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Abstract— We consider the LQR controller design problem
for spatially-invariant systems on the real line where the state
space is a Sobolev space. Such problems arise when dealing
with systems describing wave or beam-bending motion. We
demonstrate that the optimal state feedback is a spatial convo-
lution operator with an exponentially decaying kernel, enabling
implementation with a localized architecture. We generalize
analogous results for the L2 setting and provide a rigorous
explanation of numerical results previously observed in the
Sobolev space setting. The main tool utilized is a transformation
from a Sobolev to an L2 space, which is constructed from a
spectral factorization of the spatial frequency weighting matrix
of the Sobolev norm. We show the equivalence of the two
problems in terms of the solvability conditions of the LQR
problem. As a case study, we analyze the wave equation; we
provide analytical expressions for the dependence of the decay
rate of the optimal LQR feedback convolution kernel on wave
speed and the LQR cost weights.

I. INTRODUCTION

We consider the LQR controller design problem for dis-
tributed parameter systems over the real line with fully dis-
tributed actuation, restricting to spatially-invariant dynamics.
We assume the underlying state space is a Sobolev space,
which applies to e.g. systems with wave-like dynamics and
more general PDEs with higher-order temporal dynamics.
We note that although most real-life systems are of finite spa-
tial extent, infinite-spatial-extent spatially-invariant systems
are often useful idealizations for large but finite systems, as
shown in e.g. [1]–[4].

In the spatially-invariant setting, the optimal LQR feed-
back gain will be a spatial convolution operator [5], and we
seek to quantify the decay rate of this convolution kernel
in the Sobolev space setting. An exponentially decaying
convolution kernel is desirable in practice it allows for
approximation of the control policy by a spatial truncation of
this kernel, providing an inherent degree of localization of
the resulting implementation [5]. Two directions of research
in this setting are i) analyzing when constraints which ensure
such localization can be imposed in a tractable way, as in
e.g. [6], [7] and ii) characterizing when the unconstrained

optimal controller will have an inherent level of spatial
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localization. In this work, we focus on the second problem,
which has been studied in e.g. [5], [8]–[11].

In the case of an underlying L2 state space, the optimal
LQR feedback convolution kernel for spatially-invariant sys-
tems decays exponentially [5]. These methods were applied
to analyze the heat equation in [9]. [8] provided results
beyond the spatially-invariant setting, analyzing the so called
spatially decaying operators over an L2 state space. Numer-
ical results presented in [11] suggest that the exponential
decay rate presented in [5] holds when the underlying state
space is a Sobolev space as well. However, as emphasized
in [12], a rigorous general framework in this setting has yet
to be developed. The main contribution of this paper takes a
step toward addressing this gap in the literature.

Our main result demonstrates that any LQR problem
for a spatially-invariant system over the real line with a
Sobolev space as the underlying state space has an equivalent
formulation over an L2 state space. The optimal feedback
for the L2 formulation is a convolution operator whose
kernel decays exponentially, and the optimal feedback for
the original Sobolev space formulation will have the same
decay rate. This procedure extends the results of [5] from
the L2 setting to a more general Sobolev space setting.

The rest of this paper is structured as follows. In Section
III we introduce the LQR design problem. In Section IV, an-
alytic formulas demonstrate that the optimal LQR feedback
kernel for the wave equation formulated over a Sobolev space
decays exponentially. We generalize these results in Section
V through a procedure that converts the LQR design problem
for a spatially-invariant distributed parameter system over a
Sobolev space to an equivalent problem over an L2 space.

II. NOTATION & MATHEMATICAL PRELIMINARIES

Given two Hilbert spaces U and H, L(U ,H) denotes the
space of linear operators from U to H; to simplify notation
we write L(H) = L(H,H). A linear operator b 2 L(U ,H) is
bounded if kbkU!H := sup

kukU=1
kbukH < 1. The domain

of b 2 L(U ,H) is denoted by D(b) ⇢ U , and its adjoint is
denoted by b

†, i.e.

hb ,�i
H

=
⌦
 , b

†
�
↵
U
.

b is self-adjoint if b = b
†

and D(b) = D(b
†
).

L
n

2 (R) denotes the set of square-integrable functions
on R equipped with the inner product h ,�i

L
n
2

:=R
x2R �

⇤(x) (x)dx, where (⇤) denotes the complex conju-
gate transpose. Given a matrix-valued function W : R !
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Rn⇥n of the form
W (�) = diag{w1(�), ..., wn(�)},

w`(�) =
mX̀

j=0

c`j�
2j
, c`j > 0 for all `, j, (1)

we define the weighted L2 space, L
n

W
(R) := { : R !

Cn; k kn
LW

< 1}, with inner product

h ,�i
LW

:=

Z

�2R
 ⇤(�)W��(�)d�.

H
n

m
(R) := { : R ! Cn; k kHn

m
< 1} denotes the Sobolev

space with inner product

h ,�i
Hn

m
:=

mX

j=0

⌦
@
j

x
 , @

j

x
�
↵
L

n
2

(2)

When the dimension is clear from context we simply denote
these spaces by L2, LW , and Hm. The Fourier transform
provides a structured mapping between these two spaces, as
stated in the following proposition [15].

Proposition 2.1: The Fourier transform is an isomet-
ric isomorphism from the Sobolev space H (2) to the
weighted space LW , with W := diag{w1, ..., wN} w`(�) =P

m`

j=0 �
2j
, so that hf, gi

H
= hFf,Fgi

LW
.

A multiplication operator is an operator MB 2

L(Ln

W
, L

m

V
) of the form

(MBF )(�) := B(�)F (�),

for a measurable function B : R ! Cm⇥n. B is the symbol

of the operator MB , and we often denote B(�) by B�. The
adjoint of a multiplication operator MB 2 L(Ln

V
, L

m

W
) is

a multiplication operator (MB)† = MB† with symbol B
†

given by
(B

†
)� := V

�1
�

(B�)
⇤
W�. (3)

III. PROBLEM SET-UP

We consider distributed parameter systems

@t (x, t) = (a )(x, t) + (bu)(x, t), (4)

where the state  and control signal u are functions of a
spatial variable x 2 R and a temporal variable t 2 R+. Lower
case letters denote such (possibly vector-valued) spatio-

temporal signals

 (x, t) x 2 R, t 2 R+ := [0,1).

 (x, t) is the value of the signal  at time t and spatial
location x. For a fixed time t, the functions  (·, t) and u(·, t),
denoted as  (t) and u(t), represent a spatially distributed sig-
nal. Upper case letters denote the spatial Fourier transform

of a spatio-temporal signal:

 (�, t) := (F )(�, t)

:=
1

2⇡

Z

x2R
 (x, t)e�i�x

dx, � 2 R, t 2 R+
,

(5)

and we denote the signals  (t) =  (·, t), and  � =  (�, ·).
We consider the design of a control policy u = u(x, t)

for systems (4), noting that actuation over the continuous

domain R is an idealized assumption and actuation will be
implemented in practice with some degree of discretization.
To ensure solutions are well-defined, we make the common
assumption that a generates a C0-semigroup {e

at
} [13] on a

Sobolev space H and D(a) is dense in H. We also assume
u(t) 2 D(b) ⇢ L2 and be

at
2 L(L2,H) is bounded for each

t � 0.
Example 3.1: (Wave Equation) The dynamics of the

undamped wave equation over the real line with fully dis-
tributed actuation u are given by

@
2
t
⇠(x, t) = c

2
@
2
x
⇠(x, t) + u(x, t), (6)

where c > 0 is the wave speed. Defining  (x, t) :=⇥
⇠(x, t) @t⇠(x, t)

⇤T , we write (6) in state space form (4)

@t (x, t) =


0 1

c
2
@
2
x

0

�
 (x, t) +


0
1

�
u(x, t)

:= (a )(x, t) + (bu)(x, t).

(7)

a generates a C0-semigroup {e
at
} on the Sobolev space

H := H
1
1(R)⇥ L2(R),

hf, gi
H

=

⌧
f1

f2

�
,


g1

g2

��

H

:= hf1, g1iL2
+ hf

0

1, g
0

1iL2
+ hf2, g2iL2

,

and b 2 L(L2,H) is bounded [12].

A. Spatially-Invariant Systems

We restrict our attention to spatially-invariant systems,
formally defined as follows.

Definition 3.2: To each y 2 R, define the translation op-

erator (Ty )(x, t) :=  (x� y, t). b 2 L(U ,H) is spatially-

invariant if it commutes with all translation operators, i.e.

bTy = Tyb, for all y 2 R.
One subclass of spatially-invariant operators is that of

spatial convolution operators.
Definition 3.3: A spatial convolution operator is a

spatially-invariant operator b of the form

(b )(x, t) = (b ⇤  )(x, t) =

Z

y2R
b(y) (x� y, t)dy,

where with some abuse of notation we use b to denote the
operator and b(y) to denote the value of the corresponding
convolution kernel at spatial location y.
A distributed parameter system (4) is said spatially-invariant

system if the operators a and b are spatially-invariant; we
solve the LQR design problem for this class of systems:

inf
u

J :=

Z
1

t=0
h (t), q (t)i

H
+ hu(t), ru(t)i

L2
dt

s.t. dynamics (4),
(8)

where q 2 L(H) and r 2 L(L2) are bounded, self-adjoint,
spatial convolution operators which represent the penalty on
state and control, respectively. We introduce the following
terminology to formalize the well-posedness of (8).
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Definition 3.4: Let a generate a C0-semigroup {e
at
} on

H and let b 2 L(L2,H). a is exponentially stable if there
exists M,↵ > 0 such that

ke
at
kH!H  Me

�↵t
, for all t � 0.

(a, b) is exponentially stabilizable if there exists k 2

L(H, L2) such that (a � bk) is exponentially stable. In
this case, the feedback operator k is said to be stabilizing.
(q, a) is exponentially detectable if (a†, q†) is exponentially
stabilizable1. The LQR problem (8) is well-posed if (a, b) is
exponentially stabilizable, (q, a) is exponentially detectable,
and e

at
b 2 L(L2,H) is a bounded operator for each t.

Proposition 3.5: Assume the spatially-invariant LQR
problem (8) is well-posed. Then (8) has a unique stabilizing
solution u = kx given by the spatial convolution operator

k := �r
�1

b
†
p 2 L(H, L2), (9)

where p = p
† is the bounded solution of the Riccati equation:

hah1, ph2iH + hph1, ah2iH + hh1, qh2iH

=
⌦
b
†
ph1, r

�1
b
†
ph2

↵
H
, for all h1, h2 2 D(a)

(10)

Proof: See Appendix.
The decay rate of (9) provides the degree of localization

of the optimal distributed control policy. It has been shown
that (9) decays exponentially, under appropriate assumptions
on a, b, q, r, in the special case that H = L2 [5]. Numerical
results suggest such decay rates also hold for more general
choice of Sobolev space H [11]. The following analysis
works toward rigorously proving these observed decay rates.

Definition 3.6: A spatial convolution operator b decays

exponentially with rate �̃ > 0 if its convolution kernel b(·)
satisfies

b(x)e�̃|x| ! 0 as |x| ! 1.

A spatially-invariant operator b is ‘diagonalized’ by a
spatial Fourier transform to a multiplication operator [5], i.e.
FbF

�1 =: MB . kbk = kMBk and b is self-adjoint if and
only if MB is.

Definition 3.7: Given a multiplication operator MB , we
define the extension of the symbol B to the complex plane,
denoted by Be, such that Be(i�) = B�. Be(�) is constructed
by replacing each � in B� by (�i�).

If Be is analytic and satisfies a polynomial growth bound
on the strip

�� := (��,�) + iR ⇢ C, (11)

then the inverse Fourier transform, b, of B is a spatial
convolution operator that decays exponentially with rate �̃
for any �̃ < � [14, Thm 7.4.2].

IV. APPLICATION: WAVE EQUATION

We first analyze the decay rate of the LQR feedback for
the wave equation (Ex. 3.1). A spatial Fourier transform

1Equivalent definitions of exponential stability, stabilizability, and de-
tectability in the spatial frequency domain are provided in [11]

converts (7) to a parameterized family over � 2 R of finite-
dimensional dynamics:

@t (�, t) =


0 1

�c
2
�
2 0

�
 (�, t) +


0
1

�
U(�, t)

=: A� (�, t) +B�U(�, t),

(12)

where MA = FaF
�1 and MB = FbF

�1. By Proposi-
tion 2.1, F : H ! LW is an isometry, where LW is the
weighted space with

W� :=


1 + �

2 0
0 1

�
. (13)

Thus the LQR problem (8) for the wave equation may be
written in terms of the transformed dynamics (12) as:

inf
U

Z
1

t=0
h (t),MQ (t)iLW

+ hU(t), �U(t)i
L2

dt

s.t. dynamics (12),
(14)

where r is taken as a multiple of the identity, i.e. r = �I .
Under the assumption that (a, q) is exponentially detectable
and MQ 2 L(LW ), it can be shown that (14) is well-posed.
The optimal solution to (14) is U = MK ,

K� := �
1

�
(B†)�P� = �

1

�
(B�)

⇤
W�P�, (15)

where P� = (P
†
)� solves the family of Riccati equations:

(A�)
⇤⇧� +⇧�A� +W�Q�,=

1

�
⇧�B�(B�)

⇤⇧�, (16)

with ⇧� := W�P� and MP is a bounded operator.
Note that the penalty on state can be modified through

both the LQR weight q or the choice of Sobolev norm W�.
For instance, for any ↵ > 0 a generates a C0-semigroup on

H↵ := {f : R ! C2
���f1, f 0

1, f2 2 L2(R)},

hf, gi
H↵

:= hf1, g1iL2
+ ↵

2
hf

0

1, g
0

1iL2
+ hf2, g2iL2

,

(17)

Setting ↵ = 1 recovers the original space. F : H↵ ! LW↵

is an isometry, where

(W↵)� :=


1 + ↵

2
�
2 0

0 1

�
(18)

The LQR objective can be formulated as

J =

Z
1

t=0

⌦
 (t),M(Q↵) (t)

↵
L(W↵)

+ hU(t), �U(t)i
L2

dt

(19)
Note that the cost functional of (14) is equivalent to (19)
when W�Q� = (W↵)�(Q↵)�.

A. Analytic Solution of Optimal Feedback Gain

For the case that q is the identity operator on H↵ for some
↵, we analytically compute

K� =
�1

�

⇥
��c

2
�
2 + f(�)

p
�(1� 2�c2�2 + 2f(�))

⇤
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where f(�) :=
p
c4�4�2 + �(1 + ↵2�2), and h(�) :=

1
�
f(�)

p
�(1� 2c2��2 + 2f(�)). We compute the extension

Ke(�) =
�1

�

⇥
�c

2
�
2 + fe(�)

p
�(1 + 2�c2�2 + 2fe(�))

⇤

where fe(�) :=
p
c4�4�2 + �(1� ↵2�2). The branch

points [16] of the multivalued function fe are given by
� = 1 along with the zeros of the function g(�) :=
c
4
�
4
�
2 + �(1� ↵

2
�
2). The zeros of g(�) are given by

8
<

:
� = ±

q
1
2⌫

�
↵2 ±

p
↵4 � 4⌫

�
, 0 < ⌫ 

1
4↵

4

� = ±

⇣
1

2
p
⌫

⌘⇣p
2
p
⌫ + ↵2 ± i

p
2
p
⌫ � ↵2

⌘
, ⌫ >

1
4↵

4
,

where
⌫ := c

4
�. (20)

For ⌫ <
1
4↵

4, there are 4 distinct real-valued zeros of
g(·); for ⌫ = 1

4↵
4 there are 2 repeated real-valued zeros;

for ⌫ >
1
4↵

4 there are 4 complex-valued zeros (2 distinct
complex conjugate pairs). The locations of the branch points
in each of these 3 regimes is illustrated in Figure 1 for
the case ↵ = 1. The shaded region is the strip �� , with
� the magnitude of the real part of the zeros. When there
are 4 distinct real-valued zeros, � is the smaller of the 2
real component magnitudes. A precise formula for �� as a
function of the parameters ⌫ = c

4
� and ↵ is

�� :=

8
<

:

n
|Re(z)| <

q
1
2⌫ (↵

2 �
p
↵4 � 4⌫)

o
, ⌫ 2 (0, 1

4↵
4]

n
|Re(z)| <

p
2
p
⌫+↵2

2
p
⌫

o
, ⌫ >

1
4↵

4

(21)
K

(↵)
e has no additional branch points in �� , and can be

uniquely defined as an analytic function in this region. � is
dependent on the LQR cost parameters and the wave speed:
� !

1
↵

for ⌫ ⌧
1
4↵

4, � !

p
2

↵
as ⌫ !

1
4↵

4, and � ! 0
for ⌫ �

1
4↵

4. For a fixed ↵, the largest region of analyticity
(fastest rate of decay) will occur at ⌫ = 1

4↵
4 and is given

by � =
p
2

↵
. Thus a smaller value of ↵ allows for a quicker

decay rate (see the log scale plot in Figure 2). The mapping
⌫ 7! � is non-differentiable at the point ⌫ = 1

4↵
4 (illustrated

by a star); this point represents the transition from 4 distinct
real-valued branch points to 4 complex-valued branch points
(Figure 3 illustrates this for the case ↵ = 1).

We recover the convolution kernel k from its Fourier
transform K

(1)
�

= K� =
⇥
K1(�) K2(�)

⇤
for the case

of ⌫ = 1. We write
K1(�) = K̃1(�) +K1(1) := (K1(�)� 0.5) + 0.5,

K2(�) = K̃2(�) +K2(1) := (K2(�)�
p

2) +
p

2,

so that k1(x) and k2(x) are given by

k1(x) = k̃1(x) + 0.5 · �(x),

k2(x) = k̃2(x) +
p

2 · �(x),

where � is the Dirac delta distribution. The inverse Fourier
transforms k̃1(x) and k̃2(x) of K̃1(�) and K̃2(�) are nu-
merically computed and plotted in Figure 4 to illustrate the
decay rate of the convolution kernels k̃1 and k̃2 for ↵ = 1.

Fig. 1. For ↵ = 1, the blue lines denote the branch cuts for fe for the
case of ⌫ = 0.1 (left), ⌫ = 0.25 (center), and ⌫ = 1 (right). For ⌫ = 0.1
there are 4 real-valued branch points, for ⌫ = 0.25 there are 2 real-valued
branch points, and for ⌫ = 1 there are 4 complex-valued branch points. The
extension of the feedback, Ke, is analytic in the shaded region. The largest
such region occurs for ⌫ = 0.25 and corresponds to branch cuts beginning
at

p
2 on the Real axis.

Fig. 2. The boundary of the region of analyticity (� = |Re(�)| ) is plotted
against the parameter ⌫ = c4� for ↵ = 2 , ↵ = 1, and ↵ = 0.5. The
star denotes the non differentiable point at

�
⌫ = 1

4↵
4,� =

p
2

↵

�
, which

corresponds to the largest region of analyticity and therefore the fastest rate
of decay. Note that the axis for ⌫ is on a log scale.

Fig. 3. For the case ↵ = 1, the real component of the branch points
of fe is plotted as a function of the parameter ⌫. We note the transition
from 4 distinct (non-infinite) branch points to 2 distinct (non-infinite) branch
points at the point ⌫ = 1

4 . This point corresponds to the largest region of
analyticity of Ke and therefore the fastest decay rate of the feedback k.

V. EQUIVALENCE OF L2 & SOBOLEV SPACE
FORMULATIONS

In this section we present an alternate method that is gen-
eralizable, as it avoids the explicit branch point computations
used in the approach of Section IV. For clarity, we examine
the wave equation (7) as a concrete example throughout.

Consider the LQR problem (8) where a generates a C0-
semigroup on a Sobolev space

H := H
n1
m1

(R)⇥ ...⇥H
nN
mN

(R), (22)

b 2 L(L2,H), q = q
†
2 L(H), r = r

†
2 L(L2). Assume:

1) The LQR problem (8) is well-posed,
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Fig. 4. The decay rates of the convolution kernels, k̃1 and k̃2, are
represented for the case ⌫ = 1,↵ = 1. These were computed by numerical
integration the inverse Fourier transform formula of K̃1 = K1(�)�K1(1)
and K̃2 = K2(�) � K2(1). The steady state terms of K1 and K2
represent a Dirac � distribution in the convolution kernels k1 and k2 and
were subtracted off before numerical integration.

2) a, b, q and r are spatially-invariant operators, and
Ae, Be, Qe, and Re, are given by analytic, rational
functions on some strip �� .

Under these assumptions we will demonstrate the following:
• The LQR problem (8) over the Sobolev space H can

be formulated as an equivalent LQR problem over L2,
and this reformulation is well-posed (Thm. 5.2),

• The optimal feedback for this reformulation decays
exponentially; the optimal feedback for the original
Sobolev space formulation decays with the same rate
(Thm 5.4).

We first demonstrate that the LQR problem (14) for the
wave equation can be reformulated over an L2 space.

Example 5.1: The LQR problem (8) for the wave equation
(7) satisfies Assumptions (1), (2). We write the dynamics as

@t�(�, t) =


0 1� i�

�c
2
�
2

1�i�
0

�
�(�, t) +


0
1

�
U(�, t)

=: Â��(�, t) + B̂�U(�, t),
(23)

where we have defined a new variable �� := S� �, with

W� =


1 + i� 0

0 1

� 
1� i� 0

0 1

�
=: (S�)⇤S� a spectral

factorization of the weighting matrix W . M
Â

generates a
C0-semigroup on L2. Note that â = F

�1
M

Â
F is not a

differential operator. The LQR problem (14) can be written

inf
U

Z
1

t=0

D
�(t),M

Q̂
�(t)

E

L2

+ hU(t), �U(t)i
L2

dt

s.t. dynamics (23),
(24)

where Q̂� = S�Q�(S†)�, and this formulation is well-posed.
The following theorem generalizes the results of Exam-
ple 5.1.

Theorem 5.2: Consider the LQR problem (8) over a
Sobolev space H and assume that (1), (2) hold. Let LW

denote the corresponding weighted space (i.e. F : H ! LW )
and let W� = S

⇤

�
S�, denote a spectral factorization of the

weighting matrix W�. Then (26) can be formulated over an
L2 space as

inf
u

Z
1

t=0

⌦
�(t),M

Q̂
�(t)

↵
L2

+ hU(t),MRU(t)i
L2

dt

s.t. @t�(�, t) = Â��(�, t) + B̂�U(�, t).

(25)

where �(�, t) := S� (�, t), Â� := S�A�S
�1
�

, B̂� :=
S�B�, and Q̂� = S�Q�(S†)�. Problem (25) is well-posed.

Proof: By Proposition 2.1, the general LQR problem
over a Sobolev space H (8) may be written in the form

inf
u

Z
1

t=0
h (t),MQ (t)iLW

+ hU(t),MRU(t)i
L2

dt

s.t.  ̇(�, t) = A� (�, t) +B�U(�, t).
(26)

The details demonstrating that (26) can be converted to (25)
are provided in the Appendix.

We next relate a decay rate of the solution of the trans-
formed problem over an L2 space to the decay rate of the
solution to the original problem over a Sobolev space. We
begin by looking at the wave equation example once again.

Example 5.3: The optimal solution to (24) is

U = M
K̂
� , K̂� := �

1

�
(B̂†)�P̂�, (27)

where M
P̂

is a bounded self-adjoint operator and P̂� =

(P̂
†
)� is the solution to the Riccati equation

(Â†)�P̂� + P̂�Â� + Q̂� =
1

�
P̂�B̂�(B̂

†)�P̂�. (28)

(24) is well-posed, so that (27) is stabilizing. The ex-
tension of Â is given by the rational function Âe(�) =

0 1� �

c
2
�
2

1��
0

�
, which is analytic in �1, and Q̂e will

be rational and analytic in some strip as well. Then, an
application of [5, Thm 6] shows that K̂e is analytic in �⌘
for some ⌘ and k̂ therefore decays exponentially with rate ⌘.
The feedback policies for both formulations are equivalent,
i.e. MK = M

K̂
�. From the relation

Ke(�) = K̂e(�) ·


1 + � 0
0 1

�
, (29)

we see that Ke will be analytic in the same region �⌘ as
K̂e. Thus, k will have at least the same exponential decay
rate as k̂.

The following theorem generalizes Example 5.3.
Theorem 5.4: The optimal feedback for (25) is of the form

U = M
K̂
�, or equivalently, u = k̂�. The solution to the

original Sobolev space formulation is given by u = k .
These two feedbacks are equivalent, and the decay rate of
the convolution kernel of k is at least as rapid as that of k̂.

Proof: We emphasize that the relation between the
decay rates of k and k̂ is not the same as the relation between
the decay rates of the Riccati equation solutions p and p̂. The
branch points of K̂e = R

�1
e

(B̂e)⇤P̂e are exactly the branch
points of P̂e so that k̂ has the same exponential decay rate as
p̂. In contrast, the branch points of Ke = R

�1
e

(Be)⇤WePe,

are the branch points of WePe, not the branch points of Pe.
It can be shown that WePe = S

⇤

e
P̂eSe, and since Se and

S
⇤

e
are analytic, the branch points of WePe are the same as

those of P̂e.
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VI. CONCLUSION & OPEN PROBLEMS

We demonstrated that the LQR design problem for a
spatially-invariant system over a Sobolev space can be refor-
mulated as an LQR problem over an L2 space. The spatial
decay rate of the optimal LQR feedback demonstrated in
[5] was shown to apply to the more general Sobolev space
setting. Future work will extend these results to the setting
of homogeneous Sobolev spaces. Interesting and related open
problems include imposing convex constraints on the decay
rate of feedback to extend results of e.g. [7], [17] to the
continuous spatial domain setting.
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VII. APPENDIX

Proof of Proposition 3.5

By the Plancherel theorem, (8) can be solved via the
parameterized family of problems

inf
U�

Z
1

t=0
 ⇤

�
(t)W�Q� �(t) + U

⇤

�
(t)R�U�(t)dt

s.t. @t �(t) = A� �(t) +B�U�(t)
(30)

The solution of (30) is U
opt
�

:= �K� � := �R
�1
�

B
⇤

�
P� �,

where P� = P
⇤

�
solves

A
⇤

�
P� + P�A� � P�B�R

�1
�

B
⇤

�
P� +W�Q� = 0 (31)

(31) is written in terms of ⇧� := W
�1
�

P� = (⇧
†
)� as

0 = A
†

�
⇧� +⇧�A� �⇧�B�R

�1
�

B
†

�
⇧� +Q�

and U
opt
�

= �R
�1
�

B
⇤

�
P� � = �R

�1
�

B
†

�
⇧� �.

Proof of Theorem 5.2

The proof utilizes the following lemma.
Lemma 7.1: (a, b) is exponentially stabilizable if and only

if there exists a bounded solution p = p
†
2 L(H) of the

Riccati equation
hah1, ph2iH + hph1, ah2iH + hh1, h2iH

=
⌦
b
†
ph1, b

†
ph2

↵
H
, 8h1, h2 2 D(a).

(32)

Proof of Lemma 7.1: a 2 L(H) is exponentially stable if
and only if there exists a bounded operator p = p

†
2 L(H)

satisfying the Lyapunov equation

hah, phi
H
+ hph, ahi

H
= hh, ghi

H
, 8h 2 D(a) (33)

for some negative definite operator g [13]. Write (32) using
shorthand notation as

a
†
p+ pa+ I = pbb

†
p (34)

, (a� bf)
†
p+ p(a� bf) = g, (35)

where f := b
†
p, g := �pbb

†
p � I � 0. (a � bf) is

then exponentially stable as the Lyapunov equation (35) is
satisfied. This completes the proof of Lemma 7.1.

The two cost functionals are equivalent if

0 = h�, q̂�i
L2

� h , q i
H

=
D
�,M

Q̂
�
E

L2

� h ,MQ iLW

=

Z
 ⇤

�

⇣
S
⇤

�
Q̂

⇤

�
S� � Q

⇤

�
W�

⌘
 �d�.

Equivalently, Q̂� = S
�⇤

�
W�Q�S

�1
�

= S�Q�(S†)�. If
(q, a) detectible, then there exists of a bounded, self-adjoint,
spatially-invariant p 2 L(H) such that

Â�P̂� + P̂�Â
†

�
� P̂�Q̂

†

�
Q̂�P̂� + I = 0, 8� 2 R, (36)

holds with P̂� := S�P�S
�1
�

. It can be shown that the
corresponding operator p̂ is self-adjoint and bounded, so that
by Lemma 7.1, (q̂, â) is detectable. The proof that (â, b̂) is
stabilizable follows similarly. Finally, let {e

at
} denote the

C0-semigroup on H generated by a. â = sas
�1 generates the

C0-semigroup {se
at
s
�1

} on L2. Defining ⌧(t) := Fe
at
F

�1,
ke

at
bkL2!H = k⌧(t)BkL2!LW

= kS⌧(t)BkL2!L2 = kse
at
bkL2!L2 .
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