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Optimal structured controllers for spatially invariant systems:
a convex reformulation
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Abstract— We consider quadratically-optimal control synthe-
sis for systems in which controls and measurements are spatially
distributed. We impose a structural constraint that the feedback
can only use measurements within an a priori fixed distance
from the control action. Such constraints generally lead to non-
convex optimal control problems. In the context of spatially
invariant systems such a constraint amounts to restricting the
feedback spatial convolution kernel to have a pre-specified
compact support. For systems where the state is a scalar-valued
spatio-temporal field, we show that this structured controller
design problem can be reformulated as a convex optimization
problem, thereby identifying a new class of systems for which
the optimal structured control synthesis is convex. We apply
our method to design an optimal structured controller for a
diffusion process on the real line.

I. INTRODUCTION

Large-scale networks of spatially distributed dynamical
systems are common in modern applications. For these,
traditional optimal control techniques usually yield all-to-
all (centralized) communication topologies, which are of-
ten prohibitive due to their large scale [1]. This challenge
justifies the increasing interest of the research community
in the design of optimal structured controllers with limited
information exchange between subsystems. However, the
optimal structured controller design is not always a straight-
forward task, as it generally requires solving a non-convex
optimization. As a consequence, the identification of classes
of systems for which optimal structured control synthesis
admits a convex formulation has become of important con-
cern. Some of these classes have already been identified and
include: partially nested systems [2], [3]; cone- and funnel-
causal systems [3]-[6]; quadratically-invariant systems [7];
positive systems [8]-[11]; and poset-causal systems [12].

A class of spatially distributed systems of interest is that
in which the underlying dynamics are spatially invariant
(SI), and controls and measurements are spatially distributed.
This is an idealization useful for modeling applications such
as platoons, smart structures, or systems with continuum
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mechanics in which the dynamics are described by partial
differential equations (PDEs) of constant coefficients. In
the seminal work [13] on optimal control of SI systems,
two important structural properties of optimal centralized
controllers were proven. Namely that optimal controllers
(1) inherit the spatially invariant structure of the plant,
and (2) have an inherent degree of spatial localization, as
the spatial convolution kernels of the state feedback and
observer gain operators decay exponentially in space. This
means that the contribution of measurements for optimal
feedback control decays exponentially with distance between
sensor and actuator. SI systems have attracted considerable
attention since, and further work followed, e.g.: the spatial
structure of Kalman Filters for SI systems was studied in
[14] and [15], and similar spatial decay properties of optimal
controllers have been found for the more general class of
spatially decaying operators in [16]. One drawback of these
results is that the degree of “controller spatial localization” is
determined by the plant’s dynamics and performance index,
but it is challenging to be constrained a priori, as this
generally leads to a non-convex problem.

Several approaches to the synthesis of optimal structured
controllers for SI systems have been introduced as well. [4]
and [5] presented classes where a priori cone- and funnel-
causality constraints can be imposed on the controller in
a convex manner, provided that information passing in the
controller travels at least as fast as disturbances propagate
in the plant. Later, [17] and [18] applied the sparsity-
promoting optimal control technique to SI systems. Recently,
the System Level Synthesis Approach [19] was exploited in
[20] to design optimal controllers for SI systems in which the
spatial spread of the closed-loop response was constrained.
However, none of these approaches managed to impose an
a priori constraint on the structure of the controller for a
SI system through a convex optimization, without requiring
further assumptions such as funnel-causality.

In this work we design quadratically-optimal structured
controllers for SI systems over L2. In particular, our focus
is on SI systems for which the state is a scalar-valued
field. We focus our attention on the class of static spatially
invariant controllers in which the feedback operator is a
spatial convolution. For this class, spatial locality constraints
on the controller can be imposed by restricting the feedback
convolution kernel to be compactly supported in space (rather
than exponentially decaying in space, as in the centralized
setting). We show that the optimal compactly supported sta-
bilizing feedback convolution kernel can be obtained through
a convex optimization in the spatial frequency domain,
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thereby identifying a new class of systems for which optimal
structured feedback control admits a convex formulation.

Our presentation is organized as follows. Section II intro-
duces mathematical preliminaries, definitions, and notation.
Section III presents the SI plant we work with. Section IV
reviews relevant results on centralized LQR for SI systems,
originally presented in [13]. These are required to understand
our approach to the optimal structured controller design.
Section V presents our main contribution, a convex formula-
tion to synthesize the optimal feedback controller within the
class of spatial convolution feedback operators with spatial
locality constraints. In Section VI, we illustrate how to apply
our optimal structured control synthesis method to diffusive
dynamics over the real line. Finally, in Section VII we draw
conclusions and discuss on-going research.

II. MATHEMATICAL PRELIMINARIES

We study dynamical systems with translation invariances
in the spatial coordinate x. We assume that z forms a
locally compact abelian group G. We focus on G = R and
G = Z. G denotes the corresponding dual group, obtained
after taking Fourier transforms (Z- transforms) in the case
of G = R (G = Z), which yield G =R (G = D, the
unit circle). We primarily consider functions f on G which
are square integrable f € L?(G) and use (-,-) to denote
the inner product in L?(G). D(A) denotes the domain of an
operator A and the symbol x denotes a convolution operator.
f* denotes the complex conjugate of f. 1(,, ,,j(7) is the
characteristic function of the interval [z, 72]: 1z, 4,)(7) =
Lif x € [x1, 2] and 1j;, ,,)(z) = O otherwise.

Definition 1 (Translation invariance). Let T, denote a
translation operator for functions on G: given any x € G,
(T=f)(y) = f(y—=x). An operator A is translation invariant
if 7, : D(A) — D(A) and AT, = T,A for every translation
7. Since this work is concerned with translation invariance
in space, we use the terms translation invariance and spatial
invariance interchangeably.

Definition 2 (Multiplication operator). Let ) be some set
and A : Q — C be a measurable function. A multiplication
operator M, is defined by (Maf)(z) = A(z)f(z),
Vf € D(M.a). The function A is called the symbol of the
multiplication operator M 4.

We define the spatial Fourier transform of a spatio-
temporal signal f according to the following normalization:

FAt) = \/%/Gf(:v,t)e_”’\dx, (D
. L £ jz\
fat) = = /G FOu e A, @)

where A € G denotes the spatial frequency and j the imagi-
nary unit. We use f \ (or f (\) with some notational abuse) to
denote parametrization by A. Sometimes, the dependence on
A will be omitted for simplicity. The Fourier transform (1)
diagonalizes spatially invariant operators, transforming them
into multiplication operators in the spatial frequency domain
[13]. This diagonalization in frequency is an important
observation that we exploit in our work.

III. SPATIALLY INVARIANT PLANTS

We study systems with spatio-temporal linear dynamics in
continuous time t € R>q, of the form:

0

ot (@) =
where x € G denotes the spatial coordinate. Actuators are
fully distributed along this coordinate and the state % is fully
observed. The operator A is time independent and translation
invariant in . We call this plant spatially invariant.

Assumption 3 (Scalar-valued field)'. The state 1) is a
spatio-temporal scalar-valued field.

Assumption 4 (L? space). (i) The operator A : D(A) —
L? with D(A) C L? is the infinitesimal generator of a
strongly continuous semigroup (Cp-semigroup) on L*(G)
and its Fourier symbol A, is continuous. (i) The initial
condition (-,0) = to(-) € D(A). At a fixed instant of
time ¢ > 0, the control signal is square integrable as well
u(-,t) € L*(G). Together with Assumption 4(i), these ensure
that (-, t) € L*(G) fort > 0.

Definition 5 (Exponential stabilizability). The system (3)
is exponentially stabilizable if there exists an operator /C :
L*(G) — L*(G) such that A — K generates an exponen-
tially stable Cy-semigroup on L?(G).

Proposition 6 (Exponential stabilizability of (3)). Under
Assumptions 3-4, the plant (3) is exponentially stabilizable.
Proof. Since the operator A is spatially invariant and gen-
erates a Co-semigroup in L2, then its Fourier symbol A,
satisfies the half-plane condition sup, s R(Ay) < ¢ for
some finite constant c. Choosing the static feedback symbol
K\ := o with a > ¢ gives SUP, e %(A,\ —a) < 0.
Since the Fourier symbol of the closed-loop operator is a
multiplication operator, sup, g §R(fh — ) < 0 implies
that A — K generates an exponentially stable Cy-semigroup
in L2, ]

[AY] (2, 1) + u(z,1), 3)

IV. CENTRALIZED OPTIMAL CONTROL OF SPATIALLY
INVARIANT SYSTEMS

In this section, we particularize relevant results from the
seminal work [13] on the centralized LQR for spatially
invariant systems to the plant and assumptions of Section
III. The LQR problem formulation in the spatial domain is:

min 7 — /m ((Q ) + (Ru, u)dt
0
S.t.

o
ot ( €T, ) = [Aw}(xvt) J’_u(m?t)

P(x,0) = o(x).

Assumption 7 (properties of operators Q and R). (i)
Q:L* — L?and R : L? — L? are self-adjoint, spatially
invariant, and time independent operators. Their respective
Fourier symbols Qx and R, are continuous, bounded, and
satisfy Q,\ > 0 and R,\ > 0 pointwise in A € G. (ii) The
pair (Qy, Ay) is detectable pointwise in A € G.

“4)

lAssumption 3 is motivated by the observations in [21] and [22],
highlighting that PDEs over L? spaces generally have scalar states.
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In [13] it was showed that Problem (4) is easier to solve in
the spatial frequency domain. Take the spatial Fourier trans-
form (1) of Problem (4). Then, exploit the facts that inner
products are preserved in L? (by Plancherel’s theorem) and
that spatially invariant operators transform to multiplication
operators, to obtain:

u

mjnj:// (&;Qkiﬁ)\ﬁ-ﬂié)\ﬁ)\)dtd)\
G JO
S.t.

%(t) = Axha(t) + ia(t)

1[))\ (0) = QEO()‘L

where A € G denotes spatial frequency. The constraints in
Problem (5) must hold pointwise in A and the cost functional
is a sum over . Hence, Problem (5) is decoupled in \: its
solution is obtained by solving a classical finite dimensional
LQR at each \ € G,

(&)

min Jy = / (&;QA@ZJA + ﬁjé)ﬁ)\)dt
0

U
s.t.
d¢ - A
A 1) = A (1) + (1)
A (0) = o (V).
Consequently, the optimal solution is obtained by solving a
family of AREs parametrized by the spatial frequency,

A;P)\ﬂ-]ﬁ)\fi)\—]a)\.é;lp)\-l-@)\:o, )\GG. (7)

(6)

At a given \ € G the optimal cost Jy , of Problem (6) is
Jx« = |1¥2(0)|>Py and the corresponding optimal cost 7.
of Problem (5) is:

.= [ near= [1hOPBD.®)
G G

Since by Assumption 3 we work with a scalar field 1, Pyisa

scalar at each A and can be explicitly obtained from (7). The

Fourier symbol K of the centralized state feedback operator

K is given by Ky = R;lfﬁ:

Ky = R(Ay) + [ R(AN)2 + Q ) ©)
R,

The optimal control law in the spatial frequency domain
is 4x(t) = —Kxibr(t). Take the inverse spatial Fourier
transform (2) and apply the convolution theorem to obtain the
control law in the spatial domain u(z,t) = —[K¢](x,t) =
—(2m)"2[K  ](x,t): the optimal state feedback opera-
tor is a spatial convolution and hence, inherits the spa-
tial invariance of the plant (recall that convolutions are
translation invariant operators). At location z, the control
law is obtained by convolving state measurements with the
convolution kernel K. Therefore, the spatial spread of this
kernel determines the degree of spatial localization of the
optimal controller: if the spatial decay of K is fast, at each
location z measurements from its neighborhood are more

relevant for control than those further away; if K has slow
spatial decay, measurements from further away are important
for the controller too; if K (x’) = 0, then the measurement
of the state at 2’ does not influence the optimal controller.
Under mild assumptions (Assumption 2 in [13]), [13] proved
that the convolution kernel K decays at least exponentially in
space, which implies that the optimal centralized control law
has an inherent degree of spatial localization: the influence
of each sensor depends on its position from the actuator,
measurements from far away contributing less.

The rapid spatial decay of the optimal control feedback
convolution kernel K suggests spatial truncation of the
convolution kernel (see Fig. 1b) as a means to design struc-
tured controllers, in which information exchange for control
is limited to a pre-specified radius 7" in space. However,
the feedback convolution kernel K.y 7 obtained through
spatial truncation of the centralized kernel K will not be
optimal with respect to our quadratic performance criteria
and might even lead to instability [16]. How to optimally
design the structured and stabilizing control convolution
kernel K1 is an open question, even for spatially invariant
plants [1], [4], [23]. Next, we show that under Assumptions
3, 4, and 7, the optimal compactly supported and stabilizing
control feedback convolution kernel K7 is the solution to a
convex optimization problem.

V. STRUCTURED OPTIMAL CONTROL OF SPATIALLY
INVARIANT SYSTEMS: A CONVEX FORMULATION

We aim to design an optimal structured feedback con-
troller ur(z,t) = —[Kry](x,t) with spatial locality con-
straints for the plant (3). As shown in Section IV, the
optimal centralized feedback control operator X is a spatial
convolution. We restrict the operator Cr to belong to the
class of stabilizing spatial convolutions as well and hence,
to be time independent and spatially invariant. To introduce
locality constraints on /Cp, we enforce its kernel Kp to
be compactly supported on [—T,T] (I > 0), where T is
a design parameter. The corresponding structured feedback
control law is of the form:

ur(z,t) = —[Kr](z,t) = —(27) "2 [Kp % ¢](2, ). (10)

At a given location z, controller (10) will only use measure-
ments up to a prescribed distance 7' from z for feedback.
Given the spatial invariance of KCr, taking the spatial Fourier
transform (1) of (10) yields a multiplication operator in the
spatial frequency domain:

i (A t) = —Kp(\)ia(t). (11)

In this section, we provide a method to find such a
stabilizing and compactly supported kernel K7, minimizer
of the quadratic performance criterion introduced in Section
IV. In the centralized control setting, exploiting spatial
invariance and posing the controller optimization problem
in the spatial frequency domain has considerable advantages
in terms of analysis (see Section IV). Given that we aim
to find a structured controller (10) restricted to a class of
spatially invariant feedback operators, a natural question to
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ask is whether the optimal structured controller synthesis
could have a simple and intuitive formulation in the spatial
frequency domain as well. We show next that this is indeed
the case. In the following subsections, we formulate the
performance and constraints of the optimization problem in
the spatial frequency domain and prove that the problem is
convex.

A. Performance criterion

The performance criterion is quadratic, as in Section IV:

Jr = / " (Qu ) + (Ruur)dt,

where operators Q and R satisfy Assumption 7. The con-
troller (10) is spatially invariant. Hence, in the spatial fre-
quency domain, the closed-loop dynamics are a LTI ODE
at each \ € G. This allows us to rewrite the cost (12) as a
function of the Fourier symbol of the feedback convolution
operator (see Appendix I for details):

)2 Qx + RA(K} + K3)

(12)

Tr(KnKn) =5 [ a2 ax,
Kr —R(Ay)
X R R (13)
where K7 (\) = Kr(\) + jK1(A).
B. Stability constraint
The structured closed-loop dynamics are:
0
Do) = (A= KWl 1), v€G. (14)
In the spatial frequency domain, (14) transforms to:
da(t) = (Ax = Kr)ia(t), A € G. (15)

To ensure exponential stability of (15) at each A\ € G, we
enforce the constraint:

R(AN) — Kr(\) < —e, (16)

Proposition 8 (Exponential stability of the structured
closed-loop). Consider that Assumptions 3, 4, and 7 hold
and that /Cr is a spatially invariant operator. Then, inequality
(16) is equivalent to exponential stability of the structured
closed-loop dynamics (14).

Proof. It follows from the same argument used in the proof
of Proposition 6.

66R>0,)\€G.

C. Spatial locality constraint

The structured control feedback convolution kernel K is
supported on [—T,T] in space. Hence, it must satisfy:

Kr(z) = Kr(z) - 1—pp(z), ©€G,

where - denotes pointwise multiplication. (17) allows for the
translation of the spatial locality constraint of the kernel
to the spatial frequency domain. Take the spatial Fourier
transform (1) of (17), apply the convolution theorem, and

a7

For example, in the case G = R, the spatial locality
constraint in frequency would be:

Kr(\) = % [ h Kr(w)sine(T(A — w))dw,  (20)

where sinc(T\) == w

is the cardinal sine function.

D. The convex optimization problem

The functional optimization problem for the Fourier sym-
bol of the compactly supported kernel K7 of the control law
(10) is:

2
inf jT:/*| ( )|2Q)\+R)\( R+K)d>\
Kr().K1() & 2 Kp — R(Ay)

S.t.

> ey

with Kg(-),K;(-) € L>=(G) and continuous, which guar-
antee ur(-,t) € L?(G). Once the solution to Problem (21)
is obtained, the kernel in the spatial domain is recovered
by taking the inverse spatial Fourier transform: Kr(z) =
F Y K7)(z).

Remark (Coupledness in \). Due to the convolutions (over
frequency) present in the spatial locality constraints, Problem
(21) is coupled in A. Consequently, its solution cannot be
obtained by solving a family of finite dimensional optimal
control problems parametrized by A, as happened in the
centralized setting of Section IV.

Next, we present a key intermediate result upon which we
build the proof of the convexity of Problem (21). Denote the
integrand of the cost functional Jr by:

k Qx + Ra(K% +K1)

Jr(\ Kg, Kp) = T — R(Ay)
R— A

S 190(Y) (22)
Denote the feasible set of Problem (21) by C. The constraints
in Problem (21) are affine and hence, C is convex. We prove
next that in the feasible set C, .J7 is jointly convex in Kz (\)
and K7()).

Lemma 9 (Joint convexity pointwise in \ € G). Consider
that Assumptions 3, 4, and 7 hold. Then, in the feasible set
C, Jr as defined in (22) is jointly convex in Kg()\) and
Ki(\).

Proof. Pointwise joint convexity of Jr(, -, ) is equivalent
to pointwise positive semidefinitiness of its Hessian H,

separate the real and imaginary components of KT(A) to BAR(AN) 2+ BAK2+O N
obtain: 1 H, = |¢O()\)|2 foE};;R;(}g;))S (f(R}%gf(f_h))z
Kr(\) = 2m) 2 [Kr*x 1_1.7] (V) (18) (Kr—R(Ax))? Kr—R(4,) -
- 1
Ki(A) = (2m) 72 [KI * 1[ r.1))(A)- (19 We evaluate the signs of the principal minors of H) within
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the feasible set C, pointwise in A € G:

By = o R T REFE @y o oy
g r— R(Ay))3
~ R)\
22 = |[to(N)] Kn—R(Ay) >0, (25)
Ry(RAR(AN)? +Q»)
det(H 4 >0, 26
et(Hy) = [to(N)| Fn_mA (26)

as Ry > 0 and QA > 0 by Assumption 7 and in C
the stability constraint Kp — §R(/AL\) > € > 0 is satisfied
pointwise in A € G. Since all the principal minors of H are
non-negative in C, H > 0 pointwise in A € G. |

Theorem 10 (Joint convexity of Problem (21)). Consider
that Assumptions 3, 4, and 7 hold. Then, the optimization
problem (21) is jointly convex in Kpr and K.

Proof. The feasible set C of Problem (21) is convex. We are
left to prove the convexity of the cost Jr in C. The simplest
sufficient condition ensuring joint convexity of the functional
Jr is joint convexity of the integrand Jr(\, Kr()\), K1(\))
in Kr()\) and K7()\), keeping A € G fixed [24]. By Lemma
9, this pointwise condition holds for Jz in C. The convexity
of Problem (21) follows. |

By Theorem 10, any extremal of (21) is a minimizer.

Remark (Spatial symmetry). The convexity of Problem
(21) does not rely on spatial symmetry in the open-loop
operator or control kernel. This is an important advantage
compared to some previous structured control approaches
in the literature (e.g., [23]). Furthermore, although our for-
mulation was presented for a kernel Kp(-) supported on
[-T,T] for simplicity, asymmetric supports [T, T3], with
Ty < T,, might be used without compromising convexity.
When T3 # T5, the spatial locality constraints (18)-(19) need
to be adapted to account for the imaginary part of i[T17T2}.

Finally, we highlight that there is some resemblance be-
tween Problem (21) and the Optimal Spectral Concentration
Problem in communication theory. The latter was studied by
Slepian and co-workers in the early sixties and its solution
exhibits a beautiful mathematical structure. The interested
reader might find [25] and references therein useful.

VI. EXAMPLE: OPTIMAL STRUCTURED CONTROL OF
DIFFUSION ON R

A. Problem formulation

We consider a spatially invariant diffusion process with
distributed control input u(z,t):

oy 0%y
oW =
The constant £ > 0 is the diffusion coefficient and the
initial condition is a Gaussian with Fourier transform
Po(A) = Age=""» € L2(R). The control objective is
to drive the state to zero while optimizing the quadratic
performance criterion (12), where @ = Q and R = R with
@ and R positive constants. We use a structured feedback
control law (10), whose kernel K is supported on [—T, T7.

(z,t) +u(z,t), zeR, teRs. (27)

The Laplacian operator in (27), initial condition, and cost
operators () and R are even in x. Thus, the optimal feedback
convolution kernel K is even in x as well and consequently,
Kp()\) is real and even in A. The optimization problem for
the structured feedback convolution kernel is:

inf szl/oo o2 ERRTO? )

R (),Kr() 2 Kr(\) + kA2
S.t.
5 A (28)
— kA = Kr(\) < —€, e € R
X 1 /T
Kr(\) = —/ Kr(x)cos(Ax)dz.
2 J_T

The introduction of the auxiliary kernel Kr(-) allows us to
formulate the spatial locality constraint using the definition
of spatial Fourier transform (1) with appropriate integration
bounds, rather than (20). This alternative formulation is
advantageous for quadrature as it is easier to approximate
than a convolution with a cardinal sine over R.

B. Finite dimensional approximation

We detail how to derive a finite dimensional approxi-
mation of Problem (28) suitable to be solved numerically.
First, approximate the definite integral in the spatial locality
constraint through the trapezoidal rule. Sample the integrand
at a grid of N, + 1 regularly spaced points on [0,7] in
the spatial coordinate . We denote the grid points by zx;
(1=0,...,N,) and the grid size by A, := T'/N,, such that
x; = iA,. With the notation k; := Kp(z;), i =0,..., N,
the spatial locality constraint approximation is:

Kr(\) = \f / Ko () cos(Az)da ~
\/ZAEUQO k2

where we leveraged that the integrand is even in z. Substitute
the RHS of (29) in the cost functional and stability constraint
to obtain a finite dimensional convex optimization problem
(linear transformations of the argument preserve convexity
[26]). The spatial locality constraint is now embedded in
the cost and the decision variables are k; (i = 0,..., Ny).
Second, approximate the integral over frequency in the cost
through the trapezoidal rule. Sample the integrand at a grid of
Ny + 1 regularly spaced points over frequency A. We denote
the grid points by Ay, (k = 0,...,N)) and the grid size by
Ay, such that A\ := kA). This procedure yields Problem
(30), with a total of N, + 1 decision variables.

(TA) + Z kcos:v)\>, (29)

C. Results

We set parameter values as in Table I and solve Problem
(30) using CVX [27], [28]. Fig. lc shows the optimal
structured kernel K7 obtained numerically for 7' = 5.

[r] o [A [Q@JR] ¢ [ A [ Ax ] Na|
[4]103] 1 [T 1] 2[10°%7]0025] 0055000 ]

TABLE I: Parameter values used for the numerical example.
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,Q+ ZRAL(Y +

min

kn, N,—1
5=+

ki)

1 -
A _
min A[Qwoan

VRl + 5+ i

Ny—1 gRA2(k0

1k-)

kNJ“ cos(TA\) + ZZ 1 Yk cos(xz/\k))

A, (ke o+

+Z|¢0)\k \/>

Exe cos(TAg) + SO0
» Q+2RAZ(% +

Uk cos(:z:,)\k)) + kA2

) (30)
Uk cos(ziAn,))

L2 cos(T/\NA) + z

1 .
+ 51500,

S.t.

,{)\2\/§A @ kn,
k T 2 5

\/7A ko kN” cos(TAn, ) + Z

Yk cos(ml)\NA)) + RAR,

chos:z:)\k) —e, with k=0,...,N,.

Comparison of the different control convolution kernels
provided in Fig. 1 suggests an interesting relation between
the optimal centralized (K) and optimal structured (K7)
kernels for the diffusive dynamics (27). Particularly, we
propose the following ansatz for Kr:

Kr(z)= K(z)-L_rm)(z) +er-o(xzxT), v G,

centralized kernel in (—T7,T")

compensation

(€29)
where cp is constant in z parametrized by 7T, and (")
denotes the Dirac delta function. The analysis of the Euler-
Lagrange equations of Problem (28) to evaluate the validity
of the ansatz (31) will be presented somewhere else due to
space constraints.

0.5

a) K b) Ktrum:,T c) KT

|

0 o
-10 -5 0 5 10-10 -5 0O 5 10-10 -5 0O 5
€T T i

10

Fig. 1: Kernels of the feedback control operator for the dif-
fusion process (27) with parameter values as given in Table
I. a) Optimal centralized kernel (exponentially decaying). b)
Centralized kernel truncated at 7' = 5. ¢) Optimal structured
kernel for 7" = 5 (discontinuous components of the kernel
have been re-scaled to fit in the figure). Horizontal dotted
lines are guides to the eye to ease comparison. Vertical axis
is the same in the three plots.

Ansatz (31) claims that for z € (—T,T') the optimal struc-
tured kernel K takes the values of the optimal centralized
kernel K, and for x = 4T the optimal structured kernel
grows a compensation term given by a Dirac delta weighted
by cp. This term partially compensates for the performance
drop due to the spatial locality constraint (i.e., due to the
missing exponential tails present in the centralized kernel
that feed back measurements from spatial locations further
away than a distance 7' from the actuator). The performance

compensation of this term is apparent in Fig. 2, in which
the performances of two structured controllers are compared.
For small values of T, the performance of the structured
controller with kernel Ky (i.€., without compensation
term) is much worse than that of the structured controller
with kernel K7 (i.e., with compensation term). Finally, note
that the optimal structured kernel K7 designed following our
method has a very reasonable performance compared to that
of the centralized kernel K (blue curve in Fig. 2).
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Fig. 2: Normalized suboptimality gap of the structured con-
trollers (red for Kyyne7 and blue for Kr) with respect to
the centralized controller, as a function of 7.

VII. CONCLUDING REMARKS

The primary contribution of this paper is a convex formu-
lation for the synthesis of quadratically-optimal structured
controllers for spatially invariant systems in which the state is
a scalar-valued field. For spatially invariant systems, optimal
centralized controllers are obtained by spatially convolving
measurements with kernels that decay exponentially in space.
Guided by this insight, we restricted the structured control
feedback operator to belong to the class of spatial convo-
lutions as well. In this class, we imposed spatial locality
constraints (i.e., structure) on the controller by specifying a
desired compact support for the convolution kernel. Since
the structured closed-loop dynamics remained spatially in-
variant, we exploited spatial Fourier transforms to pose the
optimization problem for the structured convolution kernel in
the spatial frequency domain. We proved that the resulting
kernel optimization problem is convex and its formulation is
intuitive and interpretable in the spatial frequency domain.
We applied our method to design an optimal structured
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controller for diffusive dynamics on R. We used this example
to highlight some considerations for the numerical opti-
mization and to show that our optimal structured controller
outperforms structured controllers designed using the simple
spatial truncation strategy proposed in [13]. Furthermore, for
diffusive dynamics, numerical results suggest an interesting
relation between the optimal centralized and optimal struc-
tured control convolution kernels, which we are currently
investigating. On-going research efforts also include the
extension of our convex formulation beyond scalar spatio-
temporal states and beyond L? spaces.
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APPENDIX I

In the spatial frequency domain, the dynamics of the
closed-loop with structured controller are given by (15), a
LTI ODE parametrized by A\ € G. The initial condition is
¥o(\). Hence,

Oa(t) = eAr=Fr) e ().

The corresponding closed-loop performance (12) is:

Jr(Kg, K1) = /0°° ((Qv,¥) + (Rug, ur))dt

(32)

1 A s P
= / / (VXQxthx + G5 Ratiy)dtdX
G Jo
- / o) (@x +RA|KTI2)/ 2R =KT) g )
G 0

A D (72 2
(i) % [ |'(2)0()\)‘2 Q)\ ;R/\(g}%:‘r KI)d)\
& r— R(Ay)

(1): By Plancherel’s and Tonelli’s theorems. (2): After
substitution of (11) and (32), and commuting terms (by
Assumption 3, scalars). (3): After integration in time under
the assumption of stable closed-loop and substitution of
Kr=Kp+jK;.

Alternatively, (33) can be derived from a Lyapunov equa-
tion parametrized by A € G:

(Ay—K1)* Pr(\)+Pr(N) (A — K1) +Qr+ KRy K = 0.
Since by Assumption 3 the Lyapunov equation is scalar
at each A € G, Pr()) can be explicitly solved for. The

corresponding performance is Jr = [ [1ho (M) [2Pp(N)dA,
which agrees with (33).

(33)
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