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Median, Mean, and Variance Stability of a
Process Under Temporally Correlated

Stochastic Feedback
Roy S. Smith , Fellow, IEEE , and Bassam Bamieh , Fellow, IEEE

Abstract—Stochasticity in feedback gains leads to
heavy-tailed state distributions in which the median, mean,
and variance have different stability properties. These prop-
erties are characterised for a scalar system with temporally
correlated stochastic feedback. Necessary and sufficient
conditions are obtained for the generic case of log-normal
feedback gain distributions. Temporal correlation is mod-
eled by a multivariable Gaussian distribution of the log-
arithm of the feedback gain values. This correlation has
no effect on the stability of the median of the state, but
does influence the stability of both the mean and the vari-
ance of the state. Examples illustrate both stabilising and
destabilising correlations.

Index Terms—Stochastic systems, stability of linear
systems, time-varying systems.

I. INTRODUCTION

DYNAMICAL systems with stochastic coefficients arise
in many physical models which are either imprecisely

known or operate in inherently stochastic environments.
Stochasticity in parameters is fundamentally different from
stochastic exogenous inputs that enter additively as forcing
functions for example. One way to appreciate the differ-
ence is to note that stochastic system parameters are actually
stochastic feedback loops inside the system description. As
is well known, feedback affects dynamical systems in funda-
mentally different ways than additive exogenous disturbances.
Stochasticity in feedback gains also arises in data-based con-
trol methods due to the inevitable noise in the data. Similar
dynamics arise in financial systems and statistical mechanics.

Most classical stochastic control theory deals with the
case of additive, exogenous inputs. If the dynamics are lin-
ear and one is interested only in second order processes,
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then there is no “closure problem”, and covariance analy-
sis is sufficient to quantify the system behaviour. However,
if one is interested in quantities other than first and sec-
ond order moments, or if the exogenous inputs are not
Gaussian, then these classical methods are not applicable. In
the setting where feedback gains are stochastic, there is yet
another phenomenon where even if a linear system’s param-
eters are Gaussian processes, the state evolution involves the
products of a stochastic state and a stochastic gain, leading
to heavy-tailed state distributions. Thus linear systems with
stochastic feedbacks can exhibit a very rich phenomenology of
behaviors.

This problem was studied in a control context in [1] and [2].
The proof that the limiting distribution is a heavy-tailed dis-
tribution appears in [3]. Some aspects of stability in discrete
stochastic feedback systems were investigated in [4]. A more
complete analysis from a feedback control point of view was
given in our prior work [5].

All of the previous work considered the stochasticity to be
independent and identically distributed (i.i.d.) between sam-
ples. One reason for imposing this assumption is mathematical
tractability. The techniques used in the aforementioned refer-
ences rely heavily on the i.i.d. assumption for the analysis to
be tractable. There is in general no clear way to extend those
analysis techniques to cases where stochastic gains are tem-
porally correlated. This issue is not purely academic. There
are many applications where one would need to introduce
some notion of temporal correlation (correlation times) into
the theory. The behaviour of various statistics of interest
appear to depend on these temporal correlations. To put this
issue in some context, consider the i.i.d. case on the one
hand, and the case of time-constant, but randomly selected
feedback gains on the other. They can be regarded as two
extreme cases of a continuum of temporally correlated gains.
The limit of short correlation times is conceptually the i.i.d.
case, while the limit of long correlation times is the random
constant case. These models are quite important in statisti-
cal physics where the long correlation times limit is referred
to as the “quenched noise” limit [6], and the short correla-
tion times limit is the so-called “annealed limit”. Such models
are encountered in the physics of disordered systems, and in
particular appear in the famous problem of Anderson local-
ization [7]. This remains an active area of research given the
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Fig. 1. Stochastic feedback system. At each time instant, k , a new
sample ak ∼ fa(a) is drawn from the distribution.

complexity of the phenomenology that arises in seemingly
simple models.

Our prior work [5] considered the i.i.d. stochastic feedback
case, which was analysed using techniques that do not easily
extend to the temporally correlated gains case. In this letter,
we present one model of temporal correlations that appears to
be tractable. We are able to quantify the behaviour of vari-
ances, means and medians of stochastic gains with lognormal
distributions and a special type of temporal correlation.

A. Notation
For a random variable a, a ∼ fa(a) denotes that it is drawn

from a probability distribution with a density function fa(a).
The expected value of a is E

[
a
]

= µa and its variance is σ 2
a .

The normal distribution of mean µ and variance σ 2 is denoted
by N (µ, σ 2). Log-normal distributions are denoted by LN .
If a symmetric matrix X is positive definite this is denoted by
X # 0. The i,  th component of X is denoted by [X]i,j. The
N-length column vector of ones is denoted by 1N .

II. MODEL AND PROBLEM FORMULATION

The plant is a scalar system evolving with the dynamics,

xk+1 = ak xk, k = 0, 1, . . . . (1)

The state variable ak is, at each time step, drawn from a dis-
tribution ak ∼ fa(a). This can be viewed as the stochastic
feedback structure given in Figure 1. It is a simple matter to
consider more general first order systems with stochastic feed-
back. It can also be equivalently formulated as multiplicative
noise in a first order feedback system.

This is the same problem formulation as that considered
in a prior paper [5] in the i.i.d. setting, where a very general
class of distributions fa(a) on positive support was considered.
In the current work the theoretical results are derived under
the assumption that the feedback is drawn from a log-normal
distribution, fa(a). The log-normal distribution is defined by
exponentiating a normally distributed random variable. If α ∼
N (µα, σ 2

α ), then the random variable defined by a = eα is log-
normally distributed, a ∼ LN . The key feature here is that
a log-normal distribution is closed under both multiplication
and raising to a power.

The state of the system (1) after N time-steps is

xN = x0

N−1∏

k=0

ak, (2)

and without loss of generality it will be assumed that x0 = 1.
As xN is the product of random variables, it is also a random

variable. Furthermore, as ak ∼ LN , the state xN is also a log-
normal random variable, xN ∼ LN with mean and variance
denoted by µxN and σ 2

xN
respectively.

The question of stability can be posed in terms of a variety
of statistical quantities and this letter is concerned with three
definitions of stability:

a) Median Stability: The system is median stable if,

lim
N−→∞

median(xN) = 0.

b) Mean Stability: The system is mean stable if,

lim
N−→∞

E
[
xN
]

= 0.

c) Variance Stability: The system is variance stable if,

lim
N−→∞

E
[(

xN − E
[
xN
])2] = 0.

Necessary and sufficient conditions for all three stability
conditions were derived in [5], under the assumption that the
ak were i.i.d. random variables. The current work restricts
the consideration of ak to log-normal variables, but removes
the independence assumption. In contrast to the i.i.d. case,
both the mean and variance stability depend strongly on the
temporal correlation. However the stability of the median is
unchanged by correlation of the ak random variable.

A. Analysis Framework
The analysis of this system will proceed by taking the obvi-

ous step of working with the logarithm of ak and xk. By
defining,

αk = ln(ak), and ζk = ln(xk),

the dynamics in (2) can be written instead as,

ζN = ζ0 +
N−1∑

k=0

αk. (3)

The definition of αk as the logarithm of the random vari-
able ak ∼ LN implies that αk ∼ N . As all of the αk are
normally distributed (and correlated in a manner detailed in
Section II-C), and ζ0 = ln(x0) = 0 by assumption, ζN is also
normally distributed.

The approach to be taken here is to characterise the correla-
tion between the stochastic feedback variables ak, in terms of
a correlation between the logarithmically transformed random
variables αk. As all of the logarithmically transformed vari-
ables are characterised in terms of sums of normal variables,
the stability conditions can be considered instead in terms
of the ζk variables. Doing this requires more detail on the
relationship between the normal and log-normal distributions.

To facilitate readability we will use Greek symbols for vari-
ables in the logarithmic domain (for example ζk and αk) and
the Latin alphabet for variables in the state and feedback
domain (for example xk and ak).

B. Normal and Log-Normal Distributions
The monotonic variable relationship

ζk = ln(xk),
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will transform the median (and any percentile statistic)
directly as,

Prob{xk < z} = Prob{ln(xk) < ln(z)}
= Prob{ζk < ln(z)}.

Therefore,

median(ζN) = ln(median(xN))

and

median(xN) = emedian(ζN ). (4)

However the relationship between the means and variances is
more complicated [8].

µα = ln
( µa√

1+ σ2
a

µ2
a

)
, (5)

σ 2
α = ln

(
1 + σ 2

a

µ2
a

)
, (6)

and

µa = eµα+σ 2
α/2, (7)

σ 2
a =

(
eσ 2

α − 1
)(

e2µα+σ 2
α

)
. (8)

These relationships will be used to transform results from the
ζN domain to the xN domain and vice-versa.

C. Temporal Correlation Model
There are a variety of ways in which we can characterise the

temporal correlation between the random variables, ak ∼ LN .
The approach taken here is to characterise the correlation in
terms of the normally distributed αk ∼ N variables. We model
the correlation between the αk random variables as the output
of a linear time-invariant filter (denoted by %) driven by an
i.i.d. Gaussian noise sequence. This implies that the vector

α =
[
α0 · · · αN−1

]T (9)

is modeled as coming from a multivariable Gaussian distribu-
tion. This modeling choice gives a relatively straightforward
characterisation of the median, mean, and variance stability
conditions.

The log-domain filter % is specified by its pulse response,
γτ , τ = 0, 1, . . . ,∞. The model for each αk is therefore,

αk =
∞∑

τ=0

γτ νk−τ , νk−τ ∼ N (µν, σ
2
ν ). (10)

We assume (without loss of generality) that γ0 = 1 and that
% is stable. Note that (10) is the asymptotic limit, implying
that the filter generating the αk is already in equilibrium at
time-step k = 0.

The appropriate choice of µν and σ 2
ν can be determined by

calculating µαk and σ 2
αk

.

µαk = E
[ ∞∑

τ=0

γτ νk−τ

]

=
∞∑

τ=0

γτE
[
νk−τ

]
= %(ej0)µν,

where %(ej0) denotes the zero frequency gain of the filter %.
By choosing

µν = µα/%(ej0),

TABLE I
STOCHASTIC FEEDBACK GAIN STABILITY CONDITIONS FOR i.i.d.

LOG-NORMAL DISTRIBUTIONS a ∼ LN

the correlation model gives the appropriate value of µα . To
select σ 2

ν we evaluate the variance of αk. As the variance scales
with the square of the H2 norm,

σ 2
αk

=
∞∑

i=0

|γi|2 σ 2
ν = ‖%‖2

2 σ 2
ν . (11)

Therefore selecting

σ 2
ν = σ 2

α/‖%‖2
2, (12)

will give the value of σ 2
α required for the correlation model.

A similar calculation, using shifted indices, will give the
covariances,

E
[
αiαj

]
=
( ∞∑

m=0

γm γm+j−i

)

σ 2
ν . (13)

The above results can also be expressed using a
multivariable Gaussian formulation for the length-N vector α
defined in (9), giving α ∼ N (µαN ,)N), where the diagonal
components of the covariance matrix, )N , are given by (12),
and the off-diagonal components are given by (13).

D. Temporal Correlation in the Log-Normal Domain
The filtered i.i.d. noise model for correlation (in (10)) that

generates the vector α with correlated components has an
equivalent representation in the original problem domain for
generating the temporally correlated a vector. This can be
determined by transforming (10) to the a domain and gives,

ak =
∞∏

τ=0

(vk−τ )
γτ ,

where the i.i.d. log-normal random variable vk−τ is defined by

vk−τ = eνk−τ , ν ∼ N (µν, σ
2
ν ).

The mean and variance of v ∼ LN are given by applying
the mapping in (7) and (8) to the mean and variance of ν ∼
N (µν, σ

2
ν ).

This form of temporal correlation model is certainly not
standard, but it does give a log-normal distribution ak from
a product of time shifted i.i.d. log-normal random variables
raised to appropriate powers.

III. STABILITY RESULTS

The median, mean and variance stability conditions for this
system with i.i.d. stochastic feedback were derived in [5]
and are summarised here for comparison. Table I illustrates
the three stability conditions. Each of these stability criteria
will now be considered for the temporal correlation model
introduced in Section II-C.
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The basis of the results is the calculation of the mean and
variance of

αN =
N−1∑

k=0

αk.

The evolution of the mean of αN is unaffected by the
correlation between the αk random variables,

E
[
αN
]

= E
[

N−1∑

k=0

∞∑

i=0

γiνk−i

]

=
N−1∑

k=0

∞∑

i=0

γiE
[
νk−i

]

= N%(ej0)µν = Nµα. (14)

To derive the variance of αN note that

αN =
[
1 · · · 1

]
α,

where α ∈ RN is the multivariable Gaussian vector defined
in (9). The variance of αN is therefore given by,

variance(αN) = variance(1T
Nα) = 1T

N)N1N . (15)

The median stability condition depends only on E
[
αN
]

as
stated formally in the following.

Theorem 1: The stochastic feedback system specified in (1)
is median stable under correlated log-normal feedback if and
only if, µα < 0.

Proof: As a is multivariable log-normal, α is multivariable
normal and αN is normal, and so αN has median equal to its
mean. Therefore, from (4) and (14),

median(xN) = emedian(αN ) = emean(αN ) = eNµα ,

which goes to zero as N −→ ∞ if and only if µα < 0.
The mean and variance of xN depend on both the mean

and variance of αN . Although the mean of αN is unchanged
by correlation, the variance is not. We therefore expect the
conditions for mean and variance stability to depend on the
correlation.

To quantify the dependency of the mean of xN on correlation
consider the following.

%(ej0)2 =
( ∞∑

m=0

γm

)2

=
( ∞∑

m=0

γm

)


∞∑

j=0

γj





=
∞∑

m=0

γm

∞∑

t=−m

γm+t =
∞∑

t=−∞

∞∑

m=0

γmγm+t. (16)

Theorem 2: The stochastic feedback system specified in (1)
is mean stable under correlated log-normal feedback if and
only if,

µα + %(ej0)2

2‖%‖2
2

σ 2
α < 0.

Proof: Consider the ratio,

mean(xN)

mean(xN−1)
= e

ln
(

µxN
µxN−1

)

.

The following will show that, in the limit, the exponent is con-
stant. In which case the conditions under which the exponent

is negative are equivalent to the mean stability of xN . To this
end consider,

ln
(

µxN

µxN−1

)
= ln

(
µxN

)
− ln

(
µxN−1

)

Observe that

µxN = eNµα+ 1
2 1T

N)N 1N . (17)

Using the analogous result for µxN−1 implies that,

ln
(

µxN

µxN−1

)

= µα + 1
2

(
1T

N)N1N −
[
1T

N−10
]
)N

[
1N−1

0

])
.

The term in parentheses is simply the sum of the elements Nth

row of )N and of the elements of the Nth column of )N , less
the )N,N element. This is therefore equal to

µα + 1
2

(
N∑

l=1

[)N]N,l +
N−1∑

n=1

[)N]n,N

)

.

From (13) this can be expressed in terms of the pulse response
coefficients of % as

µα + σ 2
ν

2

(
N∑

l=1

∞∑

m=0

γmγm+l−N +
N−1∑

n=1

∞∑

m=0

γmγm+N−n

)

.

Now define an index t = l−N for the first sum and t = N −n
for the second. Note that t ranges from −N +1 to 0 in the
first summation pair and from 1 to N−1 in the second. These
contiguous ranges can be combined to give,

µα + σ 2
ν

2




N−1∑

t=−N+1

∞∑

m=0

γmγm+t



.

In the limit as N −→ ∞, equation (16) shows that the term in
parentheses converges to %(ej0)2. Substituting (12) gives the
required condition.

Observe that in the uncorrelated case )N = σ 2
ν I = σ 2

α I, and
%(ej0)2/‖%‖2

2 = 1. In this case Theorem 2 is equivalent to the
condition for mean stability given in Table 1. The mean of
xN for any finite N can be calculated directly from (17). This
calculation is used in the illustrative examples in Section IV.

The condition for variance stability can also be stated
in terms of the mean and variance of fα(α) and the gains
associated with the correlation filter %.

Theorem 3: The stochastic feedback system specified in (1)
is variance stable under correlated log-normal feedback if and
only if,

µα + %(ej0)2

‖%‖2
2

σ 2
α < 0.

Proof: From (8), the variance of xN is

σ 2
xN

=
(

eσ 2
αN − 1

)(
e2µαN +σ 2

αN

)
.

From (14), µαN = Nµα . The argument in the proof of
Theorem 2 shows that the asymptotic variance of αN with
respect to N is,

lim
N−→∞

σ 2
αN

= N
%(ej0)2

‖%‖2
2

σ 2
α .
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TABLE II
SIMULATION EXAMPLE CASE STUDY CONFIGURATIONS

Therefore

lim
N−→∞

σ 2
xN

=
(

eNσ 2
α%(ej0)2/‖%‖2

2 − 1
)(

e2Nµα+Nσ 2
α%(ej0)2/‖%‖2

2

)

= e2N(µα+σ 2
α%(ej0)2/‖%‖2

2) − e2N(µα+σ 2
α%(ej0)2/2‖%‖2

2).

The exponent of the first term is larger than the that of the
second and so determines whether or not the limit goes to
zero. Convergence to zero as N −→ ∞ occurs if and only if
the exponent of the first term is negative.

IV. ILLUSTRATIVE EXAMPLES

Two examples of correlated stochastic feedback are used
to illustrate the effects of temporal correlation. As introduced
in Section III, the correlation is modeled in the logarithmic
variable domain as a causal LTI filter driven by a normally
distributed i.i.d. random variable. We present two case exam-
ples and for each compare the effect of correlated αk variables
with independent αk variables. The details of the two cases are
summarized in Table II.

For simplicity we compare two FIR filters, specified here
by their pulse responses,

%1 : γ1(k) =
[
1.0 −0.9 0.2 −0.6 0 · · ·]

and

%2 : γ2(k) =
[
1.0 0.9 0.2 0.6 0 · · ·].

Each has the same 2-norm scaling, ‖%‖2
2 = 2.21, but differ in

their zero frequency gains (see Table II).
Figure 2 illustrates multiple sample trajectories generated

by (1) with ak = eαk generated with the mean and variance
given for Case 1a in Table 2. As

µa = eµα+σ 2
α/2 = 1.05 > 1,

the mean of xN (blue dashed line) grows exponentially.
However µα = −0.1 < 0 and so the median of xN (magenta
dashed line) decays to zero. This is a case where the system
has a stable median and an unstable mean. The simulations are
run for up to N = 50 and it is clear that the sample estimate
of the mean (red solid line) deteriorates as N increases. This
is because the stable median implies that the probability of a
sample trajectory exceeding the mean decays exponentially to
zero as N increases (see [5] for details).

Figure 3 illustrates Case 1b where the mean and variance
of αk are the same as Case 1a, but the αk are now correlated.
From Theorem 2 the low value of %1(ej0) leads to mean sta-
bility. In this case both the median and mean decay to zero
with different exponents.

The differing stability cases can also be examined by look-
ing at the evolution of the probability density functions of

Fig. 2. Simulations (1,000 realisations) of Case 1a trajectories. The
random variable ak ∼ LN is i.i.d. The theoretical and sample medians,
as well as the theoretical and sample means, are shown. The median is
stable and the mean is unstable.

Fig. 3. Simulations of Case 1b trajectories. The correlation is modeled
by the %1 filter in the αk ∼ N (µα , σ2

α ) domain. The theoretical and sam-
ple medians, as well as the theoretical and sample means, are shown.
The median are the mean are both stable.

ζN and xN . Figure 4 illustrates the evolution of these den-
sities for the first N = 10 steps in Cases 1a and 1b. For
N = 0, both the i.i.d. and correlated cases have the same
initial density. For both cases the evolution of the mean of
ζN is identical—correlation does not affect median stability.
However correlation modifies the variance of αN—in this case
significantly reducing its growth with N. This is also clear from
the spread of sample trajectories illustrated in Figure 3.

The effect of the variance reduction in the ζN domain on
the mean of xN is illustrated in Figure 5. All distributions
shown are log-normal distributions—the key issue here is the
evolution of the median and the mean as a function of N. In the
i.i.d. case the mean of xN (blue +) grows with N, while the
median (blue circles) decays to zero. In the correlated case
the median of xN (olive circles) is the same as the i.i.d. case,
but the mean of xN (olive +) decays to zero. Figures 2 to 5
illustrate that the correlation in Case 1 stabilises the mean of
xN while leaving its median unchanged.

Figure 6 illustrates the evolution of xN distributions for
Case 2. The effect of the correlation in Case 2 is the opposite
of that in Case 1; The mean of xN for i.i.d. feedback gains is
stable, and is destabilised by correlated feedback gains.

Authorized licensed use limited to: Bassam Bamieh. Downloaded on April 22,2022 at 21:52:21 UTC from IEEE Xplore.  Restrictions apply. 



862 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

Fig. 4. Evolution of the probability density functions in the αk domain
for Case 1. The black line shows the distribution of the α ∼ N (µα ,σ2

α )
variable. The cyan plots show the evolution of ζN distribution for N =
2,. . . ,10 in the i.i.d. case. The green plots show the evolution of ζN dis-
tribution in the temporally correlated (using %1) case. Means of each
distribution are shown by +.

Fig. 5. Evolution of the probability density functions in the ak domain for
Case 1. The black line shows the distribution of the a ∼ LN variable.
The cyan plots show the evolution of the xN distribution for N = 2,. . . ,10
in the i.i.d. case. The green plots show the evolution of the xN distribution
in the correlated (using %1) case. The means of each distribution are
shown by + and the medians by circles.

The differences between the correlation filters is illustrated
via their frequency responses in Figure 7. The stability criteria
for the mean of xN is determined by the ratio, %(ej0)2/‖%‖2

2.
For i.i.d. feedback gains this factor is one. For the correlated
feedback in Case 1b the ratio is less than one, whereas in
Case 2b it is larger than one.

V. CONCLUSION AND DISCUSSION

We have provided necessary and sufficient conditions for the
median, mean, and variance stability of the state of a scalar
system under temporally correlated stochastic feedback. The
condition for the stability of the median is unaffected by cor-
relation. Correlation is modeled via an LTI filter in the log
domain of the feedback gain. The stability of the mean and
the variance of the state is determined by properties of this
filter. In particular a high pass filter (more precisely a small
%(ej0)2/‖%‖2

2 ratio) has a stabilising effect on the mean and

Fig. 6. Evolution of the probability density functions in the x domain
for Case 2. In this case the i.i.d. evolution of xN has a stable median
(blue circles) and a stable median (blue +). The evolution for the corre-
lated case shows a stable median (olive circles) but an unstable mean
(olive +).

Fig. 7. Frequency domain comparison of the α-domain temporal corre-
lation filters, %1 and %2. Both filters have ‖%‖2

2 = 2.21. The DC gains of
each filter are marked by circles.

the variance. In contrast a low-pass filter (high %(ej0)2/‖%‖2
2

ratio) has a destabilising effect. The heuristic interpretation is
that with a low-pass filter, the destabilising effects of variance
persist longer than in the high-pass case, leading to desta-
bilisation with a lower variance. In the high-pass filter case
subsequent correlated feedback gains tend to have the opposite
sign reducing the destabilising effect of the variance.
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