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Abstract
Given a G-structure with connection satisfying a regularity assumption we associate 
to it a classifying Lie algebroid. This algebroid contains all the information about 
the equivalence problem and is an example of a G-structure Lie algebroid. We dis-
cuss the properties of this algebroid, the G-structure groupoids integrating it and the 
relationship with Cartan’s realization problem.

Keywords  G-structures · Lie algebroids · Lie groupoids

1  Introduction

This paper is the long due second part of [12], whose opening sentence stated “This 
is the first of two papers dedicated to a systematic study of symmetries, invariants 
and moduli spaces of geometric structures of finite type”. The first paper was dedi-
cated to the case of {e}-structures and a special case of Cartan’s realization problem. 
The central object introduced in [12] was the classifying Lie algebroid of a fully reg-
ular coframe, which contains all the information relevant for the equivalence problem 
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for coframes, i.e., {e}-structures. Our plan for the second paper was to do a similar 
analysis for general G-structures and the general case of Cartan’s realization problem. 
While performing this analysis we discovered a theory of G-structure groupoids and 
G-structure algebroids, which gives the appropriate language to deal with such prob-
lems. These objects are introduced and described in detail in our recent paper [11], 
which also gives our method to solve Cartan’s realization problem. Hence, what is 
left from our original plan is to discuss the classifying Lie algebroid of a fully regular 
G-structure with connection and that is the main aim of this paper.

Given a G-structure on a manifold M, denoted FG(M) , equipped with a connec-
tion � ∈ Ω1(FG(M), �) , one has the space of invariant forms Ω∙(FG(M),�) consisting 
of all differential forms which are preserved under local equivalences of (FG(M),�) . 
The G-structure with connection is called fully regular when the space

has constant dimension. In this case, there is naturally associated to (FG(M),�) a 
vector bundle A → X such that

It follows that A has a Lie algebroid structure and we call it the classifying Lie alge-
broid of the fully regular G-structure with connection (FG(M),�) . We will see that 
this Lie algebroid is in fact a G-structure algebroid and that it contains all the rel-
evant information about (FG(M),�) , its symmetries, its invariants, etc.

The connection between Cartan’s realization problems and Lie algebroids was first 
pointed out by Bryant [5] (see also [4]). In [11] this is formalized precisely and it 
is shown that giving such a problem is the same thing as specifying a G-structure 
Lie algebroid with connection. In [11] it is also explained how one can solve a Car-
tan’s realization problem by integrating the G-structure algebroid to a G-structure 
groupoid with connection. The latter class of groupoids can be loosely described as 
families of G-structures with connection parameterized by the space of objects of the 
groupoid. We will see that a G-structure with connection in such a family need not be 
fully regular. When it is fully regular, we relate the G-structure Lie algebroid defining 
the family to the classifying Lie algebroid of the G-structure with connection.

This paper is organized as follows. In Sect. 2 we review the basic facts of the the-
ory of G-structures. We work with G-structures over effective orbifolds since these 
are the kind of G-structures that appear naturally in connection with G-structure 
groupoids and Cartan’s realization problems. In Sect. 3 we define the classifying Lie 
algebroid of a fully regular G-structure with connection and study its first proper-
ties. Section 4 discusses several examples of G-structures with connection and their 
classifying algebroids. Section 5 contains a summary of the theory of G-structure 
groupoids and G-structure algebroids developed by us in [11]. This is used in Sect. 6 
to make precise the link between G-structure algebroids with connection and the 
classifying Lie algebroid of a single G-structure. Here the notion of a G-realiza-
tion of a G-structure algebroid with connection plays a crucial role. We also explain 
in this section how G-realizations of a G-structure algebroid with connection are 

{
dpI ∶ I ∈ Ω0(FG(M),𝜔)

}
⊂ T∗

p
FG(M),

Ω∙(FG(M),�) ≃ Γ(∧∙A∗).
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related to its G-integrations and how they can be used to codify the solutions of the 
associated Cartan’s realization problem.

2 � G‑structures and connections

In this section we give a quick review of the theory of G-structures. Besides fixing 
our notations, we also present a viewpoint that will be useful to us. Namely, for us 
G-structures are encoded by a free and proper G-action together with a “tensorial” 
1-form (the tautological form). We then relax the freeness condition allowing for 
locally free G-actions, so we can include also G-structures over effective orbifolds. 
The main reason for allowing for locally free actions and orbifolds is not aiming at 
the most general approach. Rather, as we shall see, orbifolds turn out to be the natu-
ral set up for the theory.

2.1 � G‑structures

We begin with the description of the classical approach to G-structures via reduction 
of the frame bundle. We then explain the transition to our approach, which does not 
include any reference to the base manifold or to orbifolds.

Let M be an n-dimensional manifold. Its frame bundle � ∶ F(M) → M is a 
GL n(ℝ)-principal bundle with fiber over x the frames at x:

Given a closed subgroup G ⊂ GL n(ℝ) , a G-structure on M is a reduction of the 
frame bundle F(M) to a principal sub-bundle FG(M) whose structure group is G.

A (locally defined) diffeomorphism � ∶ M → N has a canonical lift to a (locally 
defined) principal bundle map between the frame bundles:

Two G-structures FG(M) and FG(N) are (locally) equivalent if there exists a (locally 
defined) diffeomorphism � ∶ M → N such that �̃(FG(M)) = FG(N).

One of the main issues when dealing with G-structures is to characterize G-struc-
tures up to (local) equivalence. For this, the tautological form of the G-structure 
plays a crucial role: it is the ℝn-valued 1-form � ∈ Ω1(FG(M),ℝn) defined for 
p ∈ FG(M) and � ∈ TpFG(M) by:

One then has the following classical result (see, e.g., [23]):
Theorem 2.1  Let FG(M) and FG(N) be two G-structures over M and N respectively. 
A principal bundle isomorphism

�−1(x) = {p ∶ ℝ
n
→ TxM ∶ p is a linear isomorphism }.

�̃ ∶ F(M) → F(N), �̃(p)(v) = d�(p(v)) for all v ∈ ℝ
n

�p(�) = p−1(dp�(�)).
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FG(M) Φ FG(N)

M ϕ N

 is an equivalence of G-structures if and only if Φ∗�N = �M.

Next, it will be important for us to recognize when a principal G-bundle P → M 
is a G-structure. This can be answered by identifying the main properties of the tau-
tological 1-form. A first property is that it is a tensorial form. To state it, we intro-
duce the notation 𝛼̃ ∈ �(P) to denote the infinitesimal generator of the G-action:

Then we have the following definition:

Definition 2.2  Let P → M be a principal G-bundle and V a G-representation. A 
V-valued form � ∈ Ωk(P,V) is tensorial if it is: 

	 (i)	 Horizontal: i𝛼̃𝜃 = 0 , for all � ∈ �;
	 (ii)	 G-equivariant: g∗� = g−1 ⋅ � , for all g ∈ G.

In the case of the tautological 1-form the relevant representation of 
G ⊂ GL n(ℝ) is the defining representation on ℝn . Besides being tensorial, the 
tautological form is also pointwise surjective: for each p ∈ FG(M) , the map 
�p ∶ TpFG(M) → ℝ

n is surjective. One then has the following classical result char-
acterizing G-structures among all principal G-bundles [2]:

Theorem  2.3  Let M be an n-dimensional manifold and G ⊂ GL n(ℝ) a closed 
Lie subgroup. Let � ∶ P → M be a principal G-bundle and assume that P comes 
equipped with a pointwise surjective tensorial 1-form �P ∈ Ω1(P,ℝn) . Then there 
exists a unique embedding of principal bundles

P
Φ F(M)

M

 such that Φ∗� = �P.

𝛼̃p ∶=
d

dt

|||t=0p ⋅ exp(t𝛼) (𝛼 ∈ �).
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We conclude from the previous two results that the category of G-structures 
with equivalences can be identified with the category consisting of: 

Objects:	� Pairs (P, �) where P is a manifold with a proper and free G-action, 

 and � ∈ Ω1(P,ℝn) is a tensorial, fiberwise surjective, 1-form.
Morphisms:	� G-equivariant diffeomorphisms Φ ∶ P → Q such that 

 Notice that local equivalences correspond to morphisms defined on G-saturated 
open sets.

As we have already mentioned, one advantage of this approach is that one can 
relax the condition on the G-action, replacing free by locally free and effective. 
The quotient P/G is then an effective orbifold, and so one obtains a generalization 
of the theory of G-structures on manifolds to G-structures on effective orbi-
folds. In fact, the frame bundle of an effective orbifold is a manifold (see [20]) 
and Theorems 2.1 and 2.3 remain valid in this setting. Henceforth, we consider 
the category above with pairs (P, �) carrying a locally free, effective and proper 
G-action. More details on the resulting theory of G-structures on orbifolds will 
appear elsewhere [10].

2.2 � Connections

We will be mostly interested in G-structures with connections. A connection on a 
G-structure (P, �) is a 1-form � ∈ Ω1(P, �) which is: 

	 (i)	 Vertical: 𝜔(𝛼̃p) = 𝛼 for all � ∈ �;
	 (ii)	 G-equivariant: g∗� = Adg−1◦� for all g ∈ G.

When working in the category of G-structures with connections it is natural to con-
sider connection preserving equivalences. Therefore, the morphisms between 
two G-structures with connection (P, �P,�P) and (Q, �Q,�Q) are diffeomorphisms 
Φ ∶ P → Q which are G-equivariant and satisfy:

If (P, �,�) is a G-structure with connection, for each p ∈ P we have a linear 
isomorphism:

In other words, the pair (�,�) may be interpreted as a coframe on P. The exterior 
derivatives of � and � can then be re-expressed in terms of the coframe (�,�) . This 
yields the well-known structure equations:

dimP = n + dimG,

Φ∗�Q = �P.

Φ∗�Q = �P, Φ∗�Q = �P.

(𝜃,𝜔)p ∶ TpP → ℝ
n ⊕ �.
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where T ∶ P → Hom(∧2
ℝ

n,ℝn) is the torsion and R ∶ P → Hom(∧2
ℝ

n, �) is the 
curvature of the connection � . These functions are both G-equivariant for the 
induced actions on the vector spaces Hom(∧2

ℝ
n,ℝn) and Hom(∧2

ℝ
n, �). Note that 

in the expressions above the wedge products make use of the action of � ⊂ ��n(ℝ) 
on ℝn and of the Lie bracket of �:

There may or may not exist a torsion-free connection ( T = 0 ) on a G-structure, and 
if it exists it might not be unique. The uniqueness, or lack thereof, is controlled by 
G and its defining action on ℝn , and does not depend on the G-structure itself. On 
the other hand, the existence of torsion-free connection, in general, depends on the 
G-structure and is a first obstruction to integrability, i.e., for the G-structure to be 
locally equivalent to the trivial G-structure. For the proofs of these facts and more 
details we refer to [15, 21, 23]. The table below gives some classes of G-structures 
and the geometric significance of the existence of a torsion-free connection.

G Geometric Structure Isomorphisms Torsion-Free Connection

GL
+

n
(ℝ) ⊂ GL n(ℝ) Orientation Orientation Preserving 

Diffeomorphisms
All

SLn(ℝ) ⊂ GL n(ℝ) Volume Form Volume Preserving Dif-
feomorphisms

All

Spn(ℝ) ⊂ GL 2n(ℝ) Almost Symplectic 
Structure

Symplectomorphisms Symplectic Structures

On(ℝ) ⊂ GL n(ℝ) Riemannian Metrics Isometries All
GLn(ℂ) ⊂ GL 2n(ℝ) Almost Complex Struc-

tures
Holomorphic Diffeomor-

phisms
Complex Structures

Un ⊂ GL 2n(ℝ) Hermitian Metrics Hermitian Isometries Kähler Structures
{1} ⊂ GL n(ℝ) Coframes Equivalence of Coframes Coordinate System Cof-

rames

3 � The classifying algebroid

In this section we associate to a fully regular G-structure with connection a Lie 
algebroid. This algebroid contains all the relevant information to decide if two 
G-structures with connection are equivalent.

(2.1)

⎧
⎪⎨⎪⎩

d� = T(� ∧ �) − � ∧ �

d� = R(� ∧ �) − � ∧ �

� ∧ � (�1, �2) = �(�1) ⋅ �(�2) − �(�2) ⋅ �(�1)

� ∧ � (�1, �2) = [�(�1),�(�2)].
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3.1 � Invariants

The solution to the equivalence problem relies on understanding the invariants of 
the G-structure with connection.

Definition 3.1  Let (P, �,�) be a G-structure with connection. A differential form 
Ω ∈ Ωk(P) is called an invariant k-form of (P, �,�) if for any locally defined self 
equivalence Φ ∶ �−1(U) → �−1(U�) one has

The space of invariant k-forms is denoted Ωk(P, �,�).

When k = 0 , the elements of Inv (P, �,�) ∶= Ω0(P, �,�) are the invariant 
functions of the G-structure with connection.

More generally, it is useful to consider invariant functions and forms with val-
ues in a vector space V. Their components relative to any basis for V will still be 
ordinary invariant functions and forms.

Example 3.2  For an arbitrary G-structure with connection (P, �,�) the torsion T is an 
invariant function with values in the vector space Hom(∧2

ℝ
n,ℝn) and the curvature 

R is an invariant function with values in the vector space Hom(∧2
ℝ

n, �).

Actually, the torsion and the curvature are examples of G-equivariant invari-
ant functions. In general, when V is a representation of G one can talk about a 
V-valued G-equivariant invariant k-form Ω ∈ Ωk(P,V) , i.e., invariant k-forms 
with values in V which are G-equivariant:

Example 3.3  For an arbitrary G-structure with connection (P, �,�) the tautological 
1-form � is a G-equivariant invariant 1-form with values in ℝn and the connection 
1-form � is a G-equivariant invariant 1-form with values in �.

Remark 3.4  One can also express V-valued G-equivariant invariant k-forms as sec-
tions of vector bundles. Given a G-representation V, one can form the associated 
vector bundle Ek ∶= (∧kTP ×G V) → M , and one obtains a 1:1 correspondence:

To express the invariance condition one observes that for any local equivalence 
Φ ∶ �−1(U) → �−1(U�) one obtains a vector bundle map: 

Φ∗Ω = Ω.

g∗Ω = g−1 ⋅Ω (g ∈ G).

{
G − equivariant forms

Ω ∈ Ωk(P,V)

}
⟷̃

{
sections

s ∈ Γ(Ek)

}
.
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Ek|U
Φ

Ek

Ek|U

U ϕ U

[(ξ, v)] [(dΦ(ξ), v)].

 Hence, one may call s ∈ Γ(Ek) an invariant section if for any local equivalence 
Φ ∶ �−1(U) → �−1(U�) the section satisfies:

Then one finds that there is a 1:1 correspondence:

A very elementary but important fact is that the space of invariant forms is a sub-
complex of the de Rham complex:

Proposition 3.5  For any invariant form Ω ∈ Ωk(P, �,�) its differential is also an 
invariant form: dΩ ∈ Ωk+1(P, �,�) . If V is a G-representation and Ω is G-equivari-
ant V-valued invariant form, so is dΩ.

Proof  The differential commutes with pullbacks. 	�  ◻

In the case of an invariant function I ∈ Inv (P, �,�) one can express its differential 
in terms of the coframe (�,�) on P:

where the coefficients are vector valued maps:

By the previous proposition, dI is an invariant form, and since � and � are also 
invariant forms, one deduces that the coefficients are invariant functions.

Definition 3.6  The map ( 𝜕I
𝜕𝜃
,
𝜕I

𝜕𝜔
) ∶ P → Hom(ℝn ⊕ �,ℝ) is called the coframe 

derivative of I with respect to (�,�).

Notice that if we had started with a G-equivariant invariant function I ∶ P → V then 
one would obtain a coframe derivative

s◦� = ΦEk◦s.

{
G − equivariant invariant

forms Ω ∈ Ωk(P,V)

}
⟷̃

{
invariant sections

s ∈ Γ(Ek)

}
.

dI =
�I

��
� +

�I

��
�,

�I

��
∶ P → Hom(ℝn,ℝ),

�I

��
∶ P → Hom(�,ℝ).

(
𝜕I

𝜕𝜃
,
𝜕I

𝜕𝜔

)
∶ P → Hom(ℝn ⊕ �,V)
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which is also G-equivariant with respect to the induced G-action on Hom(ℝn ⊕ �,V).

Remark 3.7  As mentioned in Remark 3.4, to a G-equivariant invariant corresponds a 
section sI of the associated vector bundle E = (P × V)∕G . This bundle inherits also a 
linear connection ∇ from the connection � and the coframe derivative �I

��
 corresponds 

to the covariant derivative ∇sI . Similarly, one finds that the coframe derivative 
�I

��
 corresponds to an algebroid derivative ∇̃sI along sections of the adjoint bundle 

Ad(P) ∶= (P × �)∕G , a bundle of Lie algebras. Here, ∇̃ ∶ Γ(Ad(P)) × Γ(E) → Γ(E) 
is the representation

where �̃ ∈ �(P) is the G-invariant, vertical vector field induced by � ∈ Γ(Ad(P)).

More generally, one can also express any invariant form Ω ∈ Ωk(P, �,�) in terms 
of the basis of k-forms provided by the exterior powers of the coframe (�,�) , and 
then express its differential dΩ similarly in terms of (�,�) . We will not need this 
more general coframe differentiation procedure since we will soon see a more natu-
ral approach using Lie algebroid theory.

3.2 � Fully regular G‑structures with connection

Iterating the process of differentiating known invariants one can obtain an infinite 
list of invariants of the G-structure with connection. These invariants may not be 
independent and, in general, there will exist relations among them. One finds two 
types of relations:

•	 “universal relations” which, for a fixed G, are the same for all G-structures with 
connections. For example, consequences of the fact that d2 = 0.

•	 “special relations” arising from the geometry of the particular G-structure with 
connection.

For an example of a “universal relation”, consider an On(ℝ)-structure (P, �,�) , 
where � is the unique torsion free connection on P, i.e., the Levi-Civita connection. 
Then the curvature R satisfies the Bianchi identity, which is already a universal rela-
tion. Moreover, this identity implies that the covariant derivative of the curvature:

actually takes values in the subspace K ⊂ Hom(ℝn, Hom(∧2
ℝ

n, �n)) given by:

We will see examples of “special relations” later.

∇̃�sI = sL�̃ I
,

�R

��
∶ P → Hom(ℝn, Hom(∧2

ℝ
n, �n))

K =
{
K ∶ K(u)(v,w) + K(v)(w, u) + K(w)(u, v) = 0,∀u, v,w ∈ ℝ

n
}
.
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Obviously, if Φ ∶ (P, �P,�P) → (Q, �Q,�Q) is an equivalence between G-struc-
tures with connections we obtain an isomorphism of complexes:

For example, a necessary condition for equivalence is that the structure functions 
and its coframe derivatives of any order must correspond under the equivalence. 
This gives an infinite set of necessary conditions for equivalence, that would be hard 
to work with. However, observe that if invariants I1, ..., Il ∈ Inv (Q, �Q,�Q) satisfy a 
functional relationship

then the corresponding elements Φ∗I1,… ,Φ∗Il ∈ Inv (P, �P,�P) must satisfy the 
same functional relation

This shows that we do not need to deal with all the invariant functions in 
Inv (P, �,�) , but only with those that are functionally independent.

Definition 3.8  A G-structure with connection (P, �,�) is called fully regular if the 
dimension of the space:

does not vary with p. This dimension is called the rank of the G-structure.

Given a G-structure with connection (P, �,�) , we will say that two points 
p, q ∈ P are locally equivalent if there exist a local equivalence Φ ∶ Up → Uq such 
that Φ(p) = q . This defines an equivalence relation ∼ on P. Obviously, any invariant 
I ∶ P → ℝ descends to a map on the quotient space I ∶ P∕ ∼→ ℝ . In general, the 
quotient P∕ ∼ is not a nice space. However, in the fully regular case we find:

Proposition 3.9  Let (P, �,�) be a fully regular G-structure with connection (P, �,�) 
of rank d. The quotient

has a smooth structure of dimension d such that the quotient map h ∶ P → X(�,�) 
is a submersion. Moreover, there is a smooth proper G-action on X(�,�) for which 
h ∶ P → X(�,�) is G-equivariant.

Proof  The fact that X(�,�) is a manifold follows from [12, Prop 2.7] applied to the 
coframe (�,�) . Observe that if p ∼ q and g ∈ G then pg ∼ qg , so the G-action 
descends to X(�,�) making the quotient map h ∶ P → X(�,�) a G-equivariant map. 
Since this map is a submersion, the action of G on X(�,�) is smooth. Since the 
G-action on P is proper, so is the G-action on X(�,�) . 	�  ◻

Φ∗ ∶ (Ωk(Q, �Q,�Q), d)
∼
�������→ (Ωk(P, �P,�P), d).

F(I1, ..., Il) = 0,

F
(
Φ∗I1,… ,Φ∗Il

)
= 0.

Ip = {dpI ∶ I ∈ Inv (P, 𝜃,𝜔)} ⊂ T∗
p
P,

X(�,�) ∶= P∕ ∼
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Definition 3.10  The manifold X(�,�) is called the classifying manifold and the map 
h ∶ P → X(�,�) is called the classifying map of the fully regular G-structure with 
connection (P, �,�).

Obviously, one has an identification between invariant functions and functions on 
the classifying manifold:

On the other hand, for any G-representation V, one can identify the G-equivariant 
invariant maps I ∶ P → V  with the G-equivariant smooth maps X(�,�) → V .

We will see later other reasons for referring to X(�,�) as the classifying manifold.

3.3 � Classifying algebroid

We saw in the previous paragraph that for a fully regular G-structure with connec-
tion (P, �,�) the invariant functions are in 1:1 correspondence with the functions on 
the classifying manifold X(�,�) . It is natural to wonder what objects correspond to the 
invariant differential forms Ωk(P, �,�).

For this we observe that the coframe (�,�) yields a vector bundle map 

TP
H=(θ,ω)

A(θ,ω)

P
h

X(θ,ω)

where A(𝜃,𝜔) ∶= X(𝜃,𝜔) × (ℝn ⊕ �) → X(𝜃,𝜔) is the trivial vector bundle. Since H is 
a fiberwise isomorphism we obtain an injective pullback map

where Ωk(A(�,�)) denotes the sections of the bundle ∧kA∗
(�,�)

→ X(�,�).

Proposition 3.11  The image of the pullback map H∗ are the invariant forms, so one 
has an isomorphism:

Proof  Let Ψ ∶ P → P be a local equivalence. Since

it follows that

h∗ ∶ C∞(X(�,�))
∼
�������→ Inv (�,�).

H∗ ∶ Ωk(A(�,�)) → Ωk(P),

H∗ ∶ Ωk(A(�,�))
∼
�������→ Ωk(P, �,�).

h◦Ψ = h, Ψ∗� = �, Ψ∗� = �,

H◦dΨ = H.
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Hence, if Ω ∈ Ωk(A(�,�)) we have:

Since Ψ was an arbitrary local equivalence, we conclude that H∗Ω ∈ Ωk(P, �,�).
Conversely, any invariant form Ω̃ ∈ Ωk(P, �,�) can be expressed in terms of the 

basis of k-forms provided by the coframe (�,�) as

where the coefficients are invariant functions. Then we must have:

for unique smooth functions Ωi1,…,in,j1…,jr
 on X(�,�) . Hence, we conclude that 

Ω̃ = H∗Ω , with

where {ui, 𝛼j} ⊂ Ω1(A(𝜃,𝜔)) is the unique basis of trivializing sections of A∗
(�,�)

 such 
that H∗ui = �i and H∗�j = �j . 	�  ◻

It follows from the previous proposition that there is a linear differential 
operator

characterized by:

Notice that dA is a differential on Ω∙(A(�,�)):

This means that the vector bundle A(�,�) → X(�,�) carries a Lie algebroid structure. 
The anchor �A is defined on a section s ∈ Γ(A(�,�)) by:

and the Lie bracket [⋅, ⋅]A of sections s1, s2 ∈ Γ(A(�,�)) is determined by requiring that 
for any � ∈ Ω1(A(�,�)):

For background on Lie algebroids and Lie groupoids see [8].

Ψ∗H∗Ω = H∗Ω.

Ω̃ =
∑

i1,… , in
j1 … , jr

Ω̃i1,…,in,j1…,jr
�i1 ∧⋯ ∧ �in ∧ �j1 ∧⋯ ∧ �jr ,

Ω̃i1,…,in,j1…,jr
= Ωi1,…,in,j1…,jr

◦h,

Ω ∶=
∑

i1,… , in
j1 … , jr

Ω̃i1,…,in,j1…,jr
ui1 ∧⋯ ∧ uin ∧ �j1 ∧⋯ ∧ �jr ,

dA ∶ Ω∙(A(�,�)) → Ω∙+1(A(�,�)),

H∗dA = dH∗.

d2
A
= 0, dA(� ∧ �) = dA� ∧ � + (−1)deg �� ∧ dA�.

(3.1)L�A(s)
f = ⟨s, dAf ⟩ (f ∈ C∞(X(�,�))),

(3.2)⟨[s1, s2]A, �⟩ = L�(s1)
⟨s2, �⟩ − L�(s2)

⟨s1, �⟩ − dA�(s1, s2),
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Definition 3.12  Let (P, �,�) be a fully regular G-structure with connection. The Lie 
algebroid (A(�,�), �A, [⋅, ⋅]A) is called the classifying Lie algebroid of (P, �,�).

In the next paragraph we will give a more explicit form of the classifying Lie 
algebroid. For now we observe that, by definition, H = (�,�) intertwines the de 
Rham differential and the Lie algebroid differential. Hence, we have:

Corollary 3.13  If (P, �,�) is a fully regular G-stucture, then the coframe (�,�) 
together with h ∶ P → X(�,�) form a Lie algebroid map: 

TP
H=(θ,ω)

A(θ,ω)

P
h

X(θ,ω)

The previous corollary shows, in particular, that H preserves the anchors:

Since h ∶ P → X(�,�) is a submersion, this implies that �A is surjective. In other 
words, the classifying Lie algebroid of a fully regular G-structure with connection is 
a transitive Lie algebroid.

3.4 � Canonical form of the classifying algebroid

Let (P, �,�) be a fully regular G-structure with connection. The torsion and the cur-
vature of the connection, being G-equivariant invariant maps, determine G-equivari-
ant maps on the classifying manifold:

Denote the infinitesimal G-action on the classifying manifold by � ∶ � → �(X(�,�)) . 
If we identify functions on X(�,�) with invariant functions on P, then this infinitesi-
mal action amounts to the coframe derivative �

��
:

We can also view the infinitesimal action as a bundle map:

which is G-equivariant:

�A◦H = dh.

T ∶ X(�,�) → Hom(∧2
ℝ

n,ℝn), R ∶ X(�,�) → Hom(∧2
ℝ

n, �).

(3.3)h∗(L�(�)f ) =
�(f◦h)

��
(�) (� ∈ �).

� ∶ X(�,�) × � → TX(�,�),
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for any x ∈ X(�,�) , � ∈ � and g ∈ G.
Similarly, there is a linear map F ∶ ℝ

n
→ �(X(�,�)) associated with the coframe 

derivative �
��

:

Again, we can view this map as a bundle map:

which is G-equivariant:

for any x ∈ X(�,�) , v ∈ ℝ
n and g ∈ G . Note, however, that F is not associated with 

any infinitesimal action of ℝn . Instead, we have:

Proposition 3.14  If (P, �,�) is a fully regular G-structure with connection, then the 
structure maps of its classifying Lie algebroid A(�,�) take the following form: 

	 (i)	 The anchor � ∶ A(�,�) → TX(�,�) is the bundle map �(u, �) = F(u) + �(�);
	 (ii)	 The bracket is defined on constant sections (u, �), (v, �) ∈ Γ(A(�,�)) by

Proof  First, from expression (3.1) for the anchor, we find that:

Hence, if s = (u, �) is a constant section with u ∈ ℝ
n and � ∈ � , using (3.3) and (3.4) 

we find:

This proves the expression for the anchor.
To find the expression for the Lie bracket, fix a basis {ui} for ℝn and a basis {�j} 

for � . We denote by the same letters the corresponding constant sections of A(�,�) 

�(x, �) ⋅ g = �(xg, Adg−1�),

(3.4)h∗(LF(u)g) =
�(f◦h)

��
(u) (u ∈ ℝ

n).

F ∶ X(�,�) ×ℝ
n
→ TX(�,�),

F(x, v) ⋅ g = F(xg, g−1 ⋅ v),

[(u, �), (v, �)] = (� ⋅ v − � ⋅ u − T(u, v), [�, �]� − R(u, v)).

h∗(L�A(s)
f ) = h∗⟨s, dAf ⟩ = ⟨H∗s,H∗dAf ⟩ = ⟨H∗s, dH∗f ⟩

=
�
H∗s,

�(f◦H)

��
� +

�(f◦H)

��
�
�

h∗(L�A(u+�)
f ) =

⟨
H∗(u, �),

�(f◦H)

��
� +

�(f◦H)

��
�
⟩

=
�(f◦h)

��
(u) +

�(f◦h)

��
(�)

= h∗(LF(u)f ) + h∗(L�(�)f ) = h∗(LF(u)+�(�)f ).
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and with an upper index the corresponding dual sections ui, �j ∈ Ω1(A(�,�)) . Notice 
that H∗ui = �i and H∗�j = �j , the components of the tautological and connection 
form relative to the fixed basis. Then, from expression (3.2) for the bracket we find:

where we used the first structure equation (2.1). Similarly, we find:

where we used the second structure equation (2.1). 	�  ◻

We will refer to the expressions for the bracket and anchor given in the previous 
proposition as the canonical form of the classifying algebroid. This explicit form 
shows that the action algebroid associated with the infinitesimal �-action on X(�,�) is a 
subalgebroid of the classifying algebroid:

The canonical form also shows that we have a G-action on the classifying algebroid 
by algebroid automorphisms, covering the G-action on X(�,�) : 

G×A(θ,ω) A(θ,ω)

G×X(θ,ω) X(θ,ω)

(x, u, α) · g := (xg, g−1 · u,Ad g−1α).

 In particular, the coframe together with the classifying map give a G-equivariant 
Lie algebroid map: 

h∗⟨[(u, �), (v, �)]A, ui⟩ = −h∗(dAu
i((u, �), (v, �)))

= −(H∗dAu
i)(H∗(u, �),H∗(v, �))

= −(dH∗ui)(H∗(u, �),H∗(v, �))

= −(d�i)(H∗(u, �),H∗(v, �))

= −(T(� ∧ �) − � ∧ �)i(H∗(u, �),H∗(v, �))

= h∗(� ⋅ v − � ⋅ u − T(u, v))i = h∗⟨� ⋅ v − � ⋅ u − T(u, v), ui⟩,

h∗⟨[(u, �), (v, �)]A, �j⟩ = −h∗(dA�
j((u, �), (v, �)))

= −(H∗dA�
j)(H∗(u, �),H∗(v, �))

= −(dH∗�j)(H∗(u, �),H∗(v, �))

= −(d�j)(H∗(u, �),H∗(v, �))

= −(R(� ∧ �) − � ∧ �)j(H∗(u, �),H∗(v, �))

= h∗([�, �]� − R(u, v))j = h∗⟨[�, �]� − R(u, v), �j⟩,

X(�,�) × � → A(�,�), (x, �) ↦ (x, (0, �)).
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TP
H=(θ,ω)

A(θ,ω)

P
h

X(θ,ω)

3.5 � Symmetries

We have the following natural notions of symmetries:

Definition 3.15  Let (P, �,�) be a G-structure with connection. A symmetry of 
(P, �,�) is a self-equivalence Φ ∶ P → P . An infinitesimal symmetry of (P, �,�) is 
a vector field � ∈ �(P) such that L�� = L�� = 0 . A germ of infinitesimal symme-
try at p is a germ of a vector field � ∈ �(U) defined in a neighborhood U of p that 
satisfies L��|U = L��|U = 0

The infinitesimal symmetries of a G-structure with connection (P, �,�) form a 
Lie subalgebra �(P, 𝜃,𝜔) ⊂ �(P) . The germs of infinitesimal symmetry at p also 
form a Lie algebra, denoted �(P, �,�)p . There is an injective restriction homomor-
phism—see [12, Lemma 5.9]:

On the global side, the symmetries of (P, �,�) form a subgroup 
Diff (P, 𝜃,𝜔) ⊂ Diff (P) and we have the following classical result—see, e.g., [6, 
Thm G] or [15, Thm I.5.1]:

Theorem 3.16  The group Diff (P, �,�) of symmetries of a G-structure with connec-
tion is a finite dimensional Lie group with Lie algebra the subspace of �(P, �,�) 
generated by the complete vector fields.

For a general G-structure with connection it may be hard to relate the Lie algebra 
of infinitesimal symmetries �(P, �,�) and the Lie algebras of germs of infinitesimal 
symmetries �(P, �,�)p . Moreover, the latter can depend on the point p ∈ P.

However, for a fully regular G-structure with connection one can relate its infin-
itesimal symmetries to the isotropy Lie algebra of its classifying algebroid A(�,�) . 
Since this is a transitive algebroid, its isotropy Lie algebras are all isomorphic.

Proposition 3.17  Let (P, �,�) be a fully regular G-structure with connection and 
let A(�,�) → X(�,�) be its classifying Lie algebroid. Then the Lie algebra of germs 

�(P, �,�) → �(P, �,�)p.
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of infinitesimal symmetries �(P, �,�)p is isomorphic to the isotropy Lie algebra 
ker 𝜌h(p) ⊂ A(𝜃,𝜔) . In particular,

Proof  The proof follows from [12, Prop 5.7] applied to the coframe (�,�) . 	�  ◻

Although for a fully regular G-structure with connection the Lie algebras 
�(P, �,�)p are all isomorphic, we will see in the examples in the next section that, in 
general, one still has strict inclusions:

We will give later conditions under which all these Lie algebras coincide and, more-
over, the natural action of Diff (P, �,�) on P is a proper and free action, with orbits 
the fibers of the classifying map h. When this is the case, the classifying map

is a principal Diff (P, �,�)-bundle and it follows that the classifying algebroid is iso-
morphic to the Atiyah algebroid of this principal bundle:

In particular, we obtain a Lie groupoid integrating A(�,�) , namely the gauge groupoid 
of the principal bundle h ∶ P → X(�,�):

The �-fibers of this groupoid are copies of P and hence are themselves G-structures 
(with connections). This is an example of a G-structure groupoid (with connection), 
which will be studied in the next sections.

4 � Examples

4.1 � Non‑fully regular G‑structures

We start by describing a class of G-structures which are not fully regular.
Consider a Riemannian manifold (M, �) . Its orthogonal frame bundle

is an On(ℝ)-structure with connection � (the Levi-Civita connection). The germs of 
infinitesimal symmetries of (O(M), �,�) at a point p ∈ O(M) can be identified with 
the space of germs of Killing vector fields of � at the point x = �(p):

dim�(P, �,�)p = dimP − dimX(�,�).

Lie(Diff (P, 𝜃,𝜔)) ⊊ �(P, 𝜃,𝜔) ⊊ �(P, 𝜃,𝜔)p.

h ∶ P → X(�,�)

A(�,�) ≃ TP∕H, H ∶= Diff (P, �,�).

�(�,�) ∶= (P ×H P) ⇉ X(�,�).

O(M) = {p ∶ (ℝn, ⟨⋅, ⋅⟩) → (TxM, �x) � linear isometry},

�(O(M), 𝜃,𝜔)p = {X ∈ �(M) ∶ LX𝜂 = 0 on some open U ⊂ M containing 𝜋(p)}.
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If this On(ℝ)-structure is fully regular then, by Proposition 3.17, we must have for 
any point p ∈ O(M)

It is easy to construct Riemannian manifolds (M, �) for which there are points 
p1, p2 ∈ O(M) such that:

For example, let M = ℝ with coordinate t, and consider the Riemannian structure

where f is a smooth function such that f �(t) > 0 if t > 0 , and f and all its derivatives 
vanish at t = 0 . Then one finds that a (local) Killing vector field for this metric must 
vanish for t > 0 and is constant for t < 0 . It follows that:

4.2 � Generalized space forms

Let (M, �) be a pseudo-Riemannian manifold of signature (p, n − p) . The associated 
O(p, n − p)-frame bundle

is a O(p, n − p) structure with connection (the Levi-Civita connection). As we saw in 
the previous example, this need not be fully regular. We recall the following result—
see, e.g., [16, 17] for the Riemannnian case and [18, Section 4.5] for the pseudo-
Riemannian case:

Proposition 4.1  Let (M, �) be a pseudo-Riemannian manifold of constant scalar 
curvature. Then for any pair of orthonormal frames p1, p2 ∈ O(M) there is a local 
isometry � of (M, �) with �̃(p1) = p2.

The (local) equivalences of (O(M), �,�) are the lifts of (local) diffeomorphisms 
� ∶ M → M which preserve � . Hence, for a space of constant scalar curvature the 
O(p, n − p)-structure (O(M), �,�) is fully regular of rank 0. In particular, X(�,�) 
reduces to a point and the classifying algebroid A(�,�) is actually a Lie algebra.

If (M, �) has constant curvature � its Riemannian curvature tensor takes the form:

dim�(O(M), �,�)p = dimO(M) − dimX(�,�).

dim�(O(M), �,�)p1 ≠ dim�(O(M), �,�)p2 .

𝜂t(v,w) =

{
vw for t ≤ 0,

(1 + f (t))vw for t > 0,

dim�(O(M), 𝜃,𝜔)p =

{
1 if 𝜋(p) < 0,

0 if 𝜋(p) > 0.

O(M) = {p ∶ (ℝn, ⟨⋅, ⋅⟩(p,n−p)) → (TxM, �x)� linear isometry },

R(X, Y)Z = �
(
�(Z, Y)X − �(Z,X)Y

)
.
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Since the torsion vanishes identically, we conclude from Proposition 3.14 that the 
classifying algebroid of (O(M), �,�) is the Lie algebra A(𝜃,𝜔) = ℝ

n ⊕ ��(p, n − p) 
with Lie bracket:

where R ∶ ∧2
ℝ

n
→ ��(p, n − p) is given by:

Classically, spaces (M, �) with constant scalar curvature are called space forms. 
More generally, a G-structure with connection (P, �,�) may be called a generalized 
space form if it is fully regular of zero constant rank and is torsionless. Equivalently, 
the corresponding classifying space reduces to a point X(�,�) , i.e., the classifying Lie 
algebroid is a Lie algebra A(𝜃,𝜔) = ℝ

n ⊕ � with Lie bracket:

where R ∶ ∧2
ℝ

n
→ � . In this generality, R is not characterized only by a number, 

and one cannot talk about scalar curvature.

4.3 � Homogeneous G‑structures

Homogeneous G-structures with connections are G-structures with connection 
which have large symmetry groups. For a nice overview and references to standard 
results see [1].

Definition 4.2  A G-structure with connection (P, �,�) is (locally) homogeneous if 
for any m1,m2 ∈ M = P∕G there exists a (local) equivalence mapping m1 to m2.

We note that this condition can be expressed at the level of frames by saying that 
for any p, q ∈ P there exists a (local) equivalence (between G-saturated open neigh-
borhoods of p and q) mapping the orbit of p to the orbit of q. For example, the gen-
eralized space forms in the previous paragraph are examples of locally homogeneous 
G-structures with connection. They become homogeneous G-structures if, e.g., they 
are geodesically complete and 1-connected.

Theorem  4.3  A G-structure with connection (P, �,�) is locally homogeneous if 
and only if it is fully regular and the G-action on its classifying manifold X(�,�) is 
transitive.

Proof  We begin by showing that if (P, �,�) is locally homogeneous, then it is fully 
regular. We must show that the dimension of

does not depend on p.

(4.1)[(u, �), (v, �)] = (� ⋅ v − � ⋅ u, [�, �] − R(u, v)),

R(u, v)(w) = �
�⟨w, v⟩(p,n−p)u − ⟨w, u⟩(p,n−p)v

�
.

[(u, �), (v, �)] = (� ⋅ v − � ⋅ u, [�, �] − R(u, v)),

Ip = {dpI ∶ I ∈ Inv (P, 𝜃,𝜔)} ⊂ T∗
p
P



543

1 3

São Paulo Journal of Mathematical Sciences (2021) 15:524–570	

Let p, q ∈ P , and let Φ ∶ Up → Uq be a local equivalence between G-saturated 
neighbourhoods of p and q mapping the G-orbit of p to that of q. Then there exists 
g ∈ G such that Φ(p) = qg and Φ∗ ∶ Iqg → Ip is an isomorphism. Hence, it is 
enough to show that Iqg ≃ Iq.

Note that if I ∈ Inv (P, �,�) , and g ∈ G , then

is also an invariant function. In fact, for any local equivalence Φ ∶ P → P one has 
that

It then follows that

is an isomorphism.
Next we show that a fully regular G-structure with connection (P, �,�) is locally 

homogeneous if and only if the G-action on the classifying manifold X(�,�) is transi-
tive. Recall that the classifying manifold is X(�,�) = P∕ ∼ where p ∼ q if and only 
if there exists a local equivalence Φ ∶ Up → Uq such that Φ(p) = q . The natural 
G-action on X(�,�) is given by [p]g = [pg] . It is then clear that this action is transitive 
if and only if for each frame q ∈ P , the equivalence class of q under local equiva-
lences intersects the G-orbit of any frame p ∈ P . 	�  ◻

If (P, �,�) is a locally homogeneous G-structure with connection, then the Lie 
algebras �(P, �,�)p of germs of infinitesimal symmetries are all isomorphic and

Recall that �(P, �,�)p can also be identified with the kernel of the anchor of the 
classifying algebroid at h(p). On the other hand, it follows from the Theorem 4.3 
that the classifying manifold of a locally homogeneous G-structure with connection 
is a homogeneous space

where x = [p] ∈ X(�,�) , and Gx is the isotropy subgroup at x. The isotropy group Gx 
has geometric meaning: if m = �(p) ∈ M = P∕G , then Gx is isomorphic to the group 
of germs at m of diffeomorphisms which fix m and are local symmetries of (P, �,�) . 
This follows directly from [11, Thm 7.2].

Properties of the classifying Lie algebroid of a locally homogeneous G-structure 
with connection are reflected in the geometry of the G-structure. We will not give a 
detailed discussion here, but the following result is an instance of this relationship 
(recall the notations from Section 3.4):

Theorem 4.4  Let (P, �,�) be a locally symmetric G-structure with connection. Then 
its classifying Lie algebroid satisfies the following properties:

g∗I ∶ P → ℝ, g∗I(p) = I(pg)

g∗IΦ(p) = I(Φ(p)g) = I(Φ(pg)) = I(pg) = g∗I(p).

g∗ ∶ Iqg → Iq, dqgI ↦ dqg
∗I

dim�(P, �,�)p ≥ dim(P∕G).

X(�,�) ≃ G∕Gx,
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Conversely, if these conditions hold then the linear connection ∇ on M = P∕G 
induced by � is locally symmetric.

Before we turn to the proof we recall that a manifold M with a linear connec-
tion ∇ is called a (locally) symmetric space if the geodesic symmetries through 
each m ∈ M are (local) affine transformations of (M,∇) . Given a G-structure with 
connection (P, �,�) we will say that it is (locally) symmetric if the geodesic sym-
metries are (local) symmetries of the G-structure. If a G-structure with connection 
(P, �,�) is (locally) symmetric then M = P∕G with the induced linear connection ∇ 
is (locally) symmetric. The converse need not hold true: for example, for the usual 
round metric on the 3-sphere the Levi-Civita connection is symmetric and the asso-
ciated O(3)-structure with connection is also symmetric. However, the associated 
smaller SO(3)-structure with connection is not symmetric (the geodesic symmetries 
do not preserve orientations of the frames).

Recall also that (M,∇) is locally symmetric if and only if its torsion vanishes 
and its curvature tensor is ∇-parallel – see, for example, [17]. It follows that if a 
G-structure with connection (P, �,�) is locally symmetric then its torsion and curva-
ture maps

satisfy T̃ ≡ 0 and �R̃
��

≡ 0 (see Remark 3.7).

Remark 4.5  If (P, �,�) is a locally symmetric G-structure, then −𝕀 ∈ GL n(ℝ) 
must be an element of G. In fact, let Sm be the local geodesic symmetry around 
m = �(p) ∈ M = P∕G . The lift S̃m ∶ F(M) → F(M) of Sm to the frame bundle maps 
p to −p . Since Sm is a symmetry of the G-structure, it follows that −p ∈ P when-
ever p ∈ P . It follows also that any invariant function Inv (P, �,�) must be invariant 
under the action of −� . This in turn implies that all elements of X(�,�) are fixed by 
−� ∈ G.

In order to prove Theorem 4.4, we start by proving the following lemma:

Lemma 4.6  Let (P, �,�) be a locally symmetric G-structure with connection. Then 
�I

��
= 0 for all invariant functions I ∈ Inv(P, �,�).

Proof  Fix m = �(p) ∈ P∕G . Since any I ∈ Inv(P, �,�) is invariant under both S̃m 
and −� , it follows that I is also invariant under the map:

Using the G-equivariance of � and � we see that this map satisfies:

T ≡ 0 and F ≡ 0.

T̃ ∶ P → Hom(∧2
ℝ

n,ℝn), and R̃ ∶ P → Hom(∧2
ℝ

n, �),

�m ∶ P → P, �m = S̃m◦(−�).
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In particular, �m fixes the point p and satisfies:

where �u ∈ ker�p is the unique vector such that �(�u) = u.
The definition of the coframe derivative of f ∈ C∞(P) with respect to � shows 

that it can be computed as

Hence, it follows that for any I ∈ Inv(P, �,�) , we have

This implies that �I
��
(p) = 0 . Since p is arbitrary we obtain that �I

��
≡ 0 . 	�  ◻

Proof of Theorem 4.4  Let (P, �,�) be a G-structure with connection. We denote by

the invariant maps corresponding to the structure maps T ∶ X(�,�) → Hom(∧2
ℝ

n,ℝn) 
and R ∶ X(�,�) → Hom(∧2

ℝ
n, �) of the classifying Lie algebroid A(�,�) → X(�,�).

If (P, �,�) is locally symmetric, then we know that T̃ ≡ 0 and so it follows 
that T ≡ 0 . On the other hand, recall that h∗C∞(X(�,�)) = Inv(P, �,�) , and for any 
f ∈ C∞(X(�,�)) , u ∈ ℝ

n , (3.4) gives

where h(p) = x . It then follows from Lemma 4.6 that F ≡ 0.
For the converse, it is clear that if T ≡ 0 then T̃ ≡ 0 , so ∇ is torsion free. Also, 

using again (3.4), if F ≡ 0 we have

Since F ≡ 0 it follows that �R̃
��

≡ 0 . Equivalently, by Remark 3.7, the curvature is ∇
-parallel, so ∇ is locally symmetric. 	�  ◻

Remark 4.7  Theorem 4.4 and Remark 4.5 reveal traces of a relationship between the 
(extremely rich) geometry of symmetric spaces and a special class of G-structure 
algebroids (see Section 5), namely those satisfying: 

	 (i)	 −� ∈ G and −� acts trivially on X;

�∗
m
� = (−�)∗� = (−�) ⋅ � = −�,

�∗
m
� = (−�)∗� = Ad−�� = �.

dp�m(�u) = −�u,

�f

��
(p)(u) = dpf (�u).

�I

��
(p)(u) = dpI(�u) = dp(I◦�m)(�u) = dpI(−�u) = −

�I

��
(p)(u).

T̃ ∶ P → Hom(∧2
ℝ

n,ℝn), R̃ ∶ P → Hom(∧2
ℝ

n, �)

dxf (Fx(u)) =
�(h∗f )

��
(p)(u),

�R̃

��
(p)(u) = LF(h(p),u)R

||h(p) = 0.
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	 (ii)	 F ≡ 0.

This allows, e.g., to obtain insight into the question of how far a homogeneous 
G-structure is from being symmetric. For instance, it is possible to relate the 
index of symmetry introduced in [3] with the rank of F. We will not explore here 
this relationship and leave it for future work.

4.4 � Left invariant invariant metrics on Lie groups

An interesting class of examples of locally homogeneous G-structures with connection 
is obtained by considering left (right) invariant G-structures with connections on Lie 
groups.

Definition 4.8  Let H be a Lie group. A G-structure with connection (FG(H),�) on H 
is left invariant if the left translation Lh ∶ H → H is a symmetry of (FG(H),�) , for 
all h ∈ H.

Every left invariant G-structure with connection on a Lie group H is trivializable, 
since one can identify FG(H) with H × G . Under this identification the tautological 
and connection forms can be decomposed in a simple way. This allows one to give a 
more explicit description of the structure equations and therefore of the classifying 
algebroid of such a structure. We will not explore this in full generality here, but we 
will focus in the case of On(ℝ)-structures, i.e., metrics. We will present below an 
explicit computation for a specific left invariant metric on the Lie group SU2 , which 
already captures the general case.

Left invariant metrics on Lie groups have been extensively studied since the pio-
neering work of Milnor and others in the 1970’s ( [9, 13, 19, 22]). In the language of 
G-structures, these correspond to left invariant On(ℝ)-structures with the Levi-Civita 
connection. Every left invariant metric on a Lie group H is locally homogeneous in 
the sense of the previous paragraph. It follows that the corresponding On(ℝ)-struc-
ture with the Levi-Civita connection is fully regular, and moreover that its classify-
ing manifold X(�,�) is identified with On(ℝ)∕K , where K is the group of germs of iso-
metries of H at the identity e ∈ H . Note that when forming the quotient On(ℝ)∕K , 
we identify K with a subgroup of On(ℝ) as follows: fix a frame p ∈ FOn(ℝ)

(H) over e 
and let � ∈ K be a germ at e. Then there exists a unique g ∈ On(ℝ) such that

This determines an embedding of K in On(ℝ) as a closed subgroup.
The left invariant metrics on 1-connected 3-dimensional unimodular Lie groups 

were classified in [14]. In what follows we compute the classifying algebroid of a 
specific left invariant metric on SU2 . The arguments presented below can be gen-
eralized to obtain the classifying algebroid of any left invariant metric on a 1-con-
nected and compact Lie group.

We denote by � the left invariant metric on H = SU2 for which the matrices in

de�◦p = pg.
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form an orthonormal frame of TeH = ��3(ℝ) . A straightforward computation leads 
to the value of the curvature map at this frame: R(p0) ∈ Hom(∧2

ℝ
3, ��3(ℝ)) . If one 

denotes by e1, e2, e3 the canonical basis of ℝ3 , then one finds:

where

The value of the curvature map at any other frame can be obtained using the 
G-equivariance

In order to determine the classifying manifold X(�,�) of the orthogonal frame bundle 
of (H, �) we must find the group K of germs of isometries which fixes e ∈ H . Note 
however, that since H is compact and simply connected, its frame bundle will be a 
strongly complete realization of its classifying algebroid—see Definition 6.11 and 
Section 6 of [11] for details. It then follows that any local isometry of H extends to a 
global isometry and therefore we can identify K with the group of global isometries 
of H which fix the identity e. The group K was computed in [14] and its is isomor-
phic to ℤ2 × ℤ2 , namely it is formed by the matrices:

Therefore, the classifying manifold X(�,�) of the left invariant metric � on 
H is identified with SO3(ℝ)∕(ℤ2 × ℤ2) , and R can be viewed as a map 
X(�,�) → Hom(∧2

ℝ
3, ��3(ℝ)).

The classifying Lie algebroid of (SU2, �) is the trivial vector bundle 
A(𝜃,𝜔) = X(𝜃,𝜔) ×ℝ

3 ⊕ ��3(ℝ) → X(𝜃,𝜔) , with Lie bracket on constant sections given by

p0 =

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝

0 0 1

0 0 0

−1 0 0

⎞⎟⎟⎠
,

⎛⎜⎜⎝

0 2 0

−2 0 0

0 0 0

⎞⎟⎟⎠
,

⎛⎜⎜⎝

0 0 0

0 0 4

0 − 4 0

⎞⎟⎟⎠

⎫⎪⎬⎪⎭
,

R(p0)(e1, e2) =

⎛
⎜⎜⎝

0 c1 0

−c1 0 0

0 0 0

⎞
⎟⎟⎠
, R(p0)(e1, e3) =

⎛
⎜⎜⎝

0 0 c2
0 0 0

−c2 0 0

⎞⎟⎟⎠
,

R(p0)(e2, e3) =

⎛⎜⎜⎝

0 0 0

0 0 − c3
0 c3 0

⎞⎟⎟⎠
,

c1 =
181

16
, c2 =

313

16
, c3 =

599

16
.

R(pg)(u, v) = Adg−1R(p)(gu, gv).

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠
,

⎛⎜⎜⎝

1 0 0

0 − 1 0

0 0 − 1

⎞⎟⎟⎠
,

⎛⎜⎜⎝

−1 0 0

0 1 0

0 0 − 1

⎞⎟⎟⎠
,

⎛⎜⎜⎝

−1 0 0

0 − 1 0

0 0 1

⎞⎟⎟⎠
.

[(u, �), (v, �)](x) = (� ⋅ v − � ⋅ u, [�, �] − R(x)(u, v)).
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Finally its anchor is �(u, �)x = F(x)(u) + �(�)x where � ∶ � → �(X(�,�)) denotes the 
infinitesimal G-action on X(�,�) , and F(x) ∶ ℝ

3
→ TxX(�,�) . Note however that since 

�x ∶ � → TxX(�,�) is injective, it follows that F(x) = 0 for all x ∈ X(�,�).

5 � G‑structure groupoids and G‑structure algebroids

The Lie algebroids that classify regular G-structures with connection form a spe-
cial class of Lie algebroids. We will now discuss this class of Lie algebroids, called 
G-structure Lie algebroids (with connection), as well as their global counterparts, 
G-structure Lie groupoids (with connection). As we will see, a G-structure groupoid 
is a Lie groupoid whose source fibers are G-structures hence they yield the appro-
priate framework to study families of G-structures and, in particular, to deal with 
Cartan’s realization problem.

5.1 � G‑structure groupoids

We denote by � ⇉ X a Lie groupoid with space of arrows �  and space of objects 
X. We use the letters � and � for the source and target maps, the symbol 1x for the 
identity arrow at x ∈ X and �1 ⋅ �2 for the product of the composable arrows 
(�1, �2) ∈ � (2) ∶= �s ×t �  . Also, we denote by T�� = ker d� the tangent distribution 
to the source fibers. We will denote by Ωk

R
(� ,V) the space of right-invariant k-forms 

on �  with values in V. By definition, these are �-foliated forms with values in V, i.e., 
vector bundle maps ∧kT�� → � × V  . The de Rham differential restricts to a differ-
ential d ∶ Ωk

R
(� ,V) → Ωk+1

R
(� ,V).

An action of a Lie group G on a Lie groupoid � ⇉ X will be called a G -princi-
pal action if: 

	 (i)	 The action is locally free, effective and proper;
	 (ii)	 The source map � is G-invariant;
	 (iii)	 The action is compatible with the groupoid multiplication: 

In this case we also call �  a G-principal groupoid. By a morphism of G-princi-
pal groupoids we mean a G-equivariant groupoid morphism Φ ∶ �1 → �2 between 
G-principal groupoids.

For a G-principal groupoid � ⇉ X each source fiber �−1(x) is a G-principal bun-
dle over the orbifold M = �

−1(x)∕G . So a G-principal groupoid � ⇉ X is a family of 
G-principal bundles parameterized by X.

We are mostly interested in G-structures. Recalling the characterization of such 
structures given by Theorem 2.3, one is led to the following:

Definition 5.1  Given a closed subgroup G ⊂ GL (n,ℝ) , a G-structure groupoid 
consists of a G-principal groupoid � ⇉ X equipped with a pointwise surjective 
1-form Θ ∈ Ω1

R
(� ,ℝn) satisfying: 

(5.1)(�1 ⋅ �2) g = (�1 g) ⋅ �2, ∀(�1, �2) ∈ � (2), g ∈ G.
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	 (i)	 Θ is strongly horizontal: Θ� (v) = 0 iff v = 𝛼̃|𝛾 , for some � ∈ �;
	 (ii)	 Θ is G-equivariant: g∗Θ = g−1 ⋅ Θ , for all g ∈ G.

We call Θ the tautological form of the G-structure groupoid.
A morphism of G-structure groupoids Φ ∶ �1 → �2 is a morphism of G-princi-

pal groupoids which preserves the tautological forms: Φ∗Θ2 = Θ1.

Therefore, each source fiber �−1(x) of a G-structure groupoid is a G-structure over 
the orbifold M = �

−1(x)∕G with tautological form the restriction Θ|
�−1(x).

Example 5.2  A G-principal action on a manifold P is the same thing as a G-principal 
action on the pair groupoid � = P × P ⇉ P . The two actions are related by:

Condition (5.1) holds since we have:

Similarly, a G-structure groupoid on the pair groupoid P × P ⇉ P is the same 
thing as an ordinary G-structure on P → P∕G = M . The tautological 1-forms 
� ∈ Ω1(P,ℝn) and Θ ∈ Ω1

R
(� ,ℝn) are related by:

Given a G-structure groupoid � ⇉ X , each �-fiber �−1(x) → �
−1(x)∕G has a G-struc-

ture, and we have a morphism of G-structure groupoids covering the target map: 

s−1(x)× s−1(x) Γ

s−1(x)
t

X

(γ1, γ2) γ1 · γ−1
2 .

There is a slightly different point of view on G-principal and G-structure 
groupoids, which will be useful when we introduce their infinitesimal versions.

First, given a G-principal groupoid � ⇉ X we have a G-action on X defined 
by:

For this action, � ∶ � → X is G-invariant and � ∶ � → X is G-equivariant.
Next, recall that given a (right) G-action on a manifold X one can form the 

action Lie groupoid X ⋊ G ⇉ X : an arrow is a pair (x, g) with source x and target 
xg, and composition of arrows is given by:

� × G → � , (p1, p2) g ∶= (p1g, p2).

((p1, p2) ⋅ (p2, p3)) g = (p1, p3) g = (p1 g, p3) = ((p1, p2) g) ⋅ (p2, p3).

Θ(p1,p2)
(v, 0) = �p1(v).

(5.2)X × G → X, x g ∶= �(1x g).
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Finally, one can define the groupoid morphism:

This will be called the action morphism of the G-principal groupoid.
To state the next result, we will say that a groupoid morphism � ∶ X ⋊ G → �  

is effective if given e ≠ g ∈ G there exists an x ∈ X with �(x, g) ≠ 1x and we will 
say that it is locally injective if the induced Lie algebroid morphism is injective.

Proposition 5.3  Let � ⇉ X be a Lie groupoid. If � × G → �  is a G-principal 
action, then: 

	 (i)	 (5.2) defines a G-action on X;
	 (ii)	 (5.3) defines an effective, locally injective, Lie groupoid morphism;
	 (iii)	 the action takes the form: 

Conversely, given an action X × G → X and an effective, locally injective, Lie 
groupoid morphism � ∶ X ⋊ G → �  , (5.4) defines a G-principal action on � .

For a proof of this proposition we refer to [11]. It shows that we can define the 
G-principal action on �  by specifying first a G-action on X and then an effective, 
locally injective, groupoid morphism � ∶ X ⋊ G → �  . We will often use this alterna-
tive point of view. From this perspective, a morphism of G-principal groupoids can 
be characterized as a morphism of groupoids 

Γ1
Φ Γ2

X1
φ

X2

 which intertwines the actions morphisms:

The action morphism � ∶ X ⋊ G → �  also allows us to define another action of G on 
Γ , namely the action by inner automorphisms:

In general, the inner action of G on Γ does not determine the original G-action on Γ . 
For example, the action morphism maybe non-trivial, while the inner action could 
be trivial.

(y, h) ⋅ (x, g) = (x, gh), if y = xg.

(5.3)� ∶ X ⋊ G → � , (x, g) ↦ 1x g.

(5.4)� × G → � , � g ∶= �(�(�), g) ⋅ � .

Φ◦�1 = �2◦(� × I).

(5.5)𝛤 × G → 𝛤 , 𝛾 ⊙ g ∶= 𝜄(�(𝛾), g) ⋅ 𝛾 ⋅ 𝜄(�(𝛾), g)−1.
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5.2 � Connections on G‑structure groupoids

The notion of connection on a G-principal groupoid � ⇉ X , much like principal 
bundle connections, can be defined either as an invariant distribution or as a �-val-
ued 1-form. We will choose the latter approach and refer to [11] for the former, as 
well as the equivalence between the two approaches.

Definition 5.4  A connection 1-form on a G-principal groupoid � ⇉ X is a �-valued 
1-form Ω ∈ Ω1

R
(� , �) satisfying: 

	 (i)	 Ω is vertical: Ω(𝛼̃) = 𝛼 , for all � ∈ �;
	 (ii)	 Ω is G-equivariant: g∗Ω = Adg−1 ⋅Ω , for all g ∈ G.

The restriction of a connection 1-form Ω ∈ Ω1
R
(� , �) to each fiber �−1(x) gives an 

ordinary connection 1-form � ∈ Ω1(�−1(x), �) . The corresponding horizontal distri-
butions assemble to a distribution on �  given by:

The curvature 2-form of a connection Ω is a �-valued 2-form

which measures the failure of the horizontal distribution H to be integrable. It is 
defined by:

where h ∶ T�� → H denotes the projection.
The restriction of Curv (Ω) to the s-fiber �−1(x) is the usual curvature 2-form of 

the induced connection on �−1(x) → �
−1(x)∕G . This leads immediately to the fact 

that a connection Ω on a G-principal groupoid � ⇉ X satisfies:
1st structure equation

1st Bianchi identity

Assume now that � ⇉ X is a G-structure groupoid with connection Ω . Denoting 
the tautological form by Θ , we define the torsion of the connection to be the right-
invariant 2-form Tors (Ω) ∈ Ω2

R
(� ,ℝn) given by:

The restriction of Tors (Ω) to the source fiber �−1(x) is the (usual) torsion 2-form of 
the induced connection on �−1(x) → �

−1(x)∕G and we find that the following hold:

H ∶= {v ∈ T�� ∶ Ω(v) = 0}.

Curv (Ω) ∈ Ω2
R
(� , �),

Curv (Ω)(v,w) ∶= dΩ(h(v), h(w)), (v,w ∈ T�� ),

dΩ = −Ω ∧ Ω + Curv (Ω);

dCurv (Ω)|H = 0.

Tors (Ω)(v,w) = dΘ(h(v), h(w)), (v,w ∈ T�� ).
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2nd structure equation

2nd Bianchi identity

One can also consider morphisms of G-structure groupoids with connection. 
They amount to morphisms of groupoids Φ ∶ �1 → �2 which are G-equivariant and 
preserve both the tautological and connection 1-forms:

5.3 � G‑structure algebroids

We denote by Der (A) the space of Lie algebroid derivations of a Lie algebroid A. 
An element D ∈ Der (A) is a derivation of the vector bundle A → X that acts as a 
derivation of the bracket. So D ∶ Γ(A) → Γ(A) is a linear map for which there exists 
a vector field �D ∈ �(M) such that:

and moreover:

We call �D the symbol of the derivation. The commutator of derivations turns 
Der (A) into a Lie algebra.

Given a Lie algebra � , by an infinitesimal �-action on A we mean a Lie algebra 
map �̂ ∶ � → Der (A) . Composing �̂ with the symbol map gives an infinitesimal �
-action on the base X of the Lie algebroid � ∶ � → �(X) , so that:

Consider a G-action on a Lie algebroid A:

If the action is by Lie algebroid automorphisms, then it induces an infinitesimal �
-action �̂ ∶ � → Der (A) , given by:

A G-action on a Lie algebroid A is called a G -principal action if 

	 (i)	 The action is by Lie algebroid automorphisms;
	 (ii)	 The infinitesimal action �̂ ∶ � → Der (A) satisfies: 

dΘ = −Ω ∧ Θ + Tors (Ω);

d Tors (Ω)|H = −(Curv (Ω) ∧ Θ)|H.

Φ∗Θ2 = Θ1, Φ∗Ω2 = Ω1.

D(fs) = fDs + �D(f )s (s ∈ Γ(A), f ∈ C∞(X)),

D([s1, s2]A) = [D(s1), s2]A + [s1,D(s2)]A, (s1, s2 ∈ Γ(A)).

�̂(�)(fs) = f �̂(�)(s) + �(�)(f )s.

A × G → A, (a, g) ↦ a⊙ g.

�̂(�)(s) ∶=
d

dt

||||t=0(exp(t�))
∗s, � ∈ �, s ∈ Γ(A).
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 where i ∶ X ⋊ � → A is an injective algebroid morphism.
In this case, we call A a G-principal algebroid and i ∶ X ⋊ � → A the action 
morphism.

Notice that the action morphism i ∶ X ⋊ � → A is part of the data defining a 
G-principal Lie algebroid: there could be more than one such morphism determin-
ing the same infinitesimal action �̂ ∶ � → Der (A) . When G is connected, this mor-
phism determines the G-action.

Definition 5.5  Given a closed subgroup G ⊂ GL (n,ℝ) , a G-structure algebroid 
consists of a G-principal algebroid A → X with action morphism i ∶ X ⋊ � → A 
equipped with a fiberwise surjective A-form � ∈ Ω1(A,ℝn) satisfying: 

	 (i)	 strong horizontality: 

	 (ii)	 G-equivariance: 

We call � the tautological form of the G-structure algebroid. The definition of a 
G-structure algebroid A → X implies that:

There is no restriction on the dimension of the base X, which can be arbitrary.

Example 5.6  Let (P, �) be a G-structure. Then the lifted G-action on the tangent bun-
dle A = TP → P yields a G-structure algebroid with A-form � , and action morphism

where 𝛼̃p is the infinitesimal generator of the G-action. This is the infinitesimal ver-
sion of the G-structure groupoid of Example 5.2.

Example 5.7  Our main example is, of course, the classifying Lie algebroid A(�,�) of a 
fully regular G-structure with connection (P, �,�) . We saw in Sect. 3.4 that this Lie 
algebroid comes with an injective algebroid morphism

and an action G × A(�,�) → A(�,�) by Lie algebroid automorphisms. One checks that 
the induced infinitesimal action �̂ ∶ � → Der (A) satisfies:

�̂(�) = [i(�),−].

�x(a) = 0 iff a = i(x, �), for some � ∈ �.

𝜃x⋅g(a⊙ g) = g−1 ⋅ 𝜃x(a), ∀g ∈ G.

rankA = n + dimG.

i ∶ P × � → TP, (p, 𝛼) ↦ 𝛼̃p,

i ∶ X(�,�) × � → A(�,�), (x, �) ↦ (x, (0, �)).

�̂(�) = [i(�),−].
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The projection

defines a form � ∈ Ω1(A(�,�),ℝ
n) which satisfies all the conditions of the definition.

There is a differentiation functor taking G-principal groupoids to G-principal 
algebroids. We state here the main results and refer to [11] for more details and 
proofs.

Proposition 5.8  Let � ⇉ X be a G-principal Lie groupoid with action morphism 
� ∶ X ⋊ G → �  . Then its Lie algebroid A → X is a G-principal algebroid with 
action morphism i = �∗ ∶ X ⋊ � → A.

Conversely, given a G-principal algebroid A → X , a Lie groupoid � ⇉ X inte-
grating A admits a (unique) G-principal action inducing the G-action on A pro-
vided the action morphism i ∶ X ⋊ � → A integrates to an effective Lie groupoid 
morphism:

Remark 5.9  Assume that a G-principal groupoid �  corresponds to a G-princi-
pal algebroid A, as in the previous proposition. Then the fact that right-invariant 
forms on �  are in bijection with A-forms leads immediately to a correspondence of 
G-structures, namely:

There is also a natural notion of morphism of G-principal Lie algebroids: it 
is a Lie algebroid morphism between G-principal Lie algebroids 

A1
Φ

A2

X1
φ

X2

 which is G-equivariant and which intertwines the action morphisms:

A morphism of G-principal groupoids Φ ∶ �1 → �2 induces a morphism of the 
associated G-principal algebroids Φ∗ ∶ A1 → A2 . The converse, in general, fails 
unless �1 is the so called canonical G-integration of A1—see Sect. 5.6 and [11].

One defines a morphism of G-structure algebroids to be a morphism of 
G-principal algebroids Φ ∶ A1 → A2 which additionally preserves the tautological 
forms: Φ∗�2 = �1 . A morphism of G-structure algebroids Φ ∶ A1 → A2 is neces-
sarily a fiberwise isomorphism.

A(𝜃,𝜔) = X(𝜃,𝜔) × (ℝn ⊕ �) → ℝ
n

� ∶ X ⋊ G → � .

(5.6)
{

𝛤 − tautological forms

Θ ∈ Ω1
R
(𝛤 ,ℝn)

}
⟷̃

{
A − tautological forms

𝜃 ∈ Ω1(A,ℝn)

}
.

Φ◦i1 = i2◦(� × I).
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5.4 � Connections on G‑structure algebroids

Recalling that the right-invariant forms on a Lie groupoid Γ correspond to 
A-forms on its Lie algebroid, one is lead to the notion of connection on a G-prin-
cipal algebroid:

Definition 5.10  A connection 1-form on a G-principal algebroid A → X is a �-val-
ued A-form � ∈ Ω1(A, �) satisfying: 

	 (i)	 It is vertical relative to the morphism i ∶ X ⋊ � → A : 

	 (ii)	 It is G-equivariant for the G-action on A by automorphisms: 

Notice that a connection 1-form � ∈ Ω1(A, �) yields a horizontal sub-bundle 
H = ker𝜔 ⊂ A such that:

This sub-bundle is G-invariant and determines the connection 1-form uniquely—see 
[11].

Example 5.11  Returning to our main example of the classifying Lie algebroid A(�,�) 
of a fully regular G-structure with connection (P, �,�) , this is a G-structure alge-
broid—see Example  5.7—with connection form � ∈ Ω1(A(�,�), �) given by the 
projection:

Naturally, one defines the curvature 2-form of a connection � to be the A-form 
Curv (�) ∈ Ω2(A, �) given by:

where h ∶ A → H denotes the projection and dA ∶ Ωk(A,V) → Ωk+1(A,V) the Lie 
algebroid differential. The connection is flat, i.e., Curv (�) = 0 if and only if H ⊂ A 
is a Lie subalgebroid, and the following hold:
1st structure equation

1st Bianchi identity

�(i(x, �)) = �, ∀ � ∈ �, x ∈ M;

𝜔xg(a⊙ g) = Adg−1 ⋅ 𝜔x(a), ∀ a ∈ Ax, g ∈ G.

A = H ⊕ℑi.

A(𝜃,𝜔) = X(𝜃,𝜔) × (ℝn ⊕ �) → �.

Curv (�)(a1, a2) ∶= dA�(h(a1), h(a2)), ai ∈ A,

dA� = −� ∧ � + Curv (�);

dA Curv (�)|H = 0.
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Assuming now that A → X is a G-structure algebroid with connection 1-form 
� ∈ Ω1(A, �) , we define the torsion of the connection to be the ℝn-valued A-form 
Tors (�) ∈ Ω2(A,ℝn) given by:

where � ∈ Ω1(A,ℝn) denotes the tautological 1-form. The torsion and the curvature 
satisfy:
2nd structure equation

2nd Bianchi identity

Remark 5.12  Under the correspondence (5.6) between G-structure groupoids and 
G-structure algebroids, if a connection Ω on �  corresponds to a connection � on A, 
then the associated torsions Tors (Ω) and Tors (�) correspond to each other, so that:

Moreover, the structure equations and the Bianchi identities also correspond to each 
other.

Finally, there is also a notion of morphism of G-structure algebroids with connec-
tion: it is a morphism of algebroids Φ ∶ A1 → A2 which is G-equivariant, intertwines 
the action morphisms, and preserves the tautological and connection 1-forms:

5.5 � Canonical form of a G‑structure algebroid with connection

Assume that � ∶ A → X is a G-structure algebroid with tautological form � and con-
nection form � . We obtain a vector bundle isomorphism to the trivial bundle:

We can re-express the torsion and the curvature under this isomorphism as maps:

•	 T ∶ X → Hom(∧2
ℝ

n,ℝn) : T(x)(v,w) = Tors (�)x(v,w);
•	 R ∶ X → Hom(∧2

ℝ
n, �) : R(x)(v,w) = Curv (�)x(v,w).

Moreover, under this isomorphism:

•	 the G-action on A takes the form: (x, u, 𝛼)⊙ g = (x g, g−1 u, Adg−1 ⋅ 𝛼);
•	 the action morphism is the inclusion i ∶ X ⋊ � → A , (x, �)) ↦ (x, 0, �);

Tors (�)(a1, a2) ∶= dA�(h(a1), h(a2)), ai ∈ A,

dA� = −� ∧ � + Tors (�);

dA Tors (�)|H = −(Curv (�) ∧ �)|H .

Tors (�)x = Tors (Ω)1x , ∀x ∈ X.

Φ∗�2 = �1, Φ∗�2 = �1.

A
≅

⟶X × (ℝn ⊕ �), a ↦ (𝜋(x), 𝜃(a),𝜔(a)).
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•	 the tautological form is the projection 𝜃 ∶ X × (ℝn ⊕ �) → ℝ
n;

•	 the connection 1-form is the projection 𝜔 ∶ X × (ℝn ⊕ �) → �.

One checks also that the Lie bracket is then given on constant sections by:

while the anchor takes the form:

where F ∶ X ×ℝ
n
→ TX is a G-equivariant bundle map and � ∶ � → �(X) denotes 

the infinitesimal G-action on X. We call this the canonical form of a G-structure Lie 
algebroid with connection.

Remark 5.13  Our usage here of the term canonical form is consistent with the usage 
in Section 3.4 for the case of the classifying Lie algebroid of a G-structure with con-
nection. One may wonder, if any transitive G-structure algebroid with connection 
arises as the classifying Lie algebroid of a G-structure with connection. This is a 
special instance of the realization problem to be discussed in the next section.

5.6 � G‑integrations

A fundamental question, suggested by the results above, is the G-integrability problem:

•	 When does a G-structure algebroid with connection arise from a G-structure 
groupoid with connection?

A complete solution to this problem is presented in [11]. Here we will give a brief over-
view, focusing on the results most relevant for the theory of (fully regular) G-structures.

A first observation is that the connection and tautological form do not play any 
role here—see Remarks 5.9 and 5.12. Therefore, we can assume that A → X is a 
G-principal algebroid and look for a G-principal groupoid � ⇉ X integrating it. If 
the latter exists we will say that A is G-integrable and call �  a G-integration of A.

A Lie algebroid A → X may fail to be integrable and the obstructions to integra-
bility are well understood (see [7, 8]). When A is integrable it may have many inte-
grations, but among the source-connected integrations, there is a unique (up to iso-
morphism) maximal integration Σ(A) ⇉ X . One can characterize the groupoid Σ(A) 
as the one with 1-connected source fibers.

For a G-principal algebroid A, it may happen that it is integrable, but not G-inte-
grable. If A is G-integrable, one can also look for a maximal source connected 
G-integration. Such integration always exist and this is the version of Lie’s first the-
orem for G-integrations:

Theorem 5.14  (Lie I [11]) Let A → X be a G-principal algebroid which is G-inte-
grable. Then there exists a unique (up to isomorphism) G-principal groupoid 
ΣG(A) ⇉ X which is characterized by either of the following: 

(5.7)[(u, �), (v, �)] = (� ⋅ v − � ⋅ u − T(u, v), [�, �]� − R(u, v)),

(5.8)𝜌(u, 𝛼) = F(u) + 𝜓(𝛼), (u, 𝛼) ∈ ℝ
n ⊕ �,



558	 São Paulo Journal of Mathematical Sciences (2021) 15:524–570

1 3

(a)	 ΣG(A) is an �-connected G-integration and the orbifold fundamental groups of 
�
−1(x)∕G are trivial;

(b)	 ΣG(A) is maximal among �-connected G-integrations of A: for any �-connected 
G-integration �  there exists a unique étale, surjective, morphism of G-principal 
groupoid ΣG(A) → � .

Example 5.15  Let � ∶ P → M be a connected principal G-bundle. We saw in Exam-
ple 5.6 that TP → P is G-principal algebroid. The canonical G-integration of TP can 
be obtained as follows. Let q ∶ M̃ → M be the universal covering space of M and 
consider the pullback diagram 

q∗P

π

q̂
P

π

M q M.

 On the one hand q∗P is a principal G-bundle over M̃ and therefore carries a right 
principal G-action. On the other hand, q∗P is a �1(M)-covering of P. The canonical 
G-integration of TP is the gauge groupoid corresponding to the �1(M)-principal bun‑
dle q̂ ∶ q∗P → P:

with the G-action [(p1, p2)] g ∶= [(p1g, p2)] . This G-integration covers the pair 
groupoid P × P ⇉ P , which is also a G-integration—see Example 5.2.

Using the canonical G-integration, there is also a version of Lie’s 2nd 
Theorem:

Theorem 5.16  (Lie II [11]) If � ∶ A → B is a morphism between two G-integrable 
G-principal algebroids, then there exists a unique morphism between their canoni-
cal G-integrations:

Let us now turn to Lie’s 3rd Theorem. First, if a G-principal algebroid A → X 
is G-integrable then it is obviously integrable. The converse, however, does not 
hold: a G-principal algebroid A → X may be integrable without being G-integra-
ble. For a G-principal algebroid A → X there are certain G-monodromy groups 
N

G
x

 which contain the usual monodromy groups obstructing integrability:

Then one has:

ΣG(TP) = (q∗P × q∗P)∕�1(M) ⇉ P,

Φ ∶ ΣG(A) → ΣG(B), Φ∗ = �

Nx ⊂ N
G
x
⊂ Ker 𝜌x.
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Theorem  5.17  (Lie III [11]) Let A → X be a G-principal algebroid. Then A is 
G-integrable if and only if the G-monodromy groups are uniformly discrete, i.e., if 
and only if there is an open neighborhood U ⊂ A of the zero section such that:

Once we known that a G-principal algebroid A is G-integrable, it follows from 
Theorem  5.14 that any �-connected G-integration �  of A can be obtained as a 
quotient of the canonical G-integration

where Δ ⊂ ΣG(A) is any discrete bundle of subgroups satisfying: 

(a)	 Δx is contained in the center of the isotropy group ΣG(A)x;
(b)	 the image of the action morphism � ∶ X ⋊ G → ΣG(A) intersects Δ only in the 

identity section.

Example 5.18  Consider the SO n(ℝ)-structure Lie algebra A = ℝ
n ⊕ ��n(ℝ) , with 

Lie bracket in canonical form:

where:

As we saw in Section 4.2, this is the classifying Lie algebroid associated with an 
oriented Riemannian manifold (M, �) with constant scalar curvature � . Depending 
on the value of � one finds that this Lie algebra is isomorphic to

Consider, e.g., the case 𝜅 > 0 . The canonical SO n(ℝ)-integration is

since �−1(x)∕SO n(ℝ) ≃ 𝕊
n is 1-connected. As for other integrations observe that the 

center of SO n+1(ℝ) is:

N
G
x
∩ U = {0x}, ∀x ∈ X.

� ∶= ΣG(A)∕Δ ⇉ X,

[(u, �), (v, �)] = (� ⋅ v − � ⋅ u, [�, �] − R(u, v)),

R(u, v)(w) = �(⟨w, v⟩u − ⟨w, u⟩v).

A ≃

⎧
⎪⎪⎨⎪⎪⎩

��n+1(ℝ), if 𝜅 > 0,

��n(ℝ)⋉ℝ
n, if 𝜅 = 0,

��(n,1)(ℝ), if 𝜅 < 0.

Σ SO n
(A) = SO n+1(ℝ),
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So if n is even the only connected SO n(ℝ)-integration is the canonical one, while if 
n is odd there is another one, namely

The corresponding manifold of constant positive curvature is ℝℙn . This manifold is 
oriented since n is even, and this also explains why we don’t find such an SO n(ℝ)

-integration for odd n. If instead we consider A as an On(ℝ)-algebroid, then we 
would recover ℝℙn for any positive integer n.

Observe that when � = 0 we obtain as canonical SO n(ℝ)-integration the special 
Euclidean group

This gives rise to Euclidean space as an oriented manifold of zero curvature. Since 
the center of this group is trivial, this is the only SO n(ℝ)-integration. In particu-
lar, we cannot obtain the torus with the flat metric by looking only at SO n(ℝ)

-integrations.

6 � G‑realizations and G‑structures with connection

The link between G-structure algebroids and the classifying Lie algebroid of a sin-
gle G-structure is provided by the notion of a G-realization. This notion also allows 
one to understand solutions of Cartan’s Realization Problem, which we formulate in 
this section.

6.1 � G‑realizations

We saw that for a fully regular G-structure with connection (P, �,�) we have a Lie 
algebroid map into the classifying Lie algebroid TP → A(�,�) . This is abstracted for 
any G-structure algebroid as follows:

Definition 6.1  A G-realization of a G-structure algebroid A → X (with connection) 
is a G-structure P → M (with connection) together with a morphism of G-structure 
algebroids (with connection): 

Z(SO n+1(ℝ)) =

⎧
⎪⎨⎪⎩

{I}, if n is even,

{I,−I}, if n is odd.

� = SO n+1(ℝ)∕{I,−I} = PSO(n + 1,ℝ).

Σ SO n
(A) = SO n(ℝ)⋉ℝ

n.
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TP
H

A

P
h

X

 One calls h ∶ P → X the classifying map of the G-realization.

The G-realizations of A form a category. A morphism of G-realizations of a 
G-structure algebroid A → X is a map Φ ∶ P1 → P2 , commuting with the classifying 
maps hi ∶ Pi → X and yielding a commutative diagram of morphisms of G-structure 
algebroids (with connection): 

TP1

H1

dΦ
TP2

H2

A

In order to see how one can construct realizations, let us recall that if � ⇉ X is a 
Lie groupoid with Lie algebroid A one defines its Maurer–Cartan form to be the 
A-valued, right-invariant 1-form �MC given by:

Equivalently, we can view �MC as a bundle map: 

T sΓ
ωMC

A

Γ
t

X

 The 1-form �MC satisfies the Maurer–Cartan equation which can be equivalently 
stated as saying that this bundle map is a Lie algebroid morphism (see, e.g., [12]).

Example 6.2  Let A → X be a G-structure algebroid with connection � and assume 
that � ⇉ X is a G-structure groupoid with connection Ω integrating it. Then each 
source fiber �−1(x) → �

−1(x)∕G is a G-structure with connection Ω|
�−1(x) . The restric-

tion of the Maurer–Cartan form gives a morphism of G-structure algebroids with 
connection: 

�MC(�) = dR�−1�, if � ∈ T�

�
� .
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T (s−1(x))
ωMC

A

s−1(x)
t

X

 Hence, (�−1(x),�MC|�−1(x), �) is a G-realization of A.

We will see that, in general, a fully regular G-structure with connection fails to be 
a source fiber of a G-integration of the classifying algebroid. This may fail even if 
the classifying algebroid is G-integrable. Eventually, we will give a characterization 
of those fully regular G-structures that arise as �-fibers.

Note that in the case where the G-realization consists of a source fiber �−1(x) 
of a Lie groupoid integrating A, its classifying map (the target map) is a submer-
sion onto the leaf containing x. For a fully regular G-structure the classifying map 
h ∶ P → X(�,�) is also a surjective submersion. In general, the classifying map 
h ∶ P → X of a G-realization H ∶ TP → A is a submersion onto an open G-saturated 
subset of a leaf of A—see [11, Lemma 3.29]

6.2 � Cartan’s realization problem

Many classification problems in geometry can be formulated as follows:

Problem  (Cartan’s Realization Problem) One is given Cartan Data:

•	 a closed Lie subgroup G ⊂ GL (n,ℝ);
•	 a G-manifold X with infinitesimal action � ∶ X × � → TX;
•	 G-equivariant maps T ∶ X → Hom(∧2

ℝ
n,ℝn) , R ∶ X → Hom(∧2

ℝ
n, �) and 

F ∶ X ×ℝ
n
→ TX;

and asks for the existence of solutions:

•	 an n-dimensional effective orbifold M;
•	 a G-structure FG(M) → M with tautological form � ∈ Ω1(FG(M),ℝn) and con-

nection 1-form � ∈ Ω1(FG(M), �);
•	 a G-equivariant map h ∶ FG(M) → X;

satisfying the structure equations:

One can show that such a problem has a solution for each x ∈ X if and only 
if the Cartan data defines a G-structure algebroid with connection, in canonical 

⎧⎪⎨⎪⎩

d� = T(h)(� ∧ �) − � ∧ �
d� = R(h)(� ∧ �) − � ∧ �
dh = F(h, �) + �(h,�)
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form, on the trivial bundle X × (ℝn ⊕ �) → X , as in Sect. 5.5. Moreover, a solu-
tion is just a G-realization of this algebroid.

Theorem 6.3  ([11]) Given Cartan data (G, X, T, R, F) there is a solution to Cartan’s 
Realization Problem for each x ∈ X if and only if the data defines a G-structure alge-
broid with connection on A = X × (ℝn ⊕ �) . Moreover, there is a 1:1 correspondence: 






solutions

(FG(M), θ, ω, h)





←̃→






G-realizations

TP
(θ,ω)

A





.

In this paper, we are only interested in the realization problem for the classifying 
algebroid of a fully regular G-structure with connection. We refer to [11] for a much 
wider discussion of Cartan’s Realization Problem and its solutions using the theory 
of G-principal groupoids.

6.3 � G‑realizations of a classifying Lie algebroid

Let (P, �,�) be a fully regular G-structure with connection. We can view it as a 
G-realization of its classifying Lie algebroid: 

TP
H=(θ,ω)

A(θ,ω)

P
h

X(θ,ω)

 Any other G-realization is locally equivalent to this one:

Proposition 6.4  Let (P, �,�) be a fully regular G-structure with connection. Given 
any G-realization

TP
H

A(θ,ω)

P
h

X(θ,ω)

 then for any p�
0
∈ P� and p0 ∈ P with h�(p�

0
) = h(p0) there is a local equivalence 

Φ ∶ P�
→ P such that Φ(p�

0
) = p0.
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Proof  The result follows from [11, Thm 7.2] applied to the classifying algebroid 
A(�,�) . 	�  ◻

According to Example  6.2, any G-integration of A(�,�) gives rise to G-reali-
zations by considering the source fibers of the integration. The previous result 
shows that these G-realizations are locally equivalent to (P, �,�) and we will see 
in the next paragraph that they exhibit some remarkable properties that distin-
guish them from arbitrary fully regular G-structures.

Starting with Cartan data (G, X, T, R, F) defining a G-structure algebroid with 
connection A → X , as explained above, the solutions of the corresponding Cartan 
realization problem need not be fully regular G-structures with connection. For 
example, any G-structure with connection (P, �,�) can be viewed as a realiza-
tion of A = TP → P , which is a G-structure algebroid with connection (cf. Exam-
ple  5.6). However, when a solution is fully regular we have the following rela-
tionship between the Lie algebroid A and the classifying Lie algebroids of the 
solution:

Proposition 6.5  Let (G, X, T, R, F) be Cartan data defining a G-structure algebroid 
with connection A → X . If a solution (FG(M), �,�, h) to the realization problem is 
fully regular, there is a morphism (Φ,�) of G-structure algebroids with connection: 

TFG(M)

A|U Φ
A(θ,ω)

FG(M)

U
φ

X(θ,ω)

 where U = ℑh is an open set in a leaf of A, � ∶ U → X(�,�) is a surjective submer-
sion, and Φ is a fiberwise isomorphism.

Proof  It follows from [12, Cor 5.11] that there is a morphism (Φ,�) of Lie alge-
broids as in the commutative diagram. This is a morphism of G-structure algebroids 
with connection because both maps TFG(M) → A and TFG(M) → A(�,�) are fiber-
wise isomorphisms of G-structure algebroids with connection and Φ is a fiberwise 
isomorphism. 	�  ◻
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6.4 � Complete G‑realizations and integrability

In general, a G-structure algebroid with connection fails to be G-integrable.
A G-realization H ∶ TP → A of a G-structure algebroid with connection is called 

a full realization of A if h ∶ P → X is surjective onto a leaf of A. One could be led 
to believe that the existence of a full G-realization covering a leaf L ⊂ X implies the 
G-integrability of the restricted Lie algebroid A|L . The next example shows that this 
is not the case.

Example 6.6  Let X be a manifold with a closed 2-form � ∈ Ω2(X) . The extension 
Lie algebroid of TX associated with � has underlying vector bundle

anchor the projection 𝜌 ∶ TM ⊕ℝ → TM , and Lie bracket defined by:

where V ,W ∈ �(X) and f , g ∈ C∞(X) . This Lie algebroid is integrable if and only if 
the group of spherical periods of �:

is a discrete subgroup of ℝ—see Example 3.28 in [8].
If we assume that X is parallelizable then A is a trivial vector bundle, hence 

it is an {e}-structure algebroid. Assume further that one has a manifold Y, where 
�2(Y) = 0 , together with a surjective local diffeomorphism:

Note that Y is also parallelizable. Then the pullback bundle 𝜙∗A = TY ⊕ℝ is also an 
extension Lie algebroid for the pullback form �∗� , which is now an integrable {e}
-structure algebroid. Note that this Lie algebroid structure makes the pullback square 

φ∗A
Φ

A

Y
φ

X

 a Lie algebroid morphism. Then any integration � ⇉ Y  of �∗A (which is obviously 
an {e}-integration) gives a realization (�−1(y),�MC|�−1(y)) of �∗A . Composing this 
realization with the morphism (�,Φ) yields a full realization of A.

For a concrete example, one can take X = (ℝ3 − {0}) × (ℝ3 − {0}) with closed 
2-form:

A ∶= TX ⊕ℝ,

[(V , f ), (W, g)]A ∶= ([V ,W],LVg − LWf + �(V ,W)),

Per(𝜔) ∶=
{
∫𝛾

𝜔 ∶ 𝛾 ∈ 𝜋2(X)
}
⊂ ℝ,

� ∶ Y → X.
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where � denotes a closed 2-form on ℝ3 − {0} whose integral over �2 is non-zero. 
One can show that there exists Y, with �2(Y) = 0 , and a surjective, local diffeomor-
phism � ∶ Y → X.

In order to obtain G-integrability, one needs full G-realizations which are also 
complete, as we now explain.

Given a G-realization H ∶ TP → A of a G-structure algebroid A → X with 
connection one obtains a Lie algebroid action along the base map h ∶ P → X by 
setting:

Indeed, using the fact that H is a Lie algebroid map, one checks that the two defining 
properties of a Lie algebroid action hold: 

	 (i)	 dh◦� = �A;
	 (ii)	 �([s1, s2]A) = [�(s1), �(s2)] , for all sections s1, s2 ∈ Γ(A(�,�)).

We recall that an action � of a Lie algebroid A → X on a map h ∶ P → X is called 
a complete action if for any compactly supported section s ∈ Γ(A) the vector field 
�(s) ∈ �(P) is complete. This leads to the following:

Definition 6.7  A G-realization H ∶ TP → A of a G-structure algebroid with connec-
tion is called a complete realization of A if it is a full realization whose associated 
Lie algebroid action � ∶ h∗A → TP is complete.

In particular, a fully regular G-structure with connection (P, �,�) is automatically 
a full realization of its classifying algebroid A(�,�) and we will call it complete if is 
also a complete realization of A(�,�).

Example 6.8  Let A(�,�) be the classifying Lie algebroid of a fully regular O(n)-struc-
ture (P, �,�) , where � is the Levi-Civita connection. It is a complete G-realization if 
and only if the corresponding metric on M = P∕O(n) is a complete metric—see [11, 
Thm 8.5].

Example 6.9  Let � ⇉ X be a G-structure groupoid with connection integrating 
A(�,�) . Then the G-realizations (�−1(x),�MC|�−1(x)) furnish examples of complete real-
izations. The reason is that the vector field �(s) coincides with the restriction of the 
right-invariant vector field generated by the section s, and these are complete when-
ever �(s) is complete.

We have the following converse to the previous example—see [11, Thm 6.9]:

� = pr∗
1
� +

√
2 pr∗

2
�,

� ∶ h∗A → TP, �(p, a) ∶= H−1
p
(a).
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Theorem 6.10  Let (P, �,�) be a fully regular G-structure with connection. The clas-
sifying G-structure algebroid A(�,�) is G-integrable if and only if it admits a com-
plete G-realization.

Notice that for A(�,�) to be G-integrable, the fully regular G-structure with con-
nection (P, �,�) does not need to be complete. For example, a non-complete metric 
of constant scalar curvature gives rise to a non-complete fully regular O(n)-structure 
with connection whose classifying Lie algebroid is G-integrable.

The G-realizations arising as �-fibers from G-integrations, as in Example  6.9, 
enjoy even more special properties. For example, every germ of infinitesimal 
symmetry � ∈ �(�−1(x),�MC)p is the restriction of an infinitesimal symmetry in 
�(�−1(x),�MC) , and every infinitesimal symmetry is a complete vector field. This 
motivates the following definition:

Definition 6.11  A G-realization (P, (�,�), h) of a G-structure algebroid A with con-
nection is called strongly complete if h ∶ P → X is surjective onto a leaf of A and 
any local symmetry of (P, (�,�), h) extends to a global symmetry.

The property of being strongly complete characterizes the G-realizations arising 
from source fibers of G-integrations. In particular, this shows that they are complete 
realizations. Here we are interested in the special case of the classifying Lie alge-
broid of a fully regular G-structure with connection:

Theorem 6.12  Let (P, �,�) be a fully regular G-structure with connection. If (P, �,�) 
is strongly complete then the group of symmetries Diff (P, �,�) is a Lie group with 
Lie algebra �(P, �,�) isomorphic to the isotropy Lie algebras of A(�,�) . Moreover, 
the natural action of Diff (P, �,�) on P commutes with the G-action, and is a proper 
and free action whose orbits coincide with the fibers of the classifying map h. In 
particular, h ∶ P → X(�,�) is a principal Diff (P, �,�)-bundle.

This result is a consequence of [11, Prop 6.12]. The fact that a strongly complete 
fully regular G-structure with connection (P, �,�) is isomorphic to the source fiber 
of a G-integration can be seen as follows. By the previous theorem, h ∶ P → X(�,�) is 
a principal H ∶= Diff (P, �,�)-bundle. Hence, we have the Atiyah algebroid:

The coframe (�,�) induces a Lie algebroid isomorphism of this Atiyah algebroid 
with A(�,�) and so its gauge groupoid

is a G-structure groupoid with connection integrating A(�,�) . Its source fibers are iso-
morphic to (P, �,�).

If (P, �,�) is a complete fully regular G-structure with connection one can con-
struct a “larger” fully regular G-structure with connection, locally isomorphic to 

TP∕H → X(�,�).

� ∶= (P × P)∕H ⇉ X(�,�)
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(P, �,�) , and strongly complete. For that, one considers the universal covering space 
M̃ of the effective orbifold M = P∕G . Then one has a pullback G-structure: 

P
q

P

M M

 This yields a complete G-realization (P̃, (q∗𝜃, q∗𝜔), q∗h) of A(�,�) . Using that 
M̃ = P̃∕G is now an orbifold with trivial orbifold fundamental group, one can show 
that this realization must be strongly complete, and is actually isomorphic to an �-
fiber of the canonical G-integration—see [11, Prop 6.10]. In conclusion, we have the 
following corollary of Theorem 6.12:

Corollary 6.13  Every complete fully regular G-structure with connection (P, �,�) is 
covered by an �-fiber of the canonical G-integration of its classifying Lie algebroid.

Example 6.14  It is now easy to explain why we did not find the flat metric on the 
torus � n in the discussion in Example 5.18. Although this is a complete metric and 
the associated SO n(ℝ)-structure (P, �,�) is fully regular and complete, it is not 
strongly complete: there are local isometries of the torus which do not extend to 
global isometries. On the other hand, the SO n(ℝ)-structure associated with Euclid-
ean flat space provides a cover of (P, �,�) which is strongly complete and is indeed 
the �-fiber of the canonical SO n(ℝ)-integration of the classifying Lie algebroid of 
the flat torus.

More generally, one can even classify all fully regular G-structures with con-
nection whose classifying Lie algebroid is G-integrable.

Theorem 6.15  Let (P, �,�) be a fully regular G-structure with connection and sup-
pose that the classifying Lie algebroid A(�,�) is G-integrable. Then (P, �,�) is cov-
ered by a full G-realization of A(�,�) which covers an open G-invariant subset of an �
-fiber of the canonical G-integration.

Remark 6.16  In the previous theorem, by a “cover” of P we mean a manifold Q 
together with a surjective local diffeomorphism � ∶ Q → P which is not necessarily 
an even cover.

Proof  Let � ∶= ΣG(A(�,�)) ⇉ X(�,�) be the canonical G-integration. As in the proof 
of Theorem 6.8 of [12] one considers the distribution D in Ph×�

�  given by:

This is an involutive distribution and one can take any maximal integral submanifold 
Q of D . The proof in [12] shows that: 

D ∶= ker
(
pr∗

P
(�,�) − pr∗

�
�MC

)
.
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(a)	 The projection prP ∶ Q → P is a surjective local diffeomorphism;
(b)	 The projection pr� ∶ Q → �  is a local diffeomorphism onto an open subset U 

of an �-fiber;
(c)	 The restriction (�̃, �̃) ∶= pr∗

P
(�,�)|Q = pr∗

�
�MC|Q gives a coframe in Q making 

both projections equivalences.

We observe that Q is invariant under the (diagonal) action of the connected com-
ponent of the identity G0 , since the infinitesimal action is tangent to D . The com-
ponents �̃  and �̃ of the coframe then give an ℝn-valued and a �-valued form that 
satisfy the properties of a tautological form and a connection form with structure 
group G0.

If G is connected, the result follows. If G is not connected, then one needs to take 
the G-saturations of Q and U, which then satisfy the conditions in the statement of 
the theorem. Note that in the latter case both the resulting cover and the open subset 
of the �-fiber may be disconnected, even if P is connected (our standing assump-
tion). 	�  ◻

The previous result motivates introducing the following notion: two G-struc-
tures with connection (P1, �1,�1) and (P2, �2,�2) are called globally equivalent 
up to cover if there exists a G-structure with connection (Q, �̃, �̃) and surjective 
local diffeomorphisms: 

(Q, θ, ω)
φ1 φ2

(P1, θ1, ω1) (P2, θ2, ω2)

 such that �∗
i
�i = �̃  and �∗

i
�i = �̃ , i = 1, 2 . When the rank of the fully regular 

coframe attains its smallest value, one obtains:

Corollary 6.17  Let (P, �,�) be a fully regular G-structure with connection of rank 
0. Then P is locally equivalent up to cover to an open subset of the “space form” 
G-structure of Sect. 4.2.

On the other hand, when the rank of the fully regular coframe attains its largest 
value, one finds that:

Corollary 6.18  Let (P, �,�) be a fully regular G-structure with connection of rank 
n + dim � . Then X(�,�) is itself a G-structure with connection covered by (P, �,�).
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