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S
tochastic components in a feedback loop introduce 
state behaviors that are fundamentally different 
from those observed in a deterministic system. 
The effect of injecting 
a stochastic signal ad-

ditively in linear feedback sys-
tems can be viewed as the addi-
tion of !ltered stochastic noise. 
If the stochastic signal enters 
the feedback loop in a multipli-
cative manner, a much richer 
set of state behaviors emerges. 
These phenomena are investi-
gated for the simplest possible 
system: a multiplicative noise 
in a scalar, integrating feedback 
loop. The same dynamics arise 
when considering a !rst-order 
system in feedback with a sto-
chastic gain. The dynamics of this form arise naturally in 
a number of domains, including compound investments in 
!nance, chemical reaction dynamics, population dynamics, 
epidemiology, control over lossy communication channels, 
and adaptive control. Understanding the nature of such 
dynamics in a simple system is a precursor to recognizing 
them in more complex stochastic dynamical systems.

STOCHASTIC FEEDBACK LOOPS
Results on the evolution of the statistics of multiplicative 
systems have appeared in other research domains in the 
past but are not widely known within the control systems 
community. The presentation and the proof of the results 
given depend on only reasonably well-known statistical tech-
niques. This article draws upon and augments such results to 
study the stability of a stochastic feedback loop (see “Sum-
mary”). One of the earliest observations of the unusual 

phenomena described in this article was reported by Rosen-
bloom [1], who examined the solution of the stochastic first-
order differential equation

( ) ( ),x a t x S t+ =o

where a(t) is a Gaussian sto-
chastic function and S(t) is a 
step function. The solution 
itself can approach one in prob-
ability, and yet, both the mean 
and variance become infinite 
as .t "3  The case when the 
variance goes to zero as t "3  
is referred to as mean-square 
stability, which was analyzed 
for continuous-time stochas-
tic differential equations by 
Samuels [2].

Another early formulation of the considered problem 
was given by Kalman [3] and reports on the results from 
his Ph.D. thesis. A discrete-time control design problem 
was posed, with the open-loop system being a vector-
valued, discrete-time difference equation model of  
the form

 ( ) ( ) ,x A w x B w uk k k k k1 1 1= ++ + +  (1)

where wk  is a sequence of independent random events. It is 
assumed that the probability distributions of ( )A wk  and 

( )B wk  do not depend on k. The design criteria was, again, 
mean-square stability. This problem was also considered 
and characterized in the frequency domain for both con-
tinuous- and discrete-time systems by Willems and Blan-
kenship in [4].

Mean-square stability conditions are appealing as they 
can be formulated in the multivariable case and relate 
directly to covariance matrices [5]. Furthermore, they lead 
to convex optimization problems for analysis and, in some 
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Summary

Stochastic feedback, or multiplicative noise, 
leads to heavy-tailed state distributions 

in which the median, mean, and variance of 
the state can diverge. A detailed study of this 
phenomenon in simple systems leads to pre-
cise control-theoretic conditions for its occur-
rence and provides insights into the underly-
ing mechanism.
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cases, controller design (see, for example, [6]). The disad-
vantage, which will become obvious in this article, is 
that mean-square stability is a very strong form of sta-
bility. In many applications, something weaker might 
be preferable. In the analysis of systems where mean-
square stability is not satisfied, a weaker stability char-
acterization would give a better understanding of the 
observed behavior.

Adaptive control research began in the 1960s and moti-
vated the study of feedback systems with stochastically 
varying parameters. The work by Åström in [7] corre-
sponds most closely to the approach discussed in this arti-
cle, in that it characterizes the distributions that result in 
such systems. A continuous-time setting was used in [7] 
and much of the earlier works, which considers stochastic 
differential equations of the form

 ,dx xdw dw1 2= +

where w1  and w2  are Wiener processes. Some of the char-
acteristics of the limiting distributions in [7] are also evi-
dent in the distributions arising in this article. In contrast, 
this work considers stochastic difference equations where 
the multiplicative term can be drawn from a wide range of 
possible distributions. A continuous-time setting was also 
used by Blankenship [8] with the system model

( ) ( ) ( ), ( ) ,x t A t x t x t x Rn
0 0 != =o

where the elements of A(t) are stochastic stationary pro-
cesses with certain continuity properties. The results use 
differential equation solution bounds to give sufficient con-
ditions under which

 Prob ( ) .lim x t 0 1
t

= =
"3
$ .  (2)

This article makes the case that, in many applications, 
the stability of the median is an important practical con-
cept. Interestingly, a similar case has also been made in the 
domain of gambling strategies [9], where it was observed 
that proportional betting—a multiplicative strategy analo-
gous to the stochastic feedback configuration—optimizes 
the median of the gambler’s fortune. Gamblers care about 
the median as it characterizes their probability of making 
a profit. In contrast, the gambling house cares about the 
mean as it characterizes their risk.

From a probability theory perspective, the work pre-
sented here can be considered an application of renewal 
theory, which addresses the properties of the cumulative 
effect of a sequence of independent identically distributed 
(i.i.d.) random variables. The classic example is the study of 
the total number of “arrivals” in terms of the distribution of 
independent random interarrival times. In the context of 
(1), the cumulative effect of the stochastic ( )A wk  and ( )B wk  
variables is reflected in the evolution of the state x(k). In this 
framework, Kesten [10] studied the properties of the limit-
ing distribution of the matrix evolution
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 , , ,x A x q x k 0Rk k k k
n

1 ! $= ++  (3)

where Ak  is a random matrix with positive entries and qk  
a random vector. The conditions under which there exists  
a limiting distribution, ( ),f xx3  are given and essentially a 
generalization of the median stability results presented in 
this article. In the scalar case [10], Kesten showed that ( )f xx3  
can be heavy tailed, even if the distributions of Ak  and qk  
are relatively light tailed. Kesten’s work was extended in 
work by Goldie [11], where a range of similar recursions 
was shown to also give power-law distribution tails. The 
limiting distribution, when it exists, was derived by Brandt 
[12]. The existence conditions are essentially equivalent to 
those for the stability of the median derived in this work. 
Work by de Saporta [13] describes an interesting variation 
on the recursion of (3) by considering the limiting distribu-
tion in the case where Ak comes from a Markov chain. Much 
more on the stochastic stability of Markov chains can be 
found in the comprehensive text of Meyn and Tweedie [14].

The discrete-time case in (1) and (3) can also be studied 
by considering the evolution of the state as the result of a 
product of random matrices. Random matrix products are 
known to lead to heavy-tailed distributions [15]. We show 
that this can lead to a situation where the mean does not 
characterize the typical behavior of the system. Stability can 
be considered in terms of the largest Lyaponov exponent

E , with ,lim lnN A A A1
N

N N k
k

N

1
m = =

"3
=

^ h6 @ %

and where E6 @ denotes the expectation. Calculating the 
upper and lower bounds on the largest Lyapunov exponent 
is currently an active area of research [16], [17].

One of the applications considered in this article is the 
stabilization of an unknown system via stochastic feed-
back. This has also been considered by Milisavljević and 
Verriest [18], who provide a stability condition that is an 
application of our results on median stability.

The growth in research interest and application of net-
worked control systems has introduced another application 
of this theory. Sinopoli et al. [19] showed that Kalman filters 
with intermittent observations can lose mean-square stabil-
ity once the probability of missing a packet reaches a thresh-
old value. The focus on mean-square stability is natural 
with Kalman filtering as the construction of the time-vary-
ing Kalman filter requires a well-defined covariance matrix 
evolution. In the case of a static Kalman gain, the evolution 
of the estimation error is of the form given in (3). An analo-
gous result on stabilization over fading channels was shown 
by Elia [20]. Elia also observed the emergence of heavy-
tailed distributions in networked control systems in the 
case where mean-square stability is lost [21] and provided a 
mathematical characterization of this behavior in [22]. Work 
by Mo and Sinopoli [23] extended the packet loss model and 
provided bounds on the tail of the error distribution. Dey 

and Schenato [24] studied the distinction between the insta-
bility of the second moment and the conditions required for 
the existence of a limiting power-law distribution. As also 
noted in this work, this is the distinction between median 
stability and variance stability. 

The adaptive control application that provided motiva-
tion for the analysis of these systems in the 1960s has 
recently received renewed attention. Rantzer [25] considers 
a single-parameter case and examines the stability of vari-
ous moments. Concentration bounds on the distribution of 
the parameter error are derived.

This article focuses on the scalar discrete-time case 
given in (3), without the random exogenous input ,qk  and 
shows that even though the distribution of ( )f xx3  might be 
heavy tailed, it is still possible that (2) holds; the state xk  
decays to zero with probability one. By focusing on the 
scalar case, the distributions are derived and calculated as 
a function of the time index k and give explicit conditions 
for the stability of the median, mean, and variance of the 
state. The results given are not unexpected in light of the 
prior work outlined earlier in this section. However, the 
explicit characterization of stability conditions and the cal-
culation of the distributions involved at each time step pro-
vide insight into the manner in which the instabilities 
manifest themselves.

Notation
The notation ~a f aâ h denotes that the random variable a is 
drawn from a distribution with probability density func-
tion .f aa ^ h  The cumulative distribution function is denoted 
by F aa ^ h and the complementary cumulative distribution 
by F aar ^ h .F a1 a= -^ ^ hh  The expected value of a is denoted 
by E .a an=6 @  The normal distribution of mean μ and vari-
ance 2v  is denoted by N ( , ),2n v  and the log-normal distri-
bution is denoted by LN. The set of (nonnegative) integers 
is denoted by Z Z+^ h  and the reals by .R R+^ h
PROBLEM DESCRIPTION
The plant is a first-order system with the scalar state xk evolv-
ing with dynamics given by

 , , , ,x a x k 0 1k k k1 f= =+  (4)

where ak  are independent random variables drawn from a 
distribution f aa^ h with mean an  and variance .a

2v  The dis-
tribution f aa^ h is assumed to have support on only a > 0, 
and x0  is assumed to be strictly positive.

The dynamics in (4) can be viewed as multiplicative 
noise ak  entering a feedback loop. An alternative view is 
that of a stochastic feedback gain. Both interpretations are 
illustrated in Figure 1, and both involve a feedback loop 
around a delay.

This is the simplest case of the type of processes described 
previously. As only a scalar state and uncorrelated ak  are 
considered, it is too simplistic for many real processes of 
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this type. However, it is a prototypical case and illustrates 
some of the phenomena that may arise in more complex 
systems. Understanding the stability characteristics of this 
system is a precursor to understanding those for more 
complex systems.

Stability
At the time index N, the state xN  is given by

 .x a xN k
k

N

0

1

0=
=

-

%  (5)

As ~ ,a f aak ^ h  state xN  is also a stochastic variable with a 
probability density function denoted by .f xxN ^ h  Of interest 
are the properties of this distribution as .N "3  More spe-
cifically, conditions will be derived for the following three 
notions of stability.

At every time step N, the median of xN  [referred to as 
median( )xN  in the sequel] is defined as any value ,mN  
such that

and .f x dx f x dx2
1

2
1

X X
m

m0
$ $

3N

N
N N^ ^h h# #

Next, the stability conditions of interest are defined. The 
system in (5) is median stable if the density of the state xN  
satisfies

median( ) .lim x 0
N

N =
"3

The system in (5) is mean stable if the density of the state xN  
satisfies

E ,lim x 0
N

N =
"3
6 @

and the system in (5) is variance stable if the density of the 
state xN  satisfies

E .lim x E x 0
N

N N
2- =

"3
^ h6 @" ,

The approach taken will involve analyzing the system in 
terms of the probability density functions of the logarith-
mic variables

 : ( ) ( )lng x xk k kg = =  (6)

and

 : ( ) ( ) .lng a ak k ka = =  (7)

The function g is defined here for convenience in subse-
quent derivations.

Assume that x 002  is given; thus, x 0N $  for all .N Z! +  
For simplicity in the following, assume without loss of gen-
erality that .x 10 =  The evolution of the dynamics in (4) now 
becomes

 .k k k1g g a= ++  (8)

This allows for expression of xN  as

.exN
N= g

This evolution for N timesteps can be examined to illus-
trate the way in which stability results will be derived. 
Under this assumption that ,x 10 =

E E EN NN k
k

N

0

1

g a a n= = = a

=

-6 = 6@ G @/

if the distributions f k aa ^ h are i.i.d. 
It is tempting to say that if ,01na  then E .x 1N 16 @  This 

is not true as the results in the following sections will make 
clear. What will be true is that, for distributions where the 
distribution of ( )ln a  satisfies certain moment assumptions,

E median( ) .lim x0 0
N

N+1a =
"3

6 @

Commutative Variable Relationships
The system will be studied in terms of the probability dis-
tributions of both the xk , ak  variables and their logarithmic 
versions: ,kg  .ka  The logarithmic/exponential relationship 
between these variables means that one can map the distri-
butions from one set of variables to the other. Figure 2 pro-
vides a commutative diagram of these relationships as they 
evolve over the time index.

The mappings to the logarithmic variables in (6) and (7) 
map the corresponding distributions. This is described for 
the a  variable, but it also applies to the xk  variables. Sup-
pose that a has a probability distribution f aa^ h defined on a 
support ,S Ra 3 +

| .S a f a 0a a 2= ^ h" ,

xk+1

xk+1xk

xk
z –1

z –1

ak ~ fa (a)

ak ~ fa (a)

(a)

(b)

FIGURE 1 The process dynamics. (a) The system generating the 
stochastic dynamics is shown as a multiplicative noise signal in a 
feedback loop. (b) The equivalent system is a feedback loop with 
a stochastic gain.  
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If g(a) is monotonically increasing and invertible on ,Sa  
then the probability density of a  is given by

 ( )
( )

,
,

if ,
if 

f f g d
dg

S
S0

a
1

1

"

!a a
a

a
a

a
=a

a

a

-
-

^ ^h h*  (9)

and has support 

( ) | .S g a a Sa!a= =a " ,
In this case,

( ) ( ), ( )ln eg a a g 1 a= = a-

and

( )
.e ed

dg 1

a

a
= =a a

-

Of interest is the distribution of xN  as N increases, and, 
as shown from Figure 2, there are several ways of calculat-
ing this distribution. One can directly consider the evolu-
tion of the variable

,x a xk k k1 =+

where xk  has density f xxk^ h and ak  has density .f aa ^ h  This 
can be calculated as

3
/ | | .f x f f x d1

x x ak k1 p p
p

p=
3-

+ ^ ^ ^h h h#

The f xxk 1+ ^ h distribution can also be obtained by first trans-
forming xk  to kg  using the mapping in (9):

.e ef fxk kg =g
g g^ ^h h

The g  dynamics are simply additive [see (8)]; thus, the k 1g +  
distribution is given by the convolution

3
.f f f dak k1 g p g p p= -

3
g g

-
+ ^ ^ ^h h h#

The f xxk 1+ ^ h distribution is then given by the inverse of the 
mapping in (9):

( ) , .lnf x f x x x1 0Xk k1 1 2= g+ +^ ^h h

Log-Normal Distributions
The case where f aa^ h is a log-normal distribution is, in some 
sense, generic. If f aa^ h is a log-normal distribution, then 
f aa^ h is normal. Then Ng  is a sum of independent, normal 

random variables and is, consequently, also normally dis-
tributed. Equivalently, the distribution of xN  is log-normal 
for all N. In other words, log-normal distributions are closed 
under the multiplication of random variables. Log-normal 
distributions, in conjunction with multiplicative noise, have 
been studied extensively in communication theory. See [26] 
for a widely applicable example.

The central-limit theorem implies that even if the 
f aa^ h distribution is not normal, the scaled distribution 

of Ng  tends to a normal distribution. One therefore also 
expects that the scaled xN  distribution tends to a log-
normal distribution. Note that this argument requires 
that the random variable a  have a finite second moment. 
This is a very weak assumption, and there are examples 
where the random variable a may not even have a finite 
mean, yet all of the moments of the corresponding a  
random variable are finite. An example of such a case is 
presented later.

Several properties of log-normal distributions are pre-
sented here for later use. All of these results can be found in 
[27]. The log-normal distribution can be defined by consid-
ering a as given by

Ne , where ~ ( , ) .a 2a n v= a
a a

The parameters na  and va  are known as the location and 
scale parameters, respectively; however, they are simply 
referred to as the mean and standard deviation in the  
a -space. This distribution definition ensures that S Ra = +  
and so fits the assumptions of this problem.

xN

ζN ζN –1

g (x ) g –1(ζ )

x2x3

ζ2ζ3

g (x ) g –1(ζ )

x1

ζ1

g (x ) g –1(ζ )

x0

ζ0

g (x ) g –1(ζ )

aN –1 ~ fa(a )

αN –1 ~ fα(α ) α2 ~ fα(α ) α1 ~ fα(α ) α0 ~ fα(α )

a2 ~ f a(a ) a1 ~ f a(a ) a0 ~ f a(a )

xN –1

× × × ×

+ + + +

FIGURE 2 The state variable evolution. The mapping between the x  and g  variables is given by ( ) ( ),lng x xi i ig = =  and the inverse map-
ping is ( ) .ex gi i

1 ig= = g-  
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It is clear from (8) that Ng  is the sum of N random vari-
ables ,ka  with each N~ ( , ) .k

2a n va a  The sum of independent, 
normally distributed variables is also normally distrib-
uted and

N~ ( , ) .N NN
2g n va a

This gives a closed-form expression for the distribution 
of Ng :

 , , ,f f N NN
2

N g a n v=g a a^ ^h h  (10)

where

, , .ef x
2
1

N
( ) /x2

2
22 2

n v
rv

= n v- -^ h
Closed-form expressions relate the mean and variance of ak 
to the mean and variance of ka  [28], [29].

 ln
1

a

a

a

2

2n

n
v

n
=

+
a f p (11)

 .ln 1
a

a2
2

2
v

n
v= +a c m  (12)

The inverse mapping is given by

 e /
a

22
n = n v+a a  (13)

 e e .1a
2 22 2
v = -v n v+a a a^ ^h h  (14)

The fact that the mean and variance of a are not simply the 
exponentiation of the corresponding a  domain values 
leads to interesting characterizations of stability in the 
x domain. The mode and median of a are also given by 
simple expressions:

 ( ) eemod a
2

= n v-a a  (15)
 median( ) e .a = na  (16)

The median condition—and any other quantile value—is 
transformed via exponentiation, making it a simple matter to 
characterize properties of the median or quantile value.

STABILITY CONDITIONS
The following sections derive the conditions under which the 
median, mean, and variance of f xXN ^ h converge to zero as .N "3

Mean Stability
The condition for the stability of the mean of xN  is a simple 
consequence of the fact that for two independent, random 
variables, the product of the expectations is equal to the 
expectation of the product.

Theorem 1: Mean Stability

mean( ) .lim x 0 1
N

N a+ 1n=
"3

For log-normal distributions, (13) shows that the mean sta-
bility condition can also be stated by the mean and vari-
ance of the f aa^ h distribution

 mean( ) / .lim x 0 2 0
N

N
2+ 1n v= +

"3
a a  (17)

Variance Stability
Goodman [30] derives the variance of a product of arbitrary 
random variables, which directly leads to the following 
variance stability result.

Theorem 2: Variance Stability

variance( ) .lim x 0 1
N

N a a
2 2+ 1n v= +

"3

Proof of Theorem 2
From [30]

variance( ) variance

,

x aN k
k

N

a a
k

N

a
k

N
0

1

2 2

0

1
2

0

1

v n n

=

= + -

=

-

=

-

=

-^
e
h
o%

% %

which, in this i.i.d. case, gives

variance( )xN a a
N

a
N2 2 2v n n= + -^ h  (18)

 ( ) .1 1a a a
N

a
N

a

a
N

2 2 2 1 2
2

2 1

v v n n
n
v= + + + --

-ec m o  (19)

If ,1a a
2 21v n+  then both of the terms in (19) go to zero as 

.N "3  In the case where 1a a
2 2v n+ =  and ,0a

22v  (19) also 
shows that the variance of xN goes to one as .N "3  If 

,1a a
2 22v n+  then both of the terms in (19) grow without 

bound as .N "3  ■

In the log-normal distribution case, substituting  
(13) and (14) into the condition of Theorem 2 gives an 
equivalent condition in terms of the normal f aa ^ h  
distribution,

 variance( ) .lim x 0 0
N

N
2+ 1n v= +

"3
a a  (20)

The f aâ h condition for variance stability in (20) is clearly 
stronger than the mean stability condition given in (17). We 
also note that the variance stability condition implies that 
x 0N "  in L2  as .N "3

Median Stability: Log-Normal Case
The least-restrictive stability condition to be consid-
ered is that for the median of xN. This result is easy to 
obtain for a log-normal distribution and is thus pre-
sented first.

Theorem 3: Median Stability—Log-Normal Distribution
If f aa ^ h is a log-normal distribution,

median( ) .lim x 0 0
N

N + 1n=
"3

a
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Proof of Theorem 3
As f xNg ^ h is a normal distribution, its median is equal to 
its mean:

median( ) mean( ) .Nk Ng g n= = a

This immediately gives median( )lim
N

N 3g =-
"3

 if and only 
if (iff) .01na  As median( ) ,ex median( )

k
N= g  the result follows.

 ■

Equation (11) demonstrates that the condition of Theorem 3 
can also be expressed in terms of the f aa ^ h distribution

median( ) .lim x 0 1
N

N a
a

a2
2

2
+ 1n

n
v= -

"3

Note that, depending on the variance ,a
2v  systems with a mean 

of μa greater than one might still be median stable. This point is 
discussed in greater detail later in this article. The stability 
results for log-normal distributions are summarized in 
Table 1. The conditions can be expressed in terms of either 
the f aa ^ h or f aa ^ h distribution because the mapping between 
the distributions involves only the means and variances.

Median Stability: General Distributions
Now consider median stability in the case where f aa ^ h dis-
tributions are other than log-normal. For the purposes of 
this section, assume that f aa ^ h is a nonlattice distribution 
with a bounded third moment. Note that a lattice distribu-
tion is one where there exist parameters b R!  and h > 0 
such that Prob{ } .b h 1Z!a + =  The mean and variance 
relationships between the f aa ^ h and f aa ^ h distributions 
given in (11)–(14) no longer hold. Unfortunately, this is also 
true for all the values of N as well as in the limit as .N "3

The situation is more complex for more general f aa ^ h dis-
tributions as f aa ^ h is not normal. In the context of the cen-
tral-limit theorem, it is perhaps surprising that, although the 
distribution f N gg ^ h is the N-fold convolution of f aa ^ h distri-
butions, the median of f N gg ^ h does not necessarily converge 
to the mean of .f N gg ^ h  The difference can be quantified.

Lemma 1
Assume that f aa ^ h is a nonlattice distribution with a 
bounded third moment. Then,

E
E

median( )
( )

.lim
6N

N N 2

3

g g
v

a n
- =-

-
"3 a

a6 6@ @

Proof of Lemma 1

Emedian( )

median .

median NN N
k

N

k

N

0

1
0

1

g

v
v
a n

g a n-

=
-

= -

a
a

a

a

=

-

=

-e
e
o

o
6 @

/

/

Define a new stochastic variable y with probability density 
function ( )f yy  by

: ( ) ,y h a
v
a n

= =
-
a

a

and note that E y 0yn= =6 @  and E .y 1y
2 2v= =6 @  Define x  as 

the third moment of ( ),f yy

E: ,y3x = 6 @
and, by assumption, .31x  The following result from Hall 
[31] provides the key step. If ( )f yy  is a nonlattice distribu-
tion with ,0 1y yn v= =  and E ,y3 31x=6 @  then

median .lim y 6N k

N
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1
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=

-e o/
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 (21)

The only thing remaining is to determine the value of .x  As 
( ) ,h y y1 v n= +a a

-

E

( ) ( )
( )
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| |
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.
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y f y dy y f h y dy
dh y
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f d
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# #
#

#

#

Stability Property fa(a) Distribution fa(a) Distribution

( )xmedian N 1a
a

a2
2

2
1n

n
v-  01na  

( )xmean N 1a1n 2 0
2
1n v+a a

( )xvariance N 1a a
2 21n v+ 021n v+a a

TABLE 1 Stochastic feedback gain stability conditions for 
log-normal distributions.

Stability Property fa(a) Distribution fa(a) Distribution

( )xmedian N — 01na  

( )xmean N 1a1n — 

( )xvariance N 1a a
2 21n v+ — 

TABLE 2 Stochastic feedback gain stability conditions for 
more general distributions.
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Substituting this expression into (21) gives the de-
sired result.  ■

The key point in determining the median stability is 
that the limit in Lemma 1 is independent of N.

Theorem 4: Median Stability
Assume that f aa ^ h is a nonlattice distribution with a bounded 
third moment. Then,

median( ) .lim x 0 0
N

N + 1n=
"3

a

Proof of Theorem 4
If ,0n =a  then E ,N 0Ng n= =a6 @  and from Lemma 1, 

median( )limN Ng"3  is a finite constant. Therefore,

median( ) .lim lim ex 0median( )
N

N
N

N !=
" "3 3

g

By Lemma 1, for every ,02e  there exists an integer Nr  such 
that for all N N2 r  

E
median( ) .

( )
N

6N 2

3

1g n
v

e
a n

- +
-

a
a

a6 @

This implies that

E
median( ) .

( )
N

6N 2

3

1g n
v

e
a n

- +
-

a
a

a6 @

If it is assumed that ,01na  then N 01na  and

E
median( ) .

( )
N

6N 2

3

1g n
v

e
a n

+ +
-

a
a

a6 @

The right-hand side clearly goes to 3-  as .N "3  An anal-
ogous argument for 02na  gives a lower bound on 
median( )Ng  that goes to 3  as .N "3  Exponentiating 
median( )Ng  provides the required result. ■

This result also follows from Cantelli’s inequality (see 
Lemma 3) without the requirement of a bounded third 
moment. However, the method of proof stated previously 
in this section illustrates the manner in which a sum of 
nonnormal distributions does not converge to a normal 
distribution. It also gives the following interesting bound-
ary condition.

Corollary 1: Median Limit—Zero-Mean Log Distribution 
If f aa^ h is a nonlattice distribution with 0n =a  and 
E ,( ) 3 31a n- a6 @  then

median( ) .lim ex
E ( )

N
N 6 2

3

=
"3

v

a n
-

-

a

a6 @

Ethier [9] also uses the result of Hall to prove a similar 
result on the median of a gambler’s fortune. The results in 
[9] suggest that it might be possible to remove the assump-
tion of the nonlattice distribution in Lemma 1. Lattice 
distributions are important for gambling applications but 
may be of less interest in many control applications. The 
stability conditions for more general distributions (that 
is, nonlattice and with a bounded third moment) are 
summarized in Table 2. In the table, “—” denotes the fact 
that no mean and variance condition exists for every dis-
tribution. It is possible to find distributions with nonzero 
third moments that violate the corresponding normal-
log-normal conditions of Table 1.

The median stability conditions given here for a sto-
chastic gain ~ ,a f aak ^ h have a similar form to the stability 
conditions for a time-varying gain (see “Stabilization By 
Time-Varying Gains and the Geometric Mean”).

The implications of median stability can be stated in 
terms of well-known convergence characterizations for 
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FIGURE 3 The stability regions in the a domain. The region where 
the condition is satisfied is to the left of the correspondingly col-
ored boundary. The mean and variance stability regions are appli-
cable to general distributions. The median stability region shown 
here applies to log-normal f aa^ h distributions. Other distributions 
will have slightly different median stability regions but identical 
mean and variance stability regions. The four circles indicate the 
values of na  and va  of the distributions shown in Figure 4. 

0

0.5

1

1.5

a

1 2 3 4

Probability Density Functions

Variance Stable
Mean Stable
Median Stable
Unstable

FIGURE 4 The probability density functions of a for four stability 
cases: variance stable, mean stable, median stable, and unstable. 
All four cases have the same mode; their means and standard 
deviations are presented in Figure 3. 
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Stabilization By Time-Varying Gains and the Geometric Mean

Some of the initially nonintuitive phenomena observed for 
stochastic feedback may be better understood by consider-

ing systems with certain types of deterministic, but time-vary-
ing, feedback gains. For the case of a scalar state, a complete 
analysis is easy to accomplish (see [S1] for a more complete 
analysis of the periodic multivariable case). Consider the sin-
gle-state, discrete-time system and its solution 

 .x a x x a xk k k N k
k

N

1
0

1

0&= =+

=

-e o%  (S1)

If a is a periodic signal with period N, then the growth of x 
can be characterized by observing the behavior every N time 
steps. Define the subsampled state

: .x xk kN=t

Note that x decays iff xt  decays because the growth of x between 
the subsamples is bounded. The recursion for xt  is time invariant:

( ) :  ,x x a k x a x  ( )k k N
k

N

kN k1 1
0

1

= = =+ +

=

-

t t te o%

where :a ak
N

k0
1= =
-t %  is the so-called monodromy gain. Thus, 

the sequence xt  decays iff

 .a a a1 1 1N

k

N N
k

1

0

1
1

+ +1 1 1; ; ; ; ; ;
=

-
t t e o%  (S2)

The last quantity in (S2) is the geometric mean of the abso-
lute value of the signal a, which is the right quantity that char-
acterizes stability in this system. The geometric mean can also 
be expressed using the arithmetic mean of the logarithm

.
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a a

N a

1 0

1 0
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N N
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N N
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e eo o% %

/

Thus, the system is asymptotically stable iff the arithmetic 
mean of ln ak; ;" , is negative. Note how this is analogous to the 
condition lnE a 01; ;" ,  when a is a stochastic process. The re-
lation between the geometric and arithmetic means through the 
logarithm function is illustrated in  Figure S1. The figure depicts 
a periodic gain a that is symmetrically distributed around one. 
The ( )ln ak  mapping tends to boost those values of ak" , that 
are lower than one more heavily toward large negative numbers 
while tempering the values of ak" , that are larger than one by 
mapping them to smaller positive numbers. The result is that, 
even though a may be symmetrically distributed around one, 
the product ak

N
k0

1 ; ;=
-%  will be strictly smaller than one.

Next, examine (S1) in the case where the sequence ak" , is a 
general time-varying gain. The asymptotic behavior of the solution 
is completely determined by the limit of the product of the gains 

,ak" ,  which can be studied as a series limit by taking the logarithm

.ln lna a k
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Next, explore the limit
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(S3)

where the last limit is expressed in terms of the asymptotic 
average, which, for any signal u, is defined by

: .E limu N u1
N

k
k

N

0

1

=
"3

=

-6 @ /

This asymptotic average can be thought of as a “deterministic ex-
pectation” of u, which is equivalently the time average of the real-
ization of a stochastic process. 

It can thus be concluded that if the asymptotic average of 
ln a; ; exists and is negative, then the state will asymptotically 
converge to zero, that is,

 .E ln lima x0 0
N

N&1 =
"3

6 @
Something slightly stronger can be concluded:

 : ( )  ,E ln lna x0 N
N&1; ; ; ; #c a c=6 @  (S4)

that is, the convergence is geometric, with a decay rate .11c  
Finally, note that condition (S4) is necessary only for exponen-
tial convergence. Slower convergence can still occur, even 
when this condition does not hold. For convergence, it is nec-
essary only for the sequence on the right-hand side of (S3) to 
go to .3-  This can occur even when the asymptotic average 
is converging to zero (from below) as long as it converges at a 
rate slower than / .N1  More precisely, it can be stated that

.lim lim lnx N N a0 1  
N

N
N k

N

k
0

1

+ 3; ;= =-
" "3 3

=

-e o/
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FIGURE S1 An illustration of the mapping from ak  to ,ln ak; ;  show-
ing that when a is symmetrically distributed around one, ln a; ; is 
distributed more heavily toward negative numbers due to distor-
tion by the ln mapping. The cyan dashed line on the graph of ln a; ; 
indicates the arithmetic mean of that signal (this is the logarithm 
of the geometric mean of ),a  showing how it is negative while the 
ln of the mean of a is zero. 
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stochastic sequences. The sequence of medians of xN arises 
from the stochastic dynamics in (5). The next section will 
show that, under the assumption that the variance of f aa ^ h 
is finite, the variance of xN that arises from these same 
dynamics leads to exponentially decreasing bounds on the 
integral of the tail of the f xXN^ h distribution. These two 
facts imply that if the system in (5) is median stable, then 
xN converges in probability to the degenerate random vari-
able :x 0=

Prob | | , for all .lim x 0 0
N

N 2 2e e=
"3

" ,
Stability Regions
The variance, mean, and median stability regions for the f aa ^ h 
distribution are displayed in Figure 3. The most interesting 
observation is that there exists a region in which median( )xN  
is stable and the mean ( )xN  is unstable. It will subsequently 
be shown that, in this case, the sample paths xN go to zero in 
probability, but the mean of xN goes to .3  This analysis can 
also be applied to other feedback loops; see “Stochastic Gain 
Stabilization,” wherein the stability regions for a first-order 
system are derived with an unknown gain and pole posi-
tion. The Matlab code that generated all the simulation data 
and figures for this article is publicly available at https://doi 
.org/10.3929/ethz-b-000457726.

Figure 4 gives the probability distribution functions for 
four stability cases: unstable, median stable, mean stable, 
and variance stable. In all the cases, the mode of the distri-
bution is lower than one. The remarkable feature of these 
distributions is that they are not particularly different and 
yet give very different stability characteristics in the evolu-
tion of the state.

The most intriguing case is where the median of xN is 
stable, but the mean is unstable. Figure 5 shows the evolu-
tion of the log-normal probability density function of xN 

for a range of values of N. The evolution of the median 
toward zero and the mean toward infinity are clear in 
the distributions.

The median stable/mean unstable case is illustrated by 
simulating 200 sample paths. The f aâ h distribution is the 
log-normal distribution with a probability density function 
presented as case 3 of Figure 4 . , . .1 0283 0 4389a an v= =^ h  
Figure 6 illustrates the sample paths and the evolution of 
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FIGURE 7 The concentration inequalities and tail distributions for .xN  
The probability that x 1N2  is calculated for the log-normal distribution 
case studied in Figure 6 (blue line). Also shown is the probability that 
xN xN2 n  (cyan line). For comparison, several concentration inequali-
ties are also illustrated: the Cantelli inequality (red) and Chernoff 
inequality (magenta) for the same distribution. For the simulation 
shown in Figure 6, the probability that a sample trajectory will exceed 
the mean x a

N
Nn n=^ h at the end of the interval N 300=^ h is 0.0002. 
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mapping the -a space distribution in (10) through (15) and (16). 
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the distribution .f aâ h  As N increases, the median stabil-
ity condition ensures that the probability of a sample 
path not going toward zero is zero; however, .1a2n
Thus, the mean( )xN  is unstable and goes to .3  For very 
large N, this results in an xN distribution with a very 
high peak close to ,x 0N =  with still-enough weight in the 
positive tail so that the mean of xN is very large (and 
growing with N). The sample estimate of mean( )xN

(denoted by xNnt ) drops below the theoretical mean xNn

as increasingly fewer sample paths are near or above the 
mean. This phenomenon is investigated in more detail in 
the next section.

CUMULATIVE DISTRIBUTIONS 
AND CONCENTRATION RESULTS
In this section we examine the observation made in the pre-
vious section (that is, in the median stable case, the mass of 
the distribution falls below the mean) in more detail. Spe-
cifically, the goal is to calculate (or at least provide an upper 
bound for) the probability that xK exceeds a certain value. 
Denote the complementary cumulative distribution func-
tion by

Prob ,F x x x a xProbbnd bnda N k
k

N

1
bndN 2 2= =

=

r ^ h " ), 3%

where it is assumed that .x 10 =  Furthermore, we are inter-
ested in the properties of F xa bndN

r ^ h as N "3  because this 
gives information about the mass of the distribution of xN

as N increases.
Results of this nature are referred to as concentration 

inequalities in the statistics literature and have a long history. 
See [32] for a much more extensive treatment of concentration 
inequalities in stochastic processes similar to the ones consid-
ered in this article. Assume that 01na  (median stable case) 
and observe that two choices of xbnd  are of potential interest.

1) :x 1bnd =  This gives the probability that ,x xN 02
addressing the question of the probability that a realiza-
tion of the xk trajectory grows over the interval , .N06 @

2) mean( ) :x xbnd N a
Nn= =  This provides insight into the 

ability (or lack thereof) to estimate the mean of xN

from a finite number of sample path realizations.
For simplicity, this article focuses on the first case. The 
results are easily extended to the second at the expense of 
more complex formulas in some cases.

Stochastic Gain Stabilization

The stability results for stochastic feedback can be easily 
applied to the slightly more difficult problem of stabilizing a 

general first-order system via stochastic feedback. Figure S2 
illustrates the configuration for this problem. This is a simple 
case of a more general stochastic stabilization problem, re-
ferred to as stabilization by noise. This problem has been 
studied in stochastic vibration control context (see the review 
in [S2]). In vibration control, the assumption of an oscillatory 
nominal response is usually exploited. The more general case 
is studied in [S3] and is based on earlier work in [S4]. This 
work focuses on the continuous-time equivalent to the mean 
stability case considered in this article. The application ex-
ample has also been studied in [18], where a result, which is 
essentially equivalent to the median stability boundary below, is 
presented. 

The plant is given and has the transfer function G(z),

( ) .G z z x
c

=
-

Denote the plant output by .yk  The closed-loop dynamics of 
the feedback system illustrated in Figure S2 are given by

,y yk k k1 x cd= ++ ^ h
where fk +d dd^ h is the stochastic feedback drawn from a 
known distribution at each time instant. Now define x yk k; ;= , 
and note that

.x xk k k1 ; ;x cd= ++

As x 0k $  for all k, the results summarized in Table 2 are di-
rectly applicable by defining

.ak k; ;x cd= +

The mean of the f aa^ h distribution is

.a ; ;n x cn= + d

The variance may be more difficult to evaluate precisely, but 
it can be easily estimated numerically. If the distribution f dd^ h
were such that ,0k2d  then

.a
2 2v cv= d

However, the absolute value in the definition of a complicates 
this somewhat, particularly in the case of interest, where 

.0!x  As expected, the conditions for median, mean, and 
variance stability differ, and for a given distribution, ,f dd^ h
a stability boundary diagram (analogous to that which is in 
Figure  3) can be drawn. Figure S3 depicts the stability re-
gions for the case where kd  is drawn from a normal distribu-
tion ( , ).Nk

2+d n vd d

γyk+1 yk

z –

δk ~ fδ (δ )

FIGURE S2 A stochastic stabilization problem. A first-order 
plant is connected in feedback with a stochastic gain 

.fk +d dd^ h
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The analysis is, of course, easier in the a -space. Thus,

Prob{ } Prob{ } .x 1 0N N2 2g=

The objective is to provide bounds on this probability as a 
function of N.

Log-Normal Distribution Case
First consider the log-normal f aa ^ h case as exact formulas 
are easily derived. In this case,

a

, , ,

, , ,

f f N N

F f y N N dy

N

N

2

2

N

N

a a n v

a n v

=

=
3

a a a

a a a
-

^
^

^
^

h
h

h
h#

and

erf ,F
N
N

2
1 1

2 2a
v

a n
= -

-
a

a

ar ^ c ch mm
where erf x^ h is the error function. The tail probability is then

 Prob{ } erf .x N1 2
1 1

2
N 22

v

n
= -

-

a

ae e oo  (22)

In the median stable case, ;01na  thus, the argument of the 
error function is positive.

Figure 7 displays the application of the bound in (22) to 
the example simulated in Figure 6. When the distribution is 
known, x 1Prob N2" , can be calculated numerically, which 
is shown as a function of N for the LNf aa +^ h  case. Also 
shown is

,x xProb ProbN x N a
N2 2n n=N" ", ,

and the exponential decrease of this probability illustrates 
why the sample-based estimate of xn N  rapidly deteriorates 
with increasing N.

The exponential decay in Figure 7 might seem counter-
intuitive as the complementary cumulative distribution of 
a standard normal distribution satisfies

,F
2
1 e 2

2

1a
r

a

a-

a
r ^ h

for all ,02a  which appears to be a significantly faster 
decay. However, (22) and Figure 7 consider the decay with 
respect to N, and the effect of the mean Nn n=a aN^ h 

An f dd^ h distribution with a nonzero mean can be viewed 
as a constant feedback gain of nd  in parallel with a zero-mean 
stochastic gain. The static feedback effect of nd  is accounted 
for in the stability boundary figure by plotting the nominal case 
as .; ;x cn+ d  Similarly, the standard deviation of the stochastic 
feedback is scaled by /1 ; ;c  to normalize for the gain-scaling 
effect of .c  The condition for the nominal stability of the plant 
is that .11; ;x cn+ d  The median stability boundary shows that, 
for a range of variance, the median of yk ;;  is stable; however, 
if the nominal plant is not stable, then neither the mean nor 

the variance of yk ;;  can be stabilized by stochastic feedback. 
It is also interesting to note that, for any given nominal stability 
margin, there are increasingly large values of the variance of 
the stochastic feedback that will destabilize the variance, mean, 
and median (in that order). 

Another observation is that the stability boundaries involve 
the absolute values of functions of the plant parameters x  
and .c  This has an interesting robustness interpretation and 
implies that in the 0n =d  case, the plant can be median sta-
bilized for a range of x  and ,c  irrespective of their signs. For 
example, for a plant with x  in the range . . ,1 05 1 05# #x-  there 
exists a zero-mean, normally distributed stochastic feedback 
of a certain variance that will median stabilize the plant. This 
exceptional robustness should not be interpreted as an indica-
tion that the stochastic controller is practical. The mean and 
variance of the realizations of the trajectories are still growing 
without bound, and the random excursions could be extremely 
large. The stochasticity in the feedback loop leads to distribu-
tions of yk  that are heavy tailed. The potential value of these 
results is in avoiding the case where stochasticity in a feed-
back loop inadvertently leads to destabilization.
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FIGURE S3 The stability boundaries for the state-magnitude 
evolution for the plant, ( ) ( ),/G z zc x= -  in feedback with a sto-
chastic gain, ( , ).Nk

2+d n vd d  Nominally unstable open-loop 
plants may be median stabilized by a stochastic gain with the 
appropriate variance.

Authorized licensed use limited to: Bassam Bamieh. Downloaded on April 22,2022 at 21:52:59 UTC from IEEE Xplore.  Restrictions apply. 



40 IEEE CONTROL SYSTEMS » APRIL 2021

A Heavy-Tailed Example 

It is natural to ask how heavy tailed the distribution of f aa^ h 
can be and still lead to median stability

( ) .lim x 0median
N

k =
"3

To illustrate an extreme case, consider the f aa^ h probability 
distribution to be given by

 ( )
,

,
/

for
f a a

a

a

2
1

1

0

0

0for

2
a

1

$
rc c= +^ h *  (S5)

where 02c  is a real-valued parameter. Figure S4(a) illus-
trates this distribution on a log-log scale for three choices of 
the parameter .c  The distribution is equal to the magnitude of 
a Cauchy distribution, and all of the moments of this distribu-
tion (including the mean) are infinite. This is also clear from 
the a 2-  power law decay in the tail shown in Figure S4(a). The 
calculation of the f aa^ h distribution is given by (9), and in this  
case is
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This distribution, without the c  parameter, is known in 
statistics literature as a hyperbolic secant distribution and 
has been studied for nearly 100 years [S5]–[S8]. Most of the 
main properties of the distribution can be found in [S9]. The 
applications of the hyperbolic secant distribution are not all 
that common [S9], [S10]. There is a range of generalizations 
to the distribution, with application to specific domains in 
finance and actuarial statistics (see [S8], [S9], and [S11]).

Figure S4(b) shows the probability density function of the f aa^ h  
distribution for three choices of .c  The exponential decay of the  
probability density function is clear from the log-linear plot. All the 
moments of this distribution are finite, and the moment-generating 
function (for )1c =  is

 ( )
( )

, .
/cos 2

1 11; ;z m
rm

m=a  (S7)

The symmetry of (S6) about ( )lna c=  shows that

( ).lnn c=a

By applying Theorem 4, 

( ) .lim x 0 1median
N

N , 1c=
"3

Note, however, that for all ,02c  

E xN 3=6 @
for all N. This is an extreme example of an unstable mean. The 
symmetry of the f aa^ h distribution implies that the median and 
mean are equal and the median of the state xN  can therefore 
be given analytically:

( ) .xmedian e e e( ) ( ) ( )ln
N

N Nmedian meanN N c= = = =g g c

For illustration (and in comparison to Figure 6), 500 ran-
dom trajectories of ( ),ln xN Ng =  for , ,N 1 100f=  are shown 
in Figure S5. The predicted evolution of the median of Ng  is 
compared to a sample-based estimate and found to be ac-
curate. As a result of the very heavy-tailed nature of the f aa^ h 
distribution, the range of the Ng  trajectories in Figure S5 is 
much greater than in the normal/log-normal case shown in 
Figure 6.
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FIGURE S5 A total of 500 sample trajectory simulations for 
. .0 75c =  The median of the Ng  distribution is compared with a 

sample estimate of the median. 
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FIGURE S4 Heavy-tailed example probability distributions. 
(a) The f aa^ h  distribution on a log-log scale. The linear 
decay of the tail on the log-log plot shows a power law 
characteristic with decay .a 2-  All moments of the f aa^ h  dis-
tribution are infinite. (b) The f aa^ h  distribution on a log-lin-
ear scale. All moments of the f aa^ h  distribution are finite. 
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The behavior of the distribution of Ng  as N$3  is given 
by the distribution of the N-fold sum of random variables, ,ka  
with each drawn from the f aa^ h distribution. The distribution 
of Na  is the N-fold convolution of ,f aa^ h  which was numeri-
cally calculated (using the Chebfun Matlab Toolbox [S12]) in 
Figure S6. The characteristics of a sum of hyperbolic secant 
random variables were first studied in [S13].

As the moment-generating function for f aa^ h  in (S7) is 
finite in a range around zero, the probability that x 1N2  
decays to zero exponentially as .N "3  The bound can be 
calculated from the moment-generating function in (S7) and 
Lemma 5

 ,x 1Prob ek
k

N
cN

1
2 #

=

-) 3%  (S8)

where

 ( ) ( ( ))/ln ln cosc 2m c rm=- +) )  (S9)

and
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Figure S7 shows this bound. The actual probably can be 
calculated numerically from the distributions in Figure S6 and 
estimated from samples in the simulation in Figure S5. Both of 
these comparisons are made and indicate that the exponent in 
the Chernoff bound is tight; however, the bound itself could be 
divided by a factor of at least two.

This is an extreme example, and it is interesting to put it 
into the context of a simple investment finance problem. Con-
sider the accumulated return on an investment with an inde-
pendent identically distributed random rate of return at every 

time step. In this context, x0  is the initial investment, f aa^ h is 
the probability distribution of the rate of return at each time 
step, and xN  is the investment value after N time steps. Then 
this example is a case where the expected rate of return is 
infinite for each of the time steps, and yet, the probability of 
making a profit after N time steps decays exponentially to zero 
as N increases.
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becoming more negative as N increases is countered to 
some extent by the convolution with f aa^ h broadening the 
distribution (as it evolves with increasing N).

This approach also shows that as ,N "3  the probability 
that xN  exceeds any arbitrarily small number goes to zero. 
The following lemma states this more formally.

Lemma 2: Log-Normal Convergence to Zero
Assume that LN,a +  ,01na  and for simplicity, .x 10 =  
For any ,02e

.lim x 0Prob
N

N2 e =
"3

" ,

Proof of Lemma 2
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For all ( )/ ,lnN2 e na  the argument of the erf function is 
positive and increasing without bound as a function  
of N. As

,lim x 1erf
x

=
"3

^ h
the result follows. ■

It is interesting that this result holds, even though 
( )xmean N  may be growing to .3+

More General Distributions
The tail-probability results in the last section can be gener-
alized to a wider range of distributions, and the strength 
of the bound depends upon the assumptions placed on the 
underlying distribution. Exponential bounds are still pos-
sible for a wide range of distributions, and some examples 
are provided in the following lemmas. A decaying bound 
is available under the assumptions that 01na  and the dis-
tribution f aa^ h has a finite variance, .2va  These conditions 
are weaker than those considered for median stability in 
Theorem 4. Under the assumption of the pairwise inde-
pendence of the ka  variables, which is satisfied here by 
assumption, Cantelli’s inequality [33] leads to the follow-
ing bound.

Lemma 3
Assume that f+a aa^ h has a finite mean, ,01na  and a 
finite variance, .2va  Then,

 .x
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1

1Prob N
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22 #

v

n
+

a

a

" ,  (23)

This bound is also illustrated in Figure 7. In this 
general case, the distribution converges to zero with 
a /N1  rate. A more general version of Lemma 2 is 
immediate.

Lemma 4
Assume that f+a aa^ h has a finite mean ,01na  and a finite 
variance .2va  Then, for any ,02e

.lim x 0Prob
N

N2 e =
"3

" ,
As x 0N2  for all N, Lemma 4 states that the random 

variable xN  converges in probability to the degenerate 
random variable .x 0=  The assumption that the variance of 
f aa^ h is finite is very weak and is satisfied in many cases, 

even when the corresponding f aa^ h random variable does 
not have finite moments. Given this assumption, it is clear 
that, for systems given by (5), median stability implies con-
vergence of xN  in probability to .x 0=

The Cantelli inequality (Lemma 3) requires the fewest 
assumptions on the distribution f aa^ h and has only a decay 
rate approximating /N1  for large N. For smaller values of 
N, this bound is actually more accurate than some of the 
other bounds. There exist distributions for which the Can-
telli bound is tight, and in some cases, it is not possible to 
find a better bound.

Tighter bounds are possible if higher moments are 
known, and the next most significant assumption is that 

f+a aa^ h  comes from a distribution that has a finite, 
moment-generating function within an open interval 
around zero. This implies that all moments of the distribution 
are bounded. Distributions not satisfying this assumption can 
be defined as being heavy tailed. Note that this assumption is 
on the a  random variable—the a f aa+ ^ h may be heavy tailed, 
and “A Heavy-Tailed Example” gives a rather extreme exam-
ple. The moment-generating function is defined as

E( ) : ,ez m =a
ma6 @

which is assumed to be finite within a region of the origin

 ( ) , | | , .0for all31 2#z a m b ba  (24)

The moment-generating function is used in the calcula-
tion of the Chernoff bound on the tail on the distribution. 
In this case,

.tProb e
( ) ( ( ))sup lnt

[ , ]02 #a n- a

m n z m- - -
!m b

a ac ^ hm" ,
This is not the most general form of the Chernoff bound, and 
other forms give tighter bounds for low values of t. However, 
the behavior of the f xxN^ h distribution for large values of N is 
the primary concern of this article and is addressed by the 
simpler bound given above. This can be applied directly to 
the evolution of the f aa^ h distribution in the following way.

Lemma 5
Assume that f+a aa^ h has a moment-generating function 
that is finite over an open interval, including zero (24). Also 
assume that .01na  Then,
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The proof of Lemma 5 follows immediately from substituting

( ) ( ) N
Nz m z m=a a

and t 0=  into the Chernoff bound. Thus, the existence of a 
finite, moment-generating function around zero implies an 
exponential decay of the tail bound of the distribution of xN  
as .N "3  However, calculating the constant for the expo-
nent requires knowledge of the moment-generating function.

The Chernoff bound (Lemma 5) is also displayed in 
Figure 7. The exponent on this bound is the closest single 
exponent bound for the actual tail distribution. Tighter 
exponential bounds require sums of exponentials. This 
bound can also be tightened by scaling by 0.5 (see the 
discussion in [34] and the references therein for further 
details). However, having ( )z aa  finite in an open interval of 
the origin uniquely determines the probability density func-
tion and the corresponding cumulative probability density 
function. This can then be integrated numerically to calcu-
late the required probability.

DISCUSSION
The goal of this article was to precisely specify and illus-
trate the conditions for the stability of the median, mean, 
and variance in discrete-time stochastic feedback settings. 
The discrete-time setting enables a far wider range of dis-
tributions to be considered than is possible in the continu-
ous-time case, and it is, at the same time, relevant to a wide 
range of problems. The focus on the scalar variable case is, 
of course, much more restrictive and has allowed precise 
statements to be made about the probability of the distribu-
tions of solutions to the difference equations. This is par-
ticularly true for median statistics.

The differences between the stability conditions arise 
because of the heavy-tailed nature of the resulting distribu-
tions. This allows the phenomenon of the mean growing expo-
nentially while the distribution converges exponen  tial  ly to 
zero to arise. Note that the stochastic component of the 
system need not be heavy tailed for this to be observed; it suf-
fices that the effect of the stochastic component is integrated 
via a feedback interconnection with a dynamical system.

The variance stability condition is a simple case of the 
more widely known mean-square stability criterion from 
the 1970s [5]. This condition has the advantage that it 
is also exact for the multivariable case. However, it is 
acknowledged that mean-square stability is a strong 
form of stability [6, p. 136]. The results in this article 
emphasize this point, particularly in comparison to 
median stability.

The conditions for median, mean, and variance stability 
are different, and it is natural to consider which is more 
appropriate for use in any particular problem. Very differ-
ent answers can arise from the exact statement of the prob-
lem and can easily lead to interpretations which are—at 
least from a cursory point of view—contradictory. For 
example, in an investment problem, there is a relatively 
wide range of circumstances in which a return on invest-
ment will have an expected value greater than one (and 
consequently the expected profit grows with time) and yet 
in which the probability of making any profit at all decays 
to zero. The equivalent conditions in a population dynam-
ics or epidemiological context would indicate that an 
expected survival rate may be greater than one, and yet the 
probability of extinction is also going to one.

These apparent paradoxes illustrate that, in stochastic 
feedback situations, seemingly similar questions may have 
widely divergent answers. Thus, it is important to pose the 
correct measure of stability in the problem formulation and 
its analysis. The increasing use of interconnected feedback 
networks (and particularly those where online data-based 
updating leads to stochasticity in the feedback compo-
nents) requires the careful selection of analysis criteria and 
design methods.
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