. This completes the proof of Theorem 1.2.
O
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