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Multi-qubit entanglement and algorithms 
on a neutral-atom quantum computer

T. M. Graham1,9, Y. Song1,9, J. Scott1, C. Poole1, L. Phuttitarn1, K. Jooya1, P. Eichler1, X. Jiang1, 
A. Marra1,6, B. Grinkemeyer1,7, M. Kwon1,8, M. Ebert2, J. Cherek3, M. T. Lichtman2, M. Gillette2, 
J. Gilbert3, D. Bowman4, T. Ballance4, C. Campbell3, E. D. Dahl3, O. Crawford5, N. S. Blunt5, 
B. Rogers5, T. Noel3 & M. Saffman1,2 ✉

Gate-model quantum computers promise to solve currently intractable 
computational problems if they can be operated at scale with long coherence times 
and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability 
owing to their identical characteristics, long coherence times and ability to be 
trapped in dense, multidimensional arrays1. Combined with the strong entangling 
interactions provided by Rydberg states2–4, all the necessary characteristics for 
quantum computation are available. Here we demonstrate several quantum 
algorithms on a programmable gate-model neutral-atom quantum computer in an 
architecture based on individual addressing of single atoms with tightly focused 
optical beams scanned across a two-dimensional array of qubits. Preparation of 
entangled Greenberger–Horne–Zeilinger (GHZ) states5 with up to six qubits, 
quantum phase estimation for a chemistry problem6 and the quantum approximate 
optimization algorithm (QAOA)7 for the maximum cut (MaxCut) graph problem are 
demonstrated. These results highlight the emergent capability of neutral-atom qubit 
arrays for universal, programmable quantum computation, as well as preparation of 
non-classical states of use for quantum-enhanced sensing.

Remarkable progress has been made in recent years in the development 
of quantum computers that use quantum states and operations to 
encode and process information. Such quantum computers promise 
to solve certain classes of computing problems exponentially faster 
than modern, transistor-based computers. However, quantum bits 
(qubits) are fragile and degrade if not isolated from environmental 
noise, yet must interact with other qubits to perform calculations. Many 
physical systems have been used to address these challenges. Digital 
quantum circuits have been demonstrated with trapped ion8,9, super-
conducting10,11, quantum dot12 and optical13 processors. Neutral-atom 
arrays have been used for analogue quantum simulation with up to 
hundreds of interacting spins14,15. Although powerful, the reliability of 
analogue simulation techniques without error correction for complex 
problems with large qubit numbers remains an open question16. Digital 
gate-model quantum circuits are provably compatible with error cor-
rection, which enables large-scale computation. We demonstrate here, 
for the first time to our knowledge, quantum algorithms encoded in 
gate-model digital circuits on a programmable neutral-atom processor.

Qubits encoded on neutral atoms trapped in an optical lattice provide 
a scalable architecture for digital quantum computing1. One-qubit and 
two-qubit gate operations have previously been demonstrated in large 
arrays17–19 using qubits that have excellent coherence properties and 
can be reliably measured. In the past few years, techniques have been 
introduced that have enabled atomic rearrangement for deterministic 

array loading20–22. Our approach, as shown in Fig. 1, combines these 
recent advances to provide multi-qubit circuit capability in an archi-
tecture based on rapid scanning of tightly focused optical control 
beams. Atoms are laser cooled and then trapped in a blue-detuned 
optical lattice. Atom occupancy and quantum state measurements 
are determined by imaging near-resonant scattered light onto an 
electron-multiplying charge-coupled device camera. A red-detuned 
optical tweezer rearranges the detected atoms to deterministically load 
a subset of atom traps used for computation. After state preparation, 
we perform quantum computations using a universal gate set consist-
ing of global microwave rotations, local RZ phase gates and two-qubit 
CZ gates (see Methods). With this platform, we created 2–6-qubit GHZ 
states, demonstrated the quantum phase estimation algorithm and 
implemented QAOA for the MaxCut problem.

GHZ state preparation
Entanglement is perhaps the quintessential feature of quantum infor-
mation science. The non-local correlations present in an entangled 
quantum state can be stronger than is classically possible. These cor-
relations are leveraged as a resource in quantum computing algorithms, 
quantum metrology and many quantum communication protocols. 
Entangled states can be composed of any number of particles and there 
are many classes of entangled states with various properties.  
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GHZ states, also known as cat states, compose one such class and  
are of the form |GHZ = (|00 … 0 + e |11 … 1 ),N N

ϕ
N

1

2
i  in which N is the 

number of particles occupying the state and ϕ is a phase shift between 
the two terms. GHZ states provide the strongest non-local correlations 
possible for an N-particle entangled state23. However, GHZ states are 
very fragile, as loss of a single particle completely destroys the entan-
glement. Also, because all particles contribute to the phase evolution, 
the dephasing time decreases with the particle number. Such states 
are challenging to create, requiring either many particles to interact 
with each other or a series of two-particle interactions performed in 
sequence. These properties have made GHZ state production a stand-
ard benchmark for quantifying the performance of a quantum com-
puter. GHZ states with 18 particles have been produced using 
superconducting qubits24 and 24 particles using trapped-ion qubits25. 
GHZ states have also been produced using up to 20 neutral-atom 

qubits26; however, these GHZ states were encoded on a ground-Rydberg 
state transition and were correspondingly short-lived (coherence life-
times are less than 2 μs for N ≥ 4) owing to decay and the high sensitiv-
ity of Rydberg states to environmental perturbations. We have created 
and measured the first N > 2 GHZ states that are encoded on the long-
lived hyperfine ground state qubits of neutral atoms.

Using quantum circuits consisting of global microwaves, local RZ gates 
and CZ gates, we have created GHZ states with up to N = 6 qubits. To quan-
tify how accurately these states were created, we measured their quan-
tum state fidelity. The fidelity of a GHZ state can be determined from 
the populations P 0 N

 and P 1 N
 for states |0⟩N = |00…0⟩N and |1⟩N = |11…1⟩N, 

respectively, and the coherence between these states. We determined 
the population from a direct measurement in the qubit basis and the 
coherence from a parity oscillation measurement. To measure the par-
ity, we used a microwave pulse to implement the global unitary, Π e ,j

N σ
=1

iπ
4 ϕ

j
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Fig. 1 | Experimental quantum computing platform. a, Experimental layout 
for trapping and addressing atomic qubits. Atoms are trapped in a 
blue-detuned line grid array (see Methods for details), which is imaged onto the 
atom-trapping region with a NA = 0.7 lens. Atom occupation is determined by 
collecting atomic fluorescence using NA = 0.7 lenses at opposite faces of the 
cell and imaging the light onto two separate regions of an EMCCD camera.  
A 1,064-nm tweezer beam is used to rearrange atoms into desired sites for 
circuit operation. Circuits are decomposed into a universal gate set consisting 
of global Rϕ(θ) rotations about an axis in the x–y plane driven by microwaves, 
local RZ(θ) rotations driven by the 459-nm beam and CZ entangling gates using 
simultaneous Rydberg excitation of atom pairs by the 459-nm and 1,040-nm 
beams (see Methods). b, Atomic-level diagram and wavelengths used for 
cooling, trapping and qubit control. c, Averaged atomic fluorescence image of 

the 49-site array with spacing 3 μm. Each camera pixel is 0.6 × 0.6 μm at the 
atoms. d, Global microwave Rabi rotations on a block of nine qubits at 76.5 kHz. 
The microwave phase, amplitude and frequency are controlled by an arbitrary 
waveform generator. e, A Ramsey experiment with microwave π/2 pulses and 
the focused 459-nm beam providing a RZ(θ) rotation on a single site. Stark shifts 
of around 600 kHz are used, so that the 15-ns rise/fall time of the on/off AOMs 
(not pictured) can be neglected when calculating the pulse time for RZ(θ) gates. 
f, Parity oscillation of a two-qubit Bell state created using a CZ gate. A de facto 
measure of the performance of an entangling gate is its ability to generate a Bell 
state. The measured and uncorrected Bell state fidelity was 92.7(1.3)% for an 
optimized qubit pair (about 95.5% corrected for SPAM errors), with the average 
for all connected qubit pairs used in circuits being 90% (about 92.5% SPAM 
corrected).



Nature  |  Vol 604  |  21 April 2022  |  459

in which σ ϕ ϕ= cos( )X + sin( )Yϕ
j

j j  and Xj and Yj are Pauli operators on 
qubit j. After this rotation, the atoms are measured in the logical basis 
and the parity is computed from P = Peven − Podd, in which Peven(odd) is the 
probability of observing an even (odd) state. By measuring the parity 
for various values of ϕ, we obtain parity oscillation curves for GHZ states 
up to N = 6, as shown in Fig.  2a. The fidelity of a GHZ state is 
F P P C= ( + + )/2,NGHZ 0 1N N N

 in which CN is the amplitude of the N-qubit 
parity oscillation. We observe the expected factor of N scaling in parity 
oscillation frequency27. This enhanced collective oscillation rate has 
applications in quantum metrology28 but also leads to a faster dephasing.

The scaling of the coherence time with the size of the GHZ state 
depends on the properties of the relevant dephasing sources.  
The coherence of optically trapped neutral-atom hyperfine qubits is 
primarily limited by three mechanisms29: magnetic field noise, fluctua-
tions of the trap light intensity and atomic motion. Fluctuations of the 
trap intensity and the magnetic fields cause differential frequency shifts 
on the qubit levels30. These correlated and non-Markovian perturba-
tions lead to a 1/N scaling of the GHZ coherence time31. This scaling is 
observed in Fig. 2c, despite the use of blue-detuned traps, where the 
atoms are localized at a local minimum of the optical intensity, and 
m = 0 clock states, which have only a weak quadratic Zeeman sensitiv-
ity. All GHZ states up to N = 6 retain coherence for more than 600 μs, 
about 500 times longer than previously reported neutral-atom GHZ 
states26. This increased coherence results from the fact that the GHZ 
states prepared here are encoded on a ground hyperfine qubit basis, 
rather than the ground-Rydberg basis used in previous experiments.

The third mechanism, atomic motion, is also non-Markovian, but is 
not collective because the phase of the atomic motion in different traps 
is not correlated. This should lead to a slower N1/  scaling in addition 
to the 1/N contributions mentioned above. This motion can be reduced 

and the coherence extended by means of deeper cooling. Alternatively, 
dynamical decoupling sequences can be applied to suppress all of the 
non-Markovian sources of dephasing. For single qubits, we have 
observed coherence times as long as 1 s using XY8 pulse sequences and 
more than a factor of five improvement of the coherence time of GHZN 
states. The achievable GHZ coherence time, and the resulting scaling 
exponent using optimized decoupling sequences, is left for future  
studies.

Phase estimation algorithm
Quantum phase estimation was one of the original algorithms respon-
sible for the rapid growth of interest in quantum computing32. This 
algorithm is used to estimate the complex phase of an operator acting 
on an eigenstate and has broad applications as a subroutine in other 
quantum algorithms, including factoring and quantum chemistry. 
Quantum phase estimation is one of a class of related algorithms that 
achieves a quantum advantage by means of the exponential speed-up 
of the quantum Fourier transform over the classical Fourier transform 
algorithm. In this algorithm, there is a state register and a measurement 
register. The state register consists of a set of qubits that are in an eigen-
state |ψ⟩ of a unitary operator, U, such that U|ψ⟩ = eiϕ|ψ⟩. To perform 
phase estimation, information about the action of U on the state regis-
ter is encoded on the measurement register by means of a series of 
controlled unitary operations shown in Fig. 3a. In this procedure, the 
state of qubit j in the measurement register controls whether a unitary 
U2 j−1

 is applied to the state register. After these controlled unitary 
operations, an inverse quantum Fourier transform is performed on the 
qubits in the measurement register, which are then measured in the 
computational basis. The phase, ϕ, can be roughly determined from 
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Fig. 2 | Preparation of GHZ states. a, Parity oscillations for GHZ states with 2–6 
qubits. The oscillation frequency shows the characteristic linear dependence 
on the number of qubits. b, The fidelity of the created GHZ state versus qubit 
number. GHZ states were prepared by applying a Hadamard gate to the central 
qubit 1, followed by a sequence of CNOT gates on pairs 1–2, 1–3, 1–4, 1–5 and 5–6, 
as indicated by the blue lines. Compiled circuits expressed in our native gate 
set are shown in the Supplementary Information. GHZ states with 2–5 qubits 
have an uncorrected fidelity indicating they are entangled. Assuming a 1.5% per 

qubit SPAM error and applying a fidelity correction of 1/0.985N, all corrected 
GHZ state fidelities are more than 50%, including N = 6. The fidelity decay 
follows an approximate displaced 1/N scaling. The solid and dashed lines are 
curve fits to a + b/(N − c), with a = 0.192, b = 2.21 and c = −1.014 for the raw data 
and a = 0.269, b = 1.96 and c = −0.872 for the SPAM-corrected data. c, 
Decoherence time of GHZ states measured by Ramsey interference. The 
lifetime fits well to a 1/N scaling. The N = 1 data point is the T 2

⁎  time for a single 
qubit averaged over all six sites. The error bars in b and c are ±1σ.
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the measured bit string. Each bit-string value corresponds to a particu-
lar phase value on the interval [0, 2π). If ϕ is between these values, then 
several bit strings will be measured at the end of the circuit. Similarly, 
if the state |ψ⟩ is not an exact eigenstate of U, then phase signatures of 
the eigenvalues of each eigenstate composing |ψ⟩ will be present in the 
output measurements. As more qubits are used in the measurement 
register, ϕ can be determined with greater accuracy, as there are more 
unique bit strings to represent phases on the [0, 2π) interval.

As a first test, shown in Fig. 3b, we performed phase estimation with 
three qubits (one qubit in the state register and two qubits in the meas-
urement register) with U = I, Z1/2, Z and Z3/2, which act on state |1⟩ with 
phase shifts ϕ = 0, π/2, π and 3π/2, respectively. These phase shifts can 
be exactly represented with two bits. The measured probabilities of 
 the desired output states were >64% in all cases. The deviation from 
the ideal 100% output probability results from the accumulation of 
gate errors (see Methods for further details).

As a second example, we performed phase estimation for a proto-
typical quantum chemistry calculation, the molecular energy of a hydro-
gen molecule. An eigenstate of a time-independent Hamiltonian 
acquires a phase shift that is proportional to its energy, 

ψ ψ ψU = e = e .t ϕiH i  Quantum phase estimation is then used to meas-
ure the phase for a particular chosen time (t0) and the state energy can 
be determined from the measured phase, E = ϕ/t0. The time required 
for a complete classical calculation of molecular energies scales expo-
nentially with the number of electronic orbitals. However, quantum 

phase estimation allows polynomial time energy estimates6. We consider 
a Hamiltonian that represents a hydrogen molecule in the STO-3G basis 
making use of the Bravyi–Kitaev transformation33 and tapering qubits 
corresponding to the total number of electrons, the z component of 
the spin and a reflection symmetry34. With these approximations, the 
molecular energy estimation reduces to a single-qubit problem.  
The Hamiltonian has the form H = a0 + a1Z + a2X. If we assume a bond 
length of 0.7414 angstroms, then a0 = −0.328717, a1 = 0.787967 and 
a2 = 0.181289, all in units of hartrees (Ha). This Hamiltonian has a ground 
state of 0.112828|0⟩ + 0.993615|1⟩, with an energy of −1.13727 Ha. The a0 
energy offset is applied classically and can be neglected from the quan-
tum calculation. The eigenvalues then lie between −Emax and +Emax, with 
Emax = |a1| + |a2| = 0.9693 Ha and we choose t0 = π/Emax such that the phases 
corresponding to the eigenvalues of Ht lie between −π and π. We approx-
imated the operator, U, using first-order Trotterization as U = e e .a t a ti X i Z2 1

∼
 

In the Bravyi–Kitaev basis, the Hartree–Fock state is the product state 
of spin-up or spin-down qubits that gives the lowest energy expectation. 
For this Hamiltonian, the Hartree–Fock state is |1⟩, which we used as the 
initial state for the state estimation. This state has a probability overlap 
of 0.82 and 0.18 with the eigenstates of 

∼
U, corresponding to energies 

of −1.0495 and 0.3920 Ha, respectively (note that a0 was added back to 
the energy obtained from the eigenvalues).

For the computation, we use four qubits (one qubit in the state reg-
ister and three qubits in the measurement register). In an ideal circuit 
with infinite resolution, the measured phase values would be 0.6282 
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Fig. 3 | Quantum phase estimation using three and four qubits. a, Phase 
estimation circuit using four qubits. An eigenstate (or near eigenstate) of the 
operator U is encoded on the state qubit, |ψ⟩. Controlled unitary operators are 
then performed between qubits 1 to 3 in the measurement register and the 
state qubit. The two-qubit controlled unitaries each require two CNOT gates. 
 A quantum inverse Fourier transform is then performed on the measurement 
qubits and their output is measured. The measured bit string encodes the 
phase shift on |ψ⟩ when acted on by U. b, Quantum phase estimation results 
using three qubits. For this demonstration, each of the four unitary operators 
measured had |1⟩ as an eigenstate. The phase shift imparted by U was able to be 
perfectly represented by a single two-bit value. The theoretical value (light 
blue bars) was 100% probability in the target bit string. In all cases, the 

measured (dark blue bars) target bit strings had >60% probability (1,000 
measurements were made for each unitary). c, Quantum phase estimation with 
four qubits to estimate the molecular energy of a H2 molecule. In this 
calculation, we use the Hartree–Fock state |ψ⟩ = |1⟩ (see main text for details). 
This experiment was repeated 700 times. Note that, even theoretically, none of 
the bit strings has a 100% probability. This is a result of two factors. First, the 
target eigenvalue cannot be exactly represented by a three-bit number. 
Second, the Hartree–Fock state does not have a 100% overlap with the ground 
eigenstate. Partial overlap with both eigenstates of 

∼
U leads to non-zero 

probability for the 101 and 011 bit strings. Note that the former effect has a very 
small influence on the output probabilities, so most of the probability is 
contained in the 101 and 011 bit strings.  The error bars in b and c are ±1σ.
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and 0.3718, which are close to 0.625 (0.101 in binary) and 0.375 (0.011 
in binary). Thus, in a noise-free circuit, we expect to observe bit strings 
101 and 011 82% and 18% of the time, respectively. After compiling the 
circuit into our native gate set, we ran the circuit 700 times. The most 
frequently observed bit string was 101, corresponding to an energy 
estimate of −1.06 Ha (again, a0 was added to obtain the final result). 
Using more sophisticated methods, the molecular energy of hydrogen 
was found to be −1.174476 Ha (ref. 35). The difference between the more 
accurate value and the experimental result arises from the limited num-
ber of qubits used for phase estimation, using the minimal STO-3G basis 
rather than a larger basis set, and the approximations used in the circuit 
implementation. Further improvements in precision can be obtained 
by using more qubits to represent the phase and using a Hamiltonian 
that more accurately represents the molecular energy of hydrogen.

QAOA algorithm
There has been a large effort to design quantum algorithms that leverage 
both quantum and classical computing power to solve problems with fewer 
operations than would be required by a classical computer alone. Hybrid 
quantum-classical algorithms, which seek to achieve useful computational 
results without requiring a full error-corrected quantum computer36, 
combine a quantum core that efficiently generates high-dimensional 
quantum states, a task that requires exponential resources on a classical 
machine, with a classical outer loop that selects parameters of the quantum 
circuit to optimize the value of the quantum state for solving the problem 
at hand. Primary examples of such hybrid algorithms are the variational 
quantum eigensolver37 and the related QAOA7.

QAOA is particularly well suited for solving combinatorial optimiza-
tion problems that admit a Hamiltonian formulation. An ansatz state is 
parameterized in terms of unitary evolution operations representing a 
cost function (U = e γ

c
i Hc) and state mixing (U = e β

m
i Hm), in which the γ and 

β parameters are set by the classical optimizer and Hc and Hm represent 
cost and mixing Hamiltonians, respectively. The QAOA circuit consists 

of p repeated layers of cost and mixing Hamiltonians acting on an N-qubit 
initial state |s⟩ = (|0⟩ + |1⟩)⊗N. This evolution results in the final state 
γ β β γ β γ s, = U ( )U ( ) U ( )U ( ) .p pm c m 1 c 1⋯  The repeated application of mix-
ing and cost Hamiltonians can be regarded as a Trotterized version of 
adiabatic evolution of the initial state to the ground state of Hc. In the 
p → ∞ limit, these two processes are equivalent, whereas the availability 
of 2p variational parameters provides more degrees of freedom for opti-
mizing the rate of convergence compared with a simple adiabatic ramp. 
After preparing the ansatz state, the expectation value of the cost Ham-
iltonian is measured and fed into a classical optimizer. The cost Hamil-
tonian is designed to be diagonal in the computational basis, so—after 
the classical optimizer finds optimal settings for all γi and βi—a compu-
tational basis measurement yields a bit string that corresponds to the 
optimized combinatorial problem solution if p is sufficiently large.

The MaxCut problem is an example of an NP-hard problem to which 
QAOA can be readily applied. MaxCut seeks to partition the vertices of 
a graph into two sets, such that the maximum number of edges is cut. 
A partition z of a graph with m edges and n vertices can be quantified 
with a cost function, C z C z( ) = ∑ ( ),α

m
α=1  in which Cα(z) = 1 if the α edge is 

cut (that is, the two vertices of the edge are in different sets) and Cα(z) = 0 
for non-cut edges. The maximum cut is found when a partition maxi-
mizes C(z). This cost function can be readily translated into a Hamilto-
nian operating on a set of qubits representing a graph, 
H = ∑ (1 − Z Z ),α

m
α αc

1
2 =1 1 2

 in which α1 and α2 are qubit indices representing 
the vertices of the edge α (ref. 7). The two basis states of the qubit then 
map onto the two sets into which the two vertices are grouped.

We have implemented QAOA for the MaxCut problem on three-node 
and four-node graphs. The first graph measured was a three-vertex 
line graph with the centre vertex connected to the two outer vertices. 
There are two degenerate MaxCut solutions with the centre and outer 
vertices in different sets, which gives two cuts. Using optimized values 
of γ and β (see Supplementary Information), we measured output bit 
strings for p = 1 and p = 2. The results can be scored as an approximation 
ratio R p S= ∑ ,S i i ia

1

max
 in which pi is the probability of a particular bit 
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Fig. 4 | QAOA algorithm for solving MaxCut. a, Circuit diagram for four-qubit 
QAOA MaxCut showing a single p = 1 cycle. b, Decomposition of the 

γZZ( ) = e
γ

−i2 Z⊗Z interaction into two CNOT gates and a RZ rotation. c Circuit 
results for p = 1, 2 and 3 with optimized γ and β values. The inset in the p = 1 bar 
chart shows the four qubits used, with the blue lines indicating CZ gate 
connections between qubit pairs. Dark (light) blue bars show the experimental 
(ideal theoretical) output probabilities. The experimental approximation 

ratios are indicated in the bar charts. The error bars are ±1σ. The ideal 
theoretical approximation ratios for p = 1, 2 and 3 are 0.772, 0.934 and 1.0, 
respectively. As the circuit gets longer, the approximation ratio increases, but 
so does the circuit depth (and accumulation of gate errors). These factors led to 
an increase in approximation ratio for p = 2, followed by a drop at p = 3. All three 
experiments contained 1,000 measurements.
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string, Si is the number of edge cuts for the bit string and Smax is the 
maximum cut number. For the line graph, the p = 1 circuit achieves an 
approximation ratio of 0.65(1) (theoretical 0.825) and the p = 2 circuit 
achieves an approximation ratio of 0.71(1) (theoretical 1.0). Both 
experiments contained 1,000 measurements. We have also imple-
mented MaxCut for graphs with four qubits, as shown in Fig. 4. We see 
a clear gain in approximation ratio when increasing from p = 1 to p = 2; 
however, the approximation ratio drops for p = 3, although the theo-
retical approximation ratio improves. This approximation ratio drop 
results from limitations in the two-qubit gate error, which degrades 
the approximation ratio more than the theoretical improvement from 
incrementing p. Further improvements in CZ gate fidelity will enable 
larger graphs and higher approximation ratios11.

Outlook
The experimental results described above demonstrate that an array 
of neutral atoms trapped in an optical lattice form a programmable 
circuit-model quantum computer. We demonstrated the ability of this 
prototype computer to create entangled GHZ states with up to six qubits 
and demonstrated quantum algorithms on four qubits with a circuit 
depth of up to 18 CZ gates (see Supplementary Information for com-
plete circuit diagrams). This capability opens the door on a vast collec-
tion of applications. The creation of long-lived GHZ states has utility 
in entanglement-enhanced sensing28. The ability to perform quantum 
phase estimation enables a suite of algorithms in addition to the quan-
tum chemistry applications discussed above. Such applications include 
integer factoring38 and estimating solutions to linear equations39. Indeed 
quantum phase estimation underlies all the known avenues to exponen-
tial quantum speed-up40. Hybrid quantum-classical algorithms, including 
QAOA demonstrated here, have found wide use in several applications41.

Although the experiments presented above are far from providing 
a quantum advantage over classical computation, they represent an 
important milestone for the development of neutral-atom, qubit-based 
processors. Although the current two-qubit gate fidelity is limited when 
compared with more mature computing platforms, this neutral-atom 
platform provides a unique combination of properties that facilitate 
scalability. In particular, the ability of this platform to increase the qubit 
number simply by adding more laser power and changing the number of 
RF tones driving the trap acousto-optic deflectors (AODs) is in stark con-
trast to other technologies that require fabrication of completely new 
chips or traps to increase qubit number. The factors limiting two-qubit 
gate fidelity and algorithmic performance today are well understood, 
as is the engineering roadmap to reach higher performance. Of primary 
importance are improved laser cooling to reach the atomic motional 
ground state, spatial shaping of the optical control beams for reduced 
gate errors, optimization of optical trap parameters for improved 
localization and coherence30 and higher laser power for reduced scat-
tering from the intermediate 7p1/2 state. Combining these advances in 
a single, scalable qubit array will lead to a neutral-atom platform for 
high-performance digital quantum computation.

While finalizing this manuscript, we became aware of related work 
demonstrating encoding of logical qubits with a complementary 
neutral-atom architecture42.
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Methods

Experimental apparatus
The apparatus was similar to that used in ref. 19, with new capabilities 
as described in the following. Our platform is designed around a 2D 
blue-detuned optical trap array consisting of an array of crossed lines 
shown in Fig. 1, at a wavelength of 825 nm. We shaped the lines using 
a top-hat hologram fabricated by Holo/Or and a cylindrical-lens tel-
escope to adjust the line aspect ratio. Individual lines were split using 
an AOD driven with several frequency tones. Using an AOD allowed 
the trap number and line spacing to be reconfigured dynamically. 
Previous line array implementations suffered from atom detection 
noise arising from atomic traps being formed in Talbot planes of the 
array19. In this implementation, each line has a different frequency shift 
from the AOD, thereby destroying the interference effects responsible 
for such out-of-plane trapping. This resulted in reduced noise in trap 
occupancy measurements. We combined eight horizontal lines with 
eight vertical lines using a polarizing beam splitter and imaged them 
onto the atom-trapping region of a glass vacuum chamber, forming a 
7 × 7 grid of atom traps with a spacing of 3 μm. Trap depths were set to 
about 0.3 mK during circuit operation and increased to 0.7 mK during 
readout.

Optical access through the cell edges and the front face allowed 3D 
cooling of Cs atoms with 852-nm light with red-detuned polarization 
gradient cooling, followed by Raman lambda-grey molasses cooling 
with 895-nm light to reach temperatures below 5 μK (ref. 43). We used a 
1,064-nm optical tweezer beam copropagating with the blue-detuned 
array for atomic rearrangement. We controlled the position of this 
tweezer beam using crossed, upstream AODs to move atoms into a 
desired pattern using the Hungarian algorithm to determine the atomic 
move order. After rearrangement, we used atoms in sites separated 
by three array periods, or 9 μm, for circuit operations. Using a larger 
spacing reduced crosstalk from scattering in the optical system. A 
π-polarized, 895-nm optical pumping beam incident from the side of 
the cell pumped trapped atoms to the |1⟩ = |f = 4, m = 0⟩ state. After opti-
cal pumping, the atomic temperature was typically 5 μK. A bias magnetic 
field of 1.6 mT was used during optical pumping and circuit operation.

Atom occupancy was determined by imaging resonance fluores-
cence from 852-nm molasses beams detuned by −12γ (γ/2π = 5.2 MHz 
is the linewidth of the 6p3/2 state) onto the electron-multiplying 
charge-coupled device (EMCCD) camera. For quantum state meas-
urements, atoms in f = 4 were pushed out of the traps with a resonant 
beam, followed by an occupancy measurement. A dark (bright) signal 
indicated a quantum state of |1⟩ (|0⟩).

Vacuum cell and imaging
The vacuum system consists of a two-dimensional magneto-optical 
trap source region where a pre-cooled atomic sample is prepared. 
Cs atoms are then pushed through a differential pumping aperture 
into the science cell, which has a rectangular shape. The large facing 
windows through which trapping and control beams enter are sepa-
rated by 1 cm, so the atomic qubits are 5 mm from the nearest surface. 
The facing windows each have four electrodes that are controlled by 
low-noise dc voltage supplies to cancel background fields. Cancella-
tion was performed automatically by scanning electrode voltages to 
minimize the quadratic Stark shift of the 75s1/2 Rydberg state. With-
out compensation, background fields at the level of a few V m−1 were 
observed. Despite operating at a zero-field condition, intermittent 
jumps of the Rydberg energy level were seen. The exact mechanism 
causing this is not known, but it is attributed to changes in adsorp-
tion of alkali atoms on the cell walls. To reduce the frequency of such 
jumps, we continuously illuminated the cell with 410-nm light from a 
light-emitting diode.

To increase photon collection efficiency for atom occupancy and 
quantum state measurements, dual-sided imaging was used. A high 

numerical aperture (NA) = 0.7 objective lens was mounted on each side 
of the cell. Using dichroic mirrors, dual images of the atom array were 
routed to adjacent regions of the EMCCD camera. With two NA = 0.7 
objectives, the theoretical light collection efficiency is 0.286. Account-
ing for various passive losses in optical components and camera quan-
tum efficiency, the detection probability per photon scattered by an 
atom is about 0.08. Atom imaging and state measurements used four 
of the six magneto-optical trap beams. Two of the beams share the 
same axis as the imaging camera and were turned off during measure-
ment. Typical state readout parameters were 90-ms integration time 
at detuning γ−12 p6 3/2

 with four beams in a plane, each with 220-μW 
power and 2-mm waist (1/e2 intensity radius).

Trap array
To trap the atoms in the array, we use a far-off-resonance optical trap 
with a blue detuning. The optical module for generating the trap light 
is shown in Extended Data Fig. 1. The far-off-resonance optical trap 
is an array of vertical and horizontal, highly elliptical top-hat beams 
(that is, lines). To create the line array, a diffractive optical element first 
converts an elliptical beam into a single vertical top-hat line. After some 
beam shaping, the top-hat is focused through the AOD, which creates 
an array of top-hat lines. Only the first-order diffracted beam is used, 
and the array is created using a superposition of pure sinusoidal tones.  
The horizontal and vertical lines are made in separate beam paths, with 
the horizontal lines initially vertical lines, but rotated with a periscope, 
also giving an opposite polarization. These lines are combined on a 
polarizing beam splitter, further shaped and then they travel through 
the objective lens to trap the atoms. For the z-axis confinement, the 
atoms are confined by the divergence of the trap beams, as the line array 
only exists at the image plane of the objective lens. This approach does 
not suffer from Talbot planes because each line is a different frequency, 
meaning that no interference effects arise. Thus, there are only atoms 
trapped at the image plane. Furthermore, the horizontal and vertical 
lines are of opposite polarization, making it so that these lines do not 
interfere either. In addition, each set of horizontal and vertical lines 
was powered by a separate single-frequency Ti:Sa laser. The lasers 
were tuned to have approximately the same 825-nm wavelength but 
frequencies differing by a few hundreds of GHz to prevent any unde-
sired interference effects with regards to atom cooling or trapping.

The tones of the RF signal sent to the AODs are all near the resonant 
frequency of the AOD (50 MHz) and are separated in frequency space 
by 1.2 MHz. These tones are generated using a software-defined ratio, 
allowing for tuning of the relative phase and amplitudes of the indi-
vidual tones. Using this approach, we have created arrays with up to 
24 × 24 lines and trapped atoms in arrays with 15 × 15 lines and 196 sites. 
For this work, we used a 7 × 7 site array with eight lines per axis. The RF 
signal generating the lines goes through a series of non-linear devices, 
notably the amplifier and the AOD. Thus, tuning phase and amplitude 
are important, as there are non-linear compression effects if the instan-
taneous power approaches the compression point of the amplifier or 
linearity threshold of the AOD. To tune the amplitude of the tones, a 
camera is set up at a pickoff of the trap array image plane (that is, the 
same image plane as the atoms). The goal is to have equal power in 
each line, and the tone power is adjusted until the array is balanced. 
To tune the phase, the power spectrum of the trap array is measured. 
The beat frequencies of the array lines with each other should only be 
seen at 1.2 MHz (and integer multiples thereof), but if the phases are 
badly tuned, there may be times at which the instantaneous amplitude 
is too high, such that the non-linear effects cause beating at other, 
lower frequencies (order 100 kHz). The phase of each tone is randomly 
assigned until an acceptable low-frequency beat spectrum is found.  
At the atom plane (the image plane), the lines are separated by 3 μm, the 
beam waist (linewidth) is 1 μm and the top-hat length is around 40 μm. 
The measured trap vibration frequencies were 19 kHz and 4 kHz in the 
radial and axial dimensions, respectively, at a trap depth of 0.3 mK.
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Trap array analysis
The trap parameters can be described analytically in compact form 
assuming ideal lines with uniform intensity along the line and Gaussian 
transverse profiles. Adding the contributions from the nearest lines 
in each unit cell, we find the following expressions for a square array 
with line spacing d, line waist (1/e2 intensity radius) w and aspect ratio  
s = d/w
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and P is the optical power per unit cell. In these expressions, Ic is the 
intensity at the centre of each cell, Is is the intensity at the saddle point 
midway between the corners of the cell on each line and It is the effec-
tive trapping intensity.

The above expressions describe the intensity in the plane of the array. 
The trapping intensity at distance z perpendicular to the plane of the 
array is It,z(z) = Ic(z) − Ic(0). This takes on a maximum value at a distance 
z L s= − 1 ,max R

2  with LR = πw2/λ, in which λ is the wavelength of the 
trapping light. The effective axial trapping intensity is
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Note that as the aspect ratio s increases, the transverse trap depth 
proportional to It increases without bound, but the axial trap depth 
It,z(zmax) saturates at a maximum value of I z I I( ) = 4/ 2πe = 0.97 .zt, max d d  
At our operating point of s = 3, we have It/Id = 1.17 and It,z(zmax)/Id = 0.91, 
so the confinement barrier is about 20% lower perpendicular to the 
plane of the array.

Using these expressions, we can calculate the spring constants κ and 
trap vibration frequencies ω κ m= / a for an atom of mass ma. We find
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λ. The factor Ud is the spatially averaged light shift across the array. For 
an atom at temperature Ta, the corresponding spatial localization can 
be expressed in terms of variances given by
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Accurate balancing of the line intensities, and thereby the resid-
ual intensity at the centre of each trap, is verified by measuring 
light-induced shifts of the qubit frequencies with microwave spec-
troscopy. Typical data are shown in Extended Data Fig. 2e. Overall, the 
resonance splitting across the array was on the order of ±100 Hz. For the 

six sites used in the GHZ experiment, the total range of qubit frequen-
cies was 144 Hz. The circuit execution time for the N = 6 GHZ state was 
180 μs, corresponding to a maximum undesired phase differential of 
9.3°. The longest circuit we implemented was four-qubit phase estima-
tion, for which the execution time was 1.1 ms, corresponding to 57° of 
uncompensated phase. For longer circuit execution times, these shifts 
can be cancelled by periodic application of RZ(θ) gates.

Qubit addressing and crosstalk
Operations on single sites are achieved with laser beams focused to 
waist w. In the ideal case of a perfect unaberrated Gaussian TEM00 beam, 
this corresponds to an intensity profile in the focal plane of 
I r I( ) = e ,d w

0
−2 /2 2

with w the beam waist and d the distance from the  
beam centre. Extended Data Figure 2f shows the intensity spillover on 
a neighbouring site as a function of the ratio d/w, in which d is the qubit 
spacing. In practice, a higher level of intensity spillover is seen. This is 
owing to optical aberrations and unavoidable scattering from a large 
number of surfaces in the optical train.

For the experiments reported here, we have operated with 
d = 9 μm and w = 3 μm. The ideal intensity crosstalk level is then 
I(d)/I(0) = e−18 = 1.5 × 10−8. The crosstalk of the 459-nm beam was meas-
ured by aligning the beam to a site and measuring the qubit rotation 
rate (from a Ramsey interference experiment) at a site 9 μm distant, 
compared with the rotation rate at the targeted site. The ratio of these 
rates gives the intensity crosstalk. At the 9-μm spacing, the typical 
observed crosstalk value was ≪0.01.

The crosstalk of the 1,040-nm beam was measured by adding 9.2-GHz 
sidebands to the beam with an electro-optic modulator so that it could 
directly drive RX(θ) rotations. We then measured the intensity crosstalk 
in the same way as for the 459-nm beam. A typical observed crosstalk 
value was also ≪0.01.

There are trade-offs between optical crosstalk, qubit spacing and 
beam waist. Although crosstalk can be reduced by operating with a 
smaller beam waist, doing so increases sensitivity to optical alignment 
and atom motion. The sensitivity to beam profile can be mitigated using 
shaped beams with a flat top44, as has been effectively demonstrated in 
experiments that used global optical addressing beams15.

Two-qubit simultaneous addressing
Consider scanning an optical beam with an AOD to address an atomic 
transition in atoms at different spatial locations. Because the optical 
frequency varies with the scan angle, resonance cannot simultane-
ously be achieved at several locations with a single laser frequency. 
This limitation can be overcome by using a two-photon transition  
with the frequency shifts of the photons arranged to cancel each  
other.

To be explicit, assume we are driving a resonance using beams of 
wavelength λ1 and λ2. The beams are deflected to positions xj using 
a configuration of AOD–distance f–lens focal length f–distance f, 
followed by an imaging magnification Mj for each beam. The beam 
position in the output plane using diffraction order mj and diffraction  
angle θd is
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The acoustic velocity is va, the applied frequency is faj, nj is the index of 
refraction of the modulator and λj is the vacuum wavelength of beam j.  
We can invert this to write

f
n v

m λ M f
x .j

j

j j j
ja

a≃

Putting x1 = x2 = x and imposing the resonance condition fa1 + fa2 = 0, 
we get
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Choosing m1 = 1 and m2 = −1, we can satisfy this relation using
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We may also want the sizes of the scanned beams to be identical. 
If each beam has waist wj at the AOD, the waist at the output plane is
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Combining equations (6) and (7) gives
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As an example using λ1 = 1.038, λ2 = 0.459 and n1 = n2, we find

M
M

= 0.4422

1

and

w w= .2 1

We have implemented this approach to enable simultaneous address-
ing of pairs of sites that are in the same row or the same column of the 
qubit array. Fine adjustment of the ratio M2/M1 was achieved with a zoom 
lens mounted in the 459-nm optical train. Sites that are in a different row 
and a different column (diagonally opposite corners of a rectangle) can 
be addressed, but undesired beams will also appear at the other corners 
of the rectangle. With this beam-steering system, CZ gates are therefore 
constrained to qubits in the same row or column. This constraint can 
be relaxed by implementing more advanced beam-steering devices, 
such as spatial light modulators.

An unexpected issue was encountered when implementing this 
dual-site addressing scheme. Although the sum of the two laser fre-
quencies at each addressed site is constant, the individual frequencies 
of the 459-nm and 1,040-nm beams differ from site to site. Thus a small 
amount of intensity spillover from the edge of the Gaussian beam or 
diffuse scattering from optical surfaces leads to time-dependent mod-
ulation of the intensity of each colour, as the two frequency compo-
nents of each colour are coherent with each other. This time-dependent 
modulation can lead to large qubit control errors even for intensity 
crosstalk at the 1% level. For this reason, we operated at a qubit spac-
ing of 9 μm, which was sufficient to reduce the crosstalk to ≪0.01.  
A modified beam-scanning system that is being implemented will provide 
simultaneous addressing with exactly the same frequencies at both sites 
and remove this issue, thereby enabling operation at smaller spacings.

Rydberg lasers
Rydberg states are excited with a two-photon transition. A first 
photon at 459 nm couples the 6s1/2 ground state to 7p1/2. A second 
photon near 1,040 nm couples 7p1/2 to the Rydberg 75s1/2 state.  
The 459-nm light is prepared by frequency doubling an M Squared 
SolsTiS Ti:Sa system pumped by an M Squared Equinox pump laser 

(we mention commercial vendor names for technical reference and 
are not endorsing any commercial products). The 918-nm light is 
frequency stabilized and locked to a high-finesse ultralow-expansion 
glass reference cavity in a temperature-stabilized vacuum can using 
a Pound–Drever–Hall locking scheme. The reference cavity has 
a free spectral range of 1.5 GHz and a linewidth of about 10 kHz.  
A set of acousto-optic modulators (AOMs) is used to fine-tune 
the frequency of the laser light relative to the fixed frequency of 
the ultralow-expansion cavity mode. Frequency doubling occurs 
in a home-built resonant ring doubler with an LBO crystal. The 
singly-resonant doubling cavity is stabilized to the 918-nm light with 
a Hänsch–Couillaud lock. The intensity of the light is then stabilized 
using an AOM-based noise eater that operates in the dc-100-kHz 
range and a slow stabilization loop on the basis of a rotatable wave-
plate and a polarizer. The light is then coupled into a single-mode 
fibre for transport to the science cell. The 1,040-nm light is generated 
and stabilized in a similar fashion with an M Squared pump laser and 
Ti:Sa laser operating at 1,040 nm.

Both locking schemes involve three feedback loops. A fast loop 
sends feedback to an electro-optic modulator inside the SolsTiS 
cavity, which is responsible for feedback in the frequency range of  
100 kHz–10 MHz. This loop involves a PID using the Vescent D2-125 
Laser Servo. The medium loop feeds back to the fast piezo in the SolsTiS, 
which has a bandwidth of dc-100 kHz. This loop is a PID loop controlled 
by the fast loop in a modified MOGLabs Fast Servo Controller (FSC, for 
larger output range). Last, there is a slow loop (about 40-Hz bandwidth), 
which controls the slow piezo in the SolsTiS and is a PII loop, controlled 
with the same modified MOGLabs FSC. The FSC units were modified 
to increase the voltage range of the integrator for long-term locking 
(servos were modified for larger integrator rails). A diagram of the 
scheme is shown in Extended Data Fig. 3.

This locking scheme allows us to achieve a very narrow linewidth for 
the Rydberg lasers, with servo resonance peaks less than −50 dBC for 
frequencies greater than 20 kHz from the carrier. To measure the noise 
spectrum of the lasers, we use a fibre-based self-heterodyne system. 
This system beats light shifted by a 100-MHz AOM with a time-delayed 
beam, split from the original laser and sent through a 10-km fibre.  
The beat signal is measured with a photodiode to determine the laser 
spectrum. A measurement of the 918-nm spectrum is seen in Extended 
Data Fig. 3. Although we did not directly measure the carrier linewidth 
of the stabilized lasers, previous tests involving beating two systems 
constructed in a similar fashion indicate linewidths of around 200 Hz.

Qubit coherence
Trapped-atom lifetimes limited by residual vacuum pressure were 
observed to be about 10 s at the 1/e population decay point.  
The qubit T1 time was about 4 s, with roughly equal lifetimes seen 
for the |0⟩ → |1⟩ and |1⟩ → |0⟩ transitions. The T 2

⁎  time as observed by 
Ramsey interference was typically 3.5 ms, although T 2

⁎  = 8 ms was 
observed under conditions of optimized cooling. Using a sequence 
of X, −X, X, −X,… dynamical decoupling pulses, a homogeneous 
coherence time of T2 of about 50 ms was observed. Using a XY8 pulse 
sequence45, T2 of about 1 s was observed. For the circuit data reported 
here, no dynamical decoupling was applied, so the limiting coher-
ence time was T 2

⁎ .
The primary contributions to transverse qubit coherence are mag-

netic noise, intensity noise of the trap light and atom motion causing 
time-dependent qubit dephasing29,46. We introduce a magnetic dephas-
ing time T 2,B

⁎  and a motional dephasing time T 2,motion
⁎ . In a Gaussian 

approximation, these can be combined to give
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Assuming Gaussian magnetic noise with variance σ2, the coherence 

time is

T
ħ ν

μ B σ
=

2 π
,2,B

⁎
1/2 2 2

clock

B
2

0

with ħ Planck’s constant, μB the Bohr magneton, B0 the bias mag-
netic field and νclock = 9,192,631,770 Hz, the Cs clock frequency. A 
semi-classical approximation to the atomic motion gives the follow-
ing for the motional coherence time

T
ħ

k T η
= 1.9472,motion

⁎

B a

with kB the Boltzmann constant, Ta the atomic temperature and η a 
parameter that characterizes the differential Stark shift exerted on 
the qubit states by the trapping light. For 825-nm trapping light, 
η ≃ −0.00079. Although the motional dephasing rate is not strictly 
Gaussian, it can be well approximated as such, which leads to equa-
tion (8) for the combined magnetic and motional dephasing.

Qubit coherence was measured using Ramsey interference with 
microwave pulses. The average across the six sites used for the GHZ 
preparation experiment was T = 3.5ms.2

⁎  The calculated T 2
⁎  from  

equation (8) is shown in Extended Data Fig. 4. On the basis of magnetic 
noise measurements and measured coherence time, we estimate the 
atomic temperature to be Ta ≃ 5 μK. Independent temperature meas-
urements on the basis of trap drop and recapture are similar but tend 
to give a value 1–2 μK higher.

The calculated T 2
⁎  neglects any contribution from trap laser intensity 

noise. The blue-detuned line array localizes atoms at local minima of 
the intensity, which reduces the sensitivity to trap laser noise. For the 
parameters chosen in the experiment, the intensity seen by a cold 
trapped atom is about a factor of 22 smaller than the intensity corre-
sponding to the trapping potential. This implies a factor of 22 reduction 
in sensitivity to intensity noise compared with a red-detuned trapping 
modality. The acceptable agreement between calculated and observed 
T 2

⁎  and Ta values suggests that the contribution to the qubit coherence 
from intensity noise was not notable. This was the case even though 
the trap lasers were free running (two Ti:Sa lasers) without any further 
stabilization or noise eating.

Quantum gate set
After qubit initialization, quantum circuits were run following compila-
tion into the hardware native gate set. The physical pulse sequences cor-
responding to the GHZ, phase estimation and QAOA circuits are given in 
the Supplementary Information. A universal set of quantum gates was 
provided by resonant microwaves and two narrow-band laser sources 
at 459 nm and 1,040 nm. A pulsed 40-W microwave source resonant 
with the |0⟩ = |f = 3, m = 0⟩ → |1⟩ = |f = 4, m = 0⟩ transition provided global 
Rϕ(θ) rotations, in which ϕ denotes a rotation axis in the x–y plane of the 
Bloch sphere and θ denotes the rotation angle. The microwave-driven 
Rabi frequency was 76.5 kHz. We applied single-site RZ(θ) rotations 
using a focused 459-nm laser, which was +0.76 GHz detuned from the 
6s1/2, f = 4 → 7p1/2 (centre of mass) transition. This laser provided a dif-
ferential Stark shift of +600 kHz between |0⟩ and |1⟩. We applied the 
RZ(θ) gate by pulsing the 459-nm laser for a time corresponding to the 
desired rotation angle. With the combination of these two gates, we 
could apply site-selective, single-qubit Rϕ(θ) rotations.

To complete a universal gate set, we used simultaneous two-atom 
Rydberg excitation to implement a CZ gate47. For Rydberg excitation, 
we used two lasers at 459 nm and 1,040 nm to induce a two-photon 
excitation to the 75s1/2 Rydberg state. The 1,040-nm (459-nm) Rydberg 
beams co-propagated (counter-propagated) with the 825-nm trap light. 
We controlled the Rydberg beam pointing using crossed AODs. Beams 
were focused to 3-μm waists, which allowed single-qubit addressing.  

The 1,040-nm and 459-nm beams were pointed at two sites simultane-
ously (horizontally or vertically displaced) by driving one of the scanner 
AODs for each colour with two frequencies. Because beams diffracted by 
an AOD receive frequency shifts equivalent to the AOD drive frequency, 
two-photon resonance was maintained at both sites by using diffraction 
orders of opposite sign for the 459-nm and 1,040-nm scanners. This 
required adjusting the magnification of the optical train after the 459-nm 
and 1,040-nm scanners, such that the displacement in the image region 
versus AOD drive frequency was the same for both Rydberg beams.

The CZ gate protocol used was the detuned two-pulse sequence 
introduced in ref. 47, with parameters modified for a relatively weak 
Rydberg interaction outside the blockade limit. For the CZ gate pulses, 
the one-atom Rydberg Rabi frequency was 1.7 MHz and the Rydberg 
blockade shift was 3 MHz. Before the Rydberg pulses, we used two 
extra 459-nm pulses, one targeting each atom, to provide local RZ(θ) 
rotations needed to achieve a canonical CZ gate. The gate fidelity was 
characterized by creating an entangled Bell state with 92.7(1.3)% raw 
fidelity (about 95.5% state preparation and measurement (SPAM) cor-
rected). CNOT gates were implemented with the standard decomposi-
tion CNOT = (I ⊗ H)CZ(I ⊗ H).

Global θR ( )ϕ
(G)  gates are driven by microwaves resonant with the Cs 

clock transition 6s| f = 4, m = 0⟩ − 6s| f = 3, m = 0⟩. The microwave signal is 
derived from mixing a stable 9-GHz oscillator with the output of an arbi-
trary waveform generator (AWG). Both the 9-GHz generator and the AWG 
clock are referenced to a 10-MHz timing signal that is derived from a 
GPS-stabilized crystal oscillator. The negative sideband of the mixer is 
filtered out, leaving a control signal centred at the 9.1926-GHz clock fre-
quency. Changing the duration and phase of the AWG output allows for 
arbitrary Rϕ(θ) rotations, with ϕ denoting the axis in the x–y plane of the 
Bloch sphere about which the qubit is rotated and θ the pulse area. Using 
a 40-W amplifier and a standard microwave horn located a few centime-
tres from the vacuum cell, we achieve a Rabi frequency of 76.5 kHz.

Single-qubit RZ(θ) gates are implemented by addressing a qubit with 
459-nm light that is detuned by Δ from the 6s1/2, f = 4 − 7p1/2 transition. 
We can approximately describe the differential Stark shift on the qubit 
by ignoring the hyperfine structure of 7p1/2. In this approximation, we 
find a phase accumulation
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ω
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in which Ω459 is the 6s1/2 − 7p1/2 Rabi frequency, Ω is the effective qubit 
Rabi frequency, ωq is the qubit frequency (Cs clock frequency) and t 
is the pulse duration.

Global θR ( )ϕ
(G)  rotations and local RZ(θ) rotations are combined to 

give local Rϕ(θ) gates on individual qubits using the construction

θ π θ πR ( ) = R ( /2)R ( )R (− /2). (10)ϕ ϕ π ϕ π+ /2
(G)

Z + /2
(G)

When compiling circuits, sequential appearance of θR ( )ϕ
(G)  and 

θR (− )ϕ
(G)  operations can be eliminated to reduce the gate count and 

circuit duration.

CZ gates
To complete a universal gate set, we implement CZ gates using Rydberg 
interactions1,2. We have used the protocol introduced in ref. 47 combined 
with local Hadamard rotations to provide a CNOT gate.

One-qubit gate fidelity
Global microwave rotation gates have been shown in an earlier work 
to have a fidelity of 0.998 from randomized benchmarking experi-
ments17. The primary difference between the earlier work and the pre-
sent experiment is the introduction of a higher-power microwave 
amplifier to increase the Rabi frequency to 76.5 kHz. The fidelity of the 



θR ( )ϕ
(G)  gates was characterized at each site of a 7 × 7 = 49-qubit array 

using randomized benchmarking over the Clifford group. The results 
for the SPAM error per qubit and gate fidelity are shown in Extended 
Data Fig. 5.

Local RZ(θ) gates use a detuned laser pulse to impart a differential 
Stark shift on the qubit states. The gate rotation angle is proportional 
to the integrated intensity at the atom during the pulse. These gates are 
sensitive to several primary error mechanisms. The first is fluctuations 
in the pulse intensity on timescales slow compared with the duration of 
a single pulse. The second is variations in the intensity seen by the atom 
owing to position variations under the Gaussian envelope of the address-
ing beam. The third is photon scattering from the detuned laser pulse.

The fidelity of local single-qubit RZ(θ) and Rϕ(θ) gates was charac-
terized at the six sites used for GHZ state preparation and algorithm 
demonstrations using randomized benchmarking over the Clifford 
group. The results for the SPAM error per qubit and gate fidelity are 
shown in Extended Data Fig. 5.

Dephasing mechanisms
Shot-to-shot variations in the intensity lead to dephasing of the qubit 
rotations. Let the optical intensity be normally distributed according 

to p I( ) = e
I

σ
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 with standard deviation σI. Assuming Δ is  

large compared with the linewidth of the 459-nm light, we can write 
Ω = aI with a a constant. It follows that the gate phase (pulse area θ of 
the RZ(θ) gate) is
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in which θ0 = Ω0t. Assuming Gaussian intensity noise, the phase is dis-
tributed as
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We see that the phase uncertainty increases with θ0, which implies a 
decreasing oscillation amplitude proportional to the pulse area.

The Rabi oscillation amplitude is proportional to ⟨eiθ⟩ and, assuming 
a Gaussian intensity distribution, the oscillation amplitude will decay as
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The Rabi amplitude as a function of intensity noise is shown in 
Extended Data Fig. 6, together with measured shot-to-shot power 
fluctuations. To maintain good pulse stability for extended operation 
times, the optical power inside the science cell is periodically sampled 
to generate an error signal that is fed back to a rotatable waveplate 
and polarizer combination on the laser table. The observed fluctua-
tions imply an expected error of 10−4 for a π pulse, which is negligible 
compared with the observed gate fidelity of about 0.01 for a π pulse.

The observed gate infidelity is dominated by the second and third 
error mechanisms. Atomic motion causes the atom to see a slightly 
different intensity for each shot. The timescale of the motion (around 
1/(20 kHz)) is long compared with the gate time, so we may assume that 
the intensity is constant during the gate. This effect can be described 

analytically or numerically19,48 and leads to an exponential decay of the 
Rabi amplitude with the length of the pulse. We define a figure of merit as 
fτ, the product of the Rabi frequency f in the time τ for the amplitude to 
decay to 1/e. This implies an error per π pulse of ϵ = (1/e)/(2fτ) = 0.0046. 
A numerical simulation using experimental parameters, see Extended 
Data Fig. 6, gives fτ = 46 and an error per π pulse of ϵ = 0.0040.

The final error contribution results from spontaneous scattering 
from the 7p1/2 level. Because the detuning from 7p1/2 is small compared 
with the qubit frequency, the scattering error is negligible for atoms 
in |0⟩ = |f = 3, m = 0⟩ and, for an atom in |1⟩ = |f = 4, m = 0⟩, the scattering 
probability in a π pulse is approximately
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This expression uses the standard result of Ω2/2Δ2 for the 
time-averaged excited-state population of a two-level system with 
detuned drive multiplied by a prefactor of 1/2, which accounts for the 
coherence decay in the limit of a long pulse time compared with the 
excited-state lifetime. Using Δ = 2π × 760 MHz and τ = 155ns,p7 1/2

 we find 
ϵscatter = 0.0042. This error can be reduced by operating at larger detun-
ing.

To summarize this section, we estimate the errors for the three 
mechanisms as ϵintensity = 0.0001, ϵposition = 0.0040 and ϵscatter = 0.0042. 
Adding these errors in quadrature gives an estimate of ϵ = 0.0058, 
which would correspond to fτ = 32. Experimental tests of the Ramsey  
amplitude as a function of the length of an embedded Stark pulse show 
up to fτ = 40, which is reasonably consistent with these estimates.  
The qubits used in the main text had a higher average gate error from 
randomized benchmarking of 0.0075, as is shown in Extended Data 
Fig. 5. To improve the local RZ(θ) gate fidelity further, tighter confine-
ment from lower-temperature or deeper traps, as well as larger detun-
ing to reduce light scattering, will be needed.

CZ gate tuning and characterization
We use the symmetric CZ gate introduced by Levine et al.47. This gate 
is composed of two detuned Rydberg excitation pulses collectively 
driving two selected sites. Each pulse is designed to give the |11⟩ state 
a 2π rotation. The |10⟩ and |01⟩ states receive only a partial rotation 
from each pulse. The relative phases of the two pulses are adjusted such 
that these states return to the ground state at the end of the second 
pulse (see Extended Data Fig. 7a). The phase that each state acquires 
during these gate pulses depends on the area enclosed on the Bloch 
sphere during the state evolution. By adjusting the detuning and phase 
between the two pulses, the phase acquired by each of these terms can 
be tuned such that ϕ11 − ϕ10 − ϕ01 = (2n + 1)π, in which ϕij is the phase 
state |ij⟩ acquires during the gate pulses and n is an integer. Provided 
this condition is satisfied, the gate is maximally entangling and can be 
converted to a canonical CZ gate with local phase rotations.

Our optical control architecture is different from that in ref. 47, so 
our gate calibration and characterization protocols are also different.  
In ref. 47, Rydberg beams with large waists of around 20 μm propagated 
along a line of atoms such that each atom saw essentially the same 
intensity. In our implementation, Rydberg excitation beams are tightly 
focused to w = 3 μm and propagate perpendicular to the plane of the 
qubit array. This allows for individual control of each atom, but also 
requires further calibration to ensure uniform coupling to each atom 
when implementing a CZ gate. Using several tones driving the scanner 
AODs, we simultaneously drive Rydberg transitions on both atoms 
with the same two-photon excitation frequency. To symmetrically 
illuminate both atoms, the power of both Rydberg beams was balanced 
by tuning the power in each AOD tone such that the diffracted beam 
powers were balanced when viewed on a monitor camera. Fine-tuning 
for the intensity balance of the 459-nm beam was performed using RZ 
rotations on both sites. The rotation angle on each site was measured 
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in a ground-state Ramsey experiment, confirming that the 459-nm 
beam intensities were matched to within 2%. Fine-tuning for the power 
balance of the 1,040-nm beam was accomplished by adding 9.2-GHz 
sidebands to the beam to drive Raman transitions. By balancing the 
Raman Rabi frequency on both sites, we confirmed that the 1,040-nm 
intensity on both sites was balanced to within 2%. Once beam powers 
were tuned using the method described above, the two-photon Rydberg 
Rabi frequency was matched to within 5%.

For the circuits demonstrated in the main text, we used a qubit separa-
tion of d = 9 μm. We have also demonstrated a CZ gate with two sites that 
were separated by only 3 μm. In this configuration, the Rydberg beams 
were reconfigured to have a 7.5-μm waist that was focused midway 
between the two selected sites. To symmetrically illuminate both sites 
in this configuration, the beam alignment was scanned by adjusting the 
AOD frequency until the intensity on both sites was equal to within 2%. 
As described above, RZ rotations and Raman Rabi oscillations were used 
to balance the 459-nm and 1,040-nm intensities on the two sites. Note 
that this configuration is not compatible with single-site addressing 
and was not used in circuit experiments but demonstrates the ability 
to tune gate parameters to operate with very different qubit spacings 
and very different Rydberg interaction strengths.

After the intensities addressing the two atoms were balanced, we cali-
brated the CZ gate pulses. The first step in this process was calculating 
the optimal detuning, Δ, for each pulse such that the two-atom states 
acquire the correct phases as described above. The Rydberg block-
ade shift between selected sites was 3 MHz for d = 9 μm (1.03 GHz for 
d = 3 μm) using the 75s1/2 Rydberg state. We set the single-atom resonant 
Rydberg Rabi frequency to be ΩR/2π = 1.7 MHz. Given these param-
eters, we calculated that the optimal gate pulses should be detuned 
by Δ = −0.250ΩR for d = 9 μm (−0.377 for d = 3 μm). Calculations were 
performed by numerically solving the time-dependent Hamiltonian as 
described in ref. 49 and selecting optimal gate parameters by inspection. 
The pulse length, τ, and the relative phase between the two pulses, ξ, 
were then fine-tuned using Rydberg excitation experiments. We tuned 
τ using a single Δ detuned Rydberg pulse to drive |11⟩. The pulse length 
time, τ, was scanned about the calculated 2π to optimize the population 
returning to |11⟩. Once τ was optimized, we drove the state, |10⟩, with 
two gate pulses while scanning the phase between them, ξ, to maximize 
the single-atom return to ground.

After optimal Δ, τ and ξ were determined, the phases on the |10⟩ and 
|01⟩ states, ϕ01 and ϕ10, respectively, were compensated to obtain a 
canonical CZ gate. We performed this compensation using local RZ 
gates with focused 459-nm pulses. The compensation pulse lengths 
were calibrated with ground Ramsey experiments that had a CZ gate 
(with compensation pulses) sandwiched between two global π/2 pulses. 
In these Ramsey experiments, only one atom of the selected pair was 
loaded into the array. The phase-compensation pulse time was scanned 
to maximize the atom retention. This condition corresponds to com-
pensating the ϕ01 and ϕ10 phases.

After the CZ gates were calibrated, we measured their performance 
by preparing Bell states ψ| ⟩ = 00 + 11

2
 and measuring the Bell state fidel-

ity. We performed this characterization by measuring the parity and 
Bell state populations as described in the main text. The parity and 
populations were used to calculate the fidelity of a two-qubit Bell state 
(see Extended Data Fig. 7), which gave a maximum observed fidelity 
of FBell = 0.927(0.013) without SPAM correction. A similar calibration 
procedure was performed for each gate pair; the average fidelity meas-
ured without SPAM correction was 0.90 (see Extended Data Fig. 7).

SPAM errors markedly contribute to the observed raw fidelity.  
We calibrate this error on the basis of several experiments. The measure-
ment error is dominated by atom loss during the readout process; this 
loss was measured to be about 1.5% per atom. Imperfect optical pump-
ing to the |1⟩ state was found to be the main source of state preparation 
errors, contributing between 0.0% and 0.5% per atom, depending on 
the atom site. The SPAM errors shown in Extended Data Fig. 5, which 

were extracted from randomized benchmarking, were 2.5% per qubit 
on average. Simply subtracting the SPAM errors from the raw infidelity 
overestimates the corrected gate fidelity.

To get a more accurate estimate of the SPAM-corrected fidelity, 
we use the measured SPAM values with a quantum process analysis19.  
The analysis models how state preparation and measurement errors 
affect the measured output state by means of a two-qubit quantum 
process formalism. Imperfect retention is modelled as loss that is split 
between the two atom readout periods. Similarly, atoms that are not 
pumped to the m = 0 Zeeman state of the f = 4 hyperfine manifold are 
modelled as atom loss out of the qubit basis during the state prepara-
tion. We then propagate the initial state through these error channels 
and an ideal CZ gate, and observe how much the SPAM affects the popu-
lation and parity oscillations. We estimate that SPAM errors contribute 
between 2.2% and 3.1% error to the measured Bell state fidelities. Thus, 
the maximum observed fidelity with SPAM correction was between 
0.949 and 0.958, and the average SPAM-corrected Bell state fidelity was 
between 0.921 and 0.931. Note that these methods do not include some 
of the subtleties of how blow-away-based state measurement biases the 
measurements in the |1⟩ state47. Correcting this effect requires measure-
ments that were not performed during the gate characterization. Note 
that the traps were turned off during Rydberg excitation pulses for each 
CZ gate. This prevented position-dependent and trap-power-dependent 
dephasing. Future experiments using magic trapping of Rydberg states 
should remove the need for turning off the trap light during Rydberg 
experiments50.

Data availability
The data presented here are available from the corresponding author 
on reasonable request.
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Extended Data Fig. 1 | Optical module for generation of trapping light.  
The light enters by means of a single-mode fibre that is collimated and then 
converted into a uniform intensity line with a diffractive optical element.  
The line is then divided into N lines by driving an AOD with N RF tones.  

This procedure is performed in two paths to create arrays of horizontal and 
vertical lines. The arrays are then combined on a polarizing beam splitter to 
create the grid of trap light, which is imaged onto the atoms.
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Extended Data Fig. 2 | Characterization of optical trap array. a, Geometry of 
the line array. b, Intensity landscape of traps for s = 3. c, Vibrational 
frequencies. The circles show the measured trap vibration frequencies of 
19 kHz radial and 4 kHz axial. Plots used parameters d = 3 μm, s = 3, 

Ud = kB × 300 μK, Ta = 5 μK and λ = 825 nm. d, Plots of spatial localization. e, Map 
of measured variation in qubit frequency across the trap array, together with 
the measured shifts for the sites that were used relative to site q1. f, Ideal 
Gaussian beam intensity profile on a log scale.
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Extended Data Fig. 3 | Rydberg laser stabilization. a, Schematic of locking setup. b, Measured self-heterodyne spectrum of 918-nm laser with a 10-km fibre delay 
line.
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Extended Data Fig. 4 | Calculated qubit coherence. Calculated T 2
⁎  as a 

function of atom temperature and magnetic field noise for 825-nm trap light 
and a bias magnetic field of 1.6 mT. The contours are labelled with the value of 

T 2
⁎  in ms. The estimated magnetic noise on the basis of magnetometer 

measurements is σ < 20 mG and the average measured coherence time is 
T = 3.5ms,2

⁎  which indicates an atomic temperature near 5 μK.
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Extended Data Fig. 5 | Randomized benchmarking of single-qubit gates. 
 a, Characterization of SPAM errors in a 49-qubit array. The array-averaged 
SPAM error is 3.1%. b, θR ( )ϕ

(G)  gate fidelity for Clifford gates. The array-averaged 

error per gate is 2.2 × 10−3. c, Characterization of SPAM errors for the six sites 
used in the main text. The average SPAM error is 2.5%. d, Fidelity of RZ(θ) and 
Rϕ(θ) gates. The average error per gate is 7.5 × 10−3.
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Extended Data Fig. 6 | Analysis of one-qubit gate fidelity. a, Amplitude of 
Rabi oscillation owing to shot-to-shot intensity noise for several values of the 
pulse area. b, Measured shot-to-shot variation of the 459-nm pulse power at a 
location after the AOD scanners in front of the vacuum cell. c, Simulated 

Ramsey signal with RZ(ϕ) gate (red dots) and fit to a a a ϕ+ cos( )e ϕ a
1 2 3

− / 4 (blue 
lines), which gives fτ = 46. The numerical simulation is integrated over the 3D 
atom and light distributions using λtrap = 825 nm, wline = 1 μm, d = 3 μm, 
Ud = 300 μK, w459 = 3 μm and Ta = 5 μK.
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Extended Data Fig. 7 | CZ gate implementation and characterization by 
preparation of Bell states. a, Symmetric CZ gate with phase-correction pulses. 
The gate in the dashed box is the uncorrected C′Z that is composed of two 
Rydberg pulses that collectively drive both atoms. Pulses are detuned from 
resonance by Δ and have a single-atom resonant Rabi frequency of ΩR.  
The detuned, single-atom Rabi frequency is Ω′ = Ω + Δ .2

R
2  The second pulse is 

driven with a phase ξ relative to the first pulse. The two phase-compensation 
pulses correct residual single-atom phases, ϕ01 and ϕ10, and are used to 
transform the gate into a canonical CZ. In principle, the compensation phases 
should be the same, but in practice, we find that better gate performance is 
achieved by allowing the phases to differ, which compensates for the lack of 

perfect balance between the Rydberg pulses at the two sites. The 
phase-compensation pulses can be applied before or after the Rydberg pulses. 
b, Two qubits spaced by d = 3 μm addressed with large beams of waist w = 7.5 μm 
focused halfway in between the qubits. At d = 3 μm, there is a strong blockade of 
B/2π = 1.03 GHz. Measured values were PBell = 0.475(0.01), parity amplitude 
C = 0.440(0.01) and fidelity FBell = 0.914(0.014). c, Two qubits spaced by d = 9 μm 
addressed with separate beams with waist w = 3 μm. At this spacing, the 
blockade is weak, B/2π = 3.0 MHz. Measured values were PBell = 0.483(0.009), 
parity amplitude C = 0.444(0.010) and fidelity FBell = 0.927(0.013). 
 d, Characterization of CZ gate fidelity for five qubit pairs. Reported values are 
without SPAM correction and the average fidelity is 0.90.
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