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Abstract

Given a G-structure with connection satisfying a regularity assumption we associate
to it a classifying Lie algebroid. This algebroid contains all the information about
the equivalence problem and is an example of a G-structure Lie algebroid. We dis-
cuss the properties of this algebroid, the G-structure groupoids integrating it and the
relationship with Cartan’s realization problem.
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1 Introduction

This paper is the long due second part of [12], whose opening sentence stated “This
is the first of two papers dedicated to a systematic study of symmetries, invariants
and moduli spaces of geometric structures of finite type”. The first paper was dedi-
cated to the case of {e}-structures and a special case of Cartan’s realization problem.
The central object introduced in [12] was the classifying Lie algebroid of a fully reg-
ular coframe, which contains all the information relevant for the equivalence problem
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for coframes, i.e., {e}-structures. Our plan for the second paper was to do a similar
analysis for general G-structures and the general case of Cartan’s realization problem.
While performing this analysis we discovered a theory of G-structure groupoids and
G-structure algebroids, which gives the appropriate language to deal with such prob-
lems. These objects are introduced and described in detail in our recent paper [11],
which also gives our method to solve Cartan’s realization problem. Hence, what is
left from our original plan is to discuss the classifying Lie algebroid of a fully regular
G-structure with connection and that is the main aim of this paper.

Given a G-structure on a manifold M, denoted F;(M), equipped with a connec-
tionw € QI(FG(M), g), one has the space of invariant forms Q*(F;(M), w) consisting
of all differential forms which are preserved under local equivalences of (F;(M), w).
The G-structure with connection is called fully regular when the space

{40 1€QF00.0)} € TFM),

has constant dimension. In this case, there is naturally associated to (F;(M), w) a
vector bundle A — X such that

Q' (Fo(M), w) ~ T(A'A®).

It follows that A has a Lie algebroid structure and we call it the classifying Lie alge-
broid of the fully regular G-structure with connection (F;(M), ). We will see that
this Lie algebroid is in fact a G-structure algebroid and that it contains all the rel-
evant information about (F;(M), w), its symmetries, its invariants, etc.

The connection between Cartan’s realization problems and Lie algebroids was first
pointed out by Bryant [5] (see also [4]). In [11] this is formalized precisely and it
is shown that giving such a problem is the same thing as specifying a G-structure
Lie algebroid with connection. In [11] it is also explained how one can solve a Car-
tan’s realization problem by integrating the G-structure algebroid to a G-structure
groupoid with connection. The latter class of groupoids can be loosely described as
families of G-structures with connection parameterized by the space of objects of the
groupoid. We will see that a G-structure with connection in such a family need not be
fully regular. When it is fully regular, we relate the G-structure Lie algebroid defining
the family to the classifying Lie algebroid of the G-structure with connection.

This paper is organized as follows. In Sect. 2 we review the basic facts of the the-
ory of G-structures. We work with G-structures over effective orbifolds since these
are the kind of G-structures that appear naturally in connection with G-structure
groupoids and Cartan’s realization problems. In Sect. 3 we define the classifying Lie
algebroid of a fully regular G-structure with connection and study its first proper-
ties. Section 4 discusses several examples of G-structures with connection and their
classifying algebroids. Section 5 contains a summary of the theory of G-structure
groupoids and G-structure algebroids developed by us in [11]. This is used in Sect. 6
to make precise the link between G-structure algebroids with connection and the
classifying Lie algebroid of a single G-structure. Here the notion of a G-realiza-
tion of a G-structure algebroid with connection plays a crucial role. We also explain
in this section how G-realizations of a G-structure algebroid with connection are
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related to its G-integrations and how they can be used to codify the solutions of the
associated Cartan’s realization problem.

2 G-structures and connections

In this section we give a quick review of the theory of G-structures. Besides fixing
our notations, we also present a viewpoint that will be useful to us. Namely, for us
G-structures are encoded by a free and proper G-action together with a “tensorial”
1-form (the tautological form). We then relax the freeness condition allowing for
locally free G-actions, so we can include also G-structures over effective orbifolds.
The main reason for allowing for locally free actions and orbifolds is not aiming at
the most general approach. Rather, as we shall see, orbifolds turn out to be the natu-
ral set up for the theory.

2.1 G-structures

We begin with the description of the classical approach to G-structures via reduction
of the frame bundle. We then explain the transition to our approach, which does not
include any reference to the base manifold or to orbifolds.

Let M be an n-dimensional manifold. Its frame bundle = : F(M) - M is a
GL ,(R)-principal bundle with fiber over x the frames at x:

i ={p:R" - T.M : pis alinear isomorphism }.

Given a closed subgroup G € GL ,(R), a G-structure on M is a reduction of the
frame bundle F(M) to a principal sub-bundle F;(M) whose structure group is G.

A (locally defined) diffeomorphism ¢ : M — N has a canonical lift to a (locally
defined) principal bundle map between the frame bundles:

@ : FM) - F(N), @(p)(v) =de(p®))forally € R"

Two G-structures F;(M) and F;(N) are (locally) equivalent if there exists a (locally
defined) diffeomorphism ¢ : M — N such that ¢(F;(M)) = F5(N).

One of the main issues when dealing with G-structures is to characterize G-struc-
tures up to (local) equivalence. For this, the tautological form of the G-structure
plays a crucial role: it is the R"-valued 1-form 6 € Q!(F;(M),R") defined for
p € Fg(M)and & € T,F;(M) by:

6,(&) = p'(d,7()).

One then has the following classical result (see, e.g., [23]):
Theorem 2.1 Let F;(M) and F;(N) be two G-structures over M and N respectively.
A principal bundle isomorphism
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Fo(M) —2>Fg(N)

N

M N

is an equivalence of G-structures if and only if ®*0y = 0,,.

Next, it will be important for us to recognize when a principal G-bundle P - M
is a G-structure. This can be answered by identifying the main properties of the tau-
tological 1-form. A first property is that it is a tensorial form. To state it, we intro-
duce the notation @ € X(P) to denote the infinitesimal generator of the G-action:

~ d
a, := Y P exp(ta) (a € g).

Then we have the following definition:

Definition 2.2 Let P - M be a principal G-bundle and V a G-representation. A
V-valued form 8 € Q¥(P, V) is tensorial if it is:

(i) Horizontal: i;0 =0, forall a € g;
(ii) G-equivariant: g*0 = g~! -0, forallg € G.

In the case of the tautological 1-form the relevant representation of
G c GL ,(R) is the defining representation on R". Besides being tensorial, the
tautological form is also pointwise surjective: for each p € F;(M), the map
6, : T,F(M) — R" is surjective. One then has the following classical result char-
acterizing G-structures among all principal G-bundles [2]:

Theorem 2.3 Let M be an n-dimensional manifold and G C GL (R) a closed
Lie subgroup. Let # : P — M be a principal G-bundle and assume that P comes
equipped with a pointwise surjective tensorial 1-form 0, € Q'(P,R"). Then there
exists a unique embedding of principal bundles

such that ®*60 = 0.
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We conclude from the previous two results that the category of G-structures
with equivalences can be identified with the category consisting of:

Objects: Pairs (P, 8) where P is a manifold with a proper and free G-action,
dimP =n+dimG,

and 8 € Q!(P, R") is a tensorial, fiberwise surjective, 1-form.
Morphisms: G-equivariant diffeomorphisms @ : P — Q such that

Notice that local equivalences correspond to morphisms defined on G-saturated
open sets.

As we have already mentioned, one advantage of this approach is that one can
relax the condition on the G-action, replacing free by locally free and effective.
The quotient P/G is then an effective orbifold, and so one obtains a generalization
of the theory of G-structures on manifolds to G-structures on effective orbi-
folds. In fact, the frame bundle of an effective orbifold is a manifold (see [20])
and Theorems 2.1 and 2.3 remain valid in this setting. Henceforth, we consider
the category above with pairs (P, #) carrying a locally free, effective and proper
G-action. More details on the resulting theory of G-structures on orbifolds will
appear elsewhere [10].

2.2 Connections

We will be mostly interested in G-structures with connections. A connection on a
G-structure (P, 0) is a 1-form o € Q!(P, g) which is:

(i) Vertical: w(a,) = aforalla € g;
(i) G-equivariant: g*w = Ad,ow forall g € G.

When working in the category of G-structures with connections it is natural to con-
sider connection preserving equivalences. Therefore, the morphisms between
two G-structures with connection (P, 0p, wp) and (Q, HQ,a)Q) are diffeomorphisms
® : P — Q which are G-equivariant and satisfy:

0y =0p, DP'wy = wp.

If (P,0,w) is a G-structure with connection, for each p € P we have a linear
isomorphism:

0,w),: T,P>R"Dg.
In other words, the pair (8, ®) may be interpreted as a coframe on P. The exterior

derivatives of 6 and @ can then be re-expressed in terms of the coframe (6, w). This
yields the well-known structure equations:
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d0=TOAO)—wAO
2.1
do=ROAO)—owAw®

where T : P - Hom(A?R”, R") is the torsion and R : P - Hom(A?R", g) is the
curvature of the connection w. These functions are both G-equivariant for the
induced actions on the vector spaces Hom(A%?R", R"”) and Hom(A’R”, g). Note that
in the expressions above the wedge products make use of the action of g C gl,(R)
on R” and of the Lie bracket of g:

wANO(&LE) =w() -0 —w,) - 0)
o Aw(§,&) = [w(€)), w(&)].

There may or may not exist a torsion-free connection (7 = 0) on a G-structure, and
if it exists it might not be unique. The uniqueness, or lack thereof, is controlled by
G and its defining action on R”, and does not depend on the G-structure itself. On
the other hand, the existence of torsion-free connection, in general, depends on the
G-structure and is a first obstruction to integrability, i.e., for the G-structure to be
locally equivalent to the trivial G-structure. For the proofs of these facts and more
details we refer to [15, 21, 23]. The table below gives some classes of G-structures
and the geometric significance of the existence of a torsion-free connection.

G

Geometric Structure

Isomorphisms

Torsion-Free Connection

GL*(R) C GL,(R)
SL,(R) ¢ GL ,(R)
Sp,(R) € GL,,(R)

0,[®R) c GL,(R)
GL,(C) C GL,,(R)

U, € GL,,(R)
{1} ¢ GL,(R)

Orientation
Volume Form

Almost Symplectic
Structure

Riemannian Metrics

Almost Complex Struc-
tures

Hermitian Metrics

Coframes

Orientation Preserving
Diffeomorphisms

Volume Preserving Dif-
feomorphisms

Symplectomorphisms

Isometries

Holomorphic Diffeomor-
phisms

Hermitian Isometries

Equivalence of Coframes

All
All
Symplectic Structures

All

Complex Structures

Kihler Structures

Coordinate System Cof-
rames

3 The classifying algebroid
In this section we associate to a fully regular G-structure with connection a Lie

algebroid. This algebroid contains all the relevant information to decide if two
G-structures with connection are equivalent.
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3.1 Invariants

The solution to the equivalence problem relies on understanding the invariants of
the G-structure with connection.

Definition 3.1 Let (P, 0, w) be a G-structure with connection. A differential form
Q € QK(P) is called an invariant k-form of (P, 0, ) if for any locally defined self
equivalence ® : 7~!(U) — 2z~ 1(U’) one has

P'Q=0Q.

The space of invariant k-forms is denoted Q*(P, 0, ).

When k =0, the elements of Inv(P,0,w) := Q%P,0,w) are the invariant
functions of the G-structure with connection.

More generally, it is useful to consider invariant functions and forms with val-
ues in a vector space V. Their components relative to any basis for V will still be
ordinary invariant functions and forms.

Example 3.2 For an arbitrary G-structure with connection (P, 6, ) the torsion 7 is an
invariant function with values in the vector space Hom(A2R", R") and the curvature
R is an invariant function with values in the vector space Hom(A”R", g).

Actually, the torsion and the curvature are examples of G-equivariant invari-
ant functions. In general, when V is a representation of G one can talk about a
V-valued G-equivariant invariant k-form Q € Q%(P, V), i.e., invariant k-forms
with values in V which are G-equivariant:

gQ=¢"-Q (g€
Example 3.3 For an arbitrary G-structure with connection (P, 0, ®) the tautological

I-form 6 is a G-equivariant invariant 1-form with values in R" and the connection
I-form w is a G-equivariant invariant 1-form with values in g.

Remark 3.4 One can also express V-valued G-equivariant invariant k-forms as sec-

tions of vector bundles. Given a G-representation V, one can form the associated
vector bundle EF := (AKTP Xg V) = M, and one obtains a 1:1 correspondence:

G — equivariant forms s sections
Qe QP,V) seT(EY [

To express the invariance condition one observes that for any local equivalence
® : 77 (U) - 7~ '(U’) one obtains a vector bundle map:
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E*|y ek E* |y
l l [(€,0)] = [(dD(€), v)].
U U’

Hence, one may call s € ['(E¥) an invariant section if for any local equivalence
® : 771(U) = 7~ (U’) the section satisfies:

sogp = @ yos.
Then one finds that there is a 1:1 correspondence:

G — equivariant invariant | . | invariant sections
forms Q € QK(P, V) s € T(EY

A very elementary but important fact is that the space of invariant forms is a sub-
complex of the de Rham complex:

Proposition 3.5 For any invariant form Q € Q¥(P,0, w) its differential is also an
invariant form: dQ € Q*(P, 0, w). If V is a G-representation and Q is G-equivari-
ant V-valued invariant form, so is dQ.

Proof The differential commutes with pullbacks. a

In the case of an invariant function I € Inv (P, , ) one can express its differential
in terms of the coframe (6, w) on P:

where the coefficients are vector valued maps:

ol ol
— : P> Hom(R",R), — : P — Hom(g,R).
20 dw
By the previous proposition, d/ is an invariant form, and since § and @ are also
invariant forms, one deduces that the coefficients are invariant functions.
ol

Definition 3.6 The map (%, ;’—;) : P> Hom(R" @ g,R) is called the coframe

derivative of I with respect to (0, w).
Notice that if we had started with a G-equivariant invariant function / : P — V then
one would obtain a coframe derivative

(01 ol

%’%) . P = Hom(R" @ g, V)
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which is also G-equivariant with respect to the induced G-action on Hom(R" & g, V).

Remark 3.7 As mentioned in Remark 3.4, to a G-equivariant invariant corresponds a
section s, of the associated vector bundle £ = (P X V)/G. This bundle inherits also a
linear connection V from the connection @ and the coframe derivative 2 corresponds
to the covariant derivative Vs,. Slmllarly, one finds that the coframe derivative
Lk corresponds to an algebroid derivative Vs, along sections of the adjoint bundle
Ad(P) = (P X g)/G, a bundle of Lie algebras. Here, V : I'(Ad(P)) X I'(E) — I'(E)
is the representation

VoSr=Sc.
where 6 € X(P) is the G-invariant, vertical vector field induced by ¢ € T'(Ad(P)).

More generally, one can also express any invariant form Q € Q*(P, §, w) in terms
of the basis of k-forms provided by the exterior powers of the coframe (6, ®), and
then express its differential dQ similarly in terms of (6, @). We will not need this
more general coframe differentiation procedure since we will soon see a more natu-
ral approach using Lie algebroid theory.

3.2 Fully regular G-structures with connection

Iterating the process of differentiating known invariants one can obtain an infinite
list of invariants of the G-structure with connection. These invariants may not be
independent and, in general, there will exist relations among them. One finds two
types of relations:

e ‘“‘universal relations” which, for a fixed G, are the same for all G-structures with
connections. For example, consequences of the fact that d> = 0.

e “special relations” arising from the geometry of the particular G-structure with
connection.

For an example of a “universal relation”, consider an O,(R)-structure (P, 0, ),
where  is the unique torsion free connection on P, i.e., the Levi-Civita connection.
Then the curvature R satisfies the Bianchi identity, which is already a universal rela-
tion. Moreover, this identity implies that the covariant derivative of the curvature:

JR

F7) : P > Hom(R", Hom(A’R", 0,))

actually takes values in the subspace X ¢ Hom(R”, Hom(A’R", 0,)) given by:
K= {K L K(u)(v, w) + K0)w, 1) + Kw)(u, v) = 0, Y, v, w € R” }

We will see examples of “special relations” later.
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Obviously, if @ : (P, 8p, wp) = (O, HQ,coQ) is an equivalence between G-struc-
tures with connections we obtain an isomorphism of complexes:

D (QNQ, 0, wp), d)— (QX(P, 0, wp), d).

For example, a necessary condition for equivalence is that the structure functions
and its coframe derivatives of any order must correspond under the equivalence.
This gives an infinite set of necessary conditions for equivalence, that would be hard
to work with. However, observe that if invariants [, ..., I, € Inv (Q, 49Q, a)Q) satisfy a
functional relationship

Fd,,...1) =0,

then the corresponding elements ®*/, ..., ®*]; € Inv (P, 0p, wp) must satisfy the
same functional relation

F(®*1,...,®%) =0.

This shows that we do not need to deal with all the invariant functions in
Inv (P, 0, ), but only with those that are functionally independent.

Definition 3.8 A G-structure with connection (P, 8, w) is called fully regular if the
dimension of the space:

Z,={d,l : 1€ Inv(P,0,0)} C T;P,
does not vary with p. This dimension is called the rank of the G-structure.

Given a G-structure with connection (P,0,®), we will say that two points
P> q € P are locally equivalent if there exist a local equivalence @ : U, — U, such
that ®(p) = ¢. This defines an equivalence relation ~ on P. Obviously, any invariant
I : P — R descends to a map on the quotient space [ : P/ ~— R. In general, the
quotient P/ ~ is not a nice space. However, in the fully regular case we find:

Proposition 3.9 Let (P, 0, w) be a fully regular G-structure with connection (P, 0, ®)
of rank d. The quotient

Xow = P/~

has a smooth structure of dimension d such that the quotient map h : P — X .,
is a submersion. Moreover, there is a smooth proper G-action on X, for which
h:P— Xy, is G-equivariant.

Proof The fact that X, ,) is a manifold follows from [12, Prop 2.7] applied to the
coframe (0, ). Observe that if p ~ g and g € G then pg ~ gg, so the G-action
descends to Xy ,, making the quotient map & : P — X, a G-equivariant map.
Since this map is a submersion, the action of G on X, is smooth. Since the
G-action on P is proper, so is the G-action on Xy . O
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Definition 3.10 The manifold X, ) is called the classifying manifold and the map
h:P— Xy, is called the classifying map of the fully regular G-structure with
connection (P, 0, ).

Obviously, one has an identification between invariant functions and functions on
the classifying manifold:

K2 C®(X (g ) — Inv (6, ).

On the other hand, for any G-representation V, one can identify the G-equivariant
invariant maps / : P — V with the G-equivariant smooth maps X, ,, = V.
We will see later other reasons for referring to Xy ) as the classifying manifold.

3.3 Classifying algebroid

We saw in the previous paragraph that for a fully regular G-structure with connec-
tion (P, 6, o) the invariant functions are in 1:1 correspondence with the functions on
the classifying manifold X, .. It is natural to wonder what objects correspond to the
invariant differential forms Q*(P, 6, w).

For this we observe that the coframe (6, ) yields a vector bundle map

H=(0,w)
TP Ag,w)
P X

where Ay, 1= X(p) X (R" @ g) = Xy, is the trivial vector bundle. Since H is
a fiberwise isomorphism we obtain an injective pullback map

H : QA ) — Q' P),

where Q¥(A 4, denotes the sections of the bundle AkAZFG,w) = X 9.0

Proposition 3.11 The image of the pullback map H* are the invariant forms, so one
has an isomorphism:

H* 1 QA — Q4P, 0, w).
Proof LetW¥ : P — P be alocal equivalence. Since
ho =h, ¥6=6, Yo=o
it follows that
Hod¥ = H.
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Hence, if Q € Q*(4y,,)) we have:
Y*H*Q = H*Q.

Since ¥ was an arbitrary local equivalence, we conclude that H*Q € QK(P, 6, w).
Conversely, any invariant form Q € QK(P, 6, w) can be expressed in terms of the
basis of k-forms provided by the coframe (0, @) as
Q= Y Qi 0T A AO NS A A
iy eensiy
Jr ey

where the coefficients are invariant functions. Then we must have:

O =0

Uy 1oy

oh,

Useesslyd -y

for unique smooth functions €
Q = H*Q, with

iveindynd, ON X(g.)- Hence, we conclude that

Q= 2 Q. . L UNA AU AR A A

LRI RN/

Ji ooy

where {1/, &/} C Q'(Ay,,) is the unique basis of trivializing sections of Ay, such

that H*u' = 0" and H*o¢ = o/. O

It follows from the previous proposition that there is a linear differential
operator

dy 1 QApa) = QA
characterized by:
H*d, = dH"*.
Notice that d is a differential on (A ,,)):
d =0, d A =dyAu+ (D% Ad,p.

This means that the vector bundle A, ) — X, carries a Lie algebroid structure.
The anchor p, is defined on a section s € I'(4y ) by:

‘CpA(S)f = <Sv dAf> (f € COO(X(G,Q))))’ (31)

and the Lie bracket [+, -], of sections sy, s, € ['(Ay ) is determined by requiring that
for any n € Q'(Ap,)):

([s1: 8514, m) = ﬁp(sl)@z»’?) - £p(sz)<sl’ n) — dyn(sy.sy), (3.2)

For background on Lie algebroids and Lie groupoids see [8].
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Definition 3.12 Let (P, 8, w) be a fully regular G-structure with connection. The Lie
algebroid (A(g’w), Pa. [ -14) is called the classifying Lie algebroid of (P, 6, ).

In the next paragraph we will give a more explicit form of the classifying Lie
algebroid. For now we observe that, by definition, H = (0, @) intertwines the de
Rham differential and the Lie algebroid differential. Hence, we have:

Corollary 3.13 If (P,0,w) is a fully regular G-stucture, then the coframe (0, ®)
together withh : P — Xy, form a Lie algebroid map:

=(0,w
7P 0 Ay

|

P X(0,w)

h

The previous corollary shows, in particular, that H preserves the anchors:
paoH = dh.

Since h 1 P — X, is a submersion, this implies that p, is surjective. In other
words, the classifying Lie algebroid of a fully regular G-structure with connection is
a transitive Lie algebroid.

3.4 Canonical form of the classifying algebroid

Let (P, 0, w) be a fully regular G-structure with connection. The torsion and the cur-
vature of the connection, being G-equivariant invariant maps, determine G-equivari-
ant maps on the classifying manifold:

T : X4 — Hom(A’R",R"), R : Xy, — Hom(AR", g).

Denote the infinitesimal G-action on the classifying manifold by y : g = X(Xy ,))-
If we identify functions on X, ., with invariant functions on P, then this infinitesi-
mal action amounts to the coframe derivative %:

o(foh)

ow

W (Lywl) =

(@)  (x€g). (3.3)

We can also view the infinitesimal action as a bundle map:
VI Xgw X8 TX (g0

which is G-equivariant:
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vx, a) - g = y(xg, Ad,-1a),

forany x € Xy ), @ € gand g € G.
Similarly, there is a linear map F : R" — X(X(ayw)) associated with the coframe
derivative a—"g:

o(foh
R (Lrwy8) = %(w) (u € R"). (3.4)

Again, we can view this map as a bundle map:

F i Xgwy XR" = TX g,
which is G-equivariant:

F(x,v)-g=F(xg.g™ - v),

for any x € X(gyw), v € R" and g € G. Note, however, that F is not associated with
any infinitesimal action of R". Instead, we have:

Proposition 3.14 [f (P, 0, w) is a fully regular G-structure with connection, then the
structure maps of its classifying Lie algebroid Ay, take the following form:

(1) The anchor p : Ay = TX ) is the bundle map p(u, a) = F(u) + w(a);
(i) The bracket is defined on constant sections (u, a), (v, ) € I'(A ,,)) by

[(M, a)’ (V7 ﬁ)] = ((1 V= ﬁ U= T(l/l, V)? [as ﬂ]g - R(”? V))

Proof First, from expression (3.1) for the anchor, we find that:

WL, of) = h*(s,duf) = (H*s, H*d,f) = (H*s, dH*f)

- (s 2t 2020,

Hence, if s = (u, @) is a constant section with u € R" and @ € g, using (3.3) and (3.4)
we find:

(L ) = <H*(u, @), a(f‘;H)e + a(gZ)H)a;>
_ 0(foh)
Y )

= h*(LF(u)f) + h*(‘cw(a)f) = h*(‘cF(uHW(a)f)'

w+ M,
w

This proves the expression for the anchor.
To find the expression for the Lie bracket, fix a basis {;} for R" and a basis {«;}
for g. We denote by the same letters the corresponding constant sections of A,
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and with an upper index the corresponding dual sections ', & € Q'(4 ). Notice
that H*u' = 6' and H*o/ = @/, the components of the tautological and connection
form relative to the fixed basis. Then, from expression (3.2) for the bracket we find:
B[, @), (v, B ') = —h*(dgd' ((u, @), (v, B)))
= —(H*du')(H" (u, @), H* (v, B))
= —(dH*u')(H* (u, @), H* (v, §))
= —(d0")(H* (u, ), H* (v, )
=—(T(OAO)—wAO)(H*(u,a), H* (v, §))
=h*a-v=P-u=Twv) =h(a-v=F0 u—Tuv),u),

where we used the first structure equation (2.1). Similarly, we find:

B ([, @), (v, )]y, ) = —h*(dyo/ ((u, @), (v, B)))
= —(H*d o )(H"* (u, @), H* (v, p))
= —(dH* &) (H*(u, @), H* (v, ))
= —(do/)(H* (u, @), H* (v, §))
=—(ROAO) —wAYH u,a), H (v, §))
= h*([a, fl, — R, v)Y = h*([a, Bl — R(u,v), &),

where we used the second structure equation (2.1). O

We will refer to the expressions for the bracket and anchor given in the previous
proposition as the canonical form of the classifying algebroid. This explicit form
shows that the action algebroid associated with the infinitesimal g-action on X, ,, is a
subalgebroid of the classifying algebroid:

X(H,a)) X g— A(g,w)’ (-x9 a) = (-x9 (09 a))

The canonical form also shows that we have a G-action on the classifying algebroid
by algebroid automorphisms, covering the G-action on X ,:

G x A(GM) —> A(QM)

i l (z,u,a) g = (xg9,9 " - u,Ad yj-10).

G x X(G,w) — X(g’w)

In particular, the coframe together with the classifying map give a G-equivariant
Lie algebroid map:
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H=(0,w
7P 20 Ay

|

3.5 Symmetries
We have the following natural notions of symmetries:

Definition 3.15 Let (P,0,w) be a G-structure with connection. A symmetry of
(P,0,w) is a self-equivalence ® : P — P. An infinitesimal symmetry of (P, 8, w) is
a vector field & € X(P) such that £.0 = L. = 0. A germ of infinitesimal symme-
try at p is a germ of a vector field & € X(U) defined in a neighborhood U of p that
satisfies £.0|, = L.o|, =0

The infinitesimal symmetries of a G-structure with connection (P, 6, ®) form a
Lie subalgebra X(P,0,w) C X(P). The germs of infinitesimal symmetry at p also
form a Lie algebra, denoted X(P, 9, w)p. There is an injective restriction homomor-
phism—see [12, Lemma 5.9]:

X(P,0,w) > X(P,0, a))p.

On the global side, the symmetries of (P,0,w) form a subgroup
Diff (P, 8, w) C Diff (P) and we have the following classical result—see, e.g., [6,
Thm G] or [15, Thm L.5.1]:

Theorem 3.16 The group Diff (P, 0, w) of symmetries of a G-structure with connec-
tion is a finite dimensional Lie group with Lie algebra the subspace of X(P,0,w)
generated by the complete vector fields.

For a general G-structure with connection it may be hard to relate the Lie algebra
of infinitesimal symmetries X(P, 8, w) and the Lie algebras of germs of infinitesimal
symmetries X(P, 6, cu)p. Moreover, the latter can depend on the point p € P.

However, for a fully regular G-structure with connection one can relate its infin-
itesimal symmetries to the isotropy Lie algebra of its classifying algebroid A ).
Since this is a transitive algebroid, its isotropy Lie algebras are all isomorphic.

Proposition 3.17 Let (P,0,w) be a fully regular G-structure with connection and
let Ag o) = Xo.w e its classifying Lie algebroid. Then the Lie algebra of germs
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of infinitesimal symmetries X(P,0,®),, is isomorphic to the isotropy Lie algebra
ker py, C A - In particular,

dimX(P, 0, »), = dimP —dimX, ).
Proof The proof follows from [12, Prop 5.7] applied to the coframe (6, w). O

Although for a fully regular G-structure with connection the Lie algebras
X(P,0, a))p are all isomorphic, we will see in the examples in the next section that, in
general, one still has strict inclusions:

Lie( Diff (P, 6, ®)) € X(P.6,w) G X(P,6,®),.

We will give later conditions under which all these Lie algebras coincide and, more-
over, the natural action of Diff (P, 8, w) on P is a proper and free action, with orbits
the fibers of the classifying map 4. When this is the case, the classifying map

h:P— X9.0)

is a principal Diff (P, 6, w)-bundle and it follows that the classifying algebroid is iso-
morphic to the Atiyah algebroid of this principal bundle:

Agw ~TP/H, H := Diff(P,0,®).

In particular, we obtain a Lie groupoid integrating A, ,,, namely the gauge groupoid
of the principal bundle & : P — Xy,

Ly =P Xy P) 3 Xp e

The s-fibers of this groupoid are copies of P and hence are themselves G-structures
(with connections). This is an example of a G-structure groupoid (with connection),
which will be studied in the next sections.

4 Examples
4.1 Non-fully regular G-structures

We start by describing a class of G-structures which are not fully regular.
Consider a Riemannian manifold (M, ). Its orthogonal frame bundle
o) ={p: R {,-)) = (TM,n,) | linear isometry},

is an O, (R)-structure with connection w (the Levi-Civita connection). The germs of
infinitesimal symmetries of (O(M), 8, ®) at a point p € O(M) can be identified with
the space of germs of Killing vector fields of # at the point x = 7z (p):

X(OWM), 0,w),={X € X(M) : Lyn =0 onsome open U C M containing z(p)}.
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If this O, (R)-structure is fully regular then, by Proposition 3.17, we must have for
any point p € O(M)

dim X£(0(M), 0, »), = dimO(M) — dim X4 ,.

It is easy to construct Riemannian manifolds (M,#) for which there are points
P1.P>» € O(M) such that:

dim X(O(M), 8, ), # dim X(O(M), 8, ), .

For example, let M = R with coordinate ¢, and consider the Riemannian structure

(v, w) = W fort <0,
W= (1 + f@)ww fort > 0,

where f is a smooth function such that f’(r) > 0 if 7 > 0, and f and all its derivatives
vanish at t = 0. Then one finds that a (local) Killing vector field for this metric must
vanish for # > 0 and is constant for ¢ < 0. It follows that:

1 if 7(p) < 0,

dim X(O(M), 0, ), = { 0 if z(p) > 0.

4.2 Generalized space forms

Let (M, n) be a pseudo-Riemannian manifold of signature (p, n — p). The associated
O(p, n — p)-frame bundle

om) ={p: [R", -)(p!n_p)) — (T.M,n,)| linear isometry },

is a O(p, n — p) structure with connection (the Levi-Civita connection). As we saw in
the previous example, this need not be fully regular. We recall the following result—
see, e.g., [16, 17] for the Riemannnian case and [18, Section 4.5] for the pseudo-
Riemannian case:

Proposition 4.1 Let (M,n) be a pseudo-Riemannian manifold of constant scalar
curvature. Then for any pair of orthonormal frames p,,p, € O(M) there is a local

isometry @ of (M, n) with @(p,) = p,.

The (local) equivalences of (O(M), 8, @) are the lifts of (local) diffeomorphisms
@ : M — M which preserve . Hence, for a space of constant scalar curvature the
O(p,n — p)-structure (O(M), 0, ®) is fully regular of rank 0. In particular, X,
reduces to a point and the classifying algebroid A4y, is actually a Lie algebra.

If (M, n) has constant curvature x its Riemannian curvature tensor takes the form:

RX,Y)Z = K‘<I’](Z, V)X = n(Z, X)Y>.
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Since the torsion vanishes identically, we conclude from Proposition 3.14 that the
classifying algebroid of (O(M), 8, w) is the Lie algebra Apw =R"® 30(p,n—p)
with Lie bracket:

[((u,a), v, )] = (a-v—p-ula, pl - R(u,v)), 4.1
where R : A’R" — 8o(p,n — p) is given by:

R(u,v)(w) = K(<W’ V)(p,n—p)u - (W’ u)(p,n—p)v)‘

Classically, spaces (M,n) with constant scalar curvature are called space forms.
More generally, a G-structure with connection (P, 8, @) may be called a generalized
space form if it is fully regular of zero constant rank and is torsionless. Equivalently,
the corresponding classifying space reduces to a point Xy ), i.e., the classifying Lie
algebroid is a Lie algebra Ay ,, = R" @ g with Lie bracket:

[, 0), v, )] = (- v —=F-u,la,f] — Ru,v)),

where R : A’R" — g. In this generality, R is not characterized only by a number,
and one cannot talk about scalar curvature.

4.3 Homogeneous G-structures

Homogeneous G-structures with connections are G-structures with connection
which have large symmetry groups. For a nice overview and references to standard
results see [1].

Definition 4.2 A G-structure with connection (P, 8, ) is (locally) homogeneous if
for any m;,m, € M = P/G there exists a (local) equivalence mapping m, to m,.

We note that this condition can be expressed at the level of frames by saying that
for any p, g € P there exists a (local) equivalence (between G-saturated open neigh-
borhoods of p and ¢g) mapping the orbit of p to the orbit of q. For example, the gen-
eralized space forms in the previous paragraph are examples of locally homogeneous
G-structures with connection. They become homogeneous G-structures if, e.g., they
are geodesically complete and 1-connected.

Theorem 4.3 A G-structure with connection (P,0,w) is locally homogeneous if
and only if it is fully regular and the G-action on its classifying manifold X, is

transitive.

Proof We begin by showing that if (P, 8, w) is locally homogeneous, then it is fully
regular. We must show that the dimension of

I, ={d,l : I € Iv(P.0,@)} CT'P

does not depend on p.
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Let p,g € P, and let ® : U, — U, be a local equivalence between G-saturated
neighbourhoods of p and ¢ mapping the G-orbit of p to that of g. Then there exists
g € G such that ®(p) =gg and ®* : 7 , — 7, is an isomorphism. Hence, it is
enough to show that Z,, ~ 7.

Note that if I € Inv (P, 0, w), and g € G, then

g'r:P-R, glp) =Ipg

is also an invariant function. In fact, for any local equivalence ® : P — P one has
that

g 1D(p) = [(D(p)g) = (D(pg)) = I(pg) = g"1(p).
It then follows that
g 1 L,—1, dd—dgl

is an isomorphism.

Next we show that a fully regular G-structure with connection (P, 8, ®) is locally
homogeneous if and only if the G-action on the classifying manifold X, ,, is transi-
tive. Recall that the classifying manifold is Xy, = P/ ~ where p ~ g if and only
if there exists a local equivalence ® : U, — U, such that ®(p) = g. The natural
G-action on X4, is given by [plg = [pg]. It is then clear that this action is transitive
if and only if for each frame g € P, the equivalence class of g under local equiva-
lences intersects the G-orbit of any frame p € P. O

If (P,0,w) is a locally homogeneous G-structure with connection, then the Lie
algebras X(P, 0, w), of germs of infinitesimal symmetries are all isomorphic and

dim X(P, 6, w), > dim(P/G).

Recall that X(P, 0, a))p can also be identified with the kernel of the anchor of the
classifying algebroid at A(p). On the other hand, it follows from the Theorem 4.3
that the classifying manifold of a locally homogeneous G-structure with connection
is a homogeneous space

X0 = G/G,,

where x = [p] € Xy, and G, is the isotropy subgroup at x. The isotropy group G,
has geometric meaning: if m = z(p) € M = P/G, then G, is isomorphic to the group
of germs at m of diffeomorphisms which fix m and are local symmetries of (P, 8, ®).
This follows directly from [11, Thm 7.2].

Properties of the classifying Lie algebroid of a locally homogeneous G-structure
with connection are reflected in the geometry of the G-structure. We will not give a
detailed discussion here, but the following result is an instance of this relationship
(recall the notations from Section 3.4):

Theorem 4.4 Let (P, 0, w) be a locally symmetric G-structure with connection. Then
its classifying Lie algebroid satisfies the following properties:
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T=0and F =0.

Conversely, if these conditions hold then the linear connection V.on M = P/G
induced by w is locally symmetric.

Before we turn to the proof we recall that a manifold M with a linear connec-
tion V is called a (locally) symmetric space if the geodesic symmetries through
each m € M are (local) affine transformations of (M, V). Given a G-structure with
connection (P, 8, w) we will say that it is (locally) symmetric if the geodesic sym-
metries are (local) symmetries of the G-structure. If a G-structure with connection
(P, 6, w) is (locally) symmetric then M = P/G with the induced linear connection V
is (locally) symmetric. The converse need not hold true: for example, for the usual
round metric on the 3-sphere the Levi-Civita connection is symmetric and the asso-
ciated O(3)-structure with connection is also symmetric. However, the associated
smaller SO(3)-structure with connection is not symmetric (the geodesic symmetries
do not preserve orientations of the frames).

Recall also that (M, V) is locally symmetric if and only if its torsion vanishes
and its curvature tensor is V-parallel — see, for example, [17]. It follows that if a
G-structure with connection (P, 0, @) is locally symmetric then its torsion and curva-
ture maps

T : P - Hom(A’R",R"), and R : P - Hom(A2R", g),

satisfy T=0 and‘;—{z = 0 (see Remark 3.7).

Remark 4.5 If (P,0,w) is a locally symmetric G-structure, then —[I € GL ,(R)
must be an element of G. In fact, let S,, be the local geodesic symmetry around
m=n{p)eM=P/G. The lift S,, : F(M) - F(M) of S, to the frame bundle maps
p to —p. Since S, is a symmetry of the G-structure, it follows that —p € P when-
ever p € P. It follows also that any invariant function Inv (P, 8, @) must be invariant
under the action of —[. This in turn implies that all elements of X, are fixed by
-ledG.

In order to prove Theorem 4.4, we start by proving the following lemma:

Lemma 4.6 Let (P,0,w) be a locally symmetric G-structure with connection. Then

g—; = 0 for all invariant functions I € Inv(P, 0, w).

Proof Fix m = n(p) € P/G. Since any I € Inv(P, 0, ®) is invariant under both S:;
and —1, it follows that / is also invariant under the map:

Gm P =P, @, =S,0(-D).

Using the G-equivariance of § and @ we see that this map satisfies:
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010 = (=)0 = (~1)- 0 = ~0,

@, 0=(-)'0w=Ad_jo=o.
In particular, ¢,, fixes the point p and satisfies:
dp(pm(éu) = _éus

where &, € kerw,, is the unique vector such that 6(¢,) = u.
The definition of the coframe derivative of f € C®(P) with respect to 6 shows
that it can be computed as

of
~5(PYW) = d,f(E,).

Hence, it follows that for any / € Inv(P, 8, w), we have

ol ol

—@P)w) =d,I¢,) =d,(Iog,)¢&,) =d,I(=§,) = ——(P)u).

00 00
This implies that %(p) = 0. Since p is arbitrary we obtain that % =0. O
Proof of Theorem 4.4 Let (P, 0, w) be a G-structure with connection. We denote by

T : P> Hom(A’R",R"), R : P — Hom(A2R", g)

the invariant maps corresponding to the structure maps 7" : Xy, — Hom(A%R", R")
and R : X9, — Hom(A%R", g) of the classifying Lie algebroid Ay, = X9y

If (P,0,w) is locally symmetric, then we know that 7 =0 and so it follows
that 7 = 0. On the other hand, recall that h*Cm(X(a’w)) = Inv(P, 8, w), and for any
f € C¥(Xgm)s u € R", (3.4) gives

o(h*
4w = 25Dy,

where h(p) = x. It then follows from Lemma 4.6 that F = 0.

For the converse, it is clear that if 7 = O then T= 0, so V is torsion free. Also,
using again (3.4), if ' = 0 we have

oR
S5 P = LrppoR lipy = O-

Since F = 0 it follows that % = 0. Equivalently, by Remark 3.7, the curvature is V
-parallel, so V is locally symmetric. O

Remark 4.7 Theorem 4.4 and Remark 4.5 reveal traces of a relationship between the
(extremely rich) geometry of symmetric spaces and a special class of G-structure

algebroids (see Section 5), namely those satisfying:

(i) -0 € G and —lacts trivially on X;
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(i) F=0.

This allows, e.g., to obtain insight into the question of how far a homogeneous
G-structure is from being symmetric. For instance, it is possible to relate the
index of symmetry introduced in [3] with the rank of F. We will not explore here
this relationship and leave it for future work.

4.4 Leftinvariant invariant metrics on Lie groups

An interesting class of examples of locally homogeneous G-structures with connection
is obtained by considering left (right) invariant G-structures with connections on Lie
groups.

Definition 4.8 Let H be a Lie group. A G-structure with connection (F;(H), ®) on H
is left invariant if the left translation L, : H — H is a symmetry of (F;(H), w), for
allh € H.

Every left invariant G-structure with connection on a Lie group H is trivializable,
since one can identify F;(H) with H X G. Under this identification the tautological
and connection forms can be decomposed in a simple way. This allows one to give a
more explicit description of the structure equations and therefore of the classifying
algebroid of such a structure. We will not explore this in full generality here, but we
will focus in the case of O, (R)-structures, i.e., metrics. We will present below an
explicit computation for a specific left invariant metric on the Lie group SU,, which
already captures the general case.

Left invariant metrics on Lie groups have been extensively studied since the pio-
neering work of Milnor and others in the 1970’s ( [9, 13, 19, 22]). In the language of
G-structures, these correspond to left invariant O, (R)-structures with the Levi-Civita
connection. Every left invariant metric on a Lie group H is locally homogeneous in
the sense of the previous paragraph. It follows that the corresponding O, (R)-struc-
ture with the Levi-Civita connection is fully regular, and moreover that its classify-
ing manifold X, ,, is identified with O, (R)/K, where K is the group of germs of iso-
metries of H at the identity e € H. Note that when forming the quotient O,(R)/K,
we identify K with a subgroup of O, (R) as follows: fix a frame p € F ,(H) over e
and let @ € K be a germ at e. Then there exists a unique g € O,,(R) such that

d,pop = pg.

This determines an embedding of K in O, (R) as a closed subgroup.

The left invariant metrics on 1-connected 3-dimensional unimodular Lie groups
were classified in [14]. In what follows we compute the classifying algebroid of a
specific left invariant metric on SU,. The arguments presented below can be gen-
eralized to obtain the classifying algebroid of any left invariant metric on a 1-con-
nected and compact Lie group.

We denote by # the left invariant metric on H = SU, for which the matrices in

@ Springer



Sao Paulo Journal of Mathematical Sciences (2021) 15:524-570 547

0 0 1 0 2 0)(0 0 0
Po = 0 0 O}}-2 0 oO0}}0 0 4
-1 0 O 0O o0 0)to -4 0

form an orthonormal frame of T,H = $05(R). A straightforward computation leads
to the value of the curvature map at this frame: R(p,) € Hom(A’R?, 30,(R)). If one
denotes by e, e,, e5 the canonical basis of R3, then one finds:

0 ¢ O 0 0 ¢

R(py)e,ey) =] —¢ 0 O} R@ye.e=]| 0 0 0|
0 0 O -, 0 0
0 0 0

R(py)es.e5) =10 O —-c3 |
0 ¢ 0

where

_I81 313 5%

9T 76 2T 76 8T 16

The value of the curvature map at any other frame can be obtained using the
G-equivariance

R(pg)(u.v) = Ad 1 R(p)(gu, gv).

In order to determine the classifying manifold X, of the orthogonal frame bundle
of (H,n) we must find the group K of germs of isometries which fixes e € H. Note
however, that since H is compact and simply connected, its frame bundle will be a
strongly complete realization of its classifying algebroid—see Definition 6.11 and
Section 6 of [11] for details. It then follows that any local isometry of H extends to a
global isometry and therefore we can identify K with the group of global isometries
of H which fix the identity e. The group K was computed in [14] and its is isomor-
phic to Z, X Z,, namely it is formed by the matrices:

1 0 O 1 0 0 -1 0 0 -1 0 0
0 1 0] 0 -1 0 | 0 1 0 | 0 -1 .
0 0 1 0 0 -1 0 0 -1 0 0 1

Therefore, the classifying manifold X4, of the left invariant metric # on
H is identified with SO;(R)/(Z, %X Z,), and R can be viewed as a map
X 9.y ~ Hom(A?R?, 80,(R)).

The classifying Lie algebroid of (SU,,#n) is the trivial vector bundle
Ao = Xo.w) X R @ 803(R) — Xy, with Lie bracket on constant sections given by

[(u, @), (v, HI(x) = (@ - v = f - u, [a, f] = R0)(u, v)).
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Finally its anchor is p(u, @), = F(x)(u) + y(a), wherey : g — X(X(Q,w)) denotes the
infinitesimal G-action on Xy ), and F(x) : R3 — T, X p,)- Note however that since
v, o 8 = T.X, Is injective, it follows that F(x) = 0 for all x € X4 ).

5 G-structure groupoids and G-structure algebroids

The Lie algebroids that classify regular G-structures with connection form a spe-
cial class of Lie algebroids. We will now discuss this class of Lie algebroids, called
G-structure Lie algebroids (with connection), as well as their global counterparts,
G-structure Lie groupoids (with connection). As we will see, a G-structure groupoid
is a Lie groupoid whose source fibers are G-structures hence they yield the appro-
priate framework to study families of G-structures and, in particular, to deal with
Cartan’s realization problem.

5.1 G-structure groupoids

We denote by I' =3 X a Lie groupoid with space of arrows I' and space of objects
X. We use the letters s and t for the source and target maps, the symbol 1, for the
identity arrow at x € X and y, -y, for the product of the composable arrows
(11,7,) € I'® :=T, x, I'. Also, we denote by T5I" = ker ds the tangent distribution
to the source fibers. We will denote by Qfe(l" , V) the space of right-invariant k-forms
on I" with values in V. By definition, these are s-foliated forms with values in V i.e.,
vector bundle maps AKTI" — I' X V. The de Rham differential restricts to a differ-
entiald : QL(I", V) — Q&F(I", V).

An action of a Lie group G on a Lie groupoid I =3 X will be called a G -princi-
pal action if:

(i) The action is locally free, effective and proper;
(ii)) The source map s is G-invariant;
(iii) The action is compatible with the groupoid multiplication:

1 7)8=018) 1 V.1 eT?, ged. (5.1

In this case we also call I" a G-principal groupoid. By a morphism of G-princi-
pal groupoids we mean a G-equivariant groupoid morphism @ : I}, — I, between
G-principal groupoids.

For a G-principal groupoid I' = X each source fiber s~!(x) is a G-principal bun-
dle over the orbifold M = s7!(x)/G. So a G-principal groupoid I' = X is a family of
G-principal bundles parameterized by X.

We are mostly interested in G-structures. Recalling the characterization of such
structures given by Theorem 2.3, one is led to the following:

Definition 5.1 Given a closed subgroup G C GL (n,R), a G-structure groupoid

consists of a G-principal groupoid I' =3 X equipped with a pointwise surjective
1-form ©® € Q}(I', R") satisfying:
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(i) ©is strongly horizontal: ©,(v) = 0iff v = &|,, for some « € g;
(ii) ®is G-equivariant: g*® = g~! . @, forall g € G.

We call © the tautological form of the G-structure groupoid.
A morphism of G-structure groupoids ®@ : I'} — I, is a morphism of G-princi-
pal groupoids which preserves the tautological forms: ®*@, = ©,.

Therefore, each source fiber s~ (x) of a G-structure groupoid is a G-structure over
the orbifold M = s~!(x)/G with tautological form the restriction Ols-1y

Example 5.2 A G-principal action on a manifold P is the same thing as a G-principal
action on the pair groupoid I = P X P = P. The two actions are related by:

I'xG->1T, (p.p)g =8 p)
Condition (5.1) holds since we have:
((P1,P2) - P2:03)) 8 = (P1,P3) 8 = (P11 &:3) = (P1,P2) 8) - (2. P3)-

Similarly, a G-structure groupoid on the pair groupoid P X P =3 P is the same
thing as an ordinary G-structure on P — P/G = M. The tautological 1-forms
0 e Q(P,R")and ® € QI'Q(F, R") are related by:

®(I’|v[72)(v’ O) = 6[’1 (V)

Given a G-structure groupoid I' = X, each s-fiber s™!(x) = s~!(x)/G has a G-struc-
ture, and we have a morphism of G-structure groupoids covering the target map:

sH(z) x s7(z) ——

r
u L (v,72) = m e

s~1(z) —X

-~

There is a slightly different point of view on G-principal and G-structure
groupoids, which will be useful when we introduce their infinitesimal versions.

First, given a G-principal groupoid I' = X we have a G-action on X defined
by:

XXG—=X, xg:=t(l,9). 5.2)

For this action,s : I' - X is G-invariantand t : I" — X is G-equivariant.

Next, recall that given a (right) G-action on a manifold X one can form the
action Lie groupoid X X G =2 X: an arrow is a pair (x, g) with source x and target
xg, and composition of arrows is given by:
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0. h) - (x.8) = (x.gh), ify=xg.
Finally, one can define the groupoid morphism:
1:XXG->T, (xg+l.g 5.3)

This will be called the action morphism of the G-principal groupoid.

To state the next result, we will say that a groupoid morphism: : X X G - I’
is effective if given e # g € G there exists an x € X with 1(x, g) # 1, and we will
say that it is locally injective if the induced Lie algebroid morphism is injective.

Proposition 5.3 Let I' =2 X be a Lie groupoid. If ' X G — I' is a G-principal
action, then:

(1) (5.2) defines a G-action on X,
>i1) (5.3) defines an effective, locally injective, Lie groupoid morphism;
(iii) the action takes the form:

I'xG->1T_T, yg:=ut(y),g- 7. 5.4)

Conversely, given an action X X G - X and an effective, locally injective, Lie
groupoid morphismi1 : X X\ G — I, (5.4) defines a G-principal action on I.

For a proof of this proposition we refer to [11]. It shows that we can define the
G-principal action on I" by specifying first a G-action on X and then an effective,
locally injective, groupoid morphism: : X X{ G — I'. We will often use this alterna-
tive point of view. From this perspective, a morphism of G-principal groupoids can
be characterized as a morphism of groupoids

n—2-r

I

X1 —¢>X2

which intertwines the actions morphisms:
o1y = 1,0(¢p X I).

The action morphism: : X X G — I also allows us to define another action of G on
I', namely the action by inner automorphisms:

I'xG—T, yog:=ity),8 v us()g " (5.5

In general, the inner action of G on I" does not determine the original G-action on I
For example, the action morphism maybe non-trivial, while the inner action could
be trivial.
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5.2 Connections on G-structure groupoids

The notion of connection on a G-principal groupoid I' = X, much like principal
bundle connections, can be defined either as an invariant distribution or as a g-val-
ued 1-form. We will choose the latter approach and refer to [11] for the former, as
well as the equivalence between the two approaches.

Definition 5.4 A connection 1-form on a G-principal groupoid I' = X is a g-valued
1-form Q € Q(T', g) satisfying:

(i) Qis vertical: Q(&) = a, forall a € g;
(i) €is G-equivariant: g*Q = Ad,-, - Q, forall g € G.

The restriction of a connection 1-form Q € Q}Q(F ,g) to each fiber s~ (x) gives an
ordinary connection 1-form @ € Q!(s™!(x), g). The corresponding horizontal distri-
butions assemble to a distribution on I" given by:

H:={veTrl :Qyv)=0}.
The curvature 2-form of a connection Q is a g-valued 2-form
Curv (Q) € Q%(T', g),

which measures the failure of the horizontal distribution H to be integrable. It is
defined by:

Curv (Q)(v,w) :=dQ(h(), h(w)), (,w € T°I),

where i . T°I" — 'H denotes the projection.

The restriction of Curv (Q) to the s-fiber s~!(x) is the usual curvature 2-form of
the induced connection on s~!(x) = s~!(x)/G. This leads immediately to the fact
that a connection Q on a G-principal groupoid I' =3 X satisfies:
1st structure equation

dQ =-QAQ+ Curv(Q);
1st Bianchi identity
dCurv (Q)|, =0.

Assume now that I' = X is a G-structure groupoid with connection Q. Denoting
the tautological form by ®, we define the torsion of the connection to be the right-
invariant 2-form Tors (Q) € lee(l" ,R"™) given by:

Tors (Q)(v, w) = dO(h(v), h(w)), (v,w € T°T).

The restriction of Tors (Q) to the source fiber s~!(x) is the (usual) torsion 2-form of
the induced connection on s™!(x) — s~!(x)/G and we find that the following hold:
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2nd structure equation
d® = —Q A O + Tors (Q);
2nd Bianchi identity
dTors ()|, = —(Curv () A B)|4.

One can also consider morphisms of G-structure groupoids with connection.
They amount to morphisms of groupoids ® : I'| — I, which are G-equivariant and
preserve both the tautological and connection 1-forms:

P*'0,=0,, Q,=Q,

5.3 G-structure algebroids

We denote by Der (A) the space of Lie algebroid derivations of a Lie algebroid A.
An element D € Der (A) is a derivation of the vector bundle A — X that acts as a
derivation of the bracket. So D : I'(A) — I'(A) is a linear map for which there exists
a vector field o;, € X(M) such that:

D(fs) = fDs+op(f)s (s €T(A), f € CX(X)),
and moreover:
D([sy,$,14) = [D(s}), 5514 + [51, D(s5)14, (s;,5, €T'(A)).

We call o, the symbol of the derivation. The commutator of derivations turns
Der (A) into a Lie algebra.

Given a Lie algebra g, by an infinitesimal g-action on A we mean a Lie algebra
map ¥ : g — Der(A). Composing i with the symbol map gives an infinitesimal g
-action on the base X of the Lie algebroid y : g — X(X), so that:

w(@)(fs) = fw(@)(s) + w(@)(f)s.
Consider a G-action on a Lie algebroid A:
AXG—A, (a,gr—abg.
If the action is by Lie algebroid automorphisms, then it induces an infinitesimal g

-action i : g — Der (A), given by:

p(a)(s) 1= d% (exp(ta))*s, a € g, s € T(A).
=0

I

A G-action on a Lie algebroid A is called a G -principal action if

(1) The action is by Lie algebroid automorphisms;
(ii) The infinitesimal action  : g — Der (A) satisfies:
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@ (a) = [i(a), - 1.

where i : X X g — A s an injective algebroid morphism.
In this case, we call A a G-principal algebroid and i : X X} g — A the action
morphism.

Notice that the action morphism i : X X g — A is part of the data defining a
G-principal Lie algebroid: there could be more than one such morphism determin-
ing the same infinitesimal action  : ¢ = Der (4). When G is connected, this mor-
phism determines the G-action.

Definition 5.5 Given a closed subgroup G C GL (n,R), a G-structure algebroid
consists of a G-principal algebroid A — X with action morphism i : X X g = A
equipped with a fiberwise surjective A-form § € Q!(A, R") satisfying:

(i) strong horizontality:
0.(a)=0 iff a=i(x, a), forsome a € g.
(i) G-equivariance:

0,,(a0g)=¢g"-0(a). Vgei.

We call 6 the tautological form of the G-structure algebroid. The definition of a
G-structure algebroid A — X implies that:

rankA = n + dimG.

There is no restriction on the dimension of the base X, which can be arbitrary.

Example 5.6 Let (P, 0)be a G-structure. Then the lifted G-action on the tangent bun-
dle A = TP — P yields a G-structure algebroid with A-form 6, and action morphism

i:Pxg—>TP, (p,a)l—)écp,

where @&, is the infinitesimal generator of the G-action. This is the infinitesimal ver-
sion of the G-structure groupoid of Example 5.2.

Example 5.7 Our main example is, of course, the classifying Lie algebroid A, ,, of a
fully regular G-structure with connection (P, 8, ®). We saw in Sect. 3.4 that this Lie
algebroid comes with an injective algebroid morphism

[ Xgw) X8 = Ag e (X a) = (x, (0, a)).

and an action G X A, ) = Ay, by Lie algebroid automorphisms. One checks that
the induced infinitesimal action ¢ : ¢ — Der (A) satisfies:

w(a) = [i(a), =].
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The projection
Apw) = Xpy X R" @ g) > R"

defines a form 6 € Q'(A 4, R") which satisfies all the conditions of the definition.

There is a differentiation functor taking G-principal groupoids to G-principal
algebroids. We state here the main results and refer to [11] for more details and
proofs.

Proposition 5.8 Let I' =3 X be a G-principal Lie groupoid with action morphism
1: XXG— I. Then its Lie algebroid A — X is a G-principal algebroid with
action morphismi=1, : X X g — A.

Conversely, given a G-principal algebroid A — X, a Lie groupoid I' 3 X inte-
grating A admits a (unique) G-principal action inducing the G-action on A pro-
vided the action morphism i : X X ¢ — A integrates to an effective Lie groupoid
morphism:

1:XXG->T.

Remark 5.9 Assume that a G-principal groupoid I' corresponds to a G-princi-
pal algebroid A, as in the previous proposition. Then the fact that right-invariant
forms on I" are in bijection with A-forms leads immediately to a correspondence of
G-structures, namely:

{ I’ — tautological forms } 3 {A — tautological forms } 5.6)

0 € QL(I',R") 0 € Q'(A,R"

There is also a natural notion of morphism of G-principal Lie algebroids: it
is a Lie algebroid morphism between G-principal Lie algebroids

Ay L>A2

P

X1 —¢>X2

which is G-equivariant and which intertwines the action morphisms:
Doi; = i)o(¢p X I).

A morphism of G-principal groupoids @ : I'| — I, induces a morphism of the
associated G-principal algebroids ®, : A; — A,. The converse, in general, fails
unless I is the so called canonical G-integration of A—see Sect. 5.6 and [11].

One defines a morphism of G-structure algebroids to be a morphism of
G-principal algebroids @ : A, — A, which additionally preserves the tautological
forms: ®*6, = #,. A morphism of G-structure algebroids ® : A; — A, is neces-
sarily a fiberwise isomorphism.
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5.4 Connections on G-structure algebroids

Recalling that the right-invariant forms on a Lie groupoid I" correspond to
A-forms on its Lie algebroid, one is lead to the notion of connection on a G-prin-
cipal algebroid:

Definition 5.10 A connection 1-form on a G-principal algebroid A — X is a g-val-
ued A-form o € Q!(A, g) satisfying:
(i) Itis vertical relative to the morphismi : X X g — A:
o(iix,a))=a, VYaeg, xeM,
(i) Itis G-equivariant for the G-action on A by automorphisms:

0, (a0 g =Ad,1 -w(a), Va€eA, geC.

Notice that a connection 1-form w € QI(A,g) yields a horizontal sub-bundle
H = ker w C A such that:

A=H® Si.
This sub-bundle is G-invariant and determines the connection 1-form uniquely—see

[11].

Example 5.11 Returning to our main example of the classifying Lie algebroid A, ,,
of a fully regular G-structure with connection (P, 8, ®), this is a G-structure alge-
broid—see Example 5.7—with connection form w € QI(A(H,m),g) given by the
projection:

Apw) =Xy X R"®g) - g.

Naturally, one defines the curvature 2-form of a connection w to be the A-form
Curv (w) € Q*(A, g) given by:
Curv (w)(a;,a,) 1= d,o(h(a,), h(a,)), a; €A,

L

where h : A — H denotes the projection and d, : Q%(A, V) - Q**1(A, V) the Lie
algebroid differential. The connection is flat, i.e., Curv(w) = 0 if and only if H C A
is a Lie subalgebroid, and the following hold:

1st structure equation

dyo = —o Ao+ Curv (w);
1st Bianchi identity
d, Curv(w)|y = 0.
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Assuming now that A — X is a G-structure algebroid with connection 1-form
o € Q'(A, g), we define the torsion of the connection to be the R™-valued A-form
Tors (w) € Q*(A, R") given by:

Tors (w)(a,,a,) := d,0(h(a,), h(a,)), a; €A,

where 6 € Q!(A, R") denotes the tautological 1-form. The torsion and the curvature
satisfy:
2nd structure equation

d,0 = —w A 0 + Tors (w);
2nd Bianchi identity
d, Tors (w)|y = —(Curv (@) A 0)| .

Remark 5.12 Under the correspondence (5.6) between G-structure groupoids and
G-structure algebroids, if a connection € on I" corresponds to a connection @ on A,
then the associated torsions Tors (€2) and Tors (w) correspond to each other, so that:

Tors (w), = Tors (9)1; Vx € X.

Moreover, the structure equations and the Bianchi identities also correspond to each
other.

Finally, there is also a notion of morphism of G-structure algebroids with connec-
tion: it is a morphism of algebroids ® : A; — A, which is G-equivariant, intertwines
the action morphisms, and preserves the tautological and connection 1-forms:

o0, =0,, DP'w,=ow,.

5.5 Canonical form of a G-structure algebroid with connection

Assume that 7 : A — X is a G-structure algebroid with tautological form # and con-
nection form @. We obtain a vector bundle isomorphism to the trivial bundle:

ASXX (R @), a (2(x),0(a), ().

We can re-express the torsion and the curvature under this isomorphism as maps:

e T :X — Hom(A’R",R"): T(x)(v,w) = Tors (@), (v, w);
e R : X - Hom(A’R",g): Rx)(v,w) = Curv (@) (v, w).

Moreover, under this isomorphism:

e the G-action on A takes the form: (x, u, @) © g = (x g, g" u, Adg_l -a),
e the action morphism is the inclusioni : X X g — A, (x, a)) — (x,0, a);
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e the tautological form is the projection 8 : X X (R" & g) - R"
e the connection 1-form is the projection® : X X (R" & g) — g.

One checks also that the Lie bracket is then given on constant sections by:
[, 0), v, )] = (a-v—p-u—T(uv),la,fly — R(u,v)), (5.7)
while the anchor takes the form:
pu,0) = Fu) + y(a), u.a) ER"Dg, (5.8)

where F : X X R" —» TX is a G-equivariant bundle map and y : g — X(X) denotes
the infinitesimal G-action on X. We call this the canonical form of a G-structure Lie
algebroid with connection.

Remark 5.13 Our usage here of the term canonical form is consistent with the usage
in Section 3.4 for the case of the classifying Lie algebroid of a G-structure with con-
nection. One may wonder, if any transitive G-structure algebroid with connection
arises as the classifying Lie algebroid of a G-structure with connection. This is a
special instance of the realization problem to be discussed in the next section.

5.6 G-integrations
A fundamental question, suggested by the results above, is the G-integrability problem:

e When does a G-structure algebroid with connection arise from a G-structure
groupoid with connection?

A complete solution to this problem is presented in [11]. Here we will give a brief over-
view, focusing on the results most relevant for the theory of (fully regular) G-structures.
A first observation is that the connection and tautological form do not play any
role here—see Remarks 5.9 and 5.12. Therefore, we can assume that A —» X is a
G-principal algebroid and look for a G-principal groupoid I' =3 X integrating it. If
the latter exists we will say that A is G-integrable and call I" a G-integration of A.

A Lie algebroid A — X may fail to be integrable and the obstructions to integra-
bility are well understood (see [7, 8]). When A is integrable it may have many inte-
grations, but among the source-connected integrations, there is a unique (up to iso-
morphism) maximal integration X(A) =3 X. One can characterize the groupoid X(A)
as the one with 1-connected source fibers.

For a G-principal algebroid A, it may happen that it is integrable, but not G-inte-
grable. If A is G-integrable, one can also look for a maximal source connected
G-integration. Such integration always exist and this is the version of Lie’s first the-
orem for G-integrations:

Theorem 5.14 (Lie I [11]) Let A — X be a G-principal algebroid which is G-inte-

grable. Then there exists a unique (up to isomorphism) G-principal groupoid
25(A) = X which is characterized by either of the following:
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(a) Z;(A)is an s-connected G-integration and the orbifold fundamental groups of
s~'(x)/G are trivial,

(b) Z;(A) is maximal among s-connected G-integrations of A: for any s-connected
G-integration I there exists a unique étale, surjective, morphism of G-principal
groupoid Z;(A) = T

Example 5.15 Let = : P — M be a connected principal G-bundle. We saw in Exam-
ple 5.6 that TP — P is G-principal algebroid. The canonical G-integration of TP can
be obtained as follows. Let g : M — M be the universal covering space of M and
consider the pullback diagram

I

On the one hand ¢*P is a principal G-bundle over M and therefore carries a right
principal G-action. On the other hand, ¢*P is a x,(M)-covering of P. The canonical
G-integration of TP is the gauge groupoid corresponding to the z, (M)-principal bun-
dleg : ¢*P — P:

So(TP) = (q"P X ¢"P)/m (M) = P,
with the G-action [(p;,p,)]1g :=[(p,8.p,)]. This G-integration covers the pair

groupoid P X P = P, which is also a G-integration—see Example 5.2.

Using the canonical G-integration, there is also a version of Lie’s 2nd
Theorem:

Theorem 5.16 (Lie I [11]) If ¢ : A — B is a morphism between two G-integrable
G-principal algebroids, then there exists a unique morphism between their canoni-
cal G-integrations:

@ : T;4) - Zs(B), D, =9¢

Let us now turn to Lie’s 3rd Theorem. First, if a G-principal algebroid A — X
is G-integrable then it is obviously integrable. The converse, however, does not
hold: a G-principal algebroid A — X may be integrable without being G-integra-
ble. For a G-principal algebroid A — X there are certain G-monodromy groups
./\/f which contain the usual monodromy groups obstructing integrability:

N, c N¢ c Kerp,.

Then one has:

@ Springer



Sao Paulo Journal of Mathematical Sciences (2021) 15:524-570 559

Theorem 5.17 (Lie III [11]) Let A —» X be a G-principal algebroid. Then A is
G-integrable if and only if the G-monodromy groups are uniformly discrete, i.e., if
and only if there is an open neighborhood U C A of the zero section such that:

NNU={0,}, VxeX.

Once we known that a G-principal algebroid A is G-integrable, it follows from
Theorem 5.14 that any s-connected G-integration I' of A can be obtained as a
quotient of the canonical G-integration

I :=3,A)/A 3 X,

where A C X;(A) is any discrete bundle of subgroups satisfying:

(a) A,1is contained in the center of the isotropy group Z;(A),;
(b) the image of the action morphism : X X G — Z;(A) intersects A only in the
identity section.

Example 5.18 Consider the SO ,(R)-structure Lie algebra A = R" @ 30,(R), with
Lie bracket in canonical form:

[, ), (v, )] = (@ -v—f-ula,f] - R(u,v)),
where:
R(u,v)(w) = k({w, v)u — (w, u)v).

As we saw in Section 4.2, this is the classifying Lie algebroid associated with an
oriented Riemannian manifold (M, ) with constant scalar curvature k. Depending
on the value of x one finds that this Lie algebra is isomorphic to

80,,(R), if x >0,

A ~4q 380,(R) X R", if x =0,
30, )(R), if « <0.

Consider, e.g., the case k > 0. The canonical SO , (R)-integration is

Zs50,A) = SO, (R),

since s7!(x)/ SO ,(R) ~ S" is 1-connected. As for other integrations observe that the
center of SO, | (R) is:
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{I}, if n is even,
Z(S0,,,(R)) =
{1,-1I}, if nis odd.

So if n is even the only connected SO ,(R)-integration is the canonical one, while if
n is odd there is another one, namely

I'=8S0,,,(R)/{I,-I1} =PSO(n + 1,R).

The corresponding manifold of constant positive curvature is RP". This manifold is
oriented since n is even, and this also explains why we don’t find such an SO ,(R)
-integration for odd n. If instead we consider A as an O,(R)-algebroid, then we
would recover RP" for any positive integer n.

Observe that when ¥ = (0 we obtain as canonical SO ,(R)-integration the special
Euclidean group

g0, (4) = SO,(R) X R".

This gives rise to Euclidean space as an oriented manifold of zero curvature. Since
the center of this group is trivial, this is the only SO ,(R)-integration. In particu-
lar, we cannot obtain the torus with the flat metric by looking only at SO ,(R)
-integrations.

6 G-realizations and G-structures with connection

The link between G-structure algebroids and the classifying Lie algebroid of a sin-
gle G-structure is provided by the notion of a G-realization. This notion also allows
one to understand solutions of Cartan’s Realization Problem, which we formulate in
this section.

6.1 G-realizations

We saw that for a fully regular G-structure with connection (P, 8, ®) we have a Lie
algebroid map into the classifying Lie algebroid TP — Ay ). This is abstracted for
any G-structure algebroid as follows:

Definition 6.1 A G-realization of a G-structure algebroid A — X (with connection)

is a G-structure P — M (with connection) together with a morphism of G-structure
algebroids (with connection):
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TP . 4

T

P—>

Onecallss : P — X the classifying map of the G-realization.

The G-realizations of A form a category. A morphism of G-realizations of a
G-structure algebroid A — X isamap @ : P, — P,, commuting with the classifying
maps i; : P; - X and yielding a commutative diagram of morphisms of G-structure
algebroids (with connection):

TP, e TP,

o

A

In order to see how one can construct realizations, let us recall that if I’ = X is a
Lie groupoid with Lie algebroid A one defines its Maurer—Cartan form to be the
A-valued, right-invariant 1-form wy given by:

Equivalently, we can view wyc as a bundle map:
— A
r X

The 1-form oy satisfies the Maurer—Cartan equation which can be equivalently
stated as saying that this bundle map is a Lie algebroid morphism (see, e.g., [12]).

wMC

é

Example 6.2 Let A — X be a G-structure algebroid with connection @ and assume
that I' 3 X is a G-structure groupoid with connection € integrating it. Then each
source fiber s™!(x) — s~!(x)/G is a G-structure with connection Q|g-1(y)- The restric-
tion of the Maurer—Cartan form gives a morphism of G-structure algebroids with
connection:
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A
X
Hence, (s™! (x), oy |s-1 > £) is a G-realization of A.

We will see that, in general, a fully regular G-structure with connection fails to be
a source fiber of a G-integration of the classifying algebroid. This may fail even if
the classifying algebroid is G-integrable. Eventually, we will give a characterization
of those fully regular G-structures that arise as s-fibers.

Note that in the case where the G-realization consists of a source fiber s~!(x)
of a Lie groupoid integrating A, its classifying map (the target map) is a submer-
sion onto the leaf containing x. For a fully regular G-structure the classifying map
h:P— Xy, is also a surjective submersion. In general, the classifying map
h : P — X of a G-realization H : TP — A is a submersion onto an open G-saturated
subset of a leaf of A—see [11, Lemma 3.29]

6.2 Cartan’s realization problem

Many classification problems in geometry can be formulated as follows:
Problem (Cartan’s Realization Problem) One is given Cartan Data:

e aclosed Lie subgroup G C GL (n, R);

e a G-manifold X with infinitesimal actiony : X X g - TX;

e G-equivariant maps T : X - Hom(A’R"”,R"), R : X — Hom(A’R",g) and
F: XxXR" - TX;

and asks for the existence of solutions:

e an n-dimensional effective orbifold M;

e a G-structure F;(M) —» M with tautological form 8 € Q!(F;(M),R") and con-
nection 1-form w € Q' (F;(M), g);

e aG-equivariant map & : Fo(M) — X;

satisfying the structure equations:

do=THOAO) —w A0
do=RWOAO) —wAw
dh = F(h,0) + w(h, »)

One can show that such a problem has a solution for each x € X if and only
if the Cartan data defines a G-structure algebroid with connection, in canonical
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form, on the trivial bundle X X (R" @ g) — X, as in Sect. 5.5. Moreover, a solu-
tion is just a G-realization of this algebroid.

Theorem 6.3 ([11]) Given Cartan data (G, X, T, R, F) there is a solution to Cartan’s
Realization Problem for each x € X if and only if the data defines a G-structure alge-
broid with connection on A = X X (R" @ g). Moreover, there is a 1:1 correspondence:

solutions G -realizations
> 0.0
(FG(M)aaawah) TP—7M>A

In this paper, we are only interested in the realization problem for the classifying
algebroid of a fully regular G-structure with connection. We refer to [11] for a much
wider discussion of Cartan’s Realization Problem and its solutions using the theory
of G-principal groupoids.

6.3 G-realizations of a classifying Lie algebroid

Let (P, 0, w) be a fully regular G-structure with connection. We can view it as a
G-realization of its classifying Lie algebroid:

H=(0
rp =0 Ao

]

P X()

Any other G-realization is locally equivalent to this one:

Proposition 6.4 Let (P, 0, w) be a fully regular G-structure with connection. Given
any G-realization

Tf/ ’ A(gaw)
P> X(o0)

then for any p, € P' and p, € P with I (p}) = h(p,) there is a local equivalence
® : P' — P such that ®(p|) = p,.
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Proof The result follows from [11, Thm 7.2] applied to the classifying algebroid
Ao O
(0.0)

According to Example 6.2, any G-integration of A, gives rise to G-reali-
zations by considering the source fibers of the integration. The previous result
shows that these G-realizations are locally equivalent to (P, 8, w) and we will see
in the next paragraph that they exhibit some remarkable properties that distin-
guish them from arbitrary fully regular G-structures.

Starting with Cartan data (G, X, T, R, F) defining a G-structure algebroid with
connection A — X, as explained above, the solutions of the corresponding Cartan
realization problem need not be fully regular G-structures with connection. For
example, any G-structure with connection (P, 8, w) can be viewed as a realiza-
tion of A = TP — P, which is a G-structure algebroid with connection (cf. Exam-
ple 5.6). However, when a solution is fully regular we have the following rela-
tionship between the Lie algebroid A and the classifying Lie algebroids of the
solution:

Proposition 6.5 Let (G, X, T, R, F) be Cartan data defining a G-structure algebroid
with connection A — X. If a solution (F;(M), 0, w, h) to the realization problem is
fully regular, there is a morphism (®, ¢) of G-structure algebroids with connection:

TF (M)
\
/q) Ago.)
|
Fa (M)
U /¢ \X

where U = Jh is an open set in a leaf of A, ¢ : U — Xy, is a surjective submer-
sion, and ® is a fiberwise isomorphism.

Aly

(0.w)

Proof 1t follows from [12, Cor 5.11] that there is a morphism (®, ¢) of Lie alge-
broids as in the commutative diagram. This is a morphism of G-structure algebroids
with connection because both maps TF;(M) — A and TF;(M) — Ay, are fiber-
wise isomorphisms of G-structure algebroids with connection and @ is a fiberwise
isomorphism. O
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6.4 Complete G-realizations and integrability

In general, a G-structure algebroid with connection fails to be G-integrable.

A G-realization H : TP — A of a G-structure algebroid with connection is called
a full realization of A if & : P — X is surjective onto a leaf of A. One could be led
to believe that the existence of a full G-realization covering a leaf L C X implies the
G-integrability of the restricted Lie algebroid A|;. The next example shows that this
is not the case.

Example 6.6 Let X be a manifold with a closed 2-form @ € Q%(X). The extension
Lie algebroid of TX associated with w has underlying vector bundle

A:=TXDR,
anchor the projection p : TM @ R — TM, and Lie bracket defined by:
[(V9f)9 (W9 g)]A = ([vv W]v EVg - ‘CWf + CU(V, W))v

where V, W € X(X) and f, g € C*(X). This Lie algebroid is integrable if and only if
the group of spherical periods of w:

Per(w) = { /a) Cy en2(X)} CR,

4

is a discrete subgroup of R—see Example 3.28 in [8].

If we assume that X is parallelizable then A is a trivial vector bundle, hence
it is an {e}-structure algebroid. Assume further that one has a manifold Y, where
7,(Y) = 0, together with a surjective local diffeomorphism:

$:Y->X

Note that Y is also parallelizable. Then the pullback bundle ¢p*A = TY @ R is also an
extension Lie algebroid for the pullback form ¢*w, which is now an integrable {e}
-structure algebroid. Note that this Lie algebroid structure makes the pullback square

p*A-2 5 A

]

Y —X
¢

a Lie algebroid morphism. Then any integration I" =3 Y of ¢*A (which is obviously
an {e}-integration) gives a realization (s™!(y), Oycls1y) of @*A. Composing this
realization with the morphism (¢, @) yields a full realization of A.

For a concrete example, one can take X = (R*® — {0}) x (R? — {0}) with closed
2-form:
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® = prin + \/Eprirz,

where 1 denotes a closed 2-form on R® — {0} whose integral over S? is non-zero.
One can show that there exists Y, with 7,(Y) = 0, and a surjective, local diffeomor-
phism¢ : Y - X.

In order to obtain G-integrability, one needs full G-realizations which are also
complete, as we now explain.

Given a G-realization H : TP - A of a G-structure algebroid A — X with
connection one obtains a Lie algebroid action along the base map 4 : P — X by
setting:

c:h'A—->TP, o(p,a) :=H;l(a).

Indeed, using the fact that H is a Lie algebroid map, one checks that the two defining
properties of a Lie algebroid action hold:

(i) dhoo = py;
(i) o(lsy,s]4) = [6(s)), 6(s,)], for all sections 5,5, € T'(A g )

We recall that an action o of a Lie algebroid A - X onamap i : P — X is called
a complete action if for any compactly supported section s € I'(A) the vector field
o(s) € X(P)is complete. This leads to the following:

Definition 6.7 A G-realization H : TP — A of a G-structure algebroid with connec-
tion is called a complete realization of A if it is a full realization whose associated
Lie algebroid action o : h*A — TP is complete.

In particular, a fully regular G-structure with connection (P, 6, ) is automatically
a full realization of its classifying algebroid A, ,, and we will call it complete if is
also a complete realization of A ).

Example 6.8 Let A, ,) be the classifying Lie algebroid of a fully regular O(n)-struc-
ture (P, 0, w), where w is the Levi-Civita connection. It is a complete G-realization if
and only if the corresponding metric on M = P/O(n) is a complete metric—see [11,
Thm 8.5].

Example 6.9 Let I' 3 X be a G-structure groupoid with connection integrating
A(p o) Then the G-realizations (s71(x), oy |s-1(r)) furnish examples of complete real-
izations. The reason is that the vector field o(s) coincides with the restriction of the
right-invariant vector field generated by the section s, and these are complete when-
ever p(s) is complete.

We have the following converse to the previous example—see [11, Thm 6.9]:
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Theorem 6.10 Let (P, 0, w) be a fully regular G-structure with connection. The clas-
sifying G-structure algebroid Ay, is G-integrable if and only if it admits a com-
plete G-realization.

Notice that for A, to be G-integrable, the fully regular G-structure with con-
nection (P, 8, w) does not need to be complete. For example, a non-complete metric
of constant scalar curvature gives rise to a non-complete fully regular O(n)-structure
with connection whose classifying Lie algebroid is G-integrable.

The G-realizations arising as s-fibers from G-integrations, as in Example 6.9,
enjoy even more special properties. For example, every germ of infinitesimal
symmetry & € X(s‘l(x),wMC)p is the restriction of an infinitesimal symmetry in
X(s7'(x), wyc), and every infinitesimal symmetry is a complete vector field. This
motivates the following definition:

Definition 6.11 A G-realization (P, (6, ), h) of a G-structure algebroid A with con-
nection is called strongly complete if 2 : P — X is surjective onto a leaf of A and
any local symmetry of (P, (6, w), h) extends to a global symmetry.

The property of being strongly complete characterizes the G-realizations arising
from source fibers of G-integrations. In particular, this shows that they are complete
realizations. Here we are interested in the special case of the classifying Lie alge-
broid of a fully regular G-structure with connection:

Theorem 6.12 Let (P, 0, w) be a fully regular G-structure with connection. If (P, 6, w)
is strongly complete then the group of symmetries Diff (P, 0, w) is a Lie group with
Lie algebra X(P, 0, ) isomorphic to the isotropy Lie algebras of Ay . Moreover,
the natural action of Diff (P, 0, ®) on P commutes with the G-action, and is a proper
and free action whose orbits coincide with the fibers of the classifying map h. In
particular,h : P — X(g’w) is a principal Diff (P, 0, w)-bundle.

This result is a consequence of [11, Prop 6.12]. The fact that a strongly complete
fully regular G-structure with connection (P, 6, ®) is isomorphic to the source fiber
of a G-integration can be seen as follows. By the previous theorem, 2 : P — Xy, is
a principal H := Diff (P, 8, w)-bundle. Hence, we have the Atiyah algebroid:

TP/H = X g o)

The coframe (0, w) induces a Lie algebroid isomorphism of this Atiyah algebroid
with Ay, and so its gauge groupoid

I :=(PXxP)/H = X4,
is a G-structure groupoid with connection integrating A . Its source fibers are iso-
morphic to (P, 8, ).

If (P, 0, w) is a complete fully regular G-structure with connection one can con-
struct a “larger” fully regular G-structure with connection, locally isomorphic to
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(f, 0, ), and strongly complete. For that, one considers the universal covering space
M of the effective orbifold M = P/G. Then one has a pullback G-structure:

p—%.p

M—s=M
This yields a complete G-realization (P, (¢*0, g*®), ¢*h) of Ag.w)- Using that
M = P/G is now an orbifold with trivial orbifold fundamental group, one can show
that this realization must be strongly complete, and is actually isomorphic to an s-

fiber of the canonical G-integration—see [11, Prop 6.10]. In conclusion, we have the
following corollary of Theorem 6.12:

Corollary 6.13 Every complete fully regular G-structure with connection (P, 0, w) is
covered by an s-fiber of the canonical G-integration of its classifying Lie algebroid.

Example 6.14 1t is now easy to explain why we did not find the flat metric on the
torus T" in the discussion in Example 5.18. Although this is a complete metric and
the associated SO ,(R)-structure (P,0,w) is fully regular and complete, it is not
strongly complete: there are local isometries of the torus which do not extend to
global isometries. On the other hand, the SO ,(R)-structure associated with Euclid-
ean flat space provides a cover of (P, 8, @) which is strongly complete and is indeed
the s-fiber of the canonical SO ,(R)-integration of the classifying Lie algebroid of
the flat torus.

More generally, one can even classify all fully regular G-structures with con-
nection whose classifying Lie algebroid is G-integrable.

Theorem 6.15 Let (P, 0, w) be a fully regular G-structure with connection and sup-
pose that the classifying Lie algebroid A, is G-integrable. Then (P, 0, ) is cov-
ered by a full G-realization of Ay ., which covers an open G-invariant subset of an s
~fiber of the canonical G-integration.

Remark 6.16 In the previous theorem, by a “cover” of P we mean a manifold Q
together with a surjective local diffeomorphism ¢ : Q — P which is not necessarily

an even Cover.

Proof Let I' :=%5(A(,,)) = X(g,0) be the canonical G-integration. As in the proof
of Theorem 6.8 of [12] one considers the distribution D in P, X, I given by:

D :=ker (pr}‘,(&, ) — pr*ra)MC>.

This is an involutive distribution and one can take any maximal integral submanifold
Q of D. The proof in [12] shows that:
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(a) The projection prp : Q — P is a surjective local diffeomorphism;

(b) The projection prj : Q — I'is a local diffeomorphism onto an open subset U
of an s-fiber; _

(¢) The restr.icti.on (0, 6) 1= pry(0, w)|p = pryowyclo gives a coframe in O making
both projections equivalences.

We observe that Q is invariant under the (diagonal) action of the connected com-
ponent of the identity GV, since the infinitesimal action is tangent to D. The com-
ponents 8 and @ of the coframe then give an R"-valued and a g-valued form that
satisfy the properties of a tautological form and a connection form with structure
group G°.

If G is connected, the result follows. If G is not connected, then one needs to take
the G-saturations of Q and U, which then satisfy the conditions in the statement of
the theorem. Note that in the latter case both the resulting cover and the open subset
of the s-fiber may be disconnected, even if P is connected (our standing assump-
tion). O

The previous result motivates introducing the following notion: two G-struc-

tures with connection (P}, 6, ®,) and (P,,0,,®,) are called globally equivalent
up to cover if there exists a G-structure with connection (Q, #, @) and surjective

local diffeomorphisms:
/ X

(P1,01,w1) (Pz,02,ws)

such that d)j‘@l- =0 and q,’):fa)i =, i = 1,2. When the rank of the fully regular
coframe attains its smallest value, one obtains:

Corollary 6.17 Let (P,0,w) be a fully regular G-structure with connection of rank
0. Then P is locally equivalent up to cover to an open subset of the “space form”

G-structure of Sect. 4.2.

On the other hand, when the rank of the fully regular coframe attains its largest
value, one finds that:

Corollary 6.18 Let (P, 0,w) be a fully regular G-structure with connection of rank
n+dimg. Then Xy , is itself a G-structure with connection covered by (P, 0, ).
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