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Abstract. We survey recent results on the local and global integrability of
a Lie algebroid, as well as the integrability of infinitesimal multiplicative geo-
metric structures on it.

1. Introduction. Our aim in this paper is to present an approach to integrability
problems in the context of the Lie theory for algebroids and groupoids consisting
of two steps:

infinitesimal
object

=) local
object

=) global
object

Two examples of this are:

1) Given a Lie algebroid, one first integrates it to a local Lie groupoid – which is
always possible. One then tries to enlarge the local Lie groupoid to a global Lie
groupoid.

2) Given a Poisson manifold, one first integrates it to a local symplectic groupoid
– which is always possible. Assuming that the local Lie groupoid extends to a
global Lie groupoid, one then tries to extend the symplectic form to the global
Lie groupoid.

The idea of using a local-global approach is very old in classical Lie theory. One
illustration is the use of the Baker-Campbell-Hausdor↵ formula to prove the Lie
correspondence. However, in the case of algebroids and groupoids, due to the failure
of Lie’s Third Theorem, the local-global approach was understood only recently,
thanks to the contributions of several authors [2, 3, 7, 8, 19, 37].

This local-global approach is an alternative to the A-path construction approach
first used in [12] to study the failure of Lie’s Third Theorem for Lie algebroids.
Although the A-path construction has proved to be extremely successful, we believe
that the local-global approach provides a complementary perspective, gives new
insights into integrability problems, and it deserves to be widely known.
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The subject of this paper is very much related to Kirill Mackenzie’s mathematical
life. In the next section we will provide a personal historical account about these
connections, as well as a detailed description of the contents and results contained
in this paper.

2. Integrability problems and Mackenzie’s contributions. The main prob-
lem that initially drove the mathematical life of Kirill Mackenzie was the validity of
Lie’s Third Theorem for Lie algebroids. In the late 1960’s, Pradines had sketched in
a series of short papers published in the Comptes Rendus de l’Académie des Sciences
de Paris [32, 31, 33] a Lie theory for Lie algebroids and Lie groupoids. In particular,
Pradines claimed that every Lie algebroid integrates to a global groupoid. With the
aim of giving a complete proof of this statement, Mackenzie developed a strategy
in the style of the Cartan and van Est [35] cohomological proof for Lie algebras and
Lie groups. He found a cohomological obstruction to integrability of transitive Lie
algebroids and he tried to show for some time that this obstruction vanished. Dur-
ing this period he learned that Almeida and Molino [1], while studying transversally
parallelizable foliations, had found that the statement is actually false: there are
Lie algebroids which do not integrate to Lie groupoids. Still, Mackenzie’s strategy
paid some dividends, since his obstruction allowed to decide which transitive Lie
algebroids were actually integrable, as he explained in detail in his first monograph
[25].

The obstructions to integrability for a general (i.e., not necessarily transitive) Lie
algebroid took another 20 years to be fully understood, and was finally settled by
Crainic and Fernandes in [12]. The solution proposed in [12] rests on the so-called
A-path space construction. Given any Lie algebroid A one constructs a A-path
homotopy groupoid:

G(A) =
{A-paths}

A-path homotopy
,

This is a topological groupoid which has the following properties:

(i) A is integrable if and only if G(A) inherits a quotient smooth structure from
the space of A-paths, and

(ii) The obstructions to smoothness can be expressed in terms of certain mon-
odromy groups.

In the transitive case, one can recover from this approach Mackenzie’s cohomological
obstruction. The A-path space construction has its roots, on the one hand, on the
Poisson sigma model approach to the integrability of Poisson manifolds due to
Cattaneo and Felder [9] and, on the other hand, on ideas of Severa [34] inspired
by Sullivan’s rational homotopy theory. Another source of inspiration for [12] was
a similar path approach due to Duistermaat and Kolk for the special case of Lie
algebras that appeared in their monograph [17].

Several other integrability problems have filled Mackenzie’s mathematical life.
For example, a Lie algebroid often carries an additional geometric structure and one
is interested in integrating it along with the Lie algebroid. One paradigmatic ex-
ample is the cotangent Lie algebroid T

⇤
M of a Poisson manifold (M,⇡). Weinstein

[36] and Karasev [23] had found that the global object corresponding to a Poisson
manifold (M,⇡) is a symplectic groupoid (G,⌦), meaning a Lie groupoid G ◆ M to-
gether with a multiplicative symplectic form ⌦ 2 ⌦2(G). The Lie groupoid G ◆ M

is an integration of T ⇤M , so the integrability of T ⇤M is an obstruction to integrate
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a Poisson manifold (M,⇡). The remaining question was then if a groupoid integrat-
ing T

⇤
M carries a multiplicative symplectic form. An answer to this question was

provided by Mackenzie and Xu.

Theorem 2.1 (MacKenzie and Xu [27]). A target 1-connected Lie groupoid inte-

grating the cotangent bundle of a Poisson manifold (M,⇡) is automatically a sym-

plectic groupoid.

Note that the 1-connectedness assumption cannot be avoided: there are exam-
ples of Lie groupoids integrating the cotangent bundle of a Poisson manifold (M,⇡)
which do not carry any symplectic form. Mackenzie’s second monograph [26] con-
tains a detailed discussion of this result. One can also use the A-path space con-
struction to describe explicitly the multiplicative symplectic form ⌦ on G(T ⇤M) –
see [13] – and Cattaneo and Felder in [9] showed that it can be viewed as an infinite
dimensional symplectic quotient.

More generally, one can ask if an infinitesimal multiplicative geometric structure,
such as a di↵erential form, a multivector field, a tensor field, a connection, etc, on an
integrable Lie algebroid A can be integrated to a multiplicative geometric structure
on some groupoid G integrating A. In the last 15 years many such results have
been proved (e.g., [3, 4, 5, 6, 15, 10, 16, 21, 22, 24, 30]). Here, we will focus mainly
on the case of forms for which we have the following generalization of the result of
Mackenze and Xu:

Theorem 2.2 ([3, 5]). Let G ◆ M be a target 1-connected Lie groupoid integrating

a Lie algebroid A!M . There is a 1:1 correspondence:

⇢
infinitesimal multiplicative

k-forms on A

�
 ̃!

⇢
multiplicative

k-forms on G

�

Not surprisingly, this type of result can also be proved using the A-path con-
struction and, ultimately, it amounts to the integration of an algebroid morphism
to a groupoid morphism (see [3]).

As stated in the Introduction, our aim here is to present a local-global approach
to such integrability problems. This approach starts with the following key result:

Theorem 2.3 ([12]). Every Lie algebroid integrates to a local Lie groupoid.

Here by “local” one means that the multiplication is only defined for arrows
close enough to the the identity arrows (see Section 4.1 for the precise definition).
This result was also first announced by Pradines [33], but he never published a
proof. If, e.g., one tries to extend the known result from Lie groups one faces the
problem of finding a Baker-Campbell-Hausdor↵ formula. In the special context of
Poisson manifolds, the existence of a local symplectic groupoid had been proved
before in [11], using local symplectic realizations. The original proof of Theorem
2.3 in [12] uses an A-path space construction. More recently, in [8] a new proof
for Lie algebroids was found which can be viewed as a generalization of the Coste,
Dazord and Weinstein proof: using a Lie algebroid connection r on A the authors
construct a local Lie groupoid in a neighborhood of the zero section of A, which
they call the spray groupoid, and which we will recall in Section 4.2.

The next obvious step is to solve the question of whether a local Lie groupoid is
contained in a (global) Lie groupoid, i.e., whether a local Lie groupoid is “globaliz-
able” – sometimes called “enlargeable”. In the case of Lie groups this problem was
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first studied by Mal’cev [28] (see also [29]) who showed that the lack of associativ-
ity is the only obstruction to embedding a local group in a global one. Recently,
Mal’cev’s Theorem was extended to realm of local Lie groupoids:

Theorem 2.4 (Mal’cev’s theorem for groupoids [19]). A local Lie groupoid is glob-

alizable if and only if its multiplication is globally associative.

Let us explain what is the global associativity property in the statement. The
associativity axiom for a local groupoid requires that for every triple of composable
arrows one has:

g(hk) = (gh)k,

provided both sides are defined. While for a (global) Lie groupoid this implies that
associativities involving 4 or more elements also hold, this is not true for a local Lie
groupoid. So, for example, there exist local Lie groupoids ([19, 29]) in which one
can find 4 elements such that:

(gh)(kl) 6= g(hk)l,

so that 4-associativity does not hold – see the discussion in Section 5.1. An obvious
necessary condition for a local groupoid to be globalizable is that n-associativity
holds for all n � 3, in which case we say that the local Lie groupoid is globally

associative. Mal’cev’s theorem states that this condition is also su�cient.
The proof of Mal’cev’s theorem uses the notion of associative completion of a local

groupoid. Given a local groupoid G ◆ M its associative completion is a groupoid
AC(G) ◆ M obtained by considering the well-formed words with alphabet in G

modulo the equivalent relation generated by contractions:

(g1, . . . , gi, gi+1, . . . , gn) ⇠ (g1, . . . , gigi+1, . . . , gn).

Actually, AC(�) is a functor: any morphism � : G! H of local groupoids yields a
groupoid morphisms AC(�) : AC(G)! AC(H) – see Section 5.2 for more details.

In general, if G is a local Lie groupoid, AC(G) is not a Lie groupoid, it is only a
topological groupoid. An element in the isotropy

g 2 Gx = s
�1(x) \ t

�1(x)

is called an associator at x if there is a well-formed word (g1, . . . , gn) which admits
two sequences of contractions: one ending at g and the other one ending at the
identity 1x. The set of all associators, denoted Assoc(G), is contained in the kernel
of the completion map G! AC(G), and one of the main results in [19] shows that
the associators control the smoothness of AC(G):

Theorem 2.5 ([19]). For a local Lie groupoid G the completion AC(G) is a Lie

groupoid if and only if Assoc(G) is uniformly discrete in G.

The functor AC(�) shares obvious similarities with the integration functor G(�),
which associates to a Lie algebroid the space of A-paths modulo A-homotopies.
This is pursued much further in [19], which contains a result giving the precise
relationship between the associators and the monodromy groups of [12], expressing
the obstructions to integrability. This will be explained briefly in Section 5.4.

All together, the previous results establish the local-global path to integrability of
Lie algebroids. So let us turn now to the integrability of infinitesimal multiplicative
structures. One of the advantages of the local integration of a Lie algebroid A by a
spray groupoid G, is that it allows to find an explicit integration of any infinitesimal
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multiplicative form, and any other infinitesimal multiplicative objects. So one has
the first step in the local-global path to integrability of such objects:

Theorem 2.6 ([7]). If G ◆ M is a spray groupoid of a Lie algebroid A ! M

associated with an A-connection, there is an explicit 1:1 correspondence:

⇢
infinitesimal multiplicative

k-forms on A

�
 ̃!

⇢
multiplicative

k-forms on G

�

Here by explicit we mean that there are local formulas describing the multiplica-
tive form in terms of the IM-form – see Theorem 3.4.

Finally, for the second step in the local-global path to integrability infinitesimal
multiplicative objects, one needs to find if one can extend a multiplicative struc-
ture on a local groupoid G to a multiplicative structure on its completion AC(G),
assuming that the completion is smooth. Since AC(G), in general, will not have 1-
connected target fibers one cannot apply Theorem 2.2. However, perhaps somewhat
surprisingly, one finds that one can always extend such objects:

Theorem 2.7 ([2]). Let G be a local Lie groupoid and assume that Assoc(G) is

uniformly discrete in G. Then there is a 1:1 correspondence:

⇢
multiplicative

k-forms on G

�
 ̃!

⇢
multiplicative

k-forms on AC(G)

�

We will discuss this result, including a detailed proof, in the last section of the
paper. There we will also discuss how this result is related to the integrability of
IM-forms for Lie groupoids with 1-connected t-fibers stated in Theorem 2.2, and
see that it leads to an independent proof of this result.

Notations and Conventions. Throughout the text, local groupoids will be de-
noted by Latin letters (e.g. G), and global groupoids will be denoted by calligraphic
versions (e.g. G). If A is a Lie algebroid, then G(A) will denote the associated
target-simply connected groupoid (it is global, so it has a calligraphic symbol.) Ar-
rows of a groupoid compose from right to left, so that multiplication gh = m(g, h)
is defined if s(g) = t(h). We also denote the identity section by u : M ! G and
the inverse map by ◆ : G ! G. The Lie algebroid of a Lie groupoid is defined
using left-invariant vector fields, so A = ker dMt. Finally, for a symplectic groupoid
(G,⌦) ◆ M the Poisson structure on the base is the unique one making the target
a Poisson map. We use as a general reference for Lie groupoids and Lie algebroids
the Lecture Notes [14], but note that they follow conventions di↵erent from ours.

3. From Lie groupoids to Lie algebroids. Given a Lie groupoid G ◆ M with
Lie algebroid (A, [·, ·]A, ⇢) an A-connection r defines an exponential map expr :
A! G which is a di↵eomorphism in an open set V ⇢ A containing the zero section.
In this section we explain how to use this exponential map to obtain (i) a (local)
groupoid structure on V from the groupoid structure on G and (ii) multiplicative
geometric structures on V from multiplicative geometric structures on G.

3.1. Connections, sprays and exponential map. Let (p : A!M, [·, ·]A, ⇢) be
a Lie algebroid. Recall that an A-path is a path a : I ! A, defined on some interval
I, satisfying:

⇢(a(t)) =
d

dt
p(a(t)), 8t 2 I.
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We denote by r an A-connection on A – see [18] – so that r : �(A)⇥�(A)! �(A)
is R-bilinear and satisfies:

rf↵� = fr↵�, r↵f� = fr↵� + ⇢(↵)(f)�,

for all f 2 C
1(M) and ↵,� 2 �(A). Lie algebroids always carry such connections

and one can choose r to be torsion-free, i.e., such that the torsion

T
r(↵,�) := r↵� �r�↵� [↵,�]A,

vanishes identically.
Given an A-connection r the geodesics are the A-paths a : I ! A satisfying:

raa = 0.

They are the integral curves of a vector field Xr 2 X(A) called the geodesic spray
of the connection. Fixing a chart (U, xi) for M and local basis of sections {er} for
�U (A) one has local coordinates (xi

, ⇠
r) for the total space A. Then one finds the

following local expression for the spray:

Xr =
X

i,k

⇢
i
k(x)⇠

k @

@xi
�

X

k,l,m

�m
kl(x) ⇠

k
⇠
l @

@⇠m
, (1)

where the coe�cients are defined from the anchor and the connection by:

⇢(ek) =
X

i

⇢
i
k(x)

@

@xi
, rekel =

X

m

�m
kl(x)em.

Using this expression, one sees that the spray Xr 2 X(A) satisfies two basic prop-
erties:

(S1) dap(Xr|a) = ⇢(a), for all a 2 A,
(S2) (mt)⇤Xr = 1

tXr, for all t > 0,

where p : A!M denotes the projection andmt : A! A is the scalar multiplication
by t 2 R. These properties completely characterize the spray, and in fact one checks
easily that:

Lemma 3.1. Given a Lie algebroid A!M , there is a 1:1 correspondence between

torsion free A-connections and vector fields X 2 X(A) satisfying (S1) and (S2).

We will also need the global version of (S1) and (S2) satisfied by the geodesic
flow �

t
Xr

, i.e., the flow of Xr. They are:

(GS1) Integral curves t 7! �
t
Xr

(a) are A-paths;
(GS2) Whenever defined:

�
t
Xr �ms = ms � �

st
Xr (t, s 2 R). (2)

If G ◆ M is a Lie groupoid with Lie algebroid A ! M , an A-connection r
determines a partial connection er along the t-fibers, i.e, a family of connections on
the t-fibers. It is completely determined by requiring that on left-invariant vector
fields one has:

er �↵
 �
� =

 ��
r↵�, (↵,� 2 �(A)).

Then one can define the groupoid exponential map from the (ordinary) exponential
maps of these fibers connections:

expr : A! G, a 7! exper(a).

Of course, in general, expr is only defined in some neighborhood of the zero section
of A.
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Notice that the partial connection er restricts to a left-invariant connection on
each isotropy group Gx. The initial connection r can be chosen so that this re-
striction satisfies erXX = 0, for every left-invariant vector field X 2 X(GX). In this
case the exponential map restricts on the isotropy gx ⇢ A to the ordinary Lie group
exponential map:

Gx
� �

// G

gx

exp

OO

� �
// A

expr

OO

3.2. Maurer-Cartan form on a Lie groupoid. Let us recall from [20] the con-
struction of the (left) Maurer-Cartan form on the Lie groupoid G ◆ M . It is the
t-foliated 1-form with values in A given by:

✓
G
2 ⌦1(T t

G, s
⇤
A), ✓

G(V ) := dgLg�1V (V 2 T
t
gG := ker dgt).

Note that one can also viewed ✓
G as a bundle map covering the source map:

T
t
G

pr

✏✏

✓G
// A

p

✏✏

G s
// M

(3)

which is a fiberwise linear isomorphism.
The Maurer-Cartan form allows one to identify the left-invariant vector fields

among all vector fields in G tangent to the t-fibers. In fact, the following lemma is
obvious from its definition:

Lemma 3.2. The left-invariant vector field determined by a section ↵ 2 �(A) is

the unique vector field
 �
↵ 2 X(G) satisfying:

i �↵ ✓
G = s

⇤
↵, dt( �↵ ) = 0.

Similarly, the Maurer-Cartan form also allows to transport A-paths to groupoid
paths: given an A-path a : I !M with initial point x 2M , there is a unique path
g : I ! G in the fiber t�1(x) such that:

✓(ġ(t)) = a(t), g(0) = 1x.

In particular, given an A-connection r its exponential map is given by:

expr : A! G, expr(a) = g(1),

where g(t) is the path associated with A-path t 7! �
t
Xr

(a). Hence, if for t 2 R, one
defines exptr : A! G by setting:

exptr(a) := expr(ta),

one concludes that we have a commutative diagram:

G ker dt
pr

oo

✓G
// A

A

�t
X̃r

OO

expt
r

bb

�t
Xr

<<

(4)

where eXr is the spray of the partial connection er on the t-fibers.
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In the case of a Lie group G with Lie algebra g there is a well-known formula for
the pullback of the Maurer-Cartan form ✓

G under the exponential map:

�
exp⇤ ✓G

�
a
(b) =

Z 1

0
e
t adab dt.

This formula has been extended to the case of Lie algebroids in [37]. For that we
need to recall that the flow of time-dependent section of a Lie algebroid ↵t 2 �(A)
is a family of Lie algebroid automorphisms {�

t,s
↵t
} covering the flow of the time-

dependent vector field ⇢(↵t):

A

✏✏

�t,s
↵t
// A

✏✏

M
�t,s
⇢(↵t)

// M

characterized by:

d

dt
(�t,s

↵t
)⇤(�) = (�t,s

↵t
)⇤([↵,�]), �

t,t
↵t

= Id, (� 2 �(A)).

Theorem 3.3 ([37]). Let G ◆ M be a Lie groupoid with Lie algebroid p : A!M

and let r be an A-connection. Then for any a in a neighborhood V ⇢ A of the zero

section and any b 2 Ap(a) one has:

�
exp⇤r ✓

G�
a
(b) =

Z 1

0
�
1,t
↵t,0

d

ds

���
s=0

↵t,s(p(�
t
Xr(a))) dt,

where ↵t,s 2 �(A) is any family of sections such that:

↵t,s(p(�
t
Xr(a+ sb))) = �

t
Xr(a+ sb).

3.3. Groupoid tubular neighborhoods. Let G be a Lie groupoid with Lie alge-
broid A and fix an A-connection r. One can choose a neighborhood V ⇢ A of the
zero section where the exponential map restricts to a di↵eomorphism onto an open
W ⇢ G containing the units:

A � V
expr
⇠=

// W ⇢ G

Using this di↵eomorphism, one can induce a (local) groupoid structure on V . First,
by further restricting V , one can assume that W is preserved by the groupoid
inversion. Then we obtain source, target, inverse and unit maps on V such that

V◆
&&

s

✏✏

t
✏✏

expr
// G ◆
yy

s

✏✏

t
✏✏

M

u

^^

M

u

]]

They are given purely in terms of Lie algebroid data as follows: the open set V ⇢ A

is invariant under the map a 7! ��
1
Xr

(a) and one has:

- The unit section is the zero section u : M ! V ⇢ A, x 7! 0x;
- The target map is the bundle projection t := p : V !M ;
- The source map is s := p � �

1
Xr

: V !M ;
- The inverse map ◆ : V ! V is given by a 7! ��

1
Xr

(a).
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Finally, one needs to push the multiplication to V . It will be defined only on the
open set:

U := {(v1, v2) 2 V ⇥s t V : m(expr(v1), expr(v2)) 2 expr(V )}.

and it is a map m : U ! V making the following diagram commute:

U

m

✏✏

expr⇥ expr
// G ⇥s t G

m

✏✏

V expr
// G

Hence, we obtain a local Lie groupoid. These will be discussed in the next section.
For now, just like for the other structure maps, we would like to express multipli-

cation in V purely in terms of Lie algebroid data. For that we can apply Theorem
3.3 to first express the pullback of the Maurer-Cartan form:

✓
A := exp⇤r ✓

G
,

exclusively in terms of Lie algebroid data. This allows us to define left-invariant
vector fields in V , without referring to G: given ↵ 2 �(A) the corresponding left-
invariant vector field  �↵ 2 X(A) is the unique vector field satisfying:

8
<

:

i �↵ ✓
A = s

⇤
↵

dt( �↵ ) = 0
()

8
<

:

i �↵ ✓
A = (p � �1

Xr
)⇤↵

dp( �↵ ) = 0

To define the product of v1, v2 2 U with s(v1) = p � �
1
Xr

(v1) = p(v2) = t(v2), we
first find a section ↵ 2 �(A) such that:

�
1 �↵ (0p(v2)) = v2,

and then set:
m(v1, v2) := �

1 �↵ (v1). (5)

Notice that this uses only algebroid data.

3.4. Local formulas for multiplicative stuctures. Given some geometric struc-
ture on a Lie groupoid G ◆ M one can use the exponential map of a connection to
transfer it to a neighborhood of the identity section of the Lie algebroid A ! M

of G. In general, the resulting structure cannot be described purely in terms of
Lie algebroid data. One needs the geometric structure to be compatible with the
groupoid multiplication. We will consider here only the case of di↵erential forms
and refer to [6, 7] for other geometric structures.

Recall that a di↵erential form ⌦ 2 ⌦k(G) is called multiplicative if:

m
⇤⌦ = pr⇤1 ⌦+ pr⇤2 ⌦.

We recall the following basic properties of a multiplicative form (see [3]):

(i) ⌦ vanishing on vectors tangent to the identity section: u⇤⌦ = 0;
(ii) ⌦ is anti-invariant under inversion: ◆⇤⌦ = �⌦;
(iii) The t-fibers and s-fibers are ⌦-orthogonal:

⌦(X,Y ) = 0 if dgt(X) = dgs(Y ) = 0;

(iv) i �↵⌦ is a left-invariant form, for any left-invariant vector field  �↵ . Similarly,
with left-invariant replaced by right-invariant.
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The last property has the following more precise version. Consider the vector bundle
map:

�⌦ : A! ^k�1T ⇤M, ↵ 7! �u
⇤(i↵⌦).

Then one finds that for any ↵ 2 �(A)

i �↵⌦ = �s⇤�⌦(↵), i��!◆⇤↵⌦ = t
⇤
�⌦(↵). (6)

The relevance of the map �⌦ is also shown by the following result, which is essentially
due to [7]:

Theorem 3.4. Let G ◆ M be a Lie groupoid with Lie algebroid A and fix an

A-connection r. If ⌦ 2 ⌦k(G) is a multiplicative form then:

(expr)
⇤⌦ := �

Z 1

0
(�t

Xr)
⇤�d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
dt, (7)

where ✓k 2 ⌦k(^kT ⇤M) denotes the tautological form.

Remark 1. The tautological form ✓k 2 ⌦k(^kT ⇤M) is defined for ↵ 2 ^kT ⇤M and
v1, . . . , vk 2 T↵(^kT ⇤M) by:

(✓k)↵(v1, . . . , vk) = ↵(d↵p(v1), . . . , d↵p(vk)),

where p : ^kT ⇤M ! M denotes the bundle projection. This form generalizes the
Liouville 1-form and, similarly to the latter, is characterized by the property that:

↵
⇤
✓k = ↵, 8↵ 2 ⌦k(M).

Proof. We claim that (7) is equivalent to:

d

dt
(exptr)

⇤⌦ = �(�t
Xr)

⇤�d�⇤
⌦
✓k�1 + �

⇤
d⌦
✓k

�
. (8)

Clearly, if this equation holds, then integrating in t and using that u
⇤⌦ = 0, we

obtain (7). For the converse, if (7) holds, we find that:

�( exptr)
⇤⌦ = �m⇤t (expr)

⇤⌦ = m
⇤
t

Z 1

0
(�s

Xr)
⇤�d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
ds

=

Z 1

0
(�s

Xr �mt)
⇤�d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
ds

=

Z 1

0
(mt � �

ts
Xr)

⇤�d�⇤
⌦
✓k�1 + �

⇤
d⌦
✓k

�
ds

=

Z 1

0
(�ts

Xr)
⇤
m
⇤
t

�
d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
ds

=

Z 1

0
(�ts

Xr)
⇤�d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
t ds =

Z t

0
(�t

Xr)
⇤�d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
dt.

where we used relation (2) for the flow. Di↵erentiating both sides, we recover (8).
Denoting by eXr the geodesic spray of the (partial) connections on the t-fibers

and using the commutative diagram (4), we can compute the left-hand side of (8)
as follows:

d

dt
(exptr)

⇤⌦ =
d

dt
(�t

eXr
)⇤ pr⇤ ⌦

= (�t
eXr

)⇤L eXr
pr⇤ ⌦ = (�t

eXr
)⇤
�
di eXr

pr⇤ ⌦+ i eXr
pr⇤ d⌦

�
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On the other hand, for the right-hand side of (8) we find using the same diagram
(4):

�(�t
Xr)

⇤�d�⇤
⌦
✓k�1 + �

⇤
d⌦
✓k

�
= �(�t

eXr
)⇤(✓G)⇤

�
d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�

= �(�t
eXr

)⇤
�
d(✓G)⇤�⇤

⌦
✓k�1 + (✓G)⇤�⇤

d⌦
✓k

�
.

We conclude that (8) holds if one can show that for any multiplicative form ⌦ one
has on ker dt the equality of forms:

i eXr
pr⇤ ⌦ = �(✓G)⇤�⇤

⌦
✓k�1. (9)

For this we observe that for any left-invariant vector field  �↵ and g 2 G we have:
�
i eXr

pr⇤ ⌦+ (✓G)⇤�⇤
⌦
✓k�1

��� �↵ g
(v1, . . . , vk�1) =

= ⌦g

�
d �↵ g

pr( eXr), d �↵ g
pr(v1), . . . , d �↵ g

pr(vk�1)
�
+

+ ✓k�1
�
d �↵ g

(�⌦ � ✓
G)(v1), . . . , d �↵ g

(�⌦ � ✓
G)(vk�1)

�

= ⌦g(
 �
↵ g, d �↵ g

pr(v1), . . . , d �↵ g
pr(vk�1))+

+ �⌦(↵)
�
dgp(d �↵ g

✓
G(v1)), . . . , dgp(d �↵ g

✓
G(vk�1))

�

= (d �↵ g
pr)⇤i �↵ g

⌦(v1, . . . , vk�1)+

+ �⌦(↵)
�
dgs � d pr �↵ g

(v1), . . . , dgs � d pr �↵ g
(vk�1)

�

= (d �↵ g
pr)⇤(i �↵ g

⌦+ s
⇤
�⌦(↵))(v1, . . . , vk�1),

where we used the definition of the tautological form – see Remark 1 – and the fact
that for the Maurer-Cartan form one has p � ✓G = s � pr – see diagram (3). Finally,
using (6), we conclude that the last expression vanishes, so (9) holds, and the proof
is complete.

3.5. Multiplicative forms as groupoid 1-cocycles. A very useful approach to
multiplicative forms, first proposed in [3], is to viewed them as groupoid morphisms
into the abelian group (R,+), i.e., as groupoid 1-cocycles.

First, recall that given a Lie groupoid G ◆ M one can apply the tangent functor
resulting in the tangent Lie groupoid TG ◆ TM . Less obvious, one can also form
direct sums of the tangent groupoid, obtaining for each k a Lie groupoid:

�
k
GTG ◆ �k

MTM,

with source, target, and unit given by:

�
kds(v1, . . . , vk) = (ds(v1), . . . , ds(vk)),

�
kdt(v1, . . . , vk) = (dt(v1), . . . , dt(vk)),

�
kdu(w1, . . . , wk) = (du(w1), . . . , du(wk)),

and multiplication defined by:

�
kdm((v1, . . . , vk), (v

0
1, . . . , v

0
k) = (dm(v1, v

0
1), . . . , dm(vk, v

0
k)).

Next, a di↵erential form ⌦ 2 ⌦k(G) can be viewed as a map:

⌦ : �k
GTG ! R, (v1, . . . , vk) 7! ⌦(v1, . . . , vk),

and one checks immediately that the multiplicativity condition for ⌦ amounts to:

⌦(�kdm((v1, . . . , vk), (v
0
1, . . . , v

0
k))) = ⌦(v1, . . . , vk) + ⌦(v01, . . . , v

0
k).

In other words, ⌦ is multiplicative if and only if ⌦ is a groupoid 1-cocycle for �k
GTG.
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Naturally, one would like to know what is the induced Lie algebroid 1-cocycle.
For this, recall that applying the tangent functor to a Lie algebroid p : A!M also
gives a tangent Lie algebroid. The bundle is

dp : TA! TM,

while the anchor is given by:

d⇢ : TA! T (TM).

The Lie bracket can be described as follows. First, one notes that a section ↵ 2 �(A)
induces two di↵erent types of sections of TA:

(a) A linear section d↵ : TM ! TA;
(b) A core section b↵ : TM ! TA:

b↵(vx) := vx + ↵(x) 2 TxM �Ax ' T0xA.

These sections generate all other sections of TA! TM . One defines the Lie bracket
by requiring that for any sections ↵,� 2 �(A):

[d↵, d�]TA = d[↵,�]A, [d↵, b�]TA = \[↵,�]A, [b↵, b�]TA = 0.

One checks easily that given a Lie groupoid G ◆ M , the tangent groupoid
TG ◆ TM has Lie algebroid the tangent algebroid, i.e., one has:

Lie(TG) = T Lie(G).

One can also form direct sums �k
ATA of the tangent Lie algebroid TA ! TM ,

obtaining for each k a Lie algebroid with vector bundle:

�
k
ATA! �

k
MTM,

and with anchor and bracket defined componentwise. The Lie functor commutes
with taking direct sums, so that:

Lie(�k
TG) = �k Lie(TG) = �k

T Lie(G).

It follows from the results of [3] that:

Proposition 1. For k � 1, a form ⌦ 2 ⌦k(G) is multiplicative if and only if the

map ⌦ : �k
GTG ! R is a groupoid 1-cocycle. In this case, the induced Lie algebroid

1-cocycle Lie(⌦) is the map

! : �k
ATA! R

that corresponds to the k-form on the total space of the bundle A given by:

! := �
�
d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
2 ⌦k(A). (10)

Proof. The sections of the bundle �k
ATA ! �

k
MTM are generated by sections of

the form:

(b↵)ki := 0� · · ·� b↵� · · ·� 0| {z }
k factors with b↵ in i-entry

(d↵)k = d↵� · · ·� d↵| {z }
k

.

One then checks by direct computation using the definitions and (10) that:

Lie⌦((b↵)ki ) = (�1)i+1 pr⇤i (i↵⌦) = �(�1)
i+1 pr⇤i �⌦(↵) = !((b↵)ki ),

Lie⌦((d↵)k) = (di↵⌦+ i↵d⌦) = �(d�(↵) + �d⌦(↵)) = !((d↵)k),

where:

pri : �
k
MTM ! �

k�1
M TM, (v1, . . . , vk) 7! (v1, . . . , bvi, . . . , vk).
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Remark 2. Not every k-form ! 2 ⌦k(A) induces a vector bundle map:

�
k
ATA

✏✏

!
// R

✏✏

�
k
MTM // 0

When this is the case, one calls ! a linear k-form. It is not hard to check that a
form is linear if and only if:

m
⇤
t! = t!, 8 t > 0,

where mt : A ! A is fiberwise multiplication by t. Moreover, linear k-forms are
precisely those forms ! 2 ⌦k(A) that can be expressed as

! = �
�
d�⇤✓k�1 + ⌫

⇤
✓k

�
,

where (�, ⌫) : A ! ^k�1T ⇤M � ^kT ⇤M are (unique) bundle maps. This can be
seen, e.g., by working on a chart for M over which the vector bundle A ! M

trivializes. We refer to [3] for more details on this correspondence.

3.6. Infinitesimal multiplicative forms. Theorem 3.4 and Proposition 1 show
that for a multiplicative form ⌦ 2 ⌦k(G) its local behavior around the identity
section is controlled by the maps:

� := �⌦ : A! ^k�1T ⇤M, ↵ 7! �u
⇤(i↵⌦)

⌫ := �d⌦ : A! ^kT ⇤M, ↵ 7! �u
⇤(i↵d⌦)

One can show that these maps are related to the Lie algebroid structure as follows:

Proposition 2 ([3]). The pair (�, ⌫) : A! ^k�1T ⇤M � ^kT ⇤M satisfies:

i⇢(�)�(↵) = �i⇢(↵)�(�), (IM0)

�([↵,�]) = L⇢(↵)�(�)� i⇢(�)d�(↵)� i⇢(�)⌫(↵), (IM1)

⌫([↵,�]) = L⇢(↵)⌫(�)� i⇢(�)d⌫(↵). (IM2)

Proof. Relation (IM0) follows immediately from the definitions. To prove (IM1),
we use the identity:

iX iY d = i[X,Y ] + LY iX �LX iY + diX iY , (11)

to obtain:

s
⇤(i⇢(�)⌫(↵)) = �i �↵ i �� d⌦ = �

�
i
[ �↵ ,
 �
� ]
⌦+ L �

�
i �↵⌦�L �↵ i �� ⌦+ di �↵ i �� ⌦

�
,

= s
⇤
�([↵,�]) + L �

�
(s⇤�(↵))�L �↵ (s

⇤
�(�)) + di �↵ s

⇤
�(�)

= s
⇤�
�([↵,�])�L⇢(↵)(�(�)) + L⇢(�)(�(↵)) + d(�(�)(⇢(↵)))

�

= s
⇤�
�([↵,�])�L⇢(↵)(�(�))� i⇢(�)d�(↵)

�
,

where we used (6) to pass from the first to second line, that  �↵ is s-related to ⇢(↵)
to pass from the second to third line, and (IM0) and Cartan’s magic formula, to
pass to the last line.
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An entirely similar computation applied to d⌦ shows that (IM1) also holds:

0 = �i �↵ i �� d
2⌦ = �

�
i
[ �↵ ,
 �
� ]
d⌦+ L �

�
i �↵ d⌦�L �↵ i �� d⌦+ di �↵ i �� d⌦

�
,

= s
⇤
⌫([↵,�]) + L �

�
(s⇤⌫(↵))�L �↵ (s

⇤
⌫(�)) + di �↵ s

⇤
⌫(�)

= s
⇤�
⌫([↵,�])�L⇢(↵)(⌫(�)) + L⇢(�)(⌫(↵)) + d(⌫(�)(⇢(↵)))

�

= s
⇤�
⌫([↵,�])�L⇢(↵)(⌫(�))� i⇢(�)d⌫(↵)

�
,

Equations (IM0)-(IM2) may not seem very enlightening. The reason is that, as
shown by Proposition 1, the more natural infinitesimal object associated with a
multiplicative form ⌦ is the Lie algebroid 1-cocycle Lie(⌦) : �k

ATA ! R, while
those equations are formulated in terms of the maps � = �⌦ and ⌫ = �d⌦ . In fact,
one has:

Proposition 3 ([3]). A pair of bundle maps (�, ⌫) : A ! ^k�1T ⇤M � ^kT ⇤M
satisfies (IM0)-(IM2) if and only if the linear k-form ! 2 ⌦k(A) given by:

! := �
�
d�⇤✓k�1 + ⌫

⇤
✓k

�
2 ⌦k(A).

defines a Lie algebroid 1-cocycle ! : �k
ATA! R.

Proof. For the proof one needs to check that conditions (IM0)-(IM2) are equivalent
to the Lie algebroid 1-cocycle condition:

c(X,Y ) := L⇢(X)(!(Y ))�L⇢(Y )(!(X))� !([X,Y ]) = 0,

where X,Y are any sections of the Lie algebroid �k
ATA! �

k
MTM . As in the proof

of Proposition 1 we use the fact that the sections of this bundle are generated by
sections of the form (d↵)k and (b↵)ki , (i = 1, . . . , k). Then one finds by a direct
computation that:

c
�
(b↵)ki , (b�)kj

�
=

8
<

:

± pr⇤i,j
�
i⇢(�)�(↵) + i⇢(↵)�(�)

�
if i 6= j

0 if i = j

c
�
(d↵)k, (b�)ki

�
= ± pr⇤i

�
�([↵,�])�L⇢(↵)�(�) + i⇢(�)d�(↵) + i⇢(�)⌫(↵)

�

c
�
(d↵)k, (d�)k

�
= ±

�
⌫([↵,�])�L⇢(↵)⌫(�) + i⇢(�)d⌫(↵)

�

where:

pri : �
k
MTM ! �

k�1
M TM, (v1, . . . , vk) 7! (v1, . . . , bvi, . . . , vk),

pri,j : �
k
MTM ! �

k�2
M TM, (v1, . . . , vk) 7! (v1, . . . , bvi, . . . , bvj , . . . , vk).

Hence, ! : �k
ATA! R is a Lie algebroid 1-cocycle i↵ (IM0)-(IM2) hold.

This leads to the following definition:

Definition 3.5. An infinitesimal multiplicative k-form, or simply an IM k-

form, on a Lie algebroid A!M is a pair of bundle maps

(�, ⌫) : A! ^k�1T ⇤M � ^kT ⇤M

satisfying (IM0)-(IM2). An IM form is closed if ⌫ = 0.

Applying Lie’s 2nd Theorem, one concludes that:
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Theorem 3.6 ([3]). Let G ◆ M be a Lie groupoid with Lie algebroid (A, [·, ·], ⇢)
and assume that the t-fibers are 1-connected. There are 1-to-1 correspondences:

8
<

:
multiplicative forms

⌦ 2 ⌦k(G)

9
=

;

ww &&8
>><

>>:

linear forms ! 2 ⌦k(A) s.t.
! : �k

ATA! R
is a Lie algebroid 1-cocycle

9
>>=

>>;
//

77

8
>><

>>:

IM-forms (�, ⌫)
� : A! ^k�1T ⇤M
⌫ : A! ^kT ⇤M

9
>>=

>>;

ff

oo

Remark 3. Notice that under the correspondences of the theorem closed multi-
plicative forms ⌦ 2 ⌦k(G) correspond to:

- Exact linear forms ! = d↵ 2 ⌦k(A), i.e., linear multiplicative forms which
are exact with a primitive ↵ 2 ⌦k�1(A) which is also a linear form;

- Closed IM-forms � : A! ^k�1T ⇤M , i.e., IM-forms (�, ⌫) with ⌫ ⌘ 0.

When k = 2, one also checks that non-degenerate multiplicative 2-forms ⌦ 2 ⌦2(G)
correspond to non-degenerate linear 2-forms ! 2 ⌦2(A) and to IM 2-forms (�, ⌫)
for which � : A ! T

⇤
M is an isomorphism. The case k = 2 was first discussed in

[5] and developed further in [4].

4. From Lie algebroids to local Lie groupoids.

4.1. Local Lie groupoids. There are di↵erent possible choices of axioms for a
local Lie groupoid and these choices have important consequences, as we will see
shortly. We will use as main reference for local Lie groupoids [19]. In this paper
we adopt the following definition, which in the language of [19] corresponds to a
3-associative local Lie groupoid.

Definition 4.1. A local Lie groupoid G over a manifold M is a manifold G,
together with maps:

- Source/target: s, t : G!M submersions;
- Units: u : M ! G a smooth map;
- Multiplication: m : U ! G a submersion, where U ⇢ G ⇥s t G is an open
neighborhood of:

(G ⇥s t M) [ (M ⇥s t G) =
[

g2G
{(g, u(s(g))), (u(t(g)), g)};

- Inversion i : V ! V a smooth map, where V ⇢ G is an open neighborhood
of u(M) such that V ⇥s t V ⇢ U ;

such that the following axioms hold:

(A1) s(m(g, h)) = s(h) and t(m(g, h)) = t(g) for all (g, h) 2 U ;
(A2) m(m(g, h), k) = m(g,m(h, k)), if (g, h), (h, k), (m(g, h), k), (g,m(h, k)) 2 U ;
(A3) m(g, u(s(g))) = m(u(t(g)), g) = g for all g 2 G;
(A4) s(i(g)) = t(g) and t(i(g)) = s(g) for all g 2 V;
(A5) m(i(g), g) = u(s(g)) and m(g, i(g)) = u(t(g)) for all g 2 V.



370 RUI L. FERNANDES AND YUXUAN ZHANG

For the multiplication we usually write gh instead of m(g, h) and the definition
requires that it is defined provided one of the arrows is small enough. Similarly, for
the inversion we shall write g�1 instead of i(g), and it is defined provided g is small
enough. A local Lie groupoid with space of objects M = {⇤} will be called a local

Lie group. Just as in the case of Lie groupoids, the space of arrows G need not be
Hausdor↵. However, all other manifolds, including M , the source and target fibers,
are assumed to be Hausdor↵. Occasionally, we will deal with local topological

groupoids: the definition is analogous but one works in the topological category
instead.

There are two di↵erent ways of obtaining a smaller local Lie groupoid G
0 from a

given local Lie groupoid G, and both of them are relevant to us:

• Restriction: we say that G
0 is obtained by restricting G, if both local

groupoids have the same manifolds of arrows and objects, the same source
and target maps, and the multiplication and inversion in G

0 are obtained by
restricting the ones of G to smaller domains;

• Shrink: we say that G0 is obtained by shrinking G, if G0 is an open neighbor-
hood of M in G, the source and target maps are the restrictions of s and t to
G
0, multiplication is the restriction of m to U

0 = U \ (G0 ⇥s t G
0) \m

�1(G0),
and inversion is the restriction of i to V

0 = (V \G
0) \ i(V \G

0).

Morphisms between local Lie groupoids are defined in a more or less obvious way
(see [19]). If G0 is obtained from G by either restricting or shrinking, the inclusion
G
0
! G is a morphism of local Lie groupoids.

Example 1 (Neighborhoods of the identity of a Lie groupoid). Let G ◆ M be a
Lie groupoid. Any open U ⇢ G

(2) containing (G ⇥s t M) [ (M ⇥s t G) determines
a restriction G of G. On the other hand, any open neighborhood G

0
⇢ G of the

identity manifold M determines a local Lie groupoid G
0 shrinking G.

Example 2 (Coverings [19, 29]). One way of producing local Lie groupoids (even
local Lie groups) which are not restrictions or shrinkings of Lie groupoids is to pass
to covering spaces. For example, starting with the abelian Lie group G = R2 and
removing a point distinct from the identity, G0 = R2

� (1, 0) one obtains a local

Lie group. The universal covering space fG0 has a unique local Lie group structure
making the projection ⇡ : fG0 ! G a morphism of local Lie groups. We will see
later why the resulting local Lie group is not the restriction or shrinking of any Lie
group.

Many constructions for Lie groupoids extend to local Lie groupoids, under ap-
propriate assumptions. This is discussed in detail in [19]. Here we will assume that
a local Lie groupoid G ◆ M , with domains U and V for the multiplication and
inversion maps, has the following properties

(a) M is connected;
(b) G is s-connected and t-connected;
(c) For all x 2M , the set {(g, h) 2 U | s(g) = t(h) = x} is connected;
(d) For every (g, h) 2 U , there is a path � : I ! G from t(h) to g such that

(�(t), h) 2 U for all t 2 I, or there is a path � : I ! G from s(g) to h such that
(g, �(t)) 2 U for all t 2 I.

(e) The left/right multiplications induce isomorphisms:

dhLg : T t
hG! T

t
ghG, dgRh : T s

gG! T
s
ghG,

whenever (g, h) 2 U .
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These assumptions are not too strong: one can show that any Lie groupoid has a
shrinking satisfying all these properties.

Using property (d), one can define the Lie algebroid of a local Lie groupoid in
the usual manner. Moreover:

Proposition 4. Let G ◆ M be a local Lie groupoid satisfying properties (a)-(d).

Then any open M ⇢ U ⇢ G generates G, i.e., any g 2 G can be factored as

g = h1(h2(· · · (hn�1hn))),

where hi 2 U . In particular, the hi can be chosen to be invertible.

4.2. Local integration of Lie algebroids.

Theorem 4.2 ([12]). Every Lie algebroid integrates to a local Lie groupoid.

There are two distinct approaches to this result: the original one from [12] using
the A-path space, and the more recent approach of [8], which uses A-connections
to build the so-called spray groupoid.

4.2.1. A-path local integration. We let I = [0, 1]. Given an A-path a : I ! A we
denote by �a := p � a : I !M its base path. The set of A-paths:

P (A) :=
�
a : I ! A | a is A-path of class C1, with �a of class C2

 

is a Banach manifold, which we call the space of A-paths.
An A-path can be thought of as a Lie algebroid morphism

adt : TI ! A.

Then one can define an A-path homotopy between A-paths a1 : TI ! A and
a2 : TI ! A to be a Lie algebroid morphism:

� : T (I ⇥ I)! A,

satisfying the boundary conditions:

�|TI⇥{0} = a0, �|TI⇥{1} = a1, �|{0}⇥TI = �|{1}⇥TI = 0.

Fix an A-connection r on A. The map that associates to an element a0 2 A the
geodesic a : I ! A with initial condition a(0) = a0 gives an exponential map:

expr : A! P (A).

We use the same notation as we did before for the groupoid version of the exponen-
tial map. From the context it should be clear which one we refer to. If ⇠ denotes
the equivalence relation on P (A) determined by A-homotopy, then we have the
A-homotopy groupoid, as mentioned in the introduction:

G(A) = P (A)/ ⇠ .

The multiplication is induced by concatenation of A-paths – see [12] for details. The
exponential map then induces a map into the quotient expr : A ! G(A), which
when G(A) is smooth is the groupoid version of the exponential map.

In general, the quotient G(A) fails to be smooth. However, it is proved in [12]
that for a su�ciently small neighborhood V ⇢ A of the zero section, the quotient

G := expr(V )/ ⇠

is smooth and becomes a local Lie groupoid with (partial) multiplication defined
by concatenation of A-paths. Notice that this integration depends on the choice
of connection r and open set V . However, two di↵erent choices lead to local Lie
groupoids which have isomorphic shrinkings.
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4.2.2. The spray local integration. Let us now consider the alternative method to
obtain local integrations of A proposed in [8].

As we saw in Section 3.3, given a Lie groupoid G ◆ M and an A-connection r
on its Lie algebroid p : A ! M , using the exponential map expr : A ! G one can
pull back the Lie groupoid structure from G to a local Lie groupoid structure on
a neighborhood V ⇢ A of the zero section. The main observation is that, as we
saw before, the resulting local groupoid structure is expressed purely in terms of
Lie algebroid data.

Hence, starting with any Lie algebroid A one chooses an open V ⇢ A containing
the zero section which is invariant under the map a 7! ��

1
Xr

and defines all the
structure maps exactly as in Section 3.3. The main di�culty is to show that the
local multiplication, given by (5), is actually well-defined. We refer to [8] for details.

4.3. Local integration of IM-forms. Suppose we are given an IM-form (�, ⌫) :
A! ^

k�1
T
⇤
M � ^

k
T
⇤
M on a Lie algebroid A or, equivalently, the linear A-form

! 2 ⌦k(A), ! := �
�
d�⇤✓k�1 + ⌫

⇤
✓k

�
,

so that ! : �k
ATA ! R is a Lie algebroid 1-cocycle – see Theorem 3.6. We would

like to integrate it to a multiplicative k-form ⌦ on a local Lie groupoid G ◆ M

integrating A. One can proceed in two distinct ways, as we now explain.

4.3.1. Integration of 1-cocycles [3]. If G ◆ M has 1-connected t-fibers then the
groupoid �k

GTG ◆ �
k
MTM also has 1-connected t-fibers. Hence, Lie’s Second

Theorem for local Lie groupoids allows to integrate the Lie algebroid 1-cocycle
! : �k

ATA! R to a Lie groupoid 1-cocycle � : �k
GTG! R.

We claim that the map:

(v1, . . . , vk) 7! �(v1, . . . , vk),

is multilinear and skew-symmetric, so that � = ⌦ for some ⌦ 2 ⌦k(G). Notice
that then Proposition 1 shows that ⌦ is a multiplicative form. To prove the skew-
symmetry, one observes that the map:

I : �k
GTG! �

k
GTG, I(v1, . . . , vi, . . . , vj , . . . , vk) := (v1, . . . , vj , . . . , vi, . . . , vk),

is a groupoid morphism whose induced Lie algebroid morphism is:

I⇤ : �
k
ATA! �

k
ATA, I⇤(a1, . . . , ai, . . . , aj , . . . , ak) := (a1, . . . , aj , . . . , ai, . . . , ak).

Then ���I : �k
GTG! R is also a groupoid 1-cocycle and the induced Lie algebroid

1-cocycle is:
(�� � I)⇤ = �! � I⇤ = !.

By uniqueness in Lie’s Second Theorem we must have � = ���I, which is precisely
the skew-symmetry. For multilinearity one proceeds similarly replacing I by the Lie
groupoid morphisms:

�
k
GTG! �

k
GTG, (v1, . . . ,�vi, . . . , vk) 7! �(v1, . . . , vi, . . . , vk)

�
k+1
G TG! �

k
GTG, (v1, v

0
1, v2, . . . , vk) 7! (v1 + v

0
1, v2 . . . , vk).

Since ⌦ is a multiplicative form, by Proposition 1, the Lie groupoid 1-cocycle ⌦
di↵erentiates to a Lie algebroid 1-cocycle ! = (⌦)⇤ : �k

ATA! R such that:

! = �
�
d�⇤✓k�1 + ⌫

⇤
✓k

�
= �

�
d�⇤

⌦
✓k�1 + �

⇤
d⌦
✓k

�
.

The properties of the tautological forms imply that

� = �⌦ , ⌫ = �d⌦ .
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We conclude that ⌦ is a multiplicative form integrating the IM form (�, ⌫).

4.3.2. Integration using local formulas [7]. If one starts with the spray local inte-
gration G ◆ M associated with an A-connection r, one can also use the explicit
local formulas for multiplicative forms (7) to integrate an IM-form.

An IM form (�, ⌫) : A ! ^
k�1

T
⇤
M � ^

k
T
⇤
M defines a di↵erential k-form

⌦ 2 ⌦k(U) on a su�ciently small neighborhood U ⇢ A of the zero section by

⌦ := �

Z 1

0
(�t

Xr)
⇤�d�⇤✓k�1 + ⌫

⇤
✓k

�
dt.

Then one needs to check that this form is multiplicative and that it induces the
given IM form. To prove these it is more convenient to view both (�, ⌫) and ⌦ as
maps !,⌦ : �k

ATA! R. Then:

⌦ =

Z 1

0
(�t

Xr)
⇤
! dt. (12)

We claim that this last formula is just the standard formula for integrating Lie
algebroid 1-cocycles to Lie groupoid 1-cocycles, so the result follows.

For that let G ◆ M be a local Lie groupoid with 1-connected t-fibers and denote
by A ! M its Lie algebroid. Then given a Lie algebroid 1-cocycle c : A ! R the
corresponding Lie groupod 1-cocycle C : G! R is given by:

C(g) =

Z 1

0
c
�
a(t)

�
dt, (13)

where a : I ! A is the A-path obtained by applying the Maurer-Cartan form:

a(t) = ✓
G(ġ(t)) (t 2 I).

to any path g : I ! G in the t-fiber, with g(0) = 1t(g) and g(1) = g.
Let G ◆ M be the spray groupoid V ◆ M associated with a connection r,

the discussion after Lemma 3.2 shows that the exponential map of r is just the
identity map expr(a) = a. The A-path t 7! �

t
Xr

(a0) represents the path g : I ! V

in the spray groupoid which lies in the t-fiber connecting the identity 1x0 with
g = expr(a0) = a0. It is now easy to check that (12) is just a special instance of
(13) applied to the local Lie groupoid �k

GTG ◆ �k
MTM , where G ⌘ V is the spray

groupoid.

5. From local Lie groupoids to global Lie groupoids.

5.1. Enlarging local groupoids. The associativity axiom (A2) for a local groupoid
requires that for every triple of composable arrows one has:

g(hk) = (gh)k,

provided both sides are defined. While for a (global) Lie groupoid this implies that
all higher associativities hold, this is not true for a local Lie groupoid. For example,
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given 4 elements g, h, k and l, the possible products form a pentagon:

(gh)(kl)

((gh)k)l g(h(kl))

(g(hk))l g((hk)l)

Each edge represents a move that uses only the 3-associativity property. In a global
groupoid all vertices of the pentagon are defined and the 3-associativity implies 4-
associativity. In a local Lie groupoid it is possible that, e.g., (gh)(kl) and (g(hk))l
are defined but none of the other vertices are defined, and then 3-associativity does
not allow one to conclude that 4-associativity holds. This happens, for example, in
the case of the covering groupoids from Example 2 – see [19, 29] for details.

Notice that restricting or shrinking a local groupoid can make it “more associa-
tive”. In fact, one has the following result:

Proposition 5 ([19]). Let G be a local Lie groupoid. For each n � 3 there is a

restriction of G which is n-associative.

In the previous proposition we have fix n. A di↵erent issue is whether one can
find a restriction which is n-associative for all n � 3.

Definition 5.1. A local Lie groupoid is called globally associative if it is associative
to every order n � 3.

Obviously, a local groupoid G ◆ M obtained by restricting or shrinking a global
Lie groupoid, as in Example 1, is globally associative. For example, a local Lie group
G always has a shrinking that is globally associative: if g is the Lie algebra of G then
a shrinking of G is isomorphic to a neighborhood of the identity of the 1-connected
integration G(g). However, for a local Lie groupoid integrating a non-integrable Lie
algebroid this argument fails.

We will say that a local Lie groupoid G ◆ M is globalizable or enlargeable if it
is isomorphic to a restriction of an open neighborhood of the unit section of a Lie
groupoid G ◆ M . The problem of determining if a Lie group is globalizable was
first studied by Mal’cev [28] – see also [29] – who showed that the failure of global
associativity is the only obstruction to embedding a local group in a global one. In
[19], Mal’cev’s Theorem was extended to realm of local Lie groupoids:

Theorem 5.2 (Mal’cev’s theorem for groupoids [19]). A local Lie groupoid is glob-

alizable if and only if its multiplication is globally associative.

We will sketch a proof in the next two paragraphs. For now we observe the
following consequence:

Corollary 1. A local Lie groupoid has a restriction which is globally associative if

and only if it has integrable Lie algebroid.

Proof. If a local Lie groupoidG has a restrictionG
0 which is globally associative then

G and G
0 have the same Lie algebroid A. By the theorem, G0 is globalizable, so A is

an integrable algebroid. Conversely, if a local Lie groupoid G has an integrable Lie
algebroid A, then there is a neighborhood G

0
⇢ G of the units which is isomorphic

to a neighborhood in G(A) of the units. It follows that G0 is globally associative.
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Remark 4. The previous results show that one should be careful with the associa-
tivity axiom for a local Lie groupoid G. For example, in the definition used in [2]
this axiom reads as follows:

If either (gh)k or g(hk)
is defined

=) both (gh)k and g(hk) are defined
and (gh)k = g(hk)

. (14)

Note that this implies that G is globally associative, hence has integrable Lie alge-
broid. So the definition in [2] excludes, e.g., the A-path local integration and the
spray groupoid for non-integrable Lie algebroids.

5.2. The associative completion. Mal’cev’s Theorem is based on an important
construction associated with a local groupoid, namely its associative completion.

Given a local Lie groupoid G ◆ M , its associative completion is a groupoid
AC(G) ◆ M obtained as follows. One introduces the set of well-formed words on
G formed by words (w1, . . . , wn) in G whose source and target match:

W (G) :=
G

n�1
G ⇥s t G ⇥s t · · · ⇥s t G| {z }

n times

,

Given a well-formed word w = (w1, . . . , wk, wk+1, . . . , wn) such that wk and wk+1

can be composed, we have a new well-formed word w
0 = (w1, . . . , wkwk+1, . . . , wn),

and we say that w0 is is obtained from w by contraction or that w is obtained from
w
0 by expansion. Contractions and expansions generate an equivalence relation
⇠ on W (G), and one defines the associative completion of G to be the space of
equivalence classes:

AC(G) := W (G)/⇠.

Notice that AC(G) has a groupoid structure:

• The source and target maps are given, respectively, by:

[(w1, . . . , wn)] 7! s(wn), [(w1, . . . , wn)] 7! t(w1);

• Multiplication is given by concatenation of words:

[(w1, . . . , wn)] · [(w
0
1, . . . , w

0
m)] = [(w1, . . . , wn, w

0
1, . . . , w

0
m)];

• The unit section is the map:

x 7! [(1x)];

• Inversion is given by:

[(w1, . . . , wn)] 7! [(w�1n , . . . , w
�1
1 )],

where one uses Proposition 4 to find representatives for equivalence classes of
the form [(w1, . . . , wn)] where every wi is invertible.

There is an obvious completion map G ! AC(G), which is a morphism of local
groupoids.

In general, if G is a local Lie groupoid, AC(G) is a topological groupoid for
the quotient topology, but may fail to be a Lie groupoid. Moreover, the associative
completion is characterized by the following universal property: for every topological
groupoid H and every continuous morphism of local groupoids � : G! H there is
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a unique morphism of topological groupoids b� : AC(G) ! H making the following
diagram commute:

G

✏✏

�
// H

AC(G)

b�

<<

Notice also that given a morphism of local Lie groupoids � : G ! H there is an
induced morphism of topological groupoids AC(�) : AC(G) ! AC(H) making the
following diagram commute:

G

✏✏

�
// H

✏✏

AC(G)
AC(�)

// AC(H)

Hence, AC(�) is a functor from the category of local Lie groupoids to the category
of topological groupoids.

5.3. Associators and smoothness. The next natural question, which is also at
the core of Mal’cev’s Theorem is:

• Given a local Lie groupoid G, when is AC(G) a Lie groupoid?

Here, of course, the smooth structure we are wondering about for AC(G) is the
quotient smooth structure obtained from W (G) – the set of well-formed words –
which is itself a manifold with connected components of possibly di↵erent dimension.

Given a local Lie groupoid we will call an element in the isotropy

g 2 Gx = s
�1(x) \ t

�1(x)

an associator at x if there is a well-formed word (w1, . . . , wn) which admits two
sequences of contractions: one ending at g and the other one ending at the identity
1x. The set of all associators will be denoted Assoc(G) and is contained in the
kernel of the completion map G ! AC(G). One of the main results in [19] shows
that the associators control the smoothness of AC(G):

Theorem 5.3 ([19]). If G is a local Lie groupoid, then AC(G) is smooth if and

only if Assoc(G) is uniformly discrete in G, i.e., if there is an open M ⇢ U ⇢ G

such that:

U \Assoc(G) = M.

In this case, the completion map G ! AC(G) is a local di↵eomorphism, so G and

AC(G) have the same Lie algebroid.

Sketch of the proof. The main idea is to use local bisections of the local Lie groupoid
G ◆ M to construct local charts for AC(G). Given an element g 2 AC(G), repre-
sented by a word (w1, . . . , wn), to construct a chart near g one considers submani-
folds Ni ⇢ G of the same dimension as M through wi that are transverse to both
source and target fibers, i.e., local bisections of G through wi. Then s and t define
di↵eomorphisms between the Ni’s and open subsets of M . Write si = s|Ni and
ti = t|Ni for these di↵eomorphisms.
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Fix k 2 {1, . . . , n} and let U be a small neighborhood of wk. Then a chart near
g is defined as

' : U ! AC(G) : h 7! [h1, . . . , hk�1, h, hk+1, . . . , hn]

where

hk+1 = t
�1
k+1(s(h)), hk+2 = t

�1
k+2(s(hk+1)), . . . , hn = t

�1
n (s(hn�1)),

and
hk�1 = s

�1
k�1(t(h)), hk�2 = s

�1
k�2(t(hk�1)), . . . , h1 = s

�1
1 (t(h2)).

For U su�ciently small, the map ' is a well-defined local di↵eomorphism that
maps wk to g. The main point is that, eventually after choosing U even smaller,
the uniform discreteness ensures that ' is injective. One then checks that the
transition maps between di↵erent charts are smooth, so one obtains a possible non-
Hausdor↵, second countable, smooth structure. Still, the source and target fibers
are Hausdor↵, and AC(G) is a Lie groupoid. For all the details we refer to [19].

Proof of Mal’cev’s Theorem. If G is a globally associative local Lie groupoid, then
the only associators Assoc(G) are the units. Hence, Assoc(G) is uniformly discrete
and so, by the theorem, AC(G) is a Lie groupoid. Global associativity also implies
that the completion map G ! AC(G) is injective, so G is isomorphic to its image
under the completion map, and so it is globalizable.

5.4. Associators and integrability. An obvious consequence of Theorem 5.3 is
that a local Lie groupoid G ◆ M with uniformly discrete associators Assoc(G)
must have an integrable Lie algebroid. The converse is not quite true: integrable
Lie algebroids (even Lie algebras!) can have local integrations with non-discrete
associators. We refer to [19] for an example. Still, there is a relationship between
integrability of a Lie algebroid A and the associators of a local integration G ◆ M ,
provided the local integration is not “too large”.

To express this relationship precisely, let us recall that for a Lie algebroid A

one has monodromy groups Nx(A) which control the integrability of A. These
groups arise by looking at the isotropy groups G(A)x of the A-homotopy groupoid
G(A) ◆ M : the inclusion of the isotropy Lie algebra gx = ker ⇢x ,! A integrates to
a surjective group morphism

G(gx)! G(A)0x,

whose kernel is precisely Nx(A). This monodromy group is a subgroup of the center
and we have:

G(A)0x = G(gx)/Nx(A).

Clearly, if G(A) is smooth then G(A)0x is smooth, and the subgroup Nx(A) ⇢ G(gx)
must be discrete. Conversely, one has the following fundamental result:

Theorem 5.4 ([12]). A Lie algebroid A! M is integrable if and only if its mon-

odromy groups are uniformly discrete, i.e., if and only if there exists an open V ⇢ A

containing the zero section such that:

expx(V \ gx) \Nx(A) = {0}, 8x 2M,

where expx : gx ! G(gx) denotes the exponential map.

Now, let G ◆ M be a local Lie groupoid integrating a Lie algebroid A. We will
assume that G has been shrunk so that:

(H1) Gx is a 1-connected local Lie group.
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Under this assumption, we have a local Lie group homomorphism Gx ! G(gx)
defined as follows. If g 2 Gx, choose a path in Gx from x to g. Di↵erentiate this
path to get a gx-path and hence an element of G(gx). Since Gx is simply-connected,
this map is well-defined: any two paths in Gx from x to g are homotopic, and such
a homotopy induces a gx-homotopy. By shrinking G further, we can also assume
that:

(H2) The map Gx ! G(gx) is injective.
(H3) The t-fibers of G are 1-connected.

Again, this allows us to construct a local homomorphism of topological groupoids
G! G(A): if g 2 G has target x, choose a path in t

�1(x) from x to g. Di↵erentiate
this path to get an A-path and hence an element of G(A). Since t

�1(x) is simply-
connected, this map is well-defined, because any two paths in t

�1(x) from x to g

are homotopic, and this homotopy induces an A-homotopy.
Assumptions (H1)-(H3) are already su�cient to relate the associators with the

monodromy groups, Namely, we have:

Proposition 6. Let G be a local Lie groupoid satisfying (H1)-(H3). Then under

the natural map Gx ! G(gx) we have:

Assocx(G) ⇢ Nx(A).

Proof. Applying the functor AC(�) to the morphism G ! G(A) we obtain a com-
mutative triangle:

G //

""

G(A)

AC(G)

;;

Passing to isotropies, it follows that the map Gx ! Gx(A) takes the associators
Assocx(G) to the unit. But the last map factors as:

Gx
//

""

Gx(A)

G(gx)

;;

Since the kernel of G(gx)! Gx(A) is the group Nx(A), the result follows.

One would like to obtain equality in the previous proposition. For that, one
needs to construct a lift of the map G! G(A) to the space of A-paths:

P (A)

✏✏

G

P
77

// G(A)

which is multiplicative in the following sense: if w = (g1, . . . , gk) 2W (G) is a well-
formed word on G, write P (w) = P (gk) � · · · �P (g1) where � denotes concatenation
of A-paths. Then if w1 and w2 are equivalent words we would like P (w1) and P (w2)
to be A-homotopic paths. It is possible to further shrink the local groupoid G, so
that (H1)-(H3) are satisfied and G carries such a lift. One then says that G is
shrunk. The lift is constructed with the help of a Riemannian structure on M and
an A-connection. We refer to [19] for details.
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The fundamental result connecting integrability with associators can now be
stated as follows:

Theorem 5.5 ([19]). Let G ◆ M be a shrunk local Lie groupoid with Lie algebroid

A. For x 2M , consider Gx as a subset of G(gx) using the natural map Gx ! G(gx).
Then:

Assocx(G) = Nx(A) \Gx.

For the proof of this result and a simplicial interpretation we refer to [19].

5.5. Extending local multiplicative forms to global multiplicative forms.

Having established the conditions for the associative completionAC(G) to be smooth,
one has the natural problem of finding when a local multiplicative form on G extends
to a global multiplicative form on AC(G). Since AC(G) may not have 1-connected
t-fibers, the answer is perhaps surprising: always!

Theorem 5.6 ([2]). Let G be a local Lie groupoid with uniformly discrete associa-

tors and connected t-fibers. Given any multiplicative form ⌦ 2 ⌦k(G) there exists

a unique multiplicative form e⌦ 2 ⌦k(AC(G)) whose pullback under the completion

map G! AC(G) is ⌦.

A version of this result for globally associative local groupoids – see Remark 4 –
appears in the appendix of [2]. The proof is only sketched there, so we will give a
detailed proof below.

In general, given a multiplicative form defined on an open neighborhood U of the
units of a Lie groupoid G ◆ M , it is not possible to extend it to a multiplicative
form on G unless G has 1-connected t-fibers. Underlying Theorem 5.6 is the fact
that the local groupoid G “captures” the topology of AC(G).

To make this more explicit, consider a Lie groupoid G ◆ M with connected
t-fibers. By Proposition 4, any neighborhood M ⇢ U ⇢ G generates G. If we
consider U as a local groupoid obtained by shrinking G, then the universal property
of AC(�) implies that the inclusion i : U ,! G induces a Lie groupoid morphism:

bi : AC(U)! G,

which is a surjective local di↵eomorphism. We call U ⇢ G a full neighborhood if
this map is an isomorphism. Hence, Theorem 5.6 has the following consequence:

Corollary 2. Let G ◆ M be a Lie groupoid with connected t-fibers. Every multi-

plicative form defined on a full neighborhood extends to a unique multiplicative form

defined on G.

The following example illustrates the di↵erence between simple neighborhoods
and full neighborhoods, already in the case of Lie groups.

Example 3. Consider the Lie group S1 := {z 2 C : |z| = 1} and for a 2 (0,⇡] set:

Ua :=
�
e
it
2 S1 : t 2 (�a, a)

 
.

We claim that U⇡ is a full neighborhood while U⇡/2 is not.
For the local Lie group structure on U⇡/2, obtained by shrinking S1, the map:

� : U⇡/2 ! (R,+), e
it
7! t,

is easily seen to be a morphism of local Lie groups. Hence, there is an induced Lie
group morphism:

b� : AC(U⇡/2)! R,
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which is local di↵eomorphism. Since AC(U⇡/2) is connected and R is 1-connected,
we must have AC(U⇡/2) ' R, so that U⇡/2 is not a full neighborhood. Notice that
the local morphism � does not extend to a Lie group morphism S1 ! R since the
only such morphism is the trivial one – this would be the case k = 0 in Corollary
2, so the corollary does not hold for U⇡/2.

For the local group structure on U⇡ the map:

� : U⇡ ! (R,+), e
it
7! t,

is not anymore a morphism of local Lie groups: for example, 2ei
3⇡
4 = e

�i⇡
2 but

2�(ei
3⇡
4 ) = 3⇡

2 6= �
⇡
2 = �(2ei

3⇡
4 ). On the other hand, we can consider the inclusion:

i : U⇡ ,! S1

which is obviously a local Lie group morphism. The induced Lie group morphism
bi : AC(U⇡)! S1 is surjective and local di↵eomorphism. One checks easily that this
map is injective, so AC(U⇡) ' S1 and U⇡ is full.

We now turn to the proof of Theorem 5.6. The idea is simple: we extend ⌦ to a
form on AC(G) by requiring the multiplicativity condition. The problem of course
is that two words can represent the same element of AC(G), so we need some “book
keeping”, and for that we proceed as follows.

We denote the set of well-formed words of length l by:

G
(l) := G ⇥s t · · · ⇥s t G| {z }

l times

,

so that W (G) :=
F+1

l=1 G
(l), and we have the quotient map:

� : W (G)! AC(G), �(g1, . . . , gl) := [(g1, . . . , gl)].

We also introduce face maps for 1  i  l � 1:

@i : U
(l)
i ! G

(l�1)
, @i(g1, . . . , gi, gi+1, . . . , gl) = (g1, . . . , gigi+1, . . . , gl),

defined on the open subset U (l)
i ⇢ G

(l) given by:

U
(l)
i = {(g1, . . . , gi, gi+1, . . . , gl) 2 G

(l) : (gi, gi+1) 2 U}.

The face maps are submersions and a word w
0 is a contraction of the word w if for

some i one has:
w
0 = @iw.

These contractions/expansions then generate the equivalence ⇠, and given words
w1, w2 2W (G) one has �(w1) = �(w2) if and only if w1 ⇠ w2.

After these preliminaries, consider the family of forms ⌦(l)
2 ⌦k(G(l)) defined

by:

⌦(l) :=
lX

j=1

pr⇤j ⌦, (15)

where pri : G
(l)
! G denotes the projection in the factor i. Using the multiplica-

tivity of ⌦ we find:

Lemma 5.7. The forms ⌦(l)
2 ⌦k(G(l)) satisfy:

@
⇤
i ⌦

(l�1) = ⌦(l)
, (1  i  l � 1), (16)

on the open subset of U
(l)
i where @i is defined.
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Proof. Notice that:

prj � @i =

8
<

:

prj , for j < i,

m � (pri⇥ pri+1), for j = i,

prj+1, for j > i.

So using the multiplicativity of ⌦ we find:

@
⇤
i ⌦

(l�1) =
X

j<i

pr⇤j ⌦+ (pri⇥ pri+1)
⇤
m
⇤⌦+

X

j>i

pr⇤j+1 ⌦

=
X

j<i

pr⇤j ⌦+ (pri⇥ pri+1)
⇤(pr⇤1 ⌦+ pr⇤2 ⌦) +

X

j>i

pr⇤j+1 ⌦

=
lX

j=1

pr⇤j ⌦ = ⌦(l)
.

Proof of Theorem 5.6. Let us start by remark that each G
(l) is a manifold and the

restriction of the map � : W (G) ! AC(G) to each G
(l) is a submersion. For

w 2 G
(l) one finds:

Ker dw� =
M

i

Ker dw@i,

where the sum is over those 1  i  l � 1 for which w 2 U
(l)
i . By the previous

lemma, one has that:
iv⌦

(l) = 0, if v 2 Ker dw@i.

Hence, for each w 2 G
(l) we obtain a form e⌦w

2 ^
k
T�(w)AC(G) such that:

⌦(l)
w = (dw�)

⇤e⌦w
.

If g = �(w1) = �(w2) then w1 ⇠ w2, and applying successively (16) we conclude
that we must have e⌦w1 = e⌦w2 . It follows that one has well-defined k-form e⌦ in
AC(G), which satisfies:

�⇤e⌦|G(l) = ⌦(l)
.

This shows that e⌦ is a smooth di↵erential k-form.
Notice that for l = 1 the map � : G! AC(G) is just the completion map, so e⌦

also also extends ⌦, and we are only left to check that it is multiplicative.
Multiplicativity follows by observing that for any l1, l2 � 1 we have a commuta-

tive diagram:

G
(l1) ⇥G

(l2) J
//

�⇥�
✏✏

G
(l1+l2)

�

✏✏

AC(G)(2) m
// AC(G)

where J is juxtaposition of words. From the definition of ⌦(l) one finds that:

J
⇤⌦(l1+l2) = pr⇤G(l1) ⌦

(l1) + pr⇤G(l2) ⌦
(l2),

and this implies the multiplicativity of e⌦.
Finally, the uniqueness of the extension ⌦ follows from the fact that (i) if G is

t-connected then so is AC(G) and (ii) two multiplicative forms on a t-connected
Lie groupoid which coincide in some neighborhood of the identity must actually
coincide.
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One can also use Theorem 5.6 to recover the integrability of IM-forms to multi-
plicative forms (or other infinitesimal multiplicative structures) as stated in Theo-
rem 3.6. Given a Lie groupoid G ◆ M with 1-connected t-fibers, one first integrates
the IM-form to a multiplicative form in some neighborhood M ⇢ U ⇢ G as in Sec-
tion 4.3. Then applies Theorem 5.6 using the following result:

Proposition 7. Let G ◆ M be a Lie groupoid with 1-connected t-fibers. Then any

neighborhood M ⇢ U ⇢ G is full.

Proof. Let U be as in the statement and viewed it as local Lie groupoid U ◆ M

obtained by shrinking G. The inclusion i : U ,! G induces a Lie groupoid morphism:

bi : AC(U)! G,

which is a surjective local di↵eomorphism. The Lie algebroid morphism induced by
bi is just the identity. We claim that AC(U) has connected t-fibers, which together
with the assumption that G has 1-connected t-fibers, implies that bi must be an
isomorphism, proving that U is a full neighborhood.

To prove the claim, choose M ⇢ V ⇢ U a neighborhood such that t
�1(x) \ V

is connected for all x 2 M and V
�1

U ⇢ U . Since G ◆ M is t-connected, by
Proposition 4, V generates U . Given any element g = [u1, . . . , un] 2 AC(U) with
t(g) = x, we can factor each ui as:

ui = v
i
1(v

i
2(· · · (v

i
ki�1v

i
ki
))) (vij 2 V ).

We conclude that we can write g as:

g = [v1, . . . , vN ] (vi 2 V ).

Now choose paths:

�i : [0, 1]! V, �i(0) = 1s(vi�1), �i(1) = vi, t(�i(t)) = s(vi�1).

Then, we obtain paths gi : [0, 1]! AC(U) in t
�1(x) by setting

gi(t) := [v1, . . . , vi�1, �i(t)].

Each such path joins [v1, . . . , vi�1, vi] to [v1, . . . , vi�1, 1s(vi�1)] = [v1, . . . , vi�1]. The
concatenation of these paths is a path in t

�1(x) ⇢ AC(U) joining g to 1x.
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[10] A. S. Cattaneo and P. Xu, Integration of twisted Poisson structures, J. Geom. Phys., 49

(2004), 187–196.
[11] A. Coste, P. Dazord and A. Weinstein, Groupöıdes symplectiques, in Publications du
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