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GREAT EXPECTATIONS AND GUARANTEED RUIN
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tochastic components in a feedback loop introduce

state behaviors that are fundamentally different

from those observed in a deterministic system.

The effect of injecting

a stochastic signal ad-
ditively in linear feedback sys-
tems can be viewed as the addi- Summary
tion of filtered stochastic noise.
If the stochastic signal enters S
the feedback loop in a multipli-
cative manner, a much richer
set of state behaviors emerges.
These phenomena are investi-
gated for the simplest possible
system: a multiplicative noise
in a scalar, integrating feedback
loop. The same dynamics arise
when considering a first-order
system in feedback with a sto-
chastic gain. The dynamics of this form arise naturally in
a number of domains, including compound investments in
finance, chemical reaction dynamics, population dynamics,
epidemiology, control over lossy communication channels,
and adaptive control. Understanding the nature of such
dynamics in a simple system is a precursor to recognizing
them in more complex stochastic dynamical systems.

ing mechanism.

STOCHASTIC FEEDBACK LOOPS

Results on the evolution of the statistics of multiplicative
systems have appeared in other research domains in the
past but are not widely known within the control systems
ommunity. The presentation and the proof of the results
g1ven depend on only reasonably well-known statistical tech-
his article draws upon and augments such results to
e stability of a stochastic feedback loop (see “Sum-
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tochastic feedback, or multiplicative noise,
leads to heavy-tailed state distributions
in which the median, mean, and variance of
the state can diverge. A detailed study of this
phenomenon in simple systems leads to pre-
cise control-theoretic conditions for its occur-
rence and provides insights into the underly-

phenomena described in this article was reported by Rosen-
bloom [1], who examined the solution of the stochastic first-
order differential equation

X+a(t)x=S5(1),

where a(t) is a Gaussian sto-
chastic function and S(f) is a
step function. The solution
itself can approach one in prob-
ability, and yet, both the mean
and variance become infinite
as t —oo. The case when the
variance goes to zero as t — oo
is referred to as mean-square
stability, which was analyzed
for continuous-time stochas-
tic differential equations by
Samuels [2].

Another early formulation of the considered problem
was given by Kalman [3] and reports on the results from
his Ph.D. thesis. A discrete-time control design problem
was posed, with the open-loop system being a vector-
valued, discrete-time difference equation model of
the form

Xk+1= A (Wk+1) Xk + B (wk+1) ux, 1)
where wy is a sequence of independent random events. It is
assumed that the probability distributions of A(wx) and
B(wx) do not depend on k. The design criteria was, again,
mean-square stability. This problem was also considered
and characterized in the frequency domain for both con-
tinuous- and discrete-time systems by Willems and Blan-
kenship in [4].

Mean-square stability conditions are appealing as they
can be formulated in the multivariable case and relate
directly to covariance matrices [5]. Furthermore, they lead
to convex optimization problems for analysis and, in some
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cases, controller design (see, for example, [6]). The disad-
vantage, which will become obvious in this article, is
that mean-square stability is a very strong form of sta-
bility. In many applications, something weaker might
be preferable. In the analysis of systems where mean-
square stability is not satisfied, a weaker stability char-
acterization would give a better understanding of the
observed behavior.

Adaptive control research began in the 1960s and moti-
vated the study of feedback systems with stochastically
varying parameters. The work by Astrém in [7] corre-
sponds most closely to the approach discussed in this arti-
cle, in that it characterizes the distributions that result in
such systems. A continuous-time setting was used in [7]
and much of the earlier works, which considers stochastic
differential equations of the form

dx = xdw1 + dw,,

where w1 and w2 are Wiener processes. Some of the char-
acteristics of the limiting distributions in [7] are also evi-
dent in the distributions arising in this article. In contrast,
this work considers stochastic difference equations where
the multiplicative term can be drawn from a wide range of
possible distributions. A continuous-time setting was also
used by Blankenship [8] with the system model

() =AB)x(t), x(t)=x0€R",

where the elements of A(t) are stochastic stationary pro-
cesses with certain continuity properties. The results use
differential equation solution bounds to give sufficient con-
ditions under which

Prob{y_@x(t) | =0}= 1. )

This article makes the case that, in many applications,
the stability of the median is an important practical con-
cept. Interestingly, a similar case has also been made in the
domain of gambling strategies [9], where it was observed
that proportional betting—a multiplicative strategy analo-
gous to the stochastic feedback configuration—optimizes
the median of the gambler’s fortune. Gamblers care about
the median as it characterizes their probability of making
a profit. In contrast, the gambling house cares about the
mean as it characterizes their risk.

From a probability theory perspective, the work pre-
sented here can be considered an application of renewal
theory, which addresses the properties of the cumulative
effect of a sequence of independent identically distributed
(i.i.d.) random variables. The classic example is the study of
the total number of “arrivals” in terms of the distribution of
independent random interarrival times. In the context of
(1), the cumulative effect of the stochastic A (wx) and B (wx)
variables is reflected in the evolution of the state x(k). In this
framework, Kesten [10] studied the properties of the limit-
ing distribution of the matrix evolution
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Xk+1= AkXk+ g, xeR", k=0, 3

where Ay is a random matrix with positive entries and g«
a random vector. The conditions under which there exists
a limiting distribution, fi.(x), are given and essentially a
generalization of the median stability results presented in
this article. In the scalar case [10], Kesten showed that f...(x)
can be heavy tailed, even if the distributions of Ax and g«
are relatively light tailed. Kesten’s work was extended in
work by Goldie [11], where a range of similar recursions
was shown to also give power-law distribution tails. The
limiting distribution, when it exists, was derived by Brandt
[12]. The existence conditions are essentially equivalent to
those for the stability of the median derived in this work.
Work by de Saporta [13] describes an interesting variation
on the recursion of (3) by considering the limiting distribu-
tion in the case where A, comes from a Markov chain. Much
more on the stochastic stability of Markov chains can be
found in the comprehensive text of Meyn and Tweedie [14].
The discrete-time case in (1) and (3) can also be studied
by considering the evolution of the state as the result of a
product of random matrices. Random matrix products are
known to lead to heavy-tailed distributions [15]. We show
that this can lead to a situation where the mean does not
characterize the typical behavior of the system. Stability can
be considered in terms of the largest Lyaponov exponent

N
A=lim L& [In(| Av])]} with Ay =[] A,
N - N k=1

and where & ] denotes the expectation. Calculating the
upper and lower bounds on the largest Lyapunov exponent
is currently an active area of research [16], [17].

One of the applications considered in this article is the
stabilization of an unknown system via stochastic feed-
back. This has also been considered by Milisavljevi¢ and
Verriest [18], who provide a stability condition that is an
application of our results on median stability.

The growth in research interest and application of net-
worked control systems has introduced another application
of this theory. Sinopoli et al. [19] showed that Kalman filters
with intermittent observations can lose mean-square stabil-
ity once the probability of missing a packet reaches a thresh-
old value. The focus on mean-square stability is natural
with Kalman filtering as the construction of the time-vary-
ing Kalman filter requires a well-defined covariance matrix
evolution. In the case of a static Kalman gain, the evolution
of the estimation error is of the form given in (3). An analo-
gous result on stabilization over fading channels was shown
by Elia [20]. Elia also observed the emergence of heavy-
tailed distributions in networked control systems in the
case where mean-square stability is lost [21] and provided a
mathematical characterization of this behavior in [22]. Work
by Mo and Sinopoli [23] extended the packet loss model and
provided bounds on the tail of the error distribution. Dey
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and Schenato [24] studied the distinction between the insta-
bility of the second moment and the conditions required for
the existence of a limiting power-law distribution. As also
noted in this work, this is the distinction between median
stability and variance stability.

The adaptive control application that provided motiva-
tion for the analysis of these systems in the 1960s has
recently received renewed attention. Rantzer [25] considers
a single-parameter case and examines the stability of vari-
ous moments. Concentration bounds on the distribution of
the parameter error are derived.

This article focuses on the scalar discrete-time case
given in (3), without the random exogenous input gx, and
shows that even though the distribution of f...(x) might be
heavy tailed, it is still possible that (2) holds; the state xx
decays to zero with probability one. By focusing on the
scalar case, the distributions are derived and calculated as
a function of the time index k and give explicit conditions
for the stability of the median, mean, and variance of the
state. The results given are not unexpected in light of the
prior work outlined earlier in this section. However, the
explicit characterization of stability conditions and the cal-
culation of the distributions involved at each time step pro-
vide insight into the manner in which the instabilities
manifest themselves.

Notation

The notation a ~ fi{(a) denotes that the random variable a is
drawn from a distribution with probability density func-
tion f (a). The cumulative distribution function is denoted
by F.(a) and the complementary cumulative distribution
by F.(a) (=1—F.(a)). The expected value of a is denoted
by E[a]= pa. The normal distribution of mean y and vari-
ance o” is denoted by N(y, 0), and the log-normal distri-
bution is denoted by LN. The set of (nonnegative) integers
is denoted by (Z+) Z and the reals by (R:) R.

PROBLEM DESCRIPTION
The plant is a first-order system with the scalar state x; evolv-
ing with dynamics given by

Xe+v1=akxk, k=0,1,..., @)

where ax are independent random variables drawn from a
distribution f,(a) with mean u, and variance 3. The dis-
tribution f.(a) is assumed to have support on only a > 0,
and xo is assumed to be strictly positive.

The dynamics in (4) can be viewed as multiplicative
noise ax entering a feedback loop. An alternative view is
that of a stochastic feedback gain. Both interpretations are
illustrated in Figure 1, and both involve a feedback loop
around a delay.

This is the simplest case of the type of processes described
previously. As only a scalar state and uncorrelated ax are
considered, it is too simplistic for many real processes of
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this type. However, it is a prototypical case and illustrates
some of the phenomena that may arise in more complex
systems. Understanding the stability characteristics of this
system is a precursor to understanding those for more
complex systems.

Stability
At the time index N, the state xv is given by
N-1
XN = H AkX0. )
k=0

As ax~ fa(a), state xn is also a stochastic variable with a
probability density function denoted by fy, (x). Of interest
are the properties of this distribution as N — cc. More spe-
cifically, conditions will be derived for the following three
notions of stability.

At every time step N, the median of xy [referred to as
median(xn) in the sequel] is defined as any value muy,
such that

jo‘m.\'fo (x)dxz% and [n:fo (x)dxz%

Next, the stability conditions of interest are defined. The
system in (5) is median stable if the density of the state xn
satisfies

Allim median (xn) = 0.
The system in (5) is mean stable if the density of the state xn
satisfies

lim & [xn]=0,

N-o

and the system in (5) is variance stable if the density of the
state xn satisfies

lim& [(xn— E{xn})]=0.

The approach taken will involve analyzing the system in
terms of the probability density functions of the logarith-
mic variables

{ie= g (xn) =1In (xx) ©)
and
ak:= g(ar) =In(ax). (7)

The function g is defined here for convenience in subse-
quent derivations.

Assume that xo > 0 is given; thus, xy =0 forall NeZ..
For simplicity in the following, assume without loss of gen-
erality that xo = 1. The evolution of the dynamics in (4) now
becomes

Cre1=Cr + ax. ()]

This allows for expression of xn as

xNzeg”.

This evolution for N timesteps can be examined to illus-
trate the way in which stability results will be derived.
Under this assumption that xo =1,

elend=£|S a|=Ne el = N
k=0

if the distributions f., () areiid.

It is tempting to say that if 1. <0, then & [xny]<1. This
is not true as the results in the following sections will make
clear. What will be true is that, for distributions where the
distribution of In(a) satisfies certain moment assumptions,

Ela]l<0 = hlji{nmedian(xN)=0.

Commutative Variable Relationships

The system will be studied in terms of the probability dis-
tributions of both the xx, ax variables and their logarithmic
versions: {x, or. The logarithmic/exponential relationship
between these variables means that one can map the distri-
butions from one set of variables to the other. Figure 2 pro-
vides a commutative diagram of these relationships as they
evolve over the time index.

The mappings to the logarithmic variables in (6) and (7)
map the corresponding distributions. This is described for
the a variable, but it also applies to the xi variables. Sup-
pose that 2 has a probability distribution fi(a) defined ona
support S, S Ry,

Su="{al fa)>0}.

a, ~ f(a)
Xk+1 Xk
O Z
(a)
Xk X1
2
i~ fa (a)

(b)

FIGURE 1 The process dynamics. (a) The system generating the
stochastic dynamics is shown as a multiplicative noise signal in a
feedback loop. (b) The equivalent system is a feedback loop with
a stochastic gain.
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If g(a) is monotonically increasing and invertible on S,,
then the probability density of « is given by

_ ag N a) | .
fola)= [fﬂ (g 1(OC))‘ %T , ifaeS,, 9
0, ifae Se

and has support

Se={a=g(@) | a€S.}.
In this case,

g@=1In(), g (x)=¢"
and

R C I
‘T—“ |=e.

Of interest is the distribution of xx as N increases, and,
as shown from Figure 2, there are several ways of calculat-
ing this distribution. One can directly consider the evolu-
tion of the variable

Xk+1 = Ak Xk,

where xi has density fy(x) and ax has density fi (a). This
can be calculated as

fuor ()= [ fu O/ ) 7 g dE:

The f,,,(x) distribution can also be obtained by first trans-
forming xx to {x using the mapping in (9):

fol &) = fuled)et.

The ¢ dynamics are simply additive [see (8)]; thus, the {k+1
distribution is given by the convolution

fcm(f) = /;: ﬁk(f)ﬂ!(c - f)df

The fu., (x) distribution is then given by the inverse of the
mapping in (9):

ka+1(x):f§k+1 (ln(x))%, x> 0.

Log-Normal Distributions

The case where fi(a) is alog-normal distribution is, in some
sense, generic. If fi(a) is a log-normal distribution, then
fo(@) is normal. Then {x is a sum of independent, normal
random variables and is, consequently, also normally dis-
tributed. Equivalently, the distribution of xn is log-normal
for all N. In other words, log-normal distributions are closed
under the multiplication of random variables. Log-normal
distributions, in conjunction with multiplicative noise, have
been studied extensively in communication theory. See [26]
for a widely applicable example.

The central-limit theorem implies that even if the
fola) distribution is not normal, the scaled distribution
of {n tends to a normal distribution. One therefore also
expects that the scaled xn distribution tends to a log-
normal distribution. Note that this argument requires
that the random variable o have a finite second moment.
This is a very weak assumption, and there are examples
where the random variable 2 may not even have a finite
mean, yet all of the moments of the corresponding o
random variable are finite. An example of such a case is
presented later.

Several properties of log-normal distributions are pre-
sented here for later use. All of these results can be found in
[27]. The log-normal distribution can be defined by consid-
ering a as given by

a=e% where a~N(u,c?).

The parameters i, and o. are known as the location and
scale parameters, respectively; however, they are simply
referred to as the mean and standard deviation in the
a-space. This distribution definition ensures that S, =R+
and so fits the assumptions of this problem.

J\az'* fa(a) Jf ~ f,(8) /Law fa(a)
©; & X

X2 X1 ~ Xo

g(x)( )9-1(4) g(x)( )g-%() g(x)( )g“(C)

¢ e ~ %

an-_q~ fa(a)
XN ot X3
g(x)( ) ()
v Sn &
Ny ~ fol@)

® ® 8
TQZ = a(a) Toﬁ = fa(a) Tao ~ fa(a)

FIGURE 2 The state variable evolution. The mapping between the x and { variables is given by {i= g (x;) =In(x;), and the inverse map-

pingis xi=g ({)=e’.
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It is clear from (8) that {n is the sum of N random vari-
ables ax with each ax ~ N(uq, 02). The sum of independent,
normally distributed variables is also normally distrib-
uted and

CN NN(NIUOU NO—E‘)'

This gives a closed-form expression for the distribution
of {:NZ

fCN(():f/\/'(a/Nﬂa/ng)/ (10)

where

2\ _ 1 —(x—u)?/20°
(%, u,0%) = ———e¢ .
Pt V2no?
Closed-form expressions relate the mean and variance of a;

to the mean and variance of ax [28], [29].

proa=In |2 (11)
1+%
Ha
2 o:
Gazln(l + ﬂﬁ)' (12)
The inverse mapping is given by
Lo = oHat0E/2 (13)
o2 =(e% —1)(e2*%), (14)

The fact that the mean and variance of 2 are not simply the
exponentiation of the corresponding o domain values
leads to interesting characterizations of stability in the
x domain. The mode and median of a are also given by
simple expressions:

mode (a) = et % (15)
median (a) = e*. (16)
The median condition—and any other quantile value—is
transformed via exponentiation, making it a simple matter to
characterize properties of the median or quantile value.

STABILITY CONDITIONS
The following sections derive the conditions under which the
median, mean, and variance of fx, (x) converge tozeroas N — oc.

Mean Stability

The condition for the stability of the mean of x is a simple
consequence of the fact that for two independent, random
variables, the product of the expectations is equal to the
expectation of the product.

Theorem 1: Mean Stability

Ilvimmean(xN)=0 e <1

For log-normal distributions, (13) shows that the mean sta-
bility condition can also be stated by the mean and vari-
ance of the f.(a) distribution

limmean(xn)=0 & po+ 0%/2<0. (17)

Variance Stability

Goodman [30] derives the variance of a product of arbitrary
random variables, which directly leads to the following
variance stability result.

Theorem 2: Variance Stability

limvariance (xy) =0« ui+oa<l1.

Proof of Theorem 2
From [30]

N-1
variance (xn) = Variance( 11 ak)
k=0
Nl NS
= (O_a+ﬂa)_ Hﬂa,
k=0

k=0

which, in this i.i.d. case, gives

variance (xn) = (02 + u2)" — 12N (18)

—oit e +u((149) 1) a9
If 0+ ui <1, then both of the terms in (19) go to zero as
N — oo. In the case where o2+ 42 =1 and o3 >0, (19) also
shows that the variance of xy goes to one as N —co. If
0a+uz>1, then both of the terms in (19) grow without
bound as N — . |
In the log-normal distribution case, substituting
(13) and (14) into the condition of Theorem 2 gives an
equivalent condition in terms of the normal f. (a)
distribution,

lim variance (xx) =0 & fo+ 0% <0. (20)

The fAa) condition for variance stability in (20) is clearly
stronger than the mean stability condition given in (17). We
also note that the variance stability condition implies that
xn—0in £; as N — .

Median Stability: Log-Normal Case

The least-restrictive stability condition to be consid-
ered is that for the median of xy. This result is easy to
obtain for a log-normal distribution and is thus pre-
sented first.

Theorem 3: Median Stability—Log-Normal Distribution
If fi (a) is a log-normal distribution,

[Liznmedian (xn)=0 & w.<O0.
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e A
TABLE 1 Stochastic feedback gain stability conditions for

log-normal distributions.
N\ A

e A
TABLE 2 Stochastic feedback gain stability conditions for

more general distributions.
N\ v

Stability Property f,(a) Distribution f, (o) Distribution

2 g
median (xn) Ha— % <1 1a<0 median (xn) - Ha <0
a
mean (Xx) Ha <1 il &< mean (xx) Ha <1 -
variance (xn) Ui +o2<1 Ho+02<0 variance (x) Ui +oi<1 —
. _J \_ _J

Stability Property f,(a) Distribution f, (o) Distribution

Proof of Theorem 3
As fzy (x) is a normal distribution, its median is equal to
its mean:

median ({x) = mean ({n) = Nya.

This immediately gives hmmed1an({ N) =— oo if and only

if (iff) u« <0. As median (xk) =™V the result follows.

|

Equation (11) demonstrates that the condition of Theorem 3
can also be expressed in terms of the f; (a) distribution

lim median(xn)=0 o u2— "f <1

N-oo Ha

Note that, depending on the variance e systems with a mean
of j1, greater than one might still be median stable. This point is
discussed in greater detail later in this article. The stability
results for log-normal distributions are summarized in
Table 1. The conditions can be expressed in terms of either
the f.(a) or f.(a) distribution because the mapping between
the distributions involves only the means and variances.

Median Stability: General Distributions
Now consider median stability in the case where f, (a) dis-
tributions are other than log-normal. For the purposes of
this section, assume that f. (@) is a nonlattice distribution
with a bounded third moment. Note that a lattice distribu-
tion is one where there exist parameters b€R and h > 0
such that Prob{ac € b+ hZ}=1. The mean and variance
relationships between the f;(a) and f. (o) distributions
given in (11)—(14) no longer hold. Unfortunately, this is also
true for all the values of N as well as in the limit as N — .
The situation is more complex for more general f, (a) dis-
tributions as f. (@) is not normal. In the context of the cen-
tral-limit theorem, it is perhaps surprising that, although the
distribution f;, (¢) is the N-fold convolution of f. () distri-
butions, the median of f;, (¢) does not necessarily converge
to the mean of f;, ({). The difference can be quantified.

Lemma 1
Assume that f,(a) is a nonlattice distribution with a
bounded third moment. Then,

& [(a—#a)"]_

lim median ({) - E¢n]=— =
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Proof of Lemma 1
median({n) — & [{n]= median( )

o)

Define a new stochastic variable y with probability density
function f, (y) by

= cmmedlan(

and note that € [y]= u, =0 and & [y*] =07 =1. Define 7 as

the third moment of f, (y),
T =&[y’]

and, by assumption, 7 < oc. The following result from Hall
[31] provides the key step. If f; (y) is a nonlattice distribu-

tion with x4, =0,6,=1and &€ [y*] =7 < oo, then
) S r
}}H}Qmedlan<é y) =5

As

lim median ({n) — E¢n]= oamedian<

”M; gM'

=04 median(

— 04T
== 1)

The only thing remaining is to determine the value of 7. As
W' (y)=0ay + pa,

_f vy dy = fm v fh (y))‘ (}/)
= [y fdoey + ua) o ldy

_ [ (o= )’ d
—/;mana(a)lo'a‘ |O_O:|

:%f:’“ (= o) fil o)t
El(o=pa)’]

oy
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0 >

0.8 1 1.2

Mean (i,)

FIGURE 3 The stability regions in the a domain. The region where
the condition is satisfied is to the left of the correspondingly col-
ored boundary. The mean and variance stability regions are appli-
cable to general distributions. The median stability region shown
here applies to log-normal fs(a) distributions. Other distributions
will have slightly different median stability regions but identical
mean and variance stability regions. The four circles indicate the
values of u, and o, of the distributions shown in Figure 4.

Substituting this expression into (21) gives the de-
sired result. [ |

The key point in determining the median stability is
that the limit in Lemma 1 is independent of N.

Theorem 4: Median Stability

Assume that f. (a) is a nonlattice distribution with a bounded
third moment. Then,

}/ifn median(xn) =0 & u.<0.
Proof of Theorem 4
If 4uo=0, then &€ [¢{n]=N u.=0, and from Lemma 1,
limy- . median ({n) is a finite constant. Therefore,
lim median (xy) = lim emediann) £ (),

By Lemma 1, for every € > 0, there exists an integer N such
that forall N> N

_ )3
median ({n) — Nuo + S[(a—zya)] <e.
604
This implies that
)3
| median (¢n) — Nue| <‘%‘+ €.

If it is assumed that u. <0, then Ny, <0 and

E [(a@—ua)’]

+e
602

median ({n) < Nuo + ‘

1.5 [ [ [ [
Probability Density Functions

A
a
(

\
LS

FIGURE 4 The probability density functions of a for four stability
cases: variance stable, mean stable, median stable, and unstable.
All four cases have the same mode; their means and standard
deviations are presented in Figure 3.

Variance Stable —
Mean Stable
\ Median Stable —

Unstable

N\ .

1 2 3 4

\4

The right-hand side clearly goes to —co as N — oc. An anal-
ogous argument for u,>0 gives a lower bound on
median ({n) that goes to o as N —oco. Exponentiating
median({n) provides the required result. |

This result also follows from Cantelli’s inequality (see
Lemma 3) without the requirement of a bounded third
moment. However, the method of proof stated previously
in this section illustrates the manner in which a sum of
nonnormal distributions does not converge to a normal
distribution. It also gives the following interesting bound-
ary condition.

Corollary 1: Median Limit—Zero-Mean Log Distribution
If f.(a) is a nonlattice distribution with =0 and
|€ [(a = pe)°]| < o0, then

. . _El@—pa)’]
Il]lm median(xn)=e " e

Ethier [9] also uses the result of Hall to prove a similar
result on the median of a gambler’s fortune. The results in
[9] suggest that it might be possible to remove the assump-
tion of the nonlattice distribution in Lemma 1. Lattice
distributions are important for gambling applications but
may be of less interest in many control applications. The
stability conditions for more general distributions (that
is, nonlattice and with a bounded third moment) are
summarized in Table 2. In the table, “—” denotes the fact
that no mean and variance condition exists for every dis-
tribution. It is possible to find distributions with nonzero
third moments that violate the corresponding normal-
log-normal conditions of Table 1.

The median stability conditions given here for a sto-
chastic gain ax ~ f; (1) have a similar form to the stability
conditions for a time-varying gain (see “Stabilization By
Time-Varying Gains and the Geometric Mean”).

The implications of median stability can be stated in
terms of well-known convergence characterizations for
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Stahilization By Time-Varying Gains and the Geometric Mean

Some of the initially nonintuitive phenomena observed for
stochastic feedback may be better understood by consider-
ing systems with certain types of deterministic, but time-vary-
ing, feedback gains. For the case of a scalar state, a complete
analysis is easy to accomplish (see [S1] for a more complete
analysis of the periodic multivariable case). Consider the sin-
gle-state, discrete-time system and its solution

N-1
Xk+1 :aka=>XN:(H ak)Xo. (S1)

k=0

If a is a periodic signal with period N, then the growth of x
can be characterized by observing the behavior every N time
steps. Define the subsampled state

)A(k = XkN .

Note that x decays iff X decays because the growth of x between
the subsamples is bounded. The recursion for X is time invariant:
N-1
Xk+1= X(k+ )N :( 11 a(k))ka =! & Xx,
k=0
where &:=[[/-lax is the so-called monodromy gain. Thus,

the sequence X decays iff
. 4 N=1 &
la]<1 slalvn <1 o <H|ak|) <. (S2)
k=0
The last quantity in (S2) is the geometric mean of the abso-
lute value of the signal a, which is the right quantity that char-

acterizes stability in this system. The geometric mean can also
be expressed using the arithmetic mean of the logarithm

N-1 1ﬁ N-1 1N
(H|ak|) <1 o |n(1‘[|ak|> <0
k=0

k=0
= =) Injax|<0.
N=

Thus, the system is asymptotically stable iff the arithmetic
mean of {In|ax|} is negative. Note how this is analogous to the
condition E{In|a|} <0 when a is a stochastic process. The re-
lation between the geometric and arithmetic means through the
logarithm function is illustrated in Figure S1. The figure depicts
a periodic gain a that is symmetrically distributed around one.
The In(ax) mapping tends to boost those values of {ax} that
are lower than one more heavily toward large negative numbers
while tempering the values of {ax} that are larger than one by
mapping them to smaller positive numbers. The result is that,
even though a may be symmetrically distributed around one,
the product H,Q’;g |ax| will be strictly smaller than one.

Next, examine (S1) in the case where the sequence {ax} is a
general time-varying gain. The asymptotic behavior of the solution
is completely determined by the limit of the product of the gains
{ax}, which can be studied as a series limit by taking the logarithm

N-1 N-1
[T ax| =2 Injaxl.
k=0 k=0

Next, explore the limit

In
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In(3) In(x)
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FIGURE $1 Anillustration of the mapping from ax to In|ax|, show-
ing that when a is symmetrically distributed around one, In|a| is
distributed more heavily toward negative numbers due to distor-
tion by the In mapping. The cyan dashed line on the graph of In|a|
indicates the arithmetic mean of that signal (this is the logarithm
of the geometric mean of a), showing how it is negative while the
In of the mean of a is zero.

lim In|ax|= lim N(— In|ak|)
N—oo N-w N =
) 1 N-1
=N<,IV|EL Nk=oln|ak|)
=N &[In|a], (S3)

where the last limit is expressed in terms of the asymptotic
average, which, for any signal u, is defined by

1 N-1
Elu]:= :&iﬁlﬁz Uk.
k=0

This asymptotic average can be thought of as a “deterministic ex-
pectation” of u, which is equivalently the time average of the real-
ization of a stochastic process.

It can thus be concluded that if the asymptotic average of
In|a| exists and is negative, then the state will asymptotically
converge to zero, that is,

ElInlal]<0 = AIlimXN=0.
Something slightly stronger can be concluded:

Elnlal]l=:In(y)<0 = |xn|<ay", (S4)

that is, the convergence is geometric, with a decay rate y <1.
Finally, note that condition (S4) is necessary only for exponen-
tial convergence. Slower convergence can still occur, even
when this condition does not hold. For convergence, it is nec-
essary only for the sequence on the right-hand side of (S3) to
go to —oo. This can occur even when the asymptotic average
is converging to zero (from below) as long as it converges at a
rate slower than 1/N. More precisely, it can be stated that

N-1
fimxy=0 o I\I/imgN(%g‘alMau):—oo.

REFERENCE

[S1] S. Bittanti and P. Colaneri, Periodic Systems: Filtering and Control.
New York: Springer-Verlag, 2009.

Authorized licensed use limited to: Bassam Bamieh. Downloaded on April 22,2022 at 21:52:59 UTC from IEEE Xplore. Restrictions apply.



af
N=30
2
N=1
1 /e,
0 - »
1 2 3

FIGURE 5 An evolution of the probability density function of xn for
N=1,2,3,5,10, 15, and 30. The mean values of each xy distribu-
tion are indicated by triangles, and the median values are indi-
cated by solid dots. As N — «, the mean of xy increases, and the
median decreases.

stochastic sequences. The sequence of medians of x arises
from the stochastic dynamics in (5). The next section will
show that, under the assumption that the variance of f. (o)
is finite, the variance of xy that arises from these same
dynamics leads to exponentially decreasing bounds on the
integral of the tail of the fx,(x) distribution. These two
facts imply that if the system in (5) is median stable, then
Xy converges in probability to the degenerate random vari-
able x=0:

}]iEnProb{ | xn | >€}=0, foralle>0.

Stability Regions

The variance, mean, and median stability regions for the f, (a)
distribution are displayed in Figure 3. The most interesting
observationis that there exists aregionin which median (xn)
is stable and the mean (xv) is unstable. It will subsequently
be shown that, in this case, the sample paths xy go to zero in
probability, but the mean of xy goes to oc. This analysis can
also be applied to other feedback loops; see “Stochastic Gain
Stabilization,” wherein the stability regions for a first-order
system are derived with an unknown gain and pole posi-
tion. The Matlab code that generated all the simulation data
and figures for this article is publicly available at https://doi
.0rg/10.3929/ethz-b-000457726.

Figure 4 gives the probability distribution functions for
four stability cases: unstable, median stable, mean stable,
and variance stable. In all the cases, the mode of the distri-
bution is lower than one. The remarkable feature of these
distributions is that they are not particularly different and
yet give very different stability characteristics in the evolu-
tion of the state.

The most intriguing case is where the median of xy is
stable, but the mean is unstable. Figure 5 shows the evolu-
tion of the log-normal probability density function of xy

FIGURE 6 A simulation of the median stable/mean unstable case.
The vertical axis shows the evolution of the probability density func-
tion fw(x) for a range of values of N. The horizontal plane shows
200 simulation sample paths of xy as a function of N. Also shown
are the sample median (blue line) and sample mean (red line: ix),
along with the theoretical median (cyan line: e"“*) and theoretical
mean (magenta line: ux). The theoretical values are derived by
mapping the a-space distribution in (10) through (15) and (16).

\
\
o \ —
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0.0001 >N
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Prob{x, >1} Cantelli Bound
Prob{xy >1} Chernoff Bound
Prob{xy >1}

Prob{xy >n}

FIGURE 7 The concentration inequalities and tail distributions for xy.
The probability that xn > 1 is calculated for the log-normal distribution
case studied in Figure 6 (blue line). Also shown is the probability that
Xn > Uxy (cyan line). For comparison, several concentration inequali-
ties are also illustrated: the Cantelli inequality (red) and Chernoff
inequality (magenta) for the same distribution. For the simulation
shown in Figure 6, the probability that a sample trajectory will exceed
the mean (ux, = ub) at the end of the interval (N =300) is 0.0002.

for a range of values of N. The evolution of the median
toward zero and the mean toward infinity are clear in
the distributions.

The median stable/mean unstable case is illustrated by
simulating 200 sample paths. The fi(a) distribution is the
log-normal distribution with a probability density function
presented as case 3 of Figure 4 (u.=1.0283, 0, =0.4389).
Figure 6 illustrates the sample paths and the evolution of
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Stochastic Gain Stabilization
The stability results for stochastic feedback can be easily

applied to the slightly more difficult problem of stabilizing a
general first-order system via stochastic feedback. Figure S2
illustrates the configuration for this problem. This is a simple
case of a more general stochastic stabilization problem, re-
ferred to as stabilization by noise. This problem has been
studied in stochastic vibration control context (see the review
in [S2]). In vibration control, the assumption of an oscillatory
nominal response is usually exploited. The more general case
is studied in [S3] and is based on earlier work in [S4]. This
work focuses on the continuous-time equivalent to the mean
stability case considered in this article. The application ex-
ample has also been studied in [18], where a result, which is
essentially equivalent to the median stability boundary below, is
presented.

The plant is given and has the transfer function G(z),

Yk+1 Y Yk

O ~ f5(8)

FIGURE S2 A stochastic stabilization problem. A first-order
plant is connected in feedback with a stochastic gain
Sk ~15(5).

the distribution f{a). As N increases, the median stabil-
ity condition ensures that the probability of a sample
path not going toward zero is zero; however, u,>1.
Thus, the mean(xn) is unstable and goes to oo. For very
large N, this results in an xy distribution with a very
high peak close to xy =0, with still-enough weight in the
positive tail so that the mean of xy is very large (and
growing with N). The sample estimate of mean(xn)
(denoted by fx) drops below the theoretical mean uxy
as increasingly fewer sample paths are near or above the
mean. This phenomenon is investigated in more detail in
the next section.

CUMULATIVE DISTRIBUTIONS

AND CONCENTRATION RESULTS

In this section we examine the observation made in the pre-
vious section (that is, in the median stable case, the mass of
the distribution falls below the mean) in more detail. Spe-
cifically, the goal is to calculate (or at least provide an upper
bound for) the probability that xx exceeds a certain value.
Denote the complementary cumulative distribution func-
tion by
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Denote the plant output by y«. The closed-loop dynamics of
the feedback system illustrated in Figure S2 are given by

Vi1 =(T +y8x) Yk,

where 8« ~f5(8) is the stochastic feedback drawn from a
known distribution at each time instant. Now define xx =|yx«]|,
and note that

Xk+1=|T + YOk| Xk.

As xx >0 for all k, the results summarized in Table 2 are di-
rectly applicable by defining

ak=|T +ydk|.
The mean of the fa(a) distribution is

Ha=|T +yus|.

The variance may be more difficult to evaluate precisely, but
it can be easily estimated numerically. If the distribution f5(5)
were such that x> 0, then

2
0'3270'5-

However, the absolute value in the definition of a complicates
this somewhat, particularly in the case of interest, where
7 #0. As expected, the conditions for median, mean, and
variance stability differ, and for a given distribution, f5(5),
a stability boundary diagram (analogous to that which is in
Figure 3) can be drawn. Figure S3 depicts the stability re-
gions for the case where Jx is drawn from a normal distribu-
tion 8k ~ N (us, 03).

N
Far(xpna) = Prob{xn > Xpna } = Prob{ 1T ax > and},
k=1

where it is assumed that xo =1. Furthermore, we are inter-
ested in the properties of Fa,(xond) as N — oo because this
gives information about the mass of the distribution of xy
as N increases.

Results of this nature are referred to as concentration
inequalities in the statistics literature and have a long history.
See [32] for a much more extensive treatment of concentration
inequalities in stochastic processes similar to the ones consid-
ered in this article. Assume that g, <0 (median stable case)
and observe that two choices of xna are of potential interest.

1) xwna =1: This gives the probability that xy> xo,

addressing the question of the probability that a realiza-
tion of the x, trajectory grows over the interval [0, N].
2) Xbond = mean (xn) = i This provides insight into the
ability (or lack thereof) to estimate the mean of xy
from a finite number of sample path realizations.
For simplicity, this article focuses on the first case. The
results are easily extended to the second at the expense of
more complex formulas in some cases.
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An f5(8) distribution with a nonzero mean can be viewed
as a constant feedback gain of us in parallel with a zero-mean
stochastic gain. The static feedback effect of us is accounted
for in the stability boundary figure by plotting the nominal case
as |t +yus|. Similarly, the standard deviation of the stochastic
feedback is scaled by 1/4/|y| to normalize for the gain-scaling
effect of y. The condition for the nominal stability of the plant
is that | T + yus| <1. The median stability boundary shows that,
for a range of variance, the median of |yx| is stable; however,
if the nominal plant is not stable, then neither the mean nor

2 -
EE—— Nominal
\ Stability —
15 Boundary
Mean Stability Boundary
Os 1 I
V171 ] )
Variance Stability
0.5 4 Boundary Viedian
Stability
0 Boundary N
0.5 1 1.5

|7+ yus|

FIGURE S3 The stability boundaries for the state-magnitude
evolution for the plant, G(z) =y/(z — 7), in feedback with a sto-
chastic gain, 8k~ N (us, 03). Nominally unstable open-loop
plants may be median stabilized by a stochastic gain with the
appropriate variance.

The analysis is, of course, easier in the a-space. Thus,
Prob{xy >1}=Prob{{n > 0}.

The objective is to provide bounds on this probability as a
function of N.

Log-Normal Distribution Case
First consider the log-normal f (a) case as exact formulas
are easily derived. In this case,

fan(@) = fx (o, Nuo,No3),
Fm(a)=f fn(y,Nuo,Noz)dy,

and

rlo Ho-en( 52

where erf(x) is the error function. The tail probability is then

Prob{xy > 1} = %(1 —erf (LNZ#O’))

V202 (22)

the variance of |yx| can be stabilized by stochastic feedback.
It is also interesting to note that, for any given nominal stability
margin, there are increasingly large values of the variance of
the stochastic feedback that will destabilize the variance, mean,
and median (in that order).

Another observation is that the stability boundaries involve
the absolute values of functions of the plant parameters ©
and y. This has an interesting robustness interpretation and
implies that in the us=0 case, the plant can be median sta-
bilized for a range of T and v, irrespective of their signs. For
example, for a plant with = in the range —1.05 < 7 <1.05, there
exists a zero-mean, normally distributed stochastic feedback
of a certain variance that will median stabilize the plant. This
exceptional robustness should not be interpreted as an indica-
tion that the stochastic controller is practical. The mean and
variance of the realizations of the trajectories are still growing
without bound, and the random excursions could be extremely
large. The stochasticity in the feedback loop leads to distribu-
tions of yx that are heavy tailed. The potential value of these
results is in avoiding the case where stochasticity in a feed-
back loop inadvertently leads to destabilization.
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In the median stable case, u« <0; thus, the argument of the
error function is positive.

Figure 7 displays the application of the bound in (22) to
the example simulated in Figure 6. When the distribution is
known, Prob{xy >1} can be calculated numerically, which
is shown as a function of N for the fi(a)~ LN case. Also
shown is

Prob{xn > px,} = Prob{xn > ul'},

and the exponential decrease of this probability illustrates
why the sample-based estimate of ., rapidly deteriorates
with increasing N.

The exponential decay in Figure 7 might seem counter-
intuitive as the complementary cumulative distribution of
a standard normal distribution satisfies

= 1 —a®
Fola) < e 2,
(o) V21w o

for all a>0, which appears to be a significantly faster
decay. However, (22) and Figure 7 consider the decay with
respect to N, and the effect of the mean (uay=Nua)
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A Heavy-Tailed Example
It is natural to ask how heavy tailed the distribution of fi(a)
can be and still lead to median stability

Allim median(xx) = 0.
To illustrate an extreme case, consider the fa(a) probability

distribution to be given by

2 1

2 __1___ foraxo,
fa(a)={ﬂy 1+@m?
0

fora<o,

(S5)

where y >0 is a real-valued parameter. Figure S4(a) illus-
trates this distribution on a log-log scale for three choices of
the parameter y. The distribution is equal to the magnitude of
a Cauchy distribution, and all of the moments of this distribu-
tion (including the mean) are infinite. This is also clear from
the a2 power law decay in the tail shown in Figure S4(a). The
calculation of the f.(a) distribution is given by (9), and in this
case is

2 ey 2  glehm
fola) == T+ (/77 7 1+ 6%
z%mz%sem (@—In(y).  (S6)

This distribution, without the y parameter, is known in
statistics literature as a hyperbolic secant distribution and
has been studied for nearly 100 years [S5]-[S8]. Most of the
main properties of the distribution can be found in [S9]. The
applications of the hyperbolic secant distribution are not all
that common [S9], [S10]. There is a range of generalizations
to the distribution, with application to specific domains in
finance and actuarial statistics (see [S8], [S9], and [S11]).

-2 1 1
fa(a) ST @R fo(@)=— sech(a:= In(y))
10 10
1
SNZ ! 7= 1
r=1330 =075, 1:33
0.1
0.1
0.01 1
y=0.75 0.0
0.001 »a 0.002 >0
0.1 1 10 -5 0 5

(a) (b)

FIGURE S4 Heavy-tailed example probability distributions.
(a) The fa(a) distribution on a log-log scale. The linear
decay of the tail on the log-log plot shows a power law
characteristic with decay a2 All moments of the fa(a) dis-
tribution are infinite. (b) The f«(a) distribution on a log-lin-
ear scale. All moments of the f(a) distribution are finite.
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Figure S4(b) shows the probability density function of the f.(ca)
distribution for three choices of y. The exponential decay of the
probability density function is clear from the log-linear plot. All the
moments of this distribution are finite, and the moment-generating
function (for y =1) is

Pa(A) !

~ cos(A/2)’ A<,

(§7)

The symmetry of (S6) about a =In(y) shows that

Ua=In(Y).
By applying Theorem 4,

Allim median(xy) =0 < y<1.
Note, however, that for all y >0,
E[XN] =00

for all N. This is an extreme example of an unstable mean. The
symmetry of the f,(a) distribution implies that the median and
mean are equal and the median of the state xy can therefore
be given analytically:

median (XN) — emedian({N) — emean([N) — eNIn(y) — YN'

For illustration (and in comparison to Figure 6), 500 ran-
dom trajectories of {n=In(xn), for N=1,...,100 are shown
in Figure S5. The predicted evolution of the median of {v is
compared to a sample-based estimate and found to be ac-
curate. As a result of the very heavy-tailed nature of the fa(a)
distribution, the range of the {n trajectories in Figure S5 is
much greater than in the normal/log-normal case shown in
Figure 6.

1010 ‘ :

Sample-Based :
Median Estimate

1 0—1 01 " \XNN
eNig
10720 % .
\\
!
1030 | \ Index
0 25 50 75 100 N

FIGURE S5 A total of 500 sample trajectory simulations for
v =0.75. The median of the {n distribution is compared with a
sample estimate of the median.
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FIGURE S6 An evolution of the probability distribution function
of {n for N=1,5,...,50. The initial (N =1) distribution is that
which is shown in the right plot in Figure S4 for y =0.75.

The behavior of the distribution of {xy as N — o is given
by the distribution of the N-fold sum of random variables, o,
with each drawn from the f.(a) distribution. The distribution
of an is the N-fold convolution of f.(a), which was numeri-
cally calculated (using the Chebfun Matlab Toolbox [S12]) in
Figure S6. The characteristics of a sum of hyperbolic secant
random variables were first studied in [S13].

As the moment-generating function for f,(cx) in (S7) is
finite in a range around zero, the probability that xy>1
decays to zero exponentially as N — «. The bound can be
calculated from the moment-generating function in (S7) and
Lemma 5

Prob{ lﬂ[ Xk >1 } S (58)
where
c=—A"In(y) +In(cos(zA"/2)) ()
and
A= %arctan (#n(y)) (810)

Figure S7 shows this bound. The actual probably can be
calculated numerically from the distributions in Figure S6 and
estimated from samples in the simulation in Figure S5. Both of
these comparisons are made and indicate that the exponent in
the Chernoff bound is tight; however, the bound itself could be
divided by a factor of at least two.

This is an extreme example, and it is interesting to put it
into the context of a simple investment finance problem. Con-
sider the accumulated return on an investment with an inde-
pendent identically distributed random rate of return at every

Prob {xy >1}

Convolution
Calculation

Sample-Based Estimate

Chernoff Bound
\
\

0.1

R

0.01 >N
0 25 50 75 100

FIGURE 87 A comparison between the Chernoff bound (red)
given in (S8)—(S10) and Prob{xy>1} as a function of N for
vy =0.75. For N up to 50, the numerical evaluation (via Chebfun
[S12]) of tail of the N-fold convolution of f.(c) gives the actual
probability and is shown (magenta). For N >50 (where numeri-
cal limitations prevent the numerical probability calculation),
the probability is estimated from 100,000 sample trajectories
(blue circles).

time step. In this context, xo is the initial investment, fa(a) is
the probability distribution of the rate of return at each time
step, and xu is the investment value after N time steps. Then
this example is a case where the expected rate of return is
infinite for each of the time steps, and yet, the probability of
making a profit after N time steps decays exponentially to zero
as N increases.
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becoming more negative as N increases is countered to
some extent by the convolution with f.(a) broadening the
distribution (as it evolves with increasing N).

This approach also shows that as N — oo, the probability
that xny exceeds any arbitrarily small number goes to zero.
The following lemma states this more formally.

Lemma 2: Log-Normal Convergence to Zero
Assume that a~ LN, 1.<0, and for simplicity, xo=1.
For any € >0,

A1]i£r113rob{xz\1 >e€}=0.

Proof of Lemma 2
Again write

Prob{xy > €} =Prob{an >1In(e)}
(4 In(€) — Nuo
= <1 erf<7TN0§ ))

For all N >In(€)/ue, the argument of the erf function is
positive and increasing without bound as a function
of N. As

limerf(x)=1,

the result follows. |
It is interesting that this result holds, even though
mean (xn) may be growing to +oo.

More General Distributions

The tail-probability results in the last section can be gener-
alized to a wider range of distributions, and the strength
of the bound depends upon the assumptions placed on the
underlying distribution. Exponential bounds are still pos-
sible for a wide range of distributions, and some examples
are provided in the following lemmas. A decaying bound
is available under the assumptions that u, <0 and the dis-
tribution f.(@) has a finite variance, 0. These conditions
are weaker than those considered for median stability in
Theorem 4. Under the assumption of the pairwise inde-
pendence of the ax variables, which is satisfied here by
assumption, Cantelli’s inequality [33] leads to the follow-
ing bound.

Lemma 3

Assume that o ~ f,(a) has a finite mean, x,<0, and a

finite variance, 2. Then,
Prob{xy>1}<— L 23)

1+N %

This bound is also illustrated in Figure 7. In this
general case, the distribution converges to zero with
a 1/N rate. A more general version of Lemma 2 is
immediate.
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Lemma 4
Assume that o ~ fo() has a finite mean . <0 and a finite
variance 2. Then, for any € >0,

lim Prob{xy>¢€}=0.

As xn >0 for all N, Lemma 4 states that the random
variable xy converges in probability to the degenerate
random variable x = 0. The assumption that the variance of
fo(@) is finite is very weak and is satisfied in many cases,
even when the corresponding f.(a) random variable does
not have finite moments. Given this assumption, it is clear
that, for systems given by (5), median stability implies con-
vergence of xy in probability to x =0.

The Cantelli inequality (Lemma 3) requires the fewest
assumptions on the distribution f.(a) and has only a decay
rate approximating 1/N for large N. For smaller values of
N, this bound is actually more accurate than some of the
other bounds. There exist distributions for which the Can-
telli bound is tight, and in some cases, it is not possible to
find a better bound.

Tighter bounds are possible if higher moments are
known, and the next most significant assumption is that
a~fa(a) comes from a distribution that has a finite,
moment-generating function within an open interval
around zero. This implies that all moments of the distribution
are bounded. Distributions not satisfying this assumption can
be defined as being heavy tailed. Note that this assumption is
on the a random variable—the a ~ f.(2) may be heavy tailed,
and “A Heavy-Tailed Example” gives a rather extreme exam-
ple. The moment-generating function is defined as

po(A):=E[e™],
which is assumed to be finite within a region of the origin

o) <oo, forall|A|=8,B>0. (24)

The moment-generating function is used in the calcula-
tion of the Chernoff bound on the tail on the distribution.
In this case,

Prob{o — e >t} < e (o (At mHa) I (@aaD))

This is not the most general form of the Chernoff bound, and
other forms give tighter bounds for low values of t. However,
the behavior of the fx,(x) distribution for large values of N is
the primary concern of this article and is addressed by the
simpler bound given above. This can be applied directly to
the evolution of the f.(a) distribution in the following way.

Lemma 5

Assume that a ~ f.(a) has a moment-generating function
that is finite over an open interval, including zero (24). Also
assume that u, <0. Then,
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The conditions for median, mean, and variance stability are different, and it is
natural to consider which is more appropriate for use in any particular problem.

N
Prob{xy>1}= Prob{H ag > 1} <e™,
k=1

where

c= sup — A« — In(¢a(1)).

r€[0,8]

The proof of Lemma 5 follows immediately from substituting

Pan(D) = ()™

and t =0 into the Chernoff bound. Thus, the existence of a
finite, moment-generating function around zero implies an
exponential decay of the tail bound of the distribution of xn
as N — oo. However, calculating the constant for the expo-
nent requires knowledge of the moment-generating function.

The Chernoff bound (Lemma 5) is also displayed in
Figure 7. The exponent on this bound is the closest single
exponent bound for the actual tail distribution. Tighter
exponential bounds require sums of exponentials. This
bound can also be tightened by scaling by 0.5 (see the
discussion in [34] and the references therein for further
details). However, having ¢.(a) finite in an open interval of
the origin uniquely determines the probability density func-
tion and the corresponding cumulative probability density
function. This can then be integrated numerically to calcu-
late the required probability.

DISCUSSION

The goal of this article was to precisely specify and illus-
trate the conditions for the stability of the median, mean,
and variance in discrete-time stochastic feedback settings.
The discrete-time setting enables a far wider range of dis-
tributions to be considered than is possible in the continu-
ous-time case, and it is, at the same time, relevant to a wide
range of problems. The focus on the scalar variable case is,
of course, much more restrictive and has allowed precise
statements to be made about the probability of the distribu-
tions of solutions to the difference equations. This is par-
ticularly true for median statistics.

The differences between the stability conditions arise
because of the heavy-tailed nature of the resulting distribu-
tions. This allows the phenomenon of the mean growing expo-
nentially while the distribution converges exponentially to
zero to arise. Note that the stochastic component of the
system need not be heavy tailed for this to be observed; it suf-
fices that the effect of the stochastic component is integrated
via a feedback interconnection with a dynamical system.

The variance stability condition is a simple case of the
more widely known mean-square stability criterion from
the 1970s [5]. This condition has the advantage that it
is also exact for the multivariable case. However, it is
acknowledged that mean-square stability is a strong
form of stability [6, p. 136]. The results in this article
emphasize this point, particularly in comparison to
median stability.

The conditions for median, mean, and variance stability
are different, and it is natural to consider which is more
appropriate for use in any particular problem. Very differ-
ent answers can arise from the exact statement of the prob-
lem and can easily lead to interpretations which are—at
least from a cursory point of view—contradictory. For
example, in an investment problem, there is a relatively
wide range of circumstances in which a return on invest-
ment will have an expected value greater than one (and
consequently the expected profit grows with time) and yet
in which the probability of making any profit at all decays
to zero. The equivalent conditions in a population dynam-
ics or epidemiological context would indicate that an
expected survival rate may be greater than one, and yet the
probability of extinction is also going to one.

These apparent paradoxes illustrate that, in stochastic
feedback situations, seemingly similar questions may have
widely divergent answers. Thus, it is important to pose the
correct measure of stability in the problem formulation and
its analysis. The increasing use of interconnected feedback
networks (and particularly those where online data-based
updating leads to stochasticity in the feedback compo-
nents) requires the careful selection of analysis criteria and
design methods.
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