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Abstract— This work analyzes the communication require-
ments of Kalman filters for spatially-invariant diffusion pro-
cesses with spatially-distributed sensing. In this setting Kalman
filters exhibit an inherent degree of spatial localization or
decentralization. We address the fundamental question of
whether the statistical properties of process and measurement
disturbances, namely variance and spatial-autocorrelations, can
further enhance its inherent spatial localization. We show that
when disturbances are spatially and temporally uncorrelated,
the spatial localization of the filter depends on the ratio of
model to measurement error. Building upon this result, we
study exponentially-decaying spatially-autocorrelated process
and measurement disturbances. We show that certain level
of spatial-autocorrelation in the measurement noise reduces
the communication burden of the Kalman filter: indeed, the
filter is completely decentralized when a matching condition
is satisfied. We also show that spatial autocorrelation of the
process disturbance has no benefits in terms of communications,
as the level of centralization of the filter increases with the
autocorrelation length.

I. INTRODUCTION

Optimal control and estimation of distributed parameter
systems (DPSs) have received significant attention from
the research community during the last decades (see [1]–
[4] for some well-known monographs). For the class of
linear spatially-invariant DPSs with distributed actuation,
[5]–[7] proved that quadratically-optimal controllers are
spatially-invariant and exhibit an inherent degree of spatial
localization. This result was later extended in [8] for the
more general class of spatially-decaying operators. These
theoretical developments find immediate application in the
design of decentralized controllers, since they imply that the
contribution of measurements from “far-away” is negligible
for optimal control as the size of the feedback decays
with distance. Hence, spatial truncation of the kernel of
the feedback operator is a valid and scalable approach to
imposing local communication constraints on the structure
of the controller.
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We analyze the communication requirements of the
Kalman-Bucy filter (KBF) for spatially-invariant diffusion
processes with distributed sensing. By duality between the
LQR and MMSE estimation, the KBF is spatially localized
[5] and amenable to a distributed implementation [9]. We aim
to gain insight into the effect that noise statistics have on the
spatial localization of the KBF, with special emphasis on the
role of the spatial-autocorrelation length. Related works are
e.g., [10] and [11], which consider spatially-correlated noise
in optimal sensor selection and placement for DPSs.

The contributions of this work include the charac-
terization of the spatial decay rate of the kernel of
the KBF operator for three different types of distur-
bances: i) spatio-temporally white process and measure-
ment noises, ii) spatially-autocorrelated measurement noise,
and iii) spatially-autocorrelated process noise. The spatial-
autocorrelations are assumed known a priori and charac-
terized by an exponential decay, their decay rate being
determined by the spatial-autocorrelation length. We show
that good measurement fidelity, high-variance exogenous
input disturbances and low diffusivity foster decentralization
of the KBF. Interestingly, so does certain level of spatial-
autocorrelation in the measurement noise. Indeed, the KBF is
totally decentralized when a matching condition related to the
statistical properties of the disturbances is satisfied. These re-
sults imply that the performance loss in a locally-constrained
KBF depends upon the statistical properties of the noises.
Hence, disturbances with certain statistics are more amenable
than others to decentralized KBF architectures. The branch
points of the analytic extension of the Fourier symbol of the
KBF operator determine the degree of decentralization of the
filter. We introduce the branch-point locus (BPL), the set of
branch points parameterized by a certain system parameter,
as a useful tool to identify the communication burden of the
KBF. Similarly to the root locus, the graphical representation
of the BPL in the complex plane allows to visually determine
critical values of the parameter of interest.

Our paper is organized as follows. Section II introduces
mathematical preliminaries. Section III presents the system
and modeling assumptions. Section IV formulates the op-
timal filtering problem. The spatial-invariance property is
exploited to obtain a parameterized family of decoupled
Algebraic Riccati equations (ARE) in the spatial-frequency
domain. Section V evaluates the role of diffusivity and noise
variances in the decentralization of the KBF for spatio-
temporally white disturbances. In Section VI the effect of
spatial-autocorrelations is analyzed. Finally, in Section VII
we draw conclusions and discuss ongoing research.
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II. MATHEMATICAL PRELIMINARIES
The domain of an operator A is denoted by D(A). L2(R)

represents the space of square-integrable functions in the real
line R. hf, gi with f, g 2 L2(R) denotes the inner product
in L2(R). The spatial Fourier transform of a function h
is denoted by ĥ�, where � 2 R is the spatial frequency.
�(x, t) represents a spatio-temporal delta function. Spatial
convolutions are denoted by (f ? g)(x, t) :=

R1
�1 f(x �

⇠)g(⇠, t)d⇠, where f(x) is the convolution kernel.
Definition 1. Let Tx denote a translation operator for

functions on R: given any x 2 R, (Txf)(y) := f(y � x).
An operator A is translation invariant if Tx : D(A) !
D(A) and ATx = TxA, for every translation Tx. Since this
work is concerned with shift-invariance in space, we will
use the terms translation invariance and spatial invariance
interchangeably.

Definition 2. Let A(x) with x 2 R be a measur-
able function. A multiplication operator MA is defined by
(MAf)(x) := A(x)f(x), 8f 2 D(MA). The function A(x)
is called the symbol of the multiplication operator MA.

Definition 3. The analytic extension or analytic
continuation of the Fourier symbol f̂�, denoted by f̂� , to a
subset of the complex plane is defined by f̂�(�j) = f̂�. If
the analytic extension exists, it is unique.

III. DIFFUSION DYNAMICS
We consider a one-dimensional diffusion process in an in-

finite domain with spatially distributed measurement y(x, t).
Dynamics and measurement are both subject to spatio-
temporal disturbances w(x, t) and v(x, t), respectively. The
state  (x, t) obeys the PDE:

@ 

@t
(x, t) = 

@2 

@x2
(x, t) + w(x, t), (1)

y(x, t) = c (x, t) + v(x, t), (2)

where  is the diffusivity constant and c is a positive scaling
constant. Without loss of generality, the initial condition is
taken to be  (x, 0) = 0. We note that the Laplacian operator
@2

@x2 is translation invariant. The noises w(x, t) and v(x, t)
are assumed to be mutually uncorrelated, zero mean, and
wide-sense stationary, with their autocorrelations defined as:

W (�x,�t) := E[w(x, t)w(x+�x, t+�t)], (3)
V (�x,�t) := E[v(x, t)v(x+�x, t+�t)]. (4)

We study spatially-colored disturbances, yet temporally-
white. Particularizations of (3)-(4) are provided in Sections
V and VI. The Fourier transforms of (3)-(4) are assumed
well-defined and the power spectral density (PSD) of v(x, t)
strictly positive at all frequencies, V̂� > 0.

IV. PROBLEM FORMULATION
The objective is to find the state-estimator  ̃⇤(x, t) mini-

mizer of the steady-state variance of the estimation error:

 ̃⇤ := argmin
 ̃

lim
t!1

E
⇥�
 (x, t)�  ̃(x, t)

�2⇤
, (5)

subject to the dynamics (1), measurements (2), and boundary
and initial conditions as described in Section III. The KBF
provides the optimal state-estimator for this problem [2],
[12], [13]. Under the assumptions of Section III, the system
and cost are translation invariant. Hence, application of the
spatial Fourier transform diagonalizes the problem, as it
transforms spatially-invariant operators into multiplication
operators in the frequency domain [5], [14]. By the Wiener-
Khinchin theorem the cost functional is:

lim
t!1

Z 1

�1
P̂�d�, (6)

where P̂� denotes the PSD of the estimation error. Since the
problem is decoupled in � its solution is obtained by solving
infinitely many finite-dimensional AREs parameterized by
the spatial frequency � 2 R. For the diffusion dynamics (1)
and autocorrelations (3)-(4) the parameterized scalar ARE
and its stabilizing solution are:

P̂ 2
� + 2



c2
�2V̂�P̂� �

1

c2
V̂�Ŵ� = 0, (7)

P̂� = � 

c2
�2V̂� +

s
1

c2

✓
2

c2
�4V̂ 2

� + V̂�Ŵ�

◆
. (8)

The corresponding Fourier symbol of the KBF operator is:

L̂� = �
c
�2 +

s
2

c2
�4 +

Ŵ�

V̂�
. (9)

By the convolution theorem, the optimal state-estimate  ̃⇤

evolves according to the following integro-differential equa-
tion:

@ ̃⇤

@t
(x, t) = 

@2 ̃⇤

@x2
(x, t)

| {z }
prediction

+
�
L ? (y � c  ̃⇤)

�
(x, t)

| {z }
correction

. (10)

The difference y�c  ̃⇤ is the measurement innovation or the
residual [15]. From (10) we observe that the spatial spread of
the convolution kernel L(x) determines the communication
requirements of the KBF, as it defines to which degree
measurements from far away sensors are required to update
the state-estimate. We will study the spatial decay rate of
L(x) through its Fourier transform. L̂� has an analytic
extension L̂� , the region of analyticity being a strip in the
complex plane along the imaginary axis �L + jR = {� 2
C | <(�) 2 �L}, and L̂� satisfies the growth bound required
by the Paley-Wiener Theorem 5 in [5]. Consequently, L(x)
decays exponentially in space and satisfies

|L(x)|e⇠|x| |x|!1����! 0, for 0 < ⇠ < ⌘, (11)

where ⌘ is defined as �L =: (�⌘, ⌘). We will refer to ⌘
as the spatial decay rate of L(x): the larger ⌘, the faster
L(x) decays and the more spatially localized the KBF
is. The branch point of the analytic extension L̂� of (9)
whose real part has the smallest absolute value determines
⌘. L̂� will consist of two terms, a polynomial and a square
root. Polynomials are entire functions. Thus, the branch
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points of L̂� are related to the square root, and must make
its radicand vanish or go to infinity. Consequently, the
degree of decentralization of the KBF depends upon the
diffusivity constant and the ratio of the PSDs of process
and measurement noises.

V. ANALYSIS: SPATIALLY-UNCORRELATED
NOISE AND DECENTRALIZATION

In this section, we study the spatial decay properties of
L(x) when process and measurement disturbances are white
noises with autocorrelations W (�x,�t) := �2

w �(�x,�t)
and V (�x,�t) := �2

v �(�x,�t), where �2
w and �2

v are finite
constants representing their respective PSDs. We define the
characteristic lengthscale l⇤ of the KBF dynamics:

l⇤ :=

✓
2
�v
c �w

◆ 1
2

. (12)

The ratio �v/c is the inverse of measurement fidelity and
�w/ represents model error. Consequently, l⇤ can be inter-
preted as a metric for relative measurement to model distrust.
We will show next that the decay rate of L(x) is determined
by l⇤. Define the analytic extension of (9) L̂�:

L̂� :=


c
�2 +

s
2

c2
�4 +

�2
w

�2
v

, with � 2 C. (13)

Its branch points are given by |�1| = 1 and the roots:

2

c2
�4 +

�2
w

�2
v

= 0 ! �n =

p
2

l⇤
e(2n�1)⇡

4 j , (14)

with n = 1, 2, 3, 4. Consequently, the region �u of the
complex plane in which (13) is analytic is defined by:

�u := {� 2 C : |<(�)| < 1

l⇤
=: ⌘u}, (15)

where ⌘u is the spatial decay rate of the convolution kernel
L(x). Fig. 1 represents the branch points (14), branch cuts,
analyticity strip (15) and convolution kernel of the KBF.

Fig. 1: a) Branch points, branch cuts and analyticity strip of
L̂� for l⇤ = 1. The branch points �1,2,3,4 are represented in
black circles. A possible set of branch cuts is given by the
black lines. The analyticity strip �u + jR is shaded in grey.
b) Normalized convolution kernels L(x)/L(0) of the KBF
for different values of l⇤ as indicated in the legend.

The spatial decay rate ⌘u of the convolution kernel L(x)
is strictly decreasing in the characteristic lengthscale l⇤. This
implies that low values of l⇤ are preferred in order to foster
decentralization and reduce the communication burden of the
KBF. These might be achieved by decreasing the diffusivity
constant  (exploiting the physics of the system such that
its response remains spatially-localized) or by improving the
fidelity of the measurements. Hence, improving the quality
of the sensing does not only yield a better performance (6) of
the KBF, but also a filter with enhanced spatial localization.
When �w is high, the KBF also relies on local measurements.
However, large model error degrades the quality of the state-
estimate.

Remark 1. By duality between the LQR and MMSE estima-
tion, similar results hold for the decentralization of optimal
controllers [16]. Consider the LQR problem with spatially-
distributed actuation u(x, t). The diffusion dynamics are:

@ 

@t
(x, t) = 

@2 

@x2
(x, t) + b u(x, t), (16)

with u(·, t) and  (·, t) 2 L2(R). The objective is to find the
controller u⇤(x, t) that minimizes the functional

J =

Z 1

0

�
hq , i+ hru, ui

�
dt, (17)

subject to (16) and where q and r are positive constants. The
optimal controller is u⇤(x, t) = �(K ? )(x, t), where K(x)
decays exponentially in space with a rate:

⌘c =

s
1

2

b



✓
q

r

◆ 1
2

. (18)

The decay rate (18) suggests a trade-off between actuator
authority and controller centralization: as actuation becomes
cheaper the controller decentralization increases [5]. The
ratio b

� q
r

� 1
2 in the LQR is equivalent to c�w

�v
in the KBF.

VI. ANALYSIS: SPATIALLY-AUTOCORRELATED
NOISE AND DECENTRALIZATION

Biological and physical diffusion processes exhibit com-
plicated spatial variabilities. For stationary physical fields,
these can be modeled by spatial correlations [17], [18]. To
study the role of spatial autocorrelations of the disturbances
on the localization of the KBF, we consider exponentially de-
caying spatial autocorrelations of Ornstein-Uhlenbeck type:

f(�x) :=
�2
f

2 lc
e�

|�x|
lc . (19)

Exponentials posses a characteristic lengthscale lc that
we will refer to as the spatial autocorrelation length or
the characteristic lengthscale of the noise. When lc is
large, noise autocorrelates over a long distance; when
lc ! 0+, spatially-white noise is recovered. [19] showed
that autocorrelations tune the topology of optimal noise-
canceling networks. Similarly, we expect lc to heavily
influence the spatial localization properties of the KBF.
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We scale the spatial frequency and kernel decay rate, and
denote them by �̃ := � l⇤ and ⌘̃ := ⌘ l⇤, respectively. This
scaling is convenient to ease interpretation and visualization
of the results in the next subsections, as it allows to write
them as a function of a single parameter � := lc

l⇤
. The decay

rate obtained in the previous section is ⌘̃u = 1. We analyze
next the effect of spatially-autocorrelated measurement and
process noise independently.

A. Spatially-autocorrelated measurement noise
The process disturbance w(x, t) is spatio-temporal white

noise, while the measurement disturbance v(x, t) is spatially-
autocorrelated. Their autocorrelations are:

W (�x,�t) := �2
w �(�x,�t), (20)

V (�x,�t) :=
�2
v

2 lc
e�

|�x|
lc �(�t), (21)

respectively. Taking the spatial Fourier transform of (20)-
(21) and substituting in (9) yields the symbol of the KBF
operator:

L̂� = �
c
�2 +

s
2

c2
�4 +

�2
w

�2
v

l2c �
2 +

�2
w

�2
v

. (22)

Define its analytic extension as:

L̂� :=


c
�2+

s
2

c2
�4 � �2

w

�2
v

l2c �
2 +

�2
w

�2
v

, with � 2 C. (23)

|�1| = 1 are branch points of (23). The remaining branch
points must satisfy:

2

c2
�4 � �2

w

�2
v

l2c �
2 +

�2
w

�2
v

= 0, (24)

or equivalently in �̃:

�̃4 � 4�2 �̃2 + 4 = 0, where � :=
lc
l⇤
. (25)

The nature of the roots depends on the value of �, the critical
value being �⇤ = 1 at which they transition from complex
conjugates to real (Appendix A). The branch points are:

�̃1,2,3,4 =

(
±
p
1 + �2 ± j

p
1� �2, if 0  � < 1,

±
q
2(�2 ±

p
�4 � 1), if � > 1.

(26)

A graphical representation of the branch points (26), branch
cuts, and analyticity region of (23) is provided in Fig. 2a).
Fig. 2a4) shows the branch-point locus (BPL), the trajectories
of the branch points in the complex plane as � is varied.
These trajectories help to visually identify the values of �
that yield a highly spatially-localized KBF. The spatial decay
rate ⌘̃m of the convolution kernel (22) is:

⌘̃m :=

(p
1 + �2, if 0  � < 1,q
2(�2 �

p
�4 � 1), if � > 1.

(27)

(27) shows that ⌘̃m > 1 = ⌘̃u for certain values of �:
there exists a range of autocorrelation length values for
which spatially autocorrelated measurement noise fosters

decentralization of the KBF. Fig. 2c) shows the spatial decay
rate ⌘̃m of the convolution kernel as a function of �, plotted
together with ⌘̃u for comparison.
The critical value �⇤ = 1 represents a matching condition,

i.e., l⇤ = lc. When this matching condition is satisfied, the
Fourier symbol of the KBF operator L̂� is analytic in the
whole complex plane, see Fig. 2a2). Furthermore, L̂� takes
a constant value, which implies that the convolution kernel
L(x) is a delta function: the KBF is totally decentralized.

The non-monotonic behavior of the spatial decay rate of
the kernel ⌘̃m with the parameter � (see Fig. 2c) admits
physical interpretation. When � n 1 the KBF trusts the
prediction (model for diffusion) and l⇤ sets the lengthscale
of useful measurements for the filter: note from (27) that
for � n 1, ⌘m ⇠ 1/l⇤. At the critical value �⇤ = 1 both,
the prediction and correction terms in (10) are relevant for
the update of the state-estimate and the KBF is totally de-
centralized. When � o 1 the correction term (measurement
innovation) is trusted more than the prediction and lc defines
the lengthscale of useful measurements in this regime: note
again from (27) that for � o 1, ⌘m ⇠ 1/lc. Thus, the
centralization of the filter increases with lc in this regime,
as correlations carry information that the filter can exploit to
estimate the state more accurately.

B. Spatially-autocorrelated process noise

Process noise w(x, t) is assumed spatially-autocorrelated,
while the measurement disturbance v(x, t) is spatio-temporal
white noise. Their autocorrelations are given by:

W (�x,�t) :=
�2
w

2 lc
e�

|�x|
lc �(�t), (28)

V (�x,�t) := �2
v �(�x,�t), (29)

respectively. Take Fourier transforms of (28)-(29) and sub-
stitute in (9) to obtain:

L̂� = �
c
�2 +

s
2

c2
�4 +

�2
w

�2
v

1

1 + l2c�
2
, (30)

and define its analytic extension L̂� as:

L̂� :=


c
�2 +

s
2

c2
�4 +

�2
w

�2
v

1

1� l2c�
2

with � 2 C. (31)

|�̃1| = 1 make the radicand in (31) go to infinity. So do
the poles �̃1,2 = ±��1. The remaining branch points satisfy:

� �2�̃6 + �̃4 + 4 = 0, where � :=
lc
l⇤
. (32)

For notational convenience, we define:

↵ :=

✓
1 + 54�4 + 2�2

p
27(1 + 27�4)

◆ 1
3

. (33)
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Fig. 2: a1-b4) Branch points (BPs), branch cuts and branch-point locus in the complex plane �̃ := � l⇤ for increasing
� := lc/l⇤. Shaded strips represent the analyticity region of L̂�̃ . Possible sets of branch cuts are provided in black. a) (red)
Spatially-autocorrelated measurement noise. a1) � = 0.75 < �⇤, BPs are complex conjugates. a2) � = �⇤ = 1, roots are real
and collapse pairwise. The convolution kernel is analytic in the whole complex plane and the KBF totally decentralized.
a3) � = 1.25 > �⇤, BPs are real. b) (blue) Idem for spatially-autocorrelated process noise. The zeros of the radicand in L̂�
are represented with circles, and its poles with crosses. b1) � = 0.75 < �p, the complex BPs define the analyticity strip.
b2) � = �p ⇡ 1.89, the real part of the complex BPs matches the poles. b3) � = 5 > �p, the poles define the region of
analyticity. a4) and b4) Branch-point locus for spatially-autocorrelated measurement and process noise, respectively. BPs are
plotted as � is varied according to the respective colorbar. Black arrows indicate the direction of increasing �. c) Spatial
decay rates: ⌘̃u = 1 spatially-uncorrelated process and measurement noise, ⌘̃m spatially-autocorrelated measurement noise,
and ⌘̃p spatially-autocorrelated process noise. The area shaded in red corresponds to measurement noise autocorrelation
lengths that enhance the decentralization of the KBF.

The solutions to (32) are (Appendix B):

�̃3,4 =± 1p
3
��1

p
1 + ↵+ ↵�1, (34)

�̃5,6,7,8 =± 1
2
��1 ↵� ↵�1

p
↵�1 + ↵� 2 + 2

p
↵2 + ↵�2 � ↵� ↵�1

± j

2
p
3
��1

q
↵�1 + ↵� 2 + 2

p
↵2 + ↵�2 � ↵� ↵�1. (35)

Fig. 2b) provides a representation of the branch points,
branch cuts and analyticity region of L̂� as a function of
�. The decay rate ⌘̃p of the convolution kernel is determined
by the complex branch points when 0  � < �p ⇡ 1.89 or
by the poles otherwise (Appendix B):

⌘̃p :=

8
<

:

1
2

��1(↵�↵�1)p
↵�1+↵�2+2

p
↵2+↵�2�↵�↵�1

, if 0  � < �p,

��1, if � � �p.
(36)

⌘̃p is monotonically decreasing with �, see Fig. 2c). We
conclude that spatially-autocorrelated process noise is not
beneficial to reduce the communication burden of the KBF:
indeed, the longer the autocorrelation length, the higher
the communication requirements. This result is particularly
relevant when the design of a decentralized KBF is to be
performed through spatial truncation of the convolution ker-
nel. If the analysis assumes white noise while disturbances
are spatially-autocorrelated, an excessive amount of spatial
“clipping” might be carried out, considerably degrading the
performance of the filter.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we have investigated the spatial localiza-
tion properties of the KBF for spatially-invariant diffusion
processes, under different process and measurement distur-
bances. First, we modeled disturbances as spatio-temporal
white noise and analyzed the spatial decay rate of the
convolution kernel of the Kalman operator. We found that
the communication requirements depend upon l⇤, which
represents the ratio between measurement and model inac-
curacy. Invoking duality between the LQR and MMSE esti-
mation, we extended these results to quadratically-optimal
controllers and identified the role that cost hyperparame-
ters play in their decentralization. Second, we focused on
spatially-autocorrelated noises with exponentially-decaying
autocorrelations. We showed that the spatial autocorrela-
tion length impacts the degree of decentralization of the
KBF: while exponentially-decaying spatial autocorrelations
in measurement disturbances can foster decentralized filter
architectures, spatially-autocorrelated process noise has the
opposite effect. We also showed that when a matching
condition is satisfied, the KBF becomes totally decentralized.
Hence, the main conclusion of the study is that in addition
to determining whether the prediction or correction term
is trusted more for the state-estimate update, the relative
trust on model and measurements together with spatial
autocorrelations of the disturbances define the degree of
decentralization of the filter in spatially-invariant diffusion
processes.
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Ongoing work includes studying the role that noise
statistics play in the performace-decentralization trade-off
of Kalman-Bucy filters for general spatially-invariant
operators. The ultimate goal is to characterize the properties
of disturbances that make the plant amenable to decentralized
KBF architectures with little to no performance loss.

APPENDIX A
We compute the roots of (25). Since (25) is a biquadratic

polynomial, define ✏̃ := �̃2 and solve ✏̃2 � 4�2✏̃ + 4 = 0
to obtain the roots: ✏̃1,2 := 2

�
�2 ±

p
�4 � 1

�
. �⇤ = 1 is a

critical value at which the nature of the roots changes. For
0  � < 1, ✏̃1,2 are complex conjugates. For � � 1 the
roots are real. The branch points of (23) need to be defined
consequently. For � > 1, the four branch points are real
and given by: �̃1,2,3,4 := ±

q
2
�
�2 ±

p
�4 � 1

�
. For � < 1,

the branch points are complex conjugates. For convenience,
define �̃ := r + jy, with r, y 2 R. Then, r and y at the
branch points satisfy: r2 � y2 = 2�2 and ry = ±

p
1� �4.

Solving these two equations yields:

r = ±
p
1 + �2 and y = ±

p
1� �2. (37)

APPENDIX B
We compute the roots of (32). Define ✏̃ := �̃2 and solve for

the roots of: ��2✏̃3 + ✏̃2 + 4 = 0. The discriminant is � :=
�16(1+27�4) < 0 8�, which implies that regardless of the
value of �, there is one real root (positive, by Descartes’ rule
of signs) and two complex conjugate roots. This differs from
the autocorrelated measurement noise case, in which as the
value of � was increased the branch points (26) transitioned
from complex to real. The roots are:

✏̃1 =
1

3�2
(1 + ↵+ ↵�1), (38)

✏̃2,3 =
1

3�2

✓
1� 1

2
(↵+ ↵�1)± j

p
3
2

(↵� ↵�1)

◆
, (39)

where ↵ is as defined in (33). (38) provides a pair of real
branch points �̃3,4 = ± 1p

3
��1

p
1 + ↵+ ↵�1. From (39)

four complex branch points are obtained. Define �̃ := r+ jy
with r, y 2 R. Denote by R and I the real and imaginary
parts of (39), respectively. Then, r and y are solutions to
r2 � y2 = R and 2ry = I , given by:

r = ±

s
1
2

✓p
R2 + I2 +R

◆
, y = ±

s
1
2

✓p
R2 + I2 �R

◆
.

(40)
Substitution of R and I yields (35). To define the spatial
decay rate ⌘̃p of the convolution kernel L(x), we need
to determine the branch points with smallest real part (in
absolute value) for each �. We start by showing that:

Proposition: the absolute value of the poles �̃1,2 given in
Section VI-B is a lower bound of the absolute value of the
real branch points �̃3,4 (34).

Proof: It suffices to prove that ↵ + ↵�1 � 2. Define the
function g(↵) := ↵ + ↵�1, with ↵ 2 [1,1). g00(↵) > 0 in
its domain, hence g(↵) is convex. At ↵⇤ = 1, g(↵⇤) = 2 and
g0(↵⇤) = 0. This implies that ↵⇤ = 1 is a global minimum
and g(↵) � 2. ⇤

Consequently, the real branch points �̃3,4 do not define ⌘̃p,
regardless of the value of �. For � < �p, ⌘̃p is defined by the
complex branch points (35) and for � � �p the poles define
it. In order to find �p we numerically solve:

2 =
↵� ↵�1

p
↵+ ↵�1 � 2 + 2

p
↵2 + ↵�2 � ↵�1 � ↵

. (41)

(41) provides the value of ↵ at which the absolute value of
the poles matches the absolute value of the real part of the
complex branch points. Substitution in (33) yields �p ⇡ 1.89.
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