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ABSTRACT
As HPC systems continue to grow to exascale, the amount of data
that needs to be saved or transmitted is exploding. To this end,
many previous works have studied using error-bounded lossy com-
pressors to reduce the data size and improve the I/O performance.
However, little work has been done for effectively offloading lossy
compression onto FPGA-based SmartNICs to reduce the compres-
sion overhead. In this paper, we propose a hardware-algorithm co-
design for an efficient and adaptive lossy compressor for scientific
data on FPGAs (called CEAZ), which is the first lossy compressor
that can achieve high compression ratios and throughputs simul-
taneously. Specifically, we propose an efficient Huffman coding
approach that can adaptively update Huffman codewords online
based on codewords generated offline, from a variety of representa-
tive scientific datasets. Moreover, we derive a theoretical analysis
to support a precise control of compression ratio under an error-
bounded compression mode, enabling accurate offline Huffman
codewords generation. This also helps us create a fixed-ratio com-
pressionmode for consistent throughput. In addition, we develop an
efficient compression pipeline by adopting cuSZ’s dual-quantization
algorithm to our hardware use cases. Finally, we evaluate CEAZ
on five real-world datasets with both a single FPGA board and 128
nodes (to accelerate parallel I/O). Experiments show that CEAZ out-
performs the second-best FPGA-based lossy compressor by 2.3× of
throughput and 3.0× of ratio. It also improves MPI_File_write and
MPI_Gather throughputs by up to 28.9× and 37.8×, respectively.
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1 INTRODUCTION
Today’s HPC applications can generate large volumes of scientific
data for post-hoc analysis and visualization. However, since the
development of storage and networking hardware is much slower
than that of computing power and memory capacity [7], the I/O and
network bandwidth are becoming the main bottlenecks for HPC
applications to achieve high performance on a large scale. I/O and
communication costs can quickly overwhelm the overall perfor-
mance as parallel computers grow towards exascale. For instance, a
well-known cosmological simulation code Nyx [2] can generate up
to 2.8 TB of data for a single snapshot under a simulation resolution
of 40963, requiring to save a total of 2.8 PB data, when running the
simulation for 5 times with 200 snapshots dumped per run.

Such a large amount of data is often generated in a parallel
manner from a scaling number of ranks, on which each holds a
proportion of the data and must introduce an extra collective com-
munication to dump the entire snapshot to the file system. This
process takes an unprecedented challenge to I/O bandwidths and
storage systems on today’s HPC systems [7, 30, 54, 55]. Therefore,
it is urgent to develop effective data reduction methods to reduce
the size of data movement between memories and storage systems
such as parallel file systems.

One of the most effective ways to address this challenge is using
data compression. The data partition in each rank is compressed be-
fore sending it to the storage system via an interconnected network.
This can reduce both I/O overhead and storage consumption. How-
ever, traditional lossless compression can only provide a limited
compression ratio to the scientific dataset by usually up to 2× [42].
Thus, error-bounded lossy compressors such as SZ [10, 30, 46],
ZFP [31], and MGARD [1] have been developed to provide a much
higher compression ratio while only introducing controllable distor-
tion of data. Many prior studies have demonstrated the effectiveness
of using those error-bounded lossy compressors for scientific data
reduction [7, 10, 18, 24, 25, 30, 31, 34, 35, 46, 47] and improving I/O
performance. [16, 39, 56].
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While error-bounded lossy compressors on CPUs can provide a
high compression ratio, their low throughputs unavoidably cause
relatively high performance overheads to applications, which often
offset the performance benefit from saving and loading compressed
data of less sizes. Thus, we need to develop a high-throughput lossy
compressor to effectively accelerate parallel I/O for HPC applica-
tions. Recently, all SZ, ZFP, and MGARD teams started to develop
and release their GPU and/or FPGA implementations. On one hand,
GPU’s massive SIMT parallelism enables high throughput. How-
ever, during the lossless compression step of SZ algorithm, Huffman
encoding and decoding [22] results in a randommemory access pat-
tern [49]. This causes serious divergence issues, inevitably leading
to low GPU memory bandwidth utilization and performance. On
the other hand, FPGAs offer many advantages, such as configura-
bility, high energy efficiency, low latency, and low price [15], and
have been a viable and popular option at scales for smart network
interface cards (SmartNICs) [13, 40], which are being increasingly
used in data centers to offload networking functions from host
processors [21]. Thus, this makes FPGA-based SmartNICs ideal
platforms to offload compression and accelerate I/O.

The state-of-the-art FPGA-based lossy compressor is only ca-
pable of about 8 GB/s throughput [44], which is still much lower
than the throughput of PCIe3/4 and InfiniBand. This precludes their
use in real application scenarios. There are several challenges to
implement a high-throughput lossy compression on FPGAs with
a relatively high compression ratio: 1 Most of lossy compression
algorithms involve multiple stages which have strong data depen-
dency. 2 It is infeasible to simply add more compression pipelines
on FPGAs with limited resources. Thus, we need to deeply optimize
the algorithm to effectively utilize the hardware resources.

To address these challenges, in this work, we focus on design-
ing an efficient lossy compression algorithm that is suitable for
FPGA hardware, and offload it onto FPGA-based SmartNICs to ac-
celerate parallel I/O. Specifically, we propose a hardware-algorithm
co-designed efficient and adaptive lossy compressor (zip) (CEAZ)1,
which is the first lossy compressor to achieve high compression
ratio and throughput simultaneously. CEAZ adopts a dual quan-
tization strategy [49] to completely remove data dependency and
instantiates multiple pipelines to process input data in parallel. Un-
like cuSZ that implements dual-quantization using massive GPU
threads, we implement the dual quantization in CEAZ using a
pipelined manner, which is more suitable for FPGA architecture.
Moreover, different from existing FPGA-based lossy compressors
such as GhostSZ [57] and waveSZ [48] that statically build trees in
Huffman coding for every data chunk, CEAZ dynamically deter-
mines whether to update codewords by building a new tree or use
previous/offline codewords according to the distribution of current
symbol frequencies, leading to a high throughput. Thus, CEAZ
can efficiently and effectively reduce the data size and significantly
increase the parallel I/O performance. In addition, to the best of
our knowledge, CEAZ is also the first lossy compressor to enable
fixed-rate compression for prediction-based compression workflow.
Our contributions are summarized as follows:
• We propose an efficient Huffman coding approach that adap-
tively updates Huffman codewords online based on our offline

1The code of CEAZ is available at https://github.com/szcompressor/CEAZ.

Huffman codewords, which are generated from a variety of rep-
resentative scientific datasets. It can reduce the data dependency
in Huffman coding and dramatically improve the compression
throughput on datasets of various sizes.
• We derive a theoretical analysis to support a precise control
of compression ratio under the error-bounded compression
mode, which can align quantization-code histograms of different
datasets and enable an accurate generation of offline Huffman
codewords. It also helps us develop a fixed-ratio compression
mode, which is important to guarantee a consistent throughput
in data transfer. Our work is the first prediction-based lossy
compressor to enable fixed-rate compression.
• We develop an efficient compression pipeline by adapting the
dual-quantization algorithm to our hardware use case.
• We evaluate CEAZ with five real-world scientific datasets in
both serial and parallel processing. Experiments show that CEAZ
outperforms the state-of-the-art solution by 2.3× in throughput
and 3× in ratio on a single FPGA board. Moreover, CEAZ can
improve the MPI_File_write and MPI_Gather throughputs by
up to 28.92× and 37.8×, respectively, with 128 nodes from the
Summit supercomputer.
The rest of this paper is organized as follows. In Section 2, we

discuss the background and research challenges. In Section 3, we
present the design of CEAZ. In Section 4, we evaluate CEAZ on
six scientific datasets and present our results. In Section 5, we
summarize our work and discuss future work.

2 BACKGROUND AND MOTIVATION
In this section, we first present background information about
scientific data compression, FPGA-based lossy compression, and
MPI communication and I/O. We then discuss the challenges and
motivations for our research.

2.1 Floating-Point Data Compression
Floating-point data compression has been studied for decades. The
data compressors can be split into two categories: lossless com-
pression and lossy compression. In comparison to lossy compres-
sion, lossless compression such as FPZIP [32] and FPC [6] can only
provide limited compression ratios (typically up to 2:1 for most
scientific data) due to the significant randomness of the ending
mantissa bits, especially for large scientific floating-point data [42].

Lossy compression, on the other hand, can compress data with
little information loss in the reconstructed data. Compared to loss-
less compression, lossy compression can provide a much higher
compression ratio while still maintaining useful information for
scientific discoveries. Many lossy compressors supporting floating-
point data were proposed and designed for visualization. Thus,
many lossy compressors employ techniques directly inherited from
lossy compression of images, such as variations of wavelet trans-
forms, coefficient prioritization, and vector quantization. While
such compressors may be adequate for visualization, they do not
provide error controls on demand for scientific studies.

In recent years, a new generation of lossy compressors for sci-
entific floating-point data has been proposed and developed, such
as SZ [10, 30, 46, 49] and ZFP [9, 31]. Both lossy compressors can
provide multiple compression modes, such as error-bounded mode
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and fixed-rate mode to introduce error control or compression
ratio control. Error-bounded mode requires users to set an error
bound, and fixed-rate mode means that users can set a target bi-
trate. Compared to ZFP which utilizes Discrete Fourier transform
to manipulate data information, SZ predicts each data point’s value
by its neighboring data points in a multidimensional space with an
adaptive predictor (mainly using a Lorenzo predictor [23]). Next, it
performs an error-controlled linear-scaling quantization to convert
all floating-point values to an array of integer numbers. Lastly, it
performs a customized Huffman coding and lossless compression to
shrink the data size significantly. This helps SZ provide a unified er-
ror distribution between original and reconstructed data within the
user-set error-bound range, which fully utilizes the error tolerance
space and provides a high compression ratio [10, 30, 34, 45, 46].

SZ was first developed for CPU architectures, and has released
the CUDA implementation (called cuSZ) [49]. Compared to lossy
compression on CPUs, GPU-based lossy compression can provide
much higher (de)compression throughputs [24]. cuSZ [49] and
cuZFP [9] are existing GPU-based implementations of SZ and ZFP,
respectively, which are capable of achieving tens to hundreds of
GB/s (de)compression throughputs. However, these approaches are
not very efficient on FPGAs, which have much lower clock frequen-
cies compared to GPUs. Moreover, the FPGA chip space limitations
prevent fitting too many instances of compression pipelines on
chip. But, FPGA implementations offer several advantages over
GPU implementations: 1 FPGAs can inherently provide low la-
tency as well as deterministic latency for real-time applications.
2 FPGAs provide a high degree of user customization, and their
implementations are easier to be integrated into other systems.

2.2 FPGA-based Lossy Compression
Existing works have shown that significant performance speedups
can be achieved by offloading lossy compression onto hardware.
GhostSZ [57] is the first implementation of SZ-1.0 [11] on FPGAs.
GhostSZ improves throughput by 10∼85× over the SZwith a similar
compression ratio and peak signal-to-noise ratio (PSNR). However,
SZ-1.0 is a deprecated version which suffers from low prediction
accuracy which results in low compression ratios [48].

waveSZ [48] is another hardware implementation of SZ lossy
compression. It adopts a wavefront memory layout to fit into SZ
algorithm to alleviate the data dependency during the prediction
process. It improves the compression ratio and throughput over
GhostSZ. However, waveSZ has several drawbacks: 1 It just al-
leviates the data dependency using wavefront memory but does
not eliminate it. As a result, its throughput does not exceed 1 GB/s.
2 Its wavefront memory layout involves rearranging data before
compression, and this overhead would be relatively high when
processing a large amount of data. 3 It only focuses on acceler-
ating the prediction stage without handling the high overhead of
Huffman coding. This, however, is the main bottleneck after fully
removing the data dependency in prediction.

BurstZ [44] is a variant of the one-dimensional ZFP algorithm
and also implemented onto FPGAs. BurstZ can provide a high
throughput (8 GB/s), but it suffers from a significantly lower com-
pression ratio drop compared with the original ZFP algorithm. For
example, the original ZFP algorithm achieves 21× compression

Figure 1: The process of canonical Huffman encoding.

ratio on the NWChem dataset [38] with an error bound of 0.001,
whereas BurstZ only achieves 4.7× compression using the same
error bound. Besides, the 8GB throughput is much smaller than the
throughput of current PCIe3/4 and InfiniBand. Moreover, DE-ZFP
[19] is an FPGA implementation of modified ZFP by replacing the
embedded encoding with a dictionary-based encoding. It focuses
on maximizing throughput while minimizing the compression ra-
tio increase. In addition, ZHW [58] is another FPGA-based lossy
compressor based on ZFP, but it is not error-bounded. So, we take
BurstZ as the current state-of-the-art FPGA implementation of ZFP.

2.3 MPI Collectives and MPI-I/O
Message Passing Interface (MPI) [17] contains two main types
of operations related to parallel I/O, i.e., MPI-IO operations and
collective operations. On the one hand, MPI-IO is a fundamental
HPC middleware for parallel I/O. Many parallel I/O systems such as
parallel HDF5 [14] and ADIOS [33] are built based on it. In MPI-IO,
data is moved between files and processes by issuing read and write
calls. The data access routines can be individual or collective. By
using a collective routine, processes are coordinated with each other
to optimize access to I/O devices. On the other hand, MPI collective
operations such as scatter, gather and reduce play an important
role in many HPC applications for communication. Considering
that many applications use dedicated I/O nodes to periodically
collect/distribute data from compute nodes and then write/read to
the file system asynchronously, we also use MPI_Gather/Scatter in
this paper to evaluate our compressor in this use scenario.

2.4 Research Challenges

High Overhead of Huffman Coding. Given a set of symbols, Huff-
man coding generates codewords based on the evidence that not
all symbols have the same probability. Instead of using fixed-length
codewords, Huffman coding uses variable-length codewords based
on the relative frequency of different symbols. The principle is to
use fewer bits to represent frequent symbols and more bits to rep-
resent infrequent symbols. Even though variable-length codewords
can provide high compression ratio in our scenario, Huffman cod-
ing has high overhead in terms of latency, area, and power [29].
To achieve a high overall compression throughput, certain key
challenges in Huffman coding need be addressed.

Challenge of Codewords Generation. The first challenge is to build
a Huffman tree and generate codewords within limited hardware
clock cycles to meet high-throughput requirements. Our goal is to
accelerate MPI collective I/O in real time through compression. So
we hope to reduce the compression latency as much as possible.
In addition, generating codewords needs 7 steps: filter, sort, create
tree, compute bit length, truncate tree, canonize tree, and create
codewords, as shown in Figure 1. This procedure is a serial process



that is hard to be parallelized on FPGAs or GPUs. We make full
use of the characteristics of the FPGAs to speed up this process by
pipelining. However, the latency presented in Figure 4 is still large.

Challenge of Predefined Codewords. Inspired by [29], we will use
predefined codewords at the beginning and update the codewords
during the runtime. This method introduces the second challenge:
how to generate suitable codewords to cover the features of all the
scientific datasets?

3 DESIGN METHODOLOGY
In this section, we describe our proposed FPGA-based lossy com-
pressor CEAZ and parallel I/O accelerator. Specifically, we will first
overview the design of CEAZ and then describe our efficient and
adaptive Huffman coder. Finally, we describe our proposed parallel
I/O accelerator integrated with CEAZ.proposal
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Figure 2: Design of our proposed lossy compression engine CEAZ.

3.1 Overview of CEAZ Engine
We show our proposed lossy compression engine in Figure 2. It
has three main dataflow paths. On the top dataflow path, we pre-
process float-point data using a dual quantization algorithm [49]
(abbreviated as dual-quant), which generates integers as symbols
(quantization codes) for the following Huffman coding. We collect
frequencies of symbols using a histogram and calculate the stan-
dard deviation (STD) of frequencies. According to the STD value,
we will decide whether to build a new Huffman tree based on the
symbol frequencies or not (will be discussed in the next section).

Figure 3 shows our dual-quant pipeline design. Dual-quant is a
novel two-phase prediction-quantization approach, which can com-
pletely eliminate the data dependency in the prediction and quanti-
zation steps. Our dual-quant consists of two steps: prequantization
and postquantization. Given a float point data 𝑑 , we first quantize it
based on the user-set error bound and convert it to an integer data

Figure 3: Design of our adopted dual-quantization pipeline.
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𝑑 ′. After the prequantization, we can calculate its predicted value
based on its neighboring values (denoted neighboring(𝑑 ′)) using
Lorenzo predictor (denoted ℓ), 𝑝 = ℓ (neighboring(𝑑 ′)). The second
step, called postquantization, computes the difference 𝛿 between the
predicted value and the prequantized value. 𝛿 will be compressed
by Huffman compression. Since the dual-quant part has no data de-
pendency, we could instantiate 𝑁 pipelines to process 𝑁 float-point
data in parallel. On the middle dataflow path, we directly encode
symbols using existing codewords for seeking high throughput.
The encoder can find the codeword corresponding to each symbol
and output it. We then pack variable-length encoded (compressed)
symbols to save the storage space. On the bottom dataflow path,
we feed back total bits of encoded symbols to estimate compression
ratio, and then adjust the error bound.

Our proposed compression engine has two working modes: fixed
accuracy (i.e., error bounded) and fixed ratio (i.e., fixed bit-rate).
The fixed-accuracy mode ensures information loss of compressed
data is within the specific error bound, whereas the fixed-ratio
mode ensures the transfer of compressed data has a consistent
throughput. For the fixed-accuracy mode, we need to define an
upper bound of errors that can be tolerated by applications and keep
using this error bound through the whole compression process. For
the fixed-ratio mode, we can set a suitable error bound to achieve a
target compression ratio, as a higher error bound leads to a higher
compression ratio. Specifically, we adjust the error bound as follows:

(1) We use 𝐶 =
TotalBits(original data)
TotalBits(compressed data) to estimate the com-

pression ratio, where TotalBits(original data) =𝑊 ∗ 𝑁 .
Here𝑊 is the bit-rate of original data; for single/double floating-
point data,𝑊 is 32/64 bits per value; 𝑁 is the total number of
data points that have been compressed.

(2) We calculate the compressed and target bit-rates by 𝐵 = 𝑊
𝐶

and
𝐵target =

𝑊
𝐶target

, respectively.
(3) We adjust the error bound by Equation (2) (will be discussed in

Section 3.2.2).

3.2 Efficient and Adaptive Huffman Coder
3.2.1 Fast approximate sort. In order to build the Huffman tree, we
must sort the symbols based on their frequencies after we filter out
symbols with a frequency of zero. Previous works [26, 51] use radix
sort to reduce the utilization of hardware resources. However, we
find that radix sort typically takes more than 30% of the total time
when we break down the execution time of generating codewords.
This is because the time complexity of radix sort is 𝑂 (𝑑 × (𝑛 + 𝑏))
(where 𝑏 is the base to represent numbers and 𝑑 is the maximum
number of digits) with𝑑 = 32 and𝑏 = 10 typically.We also adopt the



Algorithm 1: Proposed fast sort based on Lorenzo predic-
tor’s feature.
Result: A approximately sorted array

1 𝑆 : defined structure contains two members: symbol, and its frequency
2 𝐴: input array, its data type is 𝑆 , 𝑙𝑒𝑛: length of input array, 𝑖 : index of𝐴
3 𝑝 : index of symbol 513 in𝐴,𝑚: index of the midpoint of𝐴, 𝑙 : index, ℎ: index
4 𝑂 : output sorted array, 𝑗 : index of𝑂
5 𝑡 : loop count
6 𝑙 = 𝑝 − 1, ℎ = 𝑝 + 1, 𝑗 = 𝑙𝑒𝑛 − 2,𝑂 [𝑙𝑒𝑛 − 1] = 𝐴 [𝑝 ]
7 if 𝑝 ≤𝑚 then
8 𝑡 = 𝑝

9 else
10 𝑡 = 𝑙𝑒𝑛 − 𝑝 − 1
11 end
12 for 𝑖 ← 1 to 𝑟𝑜𝑤𝑠 do
13 Count if 𝐴 [𝑙 ] .𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≤ 𝐴 [ℎ] .𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 then
14 𝑂 [ 𝑗 ] = 𝐴 [ℎ]
15 𝑂 [ 𝑗 − 1] = 𝐴 [𝑙 ]
16 else
17 𝑂 [ 𝑗 ] = 𝐴 [𝑙 ]
18 𝑂 [ 𝑗 − 1] = 𝐴 [ℎ]
19 end
20 𝑙 = 𝑙 − 1, ℎ = ℎ + 1, 𝑗 = 𝑗 − 2
21 end
22 CopyRemaining(𝐴,𝑂) /* copy remaining data from𝐴 to𝑂 */

non-recursive way of merge sort in our hardware implementation.
However, we identify that Vitis HLS requires the size of the array
to be sorted is a constant and a power of two [53], which prevents
us from using the original merge-sort hardware implementation.
This is because the non-zero frequencies to be sorted in our case
are neither fixed nor the power of two.

We note that the frequencies of symbols that are generated by
Lorenzo predictor and linear-scaling quantization [46] are symmet-
ric, as shown in prior studies [25]. We verify this in our experiments
with 1024 symbols, as shown in Figure 5 (symmetric with respect
to symbol 513). This feature inspires us to use an approximate sort
to improve the efficiency, since Huffman coding can accept the
approximately sorted symbols, which would not notably degrade
the compression ratio. Specifically, assuming 𝐴 is an unsorted ar-
ray with symbols, and 𝑂 stores sorted symbols. We initialize two
indexes 𝑙 and ℎ to represent the symbols to the left and right of the
middle symbol. We compare the frequencies of the two symbols
and store them in a correct order into 𝑂 . We then decrease 𝑙 by 1
and increase ℎ by 1 and repeat this till all symbols are sorted.

We describe our proposed approximate sort algorithm in Algo-
rithm 1 in detail. It has the time complexity of𝑂 ( 𝑛2 ), which is lower
than the time complexity of radix sort and merge sort. We compare
sort time of different sort algorithms with different symbol sizes.
The results shown in Figure 4 illustrate that our approximate sort
saves the sort time by 7.5× on average over the merge sort. More
details about our evaluation platform will be shown in Section 4.

3.2.2 Offline Huffman codewords generation. On the premise of
meeting the acceptable reduction in compression ratio, we pro-
pose to combine offline and online Huffman codewords generation
strategies in order to improve the throughput as much as possi-
ble. As shown in figure 2, the symbols generated at the beginning
by dual-quant will be encoded by offline codewords directly; at
the same time, we also collect the frequencies of symbols. We will
generate new Huffman codewords if the change of STD of symbol

frequencies is greater than the threshold 𝜏 . 𝜏 is a hyper-parameter,
and we will discuss it in the next section.

In order to make offline codewords representative, we generate
corresponding offline codewords for various types of datasets that
are currently available. The current types of offline codewords in-
clude Climate, Cosmology, Molecular, and Physics. When we target
to compress a certain type of dataset, we will use the offline code-
words corresponding to this type. However, when we encounter a
new type of dataset, we will first use the average offline codewords.
Then we will add the offline codewords of this new type into our
offline codewords repository for future uses.

Specifically, we generate offline codewords based on the follow-
ing four steps: 1 We set a suitable error bound to let our compressor
have a similar compression ratio on different datasets under the
same type. 2 We collect symbol frequencies on different datasets
under the same type. 3 We calculate the average symbol frequen-
cies from collected frequencies. The average symbol frequencies
are used to generate offline codewords. 4 We store the offline code-
words of this type into our offline codewords repository. In order
to make offline codewords representative and promising for high
compression ratio, we collect symbol frequencies based on all the
real-world datasets from the Scientific Data Reduction Benchmarks
(SDRBench) [41] and Datasets for Benchmarking Floating-Point
Compressors [27]. Figure 9 shows the ratio degradation by using
the offline codewords (will be showed in Section 4.4).

Moreover, to generate the average offline codewords, we use the
following three steps: 1 We set a suitable error bound to let our
compressor have a similar compression ratio on different datasets
under different types. 2 We collect symbol frequencies on different
datasets under different types. 3 We calculate the average sym-
bol frequencies from collected frequencies. The average symbol
frequencies are used to generate the average offline codewords.

Using different error bounds to compress the same dataset results
in different histograms of symbols (i.e., different distributions of
symbol frequencies). For example, using a larger error bound results
in a tighter histogram of symbols compared to using a smaller error
bound. In extreme cases where very large error bounds are used,
there can be only a few symbols for Huffman coding. To make
the offline codewords adaptive for a wide range of datasets, we
must choose suitable error bounds for multiple scientific datasets,
which can result in a similar histogram of symbols after employing
the Lorenzo predictor. In other words, we must control the error
bound for each dataset to provide a similar ratio. Instead of using
a trial-and-error approach to search the suitable error bound for
every dataset, we provide a theoretical analysis to predict the error
bound given a target ratio based on one-time sampling.

A naive solution to align different datasets with a similar com-
pression ratio is to use the same value-ranged-based relative error
bound2 instead of the same absolute error bound. While using the
same value-ranged-based relative error bound for different datasets
can reduce the divergence of their symbols’ histograms, it cannot
guarantee that the compression ratio of different datasets is similar
to each other. In our experiment, we identify the compression ratio
range of 4∼13× when using the same value-ranged-based relative

2Note that unlike the pointwise relative error that is compared with each data value,
value-range-based relative error is compared with value range.



error bound for multiple scientific datasets. Our proposed solution
considers the efficiency of Huffman coding affected by error bound
to accurately estimate the error bound for a target compression
ratio. We assume the bit-rate of symbol after Huffman encoding is:

mean(𝐿) =
𝑛∑
𝑖=0

𝑃 (𝑠𝑖 )𝐿(𝑠𝑖 ) ≈
𝑛∑
𝑖=0

𝑃 (𝑠𝑖 ) log2 𝑃 (𝑠𝑖 ), (1)

where 𝑛 is the number of different Huffman code, 𝑃 is the proba-
bility of given code 𝑠𝑖 , 𝐿 is the length of given code 𝑠𝑖 . We further
represent the Huffman code length based on its probability with
binary base-2 numeral system. Note that in our case, 1024 symbols
are used for Huffman coding and thus are sufficient for this simplifi-
cation. Consider a given error bound 𝑒𝑏 can provide a bit-rate of 𝐵,
when doubling the error bound to 2𝑒𝑏, the symbols’ histogram also
shrinks accordingly where the total number of symbols is reduced
by 2× and the possibility of each symbol is increased by 2×. In this
case, the bit-rate should be:

𝐵′ =
𝑛/2∑
𝑖=0

𝑃 ′(𝑠𝑖 ) log2 𝑃 ′(𝑠𝑖 ) ≈
𝑛/2∑
𝑖=0
(𝑃 (𝑠2𝑖−1) log2 𝑃 ′(𝑠2𝑖−1)

+ 𝑃 (𝑠2𝑖 ) log2 𝑃 ′(𝑠2𝑖 )) − 1 = 𝐵 − 1 (2)
Thus, we conclude that by doubling the error bound, the bit-rate

should increase by 1. Furthermore, we can derive that if the com-
pression bit-rate is 𝐵 under the error bound 𝑒𝑏, then under the new
error bound 𝑁𝑒𝑏 the predicted bit-rate is 𝐵′ = 𝐵− log2 𝑁 . Note that
the SZ algorithm uses previous data points’ quantized values to pre-
dict the value of current point based on Lorenzo prediction, which
means different error bounds would affect the shape of symbols’
histogram. However, based on our experiments, this only applies
to very large error bounds and hence few quantization bins. In our
case, we simplify this to a fixed symbols’ histogram shape under
different error bounds, yielding a precise 2× shrink when doubling
the error bound.

With the above analysis, we can simply compress each scientific
dataset once with the same value-ranged-based relative error bound
𝑒𝑏 and compute the optimized error bound 𝑒𝑏 ′ for the target bit-rate
𝐵target based on the current bit-rate 𝐵 by 𝑒𝑏 ′ = 2𝐵−𝐵target𝑒𝑏.

3.2.3 Adaptive online codewords updates. In general, on one hand,
the more frequently we update the codewords, the closer we can
get to the optimal codewords in terms of compression ratio. On the
other hand, too frequently updating codewords may decrease the
throughput, since the newly generated codewords need to be stored.
Moreover, if we do not update the codewords, the compression ratio
may decrease as well, because the old codewords are too outdated
to reflect current distribution of symbol frequencies. In order to
solve this problem, we use two effective metrics to determine when
to generate new codewords: 1 the storage overhead of codewords
and 2 the change of distribution of symbol frequencies.

For example, suppose we have 𝑆 symbols and 𝑆 codewords. Each
codeword is 𝐵 bits on average after canonization process. We have
size(codewords) = 𝑆 ×𝐵. Our target compression ratio is𝐶 . The
bit-rate of original data is𝑊 . For single or double floating-point data
set, the bit width is 32 or 64 bits per value. The bit-rate 𝑅 is 𝑊

𝐶
. Bit-

rate 𝑅 can also be regarded as an average bit length of compressed
data. We have size(compressed data) = 𝑅 ∗ 𝑁 , where 𝑁 is the
total number of original data. Assume the ratio of the codewords

(a) NWChem (b) HACC

(c) CESM (d) Brown

Figure 5: Distribution of symbol frequencies on four scientific
datasets, i.e., NWChem [38], HACC [20], CESM [8], and Brown [5].

size to the compressed data size is 𝑂 , if the codewords overhead is
set to be less than 10%, 𝑆×𝐵

𝑆×𝐵+𝐶×𝑁 ≤ 10%.
The symbols generated by dual-quant present a centralized and

symmetric distribution, as shown in Figure 5. The generated code-
words are highly related to the distribution of symbol frequen-
cies [3]. These good characteristics inspire us to evaluate the sim-
ilarity of two sets of symbol frequencies using STD. Specifically,
assume 𝜎0 is the STD obtained from the previous data chunk, 𝜎1 is
the STD obtained from the current data chunk, and 𝜒 = |𝜎0 − 𝜎1 |.
We define a set of thresholds 𝜏𝑥 and propose the following strategy:
• We will not generate new codewords if 𝜒 ≤ 𝜏0 (two frequencies
with similar distributions generate almost identical codewords)
but keep using the old codewords;
• We will generate new codewords if 𝜏0 < 𝜒 ≤ 𝜏1;
• We will use the offline Huffman codewords if 𝜒 ≥ 𝜏1.
We are processing data that is completely different from the

previous data if distribution changes drastically. We need to clear
the histogram of compression engine and collect new symbol fre-
quencies. We set 𝜏0 and 𝜏1 as 3.05 and 4.88, respectively, after com-
prehensive experiments (will be discussed in detail in Section 4.5).

Note that our design is different from other Huffman coding
works in terms of adaptivity. For example, Tian et al. [50] proposed
a reduction-based scheme for GPUs that iteratively merges the
encoded symbols and adaptively determines the number of merge
iterations. However, CEAZ only builds a new codebook for the data
chunkwhen the change of its histogram exceeds a threshold in order
to target FPGA with limited resources and low clock frequency.

3.3 Parallel I/O Accelerator
Figure 6 shows the overview of our system architecture integrated
with CEAZ compression engine. Our system includes two parts:
1 The host partitions the input dataset and feed the chucked data
through the PCIe. Raw data is buffered in high-bandwidth memory



Figure 6: Overview of system architecture integrated with CEAZ.

(HBM) with 460 GB/s bandwidth and converted into stream data by
memory to stream (mm2s) unit. 2 The compression engine com-
presses the stream data in real-time and output compressed data.
Ethernet intellectual property (IP) packs the compressed data ac-
cording to the network protocol. QSFP28 (fiber optical transceiver)
gigabit transceiver (GT) finally outputs packed data into network.

Many scientific applications, such as cosmology simulations,
need to periodically dump a huge amount of raw simulation data
to the storage for post-hoc analysis and visualization after simu-
lations. Data across all computing nodes needs to be aggregated
to the storage node(s). Even though state-of-the-art supercomput-
ers are using InifniBand interconnect (e.g., 200 Gb/s), it can take
hours to complete the data aggregation and save (e.g., 1.5 TB/s of
aggregated I/O bandwidth and 4.85 PB memory capacity in Fugaku
supercomputer [36]). Therefore, we propose to apply CEAZ to the
future HPC systems, as shown in Figure 7.
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Figure 7: Overview of CEAZ-supported parallel I/O system.

Specifically, CEAZ is directly integrated into the FPGA-based
SmartNIC in each computing node and used to compress the raw
data before transmitting it to the storage system via interconnec-
tion network. There are two main scenarios to use the CEAZ-
compressed data in the storage: 1 checkpoint/restart and 2 post
analysis and visualization. Thus, there is no need to change the stor-
age system to adapt to our design, since the data is compressed (de-
compressed) before (after) sending (receiving) to (from) the network
adapter. Note that similar to the FPGA-based SmartNIC, the emerg-
ing Data Processing Unit (DPUs) [12]—a class of programmable
processor—based SmartNIC can also offload and improve applica-
tion performance for communications and storage. We will extend
CEAZ to DPU-based systems in future work.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed FPGA-based error-bounded
lossy compressor CEAZ and demonstrate its effectiveness in two
perspectives: (1) the effectiveness of the proposed adaptive compres-
sion algorithm and the performance (i.e., throughput and latency) of

Table 1: Test datasets from Scientific Data Reduction Benchmarks.

type name # fields precision dimensions size

Climate CESM 77 float 1,800×3,600 1.86 GB

Cosmology HACC 6 float 280,953,867 6.28 GB
NYX 6 float 512×512×512 3.0 GB

Molecular NWChem 3 double 1,617,048,176 12.05 GB

Physics S3D 55 double 500×500×500 51.22 GB

Other Brown 3 double 33,554,433 0.75 GB

its accelerator implementation, and (2) the improvement of parallel
I/O supported by CEAZ in different scales.

4.1 Experimental Setup

Experimental Platform. We use two platforms as our testbed. The
first platform is Xilinx Alveo U280 Data Center accelerator card,
which is equipped with a PCIe Gen4x8 with CCIX to leverage the
latest server interconnect infrastructure for high-bandwidth host
processors, 8 GB HBM2 and 32 GB on-board DDR4 DRAM. CEAZ is
implemented with Xilinx Vitis unified software platform (v.2020.2)
[52]. The second platform (for parallel I/Os) is Summit [43], which is
one of the most powerful supercomputers in the world. We perform
GPU experiments on an NVIDIA Tesla V100 GPU.

Test Datasets. To conduct our evaluation and comparison un-
der realistic scenarios, we use six real-world datasets from the
Scientific Data Reduction Benchmarks [41]. Datasets belong to var-
ious domains: 1 2D CESM-ATM climate simulation [8]. 2 1D
HACC cosmology particle simulation [20]. 3 3D NYX adaptive
mesh hydrodynamics and N-body cosmological simulation [20].
4 1D NWChem two-electron repulsion integrals computed over
Gaussian-type orbital basis sets [38]. The sizes of the three fields
are 102,953,248, 801,098,891, and 712,996,037, respectively. 5 3D
S3D Combustion simulation [28]. Each raw file needs to be split
into 11 files to form the data size of 500 × 500 × 500. 6 1D Brown
Samples synthetic and generated to specified regularity [5]. More
details about the datasets can be found in Table 1.

4.2 Resource Utilization and Clock Frequency
Table 2 shows the breakdown of hardware resource utilization of
CEAZ. To provide a fair comparison with BurstZ, we implement 32
pipelines for single-precision datasets and 16 pipelines for double-
precision datasets. U280 has 2 HBM2 stacks and each stack has 16
channels. Each channel is 32-bits data width. 32 pipelines require
a data width of exactly 1024. The BRAM_18K is dual-port RAM
module instantiated into the FPGA for on-chip storage, and its size
is 18k bits. DSP block is an arithmetic logic unit. FF represents for
flip-flop. Look-up table (LUT) is the basic building block of an FPGA
and is capable of implementing any logic function. The running
frequency based on our measurement is slightly lower than the
clock frequency we set (i.e., 300 MHz) but is still around 300 MHz.
Note that N/A means the utilization data is not provided in the
BurstZ work [44].

4.3 Evaluation on Robustness
There are mainly two cases where the codewords change drasti-
cally. The first case is at the very beginning of the compression



Table 2: Hardware resource utilization.

board BRAM_18K DSP FF LUT percent

BurstZ VCU118 222 N/A N/A 125000 <5%
CEAZ U280 475 256 67623 302407 <28%

process. The offline codewords at the beginning may be largely
different from the actual codewords. The second case is during the
compression process, the statistics of input data chunk suddenly
change. Therefore, we need to evaluate the response time of our
system to these cases, which is the duration that our system needs
to recover to a reasonable compression ratio.
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Figure 8: Response time when codewords change drastically.

To prove the robustness of CEAZ, we concatenate two different
datasets with different types. Specifically, we concatenate CESM
and NYX for the first dataset and concatenate NWChem and S3D
for the second dataset. The reason that we concatenate different
datasets is that codewords can change drastically both at the begin-
ning and during the processing. Figure 8 shows the response time
when current codewords are significantly different from the actual
codewords. In the figure, “Actual-0” and “Actual-1” represent for
the actual compression ratio of CEAZ on the two datasets based on
offline codewords or previous chunk’s codewords, while “Ideal-0”
and “Ideal-1” represent for the ideal compression ratio that CEAZ
can achieve on the two datasets using the codewords generated
from current chunk. We note that CEAZ can recover to a reasonable
compression ratio with only 3.52𝑚s with a strong robustness.

4.4 Evaluation on Offline Codewords and
Codewords Update Frequency

We use predefined (offline) codewords at the beginning of the com-
pression process. To prove the effectiveness of our predefined code-
words, we evaluate four datasets (i.e., NWChem, HACC, CESM,
and S3D) using these codewords with the same value-ranged-based
relative error bound of 1e-4 and compare their compression ratios
with the optimal ones, as shown in Figure 9. The orange bars repre-
sent the ideal compression ratio achieved by first building Huffman
tree and then generating accurate codewords. The blue bars repre-
sent the compression ratio by directly using our offline codewords.
The compression ratio drops on NWChem, CESM, and S3D are
5.1%∼10.7%. The compression ratio degradation on HACC is more
obvious (i.e., ∼18.2%); this is because the Lorenzo predictor has low
efficiency on HACC dataset, causing many outliers (unpredictable
data points), and the distribution of quantization codes generated
by the Lorenzo predictor is not statistically representative.

eb NWChem (BurstZ) Brown (BurstZ) CESM (BurstZ) S3D (BurstZ) NWChem (CEAZ)

1e-3 5.34 4.68 5.46 5.6 37.57

1e-4 4.13 3.3 3.6 3.91 19.38

1e-5 2.9 2.49 2.68 2.8 3.58

1e-6 2.37 2.18 2.435 2.41 4.31

eb NWChem (SZ) Brown (SZ) CESM (SZ) S3D (SZ) NWChem (CEAZ)

0.001 53.3 62.2 23.2 49.2 51.7

0.0001 30.6 49.3 13.1 41.3 28.2

0.00001 15.2 18.7 7 28.8 11.4

0.000001 8.8 9.6 4 17.5 7.6

psnr

eb NWChem (SZ) Brown (SZ) CESM (SZ) S3D (SZ) NWChem (CEAZ)

0.001 67.5 64.7 64.8 69.2 70.1

0.0001 86.7 84.7 85.9 85.4 90.4

0.00001 105 104.8 105.3 104.7 107.7

0.000001 124.9 124.8 125.4 124.9 126

NWChem HACC CESM S3D

online 20.43 3.782 12.69 35.54

offline 19.38 3.093 11.33 33

0.051395007 0.182178741 0.107171001 0.071468768

NWChem HACC CESM S3D

target 21 10.5 10.5 21

actual 22.57 11.25 9.95 20.31
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Figure 9: Comparison of compression ratio (CR) between offline
codewords and online codewords.

We note that even though HACC’s compression ratio drops
more than 18.2%, the compression ratio over 3× can still relieve
the communication pressure to a certain extent thanks to our high
throughput (will be discussed in Section 4.8).

As aforementioned, frequently updating codewords will decrease
the compression ratio due to the overhead of saving codewords. We
evaluate the impact of update frequency on the final compression
ratio. We perform the experiments on both CESM and NYX. We set
the error bound to the value-range-based relative error bound of
1e-4. We choose to update the codewords every 1 MB, 2 MB, 4 MB,
16 MB, 32 MB, 64 MB, 128 MB, 256 MB, and 512 MB. We find that
the compression ratio is significantly reduced when the update size
is smaller than 32, because the overhead of storing the codewords
is relatively large. Moreover, we also observe that the compression
ratio decreases when the update size is larger than 256 MB. The
reason is that the codewords are outdated to reflect the current
symbols frequencies. Therefore, we choose 32 MB as our default
update size.

4.5 Evaluation on Change of Standard
Deviation of Symbol Frequencies

As aforementioned, we use the change of standard deviation of sym-
bol frequencies (i.e., 𝜒 =| 𝜎0 − 𝜎1 |) to determine when to generate
new codewords, use old codewords, or use offline codewords. Using
previous codewords under a large 𝜒 (a large difference between
current and previous distribution) results in a notable drop of com-
pression ratio, while generating new codewords under a small 𝜒 (a
small difference between current and previous distribution) leads
to a high overhead of Huffman coding. Thus, we use experiments
to find the suitable thresholds 𝜏0 and 𝜏1. As shown in Figure 10,
the drop of ratio is less than 10% when 𝜒 ≤ 3.05, while the drop
is over 25% when 𝜒 ≥ 4.88. So, we set 𝜏0 and 𝜏1 to 3.05 and 4.88,
respectively, to meet both requirements on ratio and performance.
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Figure 10: Compression ratio drops with different changes of STD.



4.6 Evaluation on Fixed-Ratio Mode
As discussed in Section 3, our novel compression engine has two
working modes: fixed-accuracy mode (i.e. error-bounded mode) and
fixed-ratio mode (i.e., fixed bit-rate mode). The fixed-ratio mode
can allow the system have a consistent throughput for data transfer.
To verify the effectiveness of our fixed-ratio mode, we set the target
compression ratios of 10.5 and 21 for single and double floating-
point data, respectively. Figure 11 shows the compression between
the target ratio and the actual ratio. The difference is within 7.5%,
which is acceptable in our use case.
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Figure 11: Comparison of target & actual ratio in fixed-ratio mode.

4.7 Evaluation on Ratio and Distortion
Compression ratio is defined as the ratio of original data size to
the compressed data size. PSNR is a widely used indicator to as-
sess the distortion of data after lossy compression, which is cal-
culated as PSNR = 20 · log10

[
(𝑑max− 𝑑min)/RMSE

]
. 𝑁 is the num-

ber of data points and 𝑑max and 𝑑min are the maximal and mini-
mal values, respectively. RMSE is the root mean squared error, i.e.,
sqrt

(
1
𝑁

∑𝑁
𝑖=1

(
𝑑𝑖 − 𝑑•𝑖

)2) , where 𝑑𝑖 and 𝑑•𝑖 are the original and de-
compressed data values, respectively. The larger the PSNR, the
lower the data distortion, hence more accurate post analysis.
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Figure 12: Ratio comparison among BurstZ, CEAZ, and SZ.

Figure 12 shows the comparison of compression ratio among
BurstZ, CEAZ, and CPU-SZ on our test datasets with different
value-ranged-based relative error bounds of 1e-3∼1e-6. The com-
pression ratio of our CEAZ is notably higher than that of BurstZ.
CEAZ consistently provides 1.2×∼16.4× higher compression ratio
than BurstZ under the same error bound. Particularly, our CEAZ

improves the compression ratio by up to 12× on the Brown dataset
over BurstZ when the error bound is equal to 1e-3. Compared to the
CPU-SZ, the degradation of compression ratio is within 23.3% on all
test datasets and reasonable error bounds. This result demonstrates
the effectiveness of our adaptive strategy and offline codewords.

We also compare the compression ratio and throughput among
LZ4, Gzip, and CEAZ with the best compression mode for LZ4/Gzip.
Table 3 illustrates that CEAZ is effective to reduce the scientific
data size with high throughput.

In addition, Table 4 shows the comparison of distortion (PSNR)
between CEAZ and CPU-SZ under different error bounds. The
degradation of PSNR is within 4 dB under very high PSNRs (all
higher than 60 dB).

Table 3: Comparison of compression ratio and averaged throughput
(in GB/s) among LZ4, Gzip, CEAZ, and CPU-SZ on test datasets.

eb NWChem Brown CESM S3D throughput

LZ4 N/A 1.005 1.003 1.182 1.055 1.43
Gzip N/A 1.056 1.442 1.361 1.181 1.14
CEAZ 1e-4 20.4 58.2 12.3 35.0 17.8
CPU-SZ 1e-4 21.5 58.2 12.5 43.0 0.31

Table 4: Distortion (i.e., PSNR) comparison between CEAZ and SZ.

eb NWChem Brown CESM S3D

SZ CEAZ SZ CEAZ SZ CEAZ SZ CEAZ

1e-3 65.8 75.1 64.7 64.8 65.6 65.4 71.2 68
1e-4 85.8 90.4 84.8 84.8 85.4 84.8 88.8 84.9
1e-5 105.6 107.7 104.8 104.8 105.4 105.3 108.2 104.8
1e-6 125.0 126.0 124.8 124.8 125.5 125.3 127.7 124.8

4.8 Evaluation on Time, Throughput, Latency
Time. The compression time (excluding the file loading and

dumping time) is measured as the period from the moment that
FPGA receives the data through the moment that the whole com-
pression is finished with output bytes. We show the comparison of
compression time among BurstZ, CEAZ, and CPU-SZ in Table 5.
The error bounds are 1e-4 and 1e-5. We observe that CEAZ re-
duces the compression time on average 55.8% compared with the
second-best BurstZ on the same dataset.

Table 5: Compression time (in second) of different compressors.

eb NWChem Brown CESM S3D

BurstZ 1e-4 1.65 0.09 0.23 6.40
BurstZ 1e-5 1.70 0.13 0.35 9.67
CEAZ 1e-4 0.67 0.04 0.11 2.93
CEAZ 1e-5 0.67 0.04 0.11 2.93
CPU-SZ 1e-4 27.6 1.58 12.28 141.4
CPU-SZ 1e-5 28.6 1.59 12.37 160.8

Throughput. The compression throughput is defined as the size
of data being compressed per second. In order to compare the com-
pression throughputs on CPU and GPU, we evaluate the through-
puts of CPU-SZ, cuSZ, cuZFP, and CEAZ across three datasets, as
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Figure 13: Throughput comparison among BurstZ, CEAZ, CPU-SZ.

shown in Figure 13. We set the error bound to 1e-4, which has the
data distortion (i.e., PSNR) of about 85 dB.

Note that the throughput of cuZFP is highly related to its user-
set fixed bitrate according to the previous study [24], whereas the
throughputs of BurstZ, cuSZ, and CEAZ are almost unaffected by
the user-set error bound. Therefore, we choose the acceptable fixed
bitrate for cuZFP, which generates the data distortion similar to that
of CEAZ. The figure illustrates that CEAZ can consistently provide
about 17.8 GB/s throughput with different error bounds, which
is 2.3× higher than BurstZ on average. Compared with the serial
CPU-SZ, CEAZ improves the throughput by 67.4× on average.

It is worth noting that CEAZ can provide at least 3.0× higher
compression ratio compared to BurstZ when error bounds are from
1e-3 to 1e-4. Due to such a high compression ratio (or high data
reduction capability), the bandwidth of dumping compressed data
(even with the smallest ratio) is still less than the bandwidth capac-
ity of the Ethernet transceiver in our FPGA board (i.e., 100 Gb/s),
thereby, the overall throughput has not been bounded by this ca-
pacity. Moreover, our clock frequency is around 300 MHz; thus, the
throughput could be further improved by increasing the frequency.

Table 6: Hardware specifications of tested GPU and FPGA.

Power Tech. BW Freq. Peak Perf.

V100 250W 12 nm 900 GB/s 1.25 GHz 15.7 TF/s
U280 225W 16 nm 460 GB/s 0.3 GHz -

CEAZ stably provides a compression throughput of 17.8 GB/s,
which is about 56%∼78% of cuSZ/cuZFP’s throughputs (note that
cuZFP has a fairly low compression quality on 1D HACC). CEAZ
and cuSZ/cuZFP are implemented on Xilinx Alveo U280 FPGA card
and Nvidia Tesla V100 GPU, respectively. Table 6 lists the hardware
specifications of V100 GPU and U280 FPGA. Note that V100 pro-
vides up to 900 GB/s bandwidth (1.96× higher than U280) and 1.25
GHz frequency (4.2× higher than U280). In addition, although we
cannot find U280’s theoretical peak performance, a similar FPGA,
Intel S10 NX, has the peak performance of 3.96 TF/s (4.0× lower
than V100) [4, 37]. Therefore, FPGA-based CEAZ is more efficient
in resource utilization than GPU-based cuSZ/cuZFP.

We also note that there is a recent work (called DE-ZFP) [19] that
develops an FPGA implementation of a modified ZFP algorithm.
However, the paper only evaluates DE-ZFP on three datasets with
two absolute error bounds. Thus, we select their tested data fields
that have reasonable relative error bounds (under the absolute error
bounds of 1e-3 and 1e-6) and perform a comparison. Our evaluation
shows that CEAZ has 1.7× higher compression ratio and 11.1×
higher compression throughput over DE-ZFP on average.

Table 7: Latency (𝜇s) of different lossy compressors on small data.

CPU-SZ cuSZ (GPU) cuZFP (GPU) CEZA (FPGA)

1 KB 69 358.3 16.6 3.7
4 KB 114 416.6 19.4 3.8
16 KB 147 507.4 27.4 4.5
64 KB 458 546.6 46.7 7.0

Latency. We evaluate the latency of CPU-SZ, cuSZ, cuZFP, and
CEAZ on small datasets to demonstrate the capability of using
CEAZ in reducing the communication cost in future work, as shown
in Table 7. The test small data are chunked from the CESM-ATM
dataset. The table illustrates that CEAZ achieves up to 113.4× and
6.7× lower latency than cuSZ and cuZFP, respectively.

4.9 Parallel Performance Evaluation
We demonstrate the parallel performance in two ways. We first
evaluate the throughput of CEAZ with multiple pipelines in the
single FPGA board. We then evaluate CEAZ with multiple nodes.

4.9.1 Multi-pipeline Evaluation. We choose the CESM-ATM and
NYX datasets and set the value-range-based error bound to 1e-4,
which is commonly used in the CESM and NYX applications [39].
We increase the compression pipelines from 1 to 64. Figure 14 illus-
trates that the throughput (in log-scale) increases linearly as the
number of pipelines increases. CEAZ can achieve this high scala-
bility because 1 our compression engine reads data from HMB2
with a very high bandwidth of 460 GB/s, and 2 our compression
engine adopts dual-quant to fully remove the data dependency so
that we can process different chunks of the dataset in parallel.
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Figure 14: Compression throughputs with multiple pipelines.

4.9.2 Multi-node Evaluation. We evaluate the performance im-
provements of MPI-IO and MPI collective operations gained from
CEAZ, i.e., MPI_File_write and MPI_Gather. We conduct our ex-
periments with up to 128 nodes (one process per node). Each node
holds a copy of datasets for compression and transmission, i.e., 3.0
GB of NYX and 10.2 GB of S3D per node. Thus, the overall data
size for parallel I/O is up to 1.3 TB with 128 nodes. We evaluate
CPU-SZ on both a single core and 32 cores with the error bound of
1e-3. Table 8 shows the compression ratio of CPU-SZ and CEAZ
on NYX and S3D with different error bounds.

Figure 15 (a) and Figure 15 (b) show the MPI-IO throughputs on
the NYX and S3D datasets with different approaches. The through-
put of original MPI_File_write (without compression) increases as
the number of nodes increases and can reach up to 30.5 GB/s with
128 nodes in Summit, as shown as the baselines in the figures. The
single-core-SZ-supported MPI_File_write only achieves an overall
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Table 8: Compression ratio of CPU-SZ and CEAZ on NYX and S3D.

NYX S3D
CPU-SZ CEAZ CPU-SZ CEAZ

1e-3 26 23.7 49.8 47.8
1e-4 14.7 12.8 43.0 33
1e-5 7.7 5.7 29.1 18.1

throughput of 51.0 GB/s (including compression time and time to
write compressed data) on S3D when using 128 nodes, which is
67.3% higher than the baseline. This is because the compression
throughput of single-core CPU-SZ (i.e., about 0.41 GB/s) is not
fast enough compared to the state-of-the-art interconnect such as
InfiniBand HDR with a bandwidth of 200Gb/s. Note that unlike
on S3D, the single-core-SZ-supported MPI_File_write on NYX is
slower than the baseline, since the compression ratio of SZ on NYX
(i.e., 26.0) is much lower than S3D (i.e., 49.8). The multi-core-SZ-
supported MPI_File_write can provide an overall throughput of up
to 456.56 GB/s when using 128 nodes, which is 15.0× higher than
the baseline. In comparison, CEAZ-supported MPI_File_write can
improve the overall throughput (including compression time and
time to write compressed data) by 18.0× and 28.9× on NYX and
S3D, respectively.

Figure 15 (c) and Figure 15 (d) show the MPI_Gather through-
puts on the NYX and S3D datasets with different approaches. The
throughput of original MPI_Gather reaches 12.4 GB/s with 128
nodes in Summit, as shown as the baselines in the figures. Simi-
lar to MPI_File_write, the single-core-SZ-supported MPI_Gather
only achieves an overall throughput of up to 48.7 GB/s with 128
nodes, which is just 3.9× higher than the baseline; the multi-core-
SZ-supported MPI_Gather can provide an overall throughput of up
to 316.9 GB/s when using 128 nodes, which is 25.6× higher than

the baseline. In comparison, CEAZ-supported MPI_Gather can im-
prove the overall throughput by 21.0× and 37.8× on NYX and S3D,
respectively, due to the high efficiency of CEAZ.

5 CONCLUSION AND FUTUREWORK
In this work, we propose CEAZ: a hardware-algorithm co-design
of efficient and adaptive lossy compressor for scientific data. To
achieve both high compression ratio and throughput, we propose
an efficient Huffman coding approach that can adaptively update
Huffman codewords online based on our offline generated represen-
tative Huffman codewords. We also derive a theoretical analysis to
accurately control compression ratio under the error-bounded com-
pression mode, enabling an accurate generation of offline Huffman
codewords and a fixed-ratio compression mode. Our evaluation
demonstrates that CEAZ outperforms the second-best FPGA-based
error-bounded lossy compressor by 2.3× of throughput and 3.0× of
compression ratio. CEAZ improvesMPI_File_write andMPI_Gather
by up to 28.9× and 37.8×, respectively, with 128 nodes in Summit.

In future work, we plan to deploy our system to FPGA-based
clusters and extend CEAZ to DPU-based systems.
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