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Gate-model quantum computers promise to solve currently intractable
computational problems if they can be operated at scale with long coherence times
and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability
owing to their identical characteristics, long coherence times and ability to be
trapped in dense, multidimensional arrays'. Combined with the strong entangling
interactions provided by Rydberg states®*, all the necessary characteristics for
quantum computation are available. Here we demonstrate several quantum
algorithms on a programmable gate-model neutral-atom quantum computer in an
architecture based onindividual addressing of single atoms with tightly focused
optical beams scanned across a two-dimensional array of qubits. Preparation of
entangled Greenberger-Horne-Zeilinger (GHZ) states® with up to six qubits,
quantum phase estimation for achemistry problem® and the quantum approximate
optimization algorithm (QAOA)’ for the maximum cut (MaxCut) graph problem are
demonstrated. These results highlight the emergent capability of neutral-atom qubit
arrays for universal, programmable quantum computation, as well as preparation of

non-classical states of use for quantum-enhanced sensing.

Remarkable progress hasbeen madeinrecent yearsinthe development
of quantum computers that use quantum states and operations to
encode and process information. Such quantum computers promise
to solve certain classes of computing problems exponentially faster
than modern, transistor-based computers. However, quantum bits
(qubits) are fragile and degrade if not isolated from environmental
noise, yet mustinteract with other qubits to perform calculations. Many
physical systems have been used to address these challenges. Digital
quantum circuits have been demonstrated with trapped ion®®, super-
conducting'®", quantum dot”?and optical®®processors. Neutral-atom
arrays have been used for analogue quantum simulation with up to
hundreds of interacting spins'". Although powerful, the reliability of
analogue simulation techniques without error correction for complex
problems with large qubit numbers remains an open question'. Digital
gate-model quantum circuits are provably compatible with error cor-
rection, which enableslarge-scale computation. We demonstrate here,
for the first time to our knowledge, quantum algorithms encoded in
gate-model digital circuits on a programmable neutral-atom processor.

Qubitsencoded onneutralatoms trapped inan opticallattice provide
ascalable architecture for digital quantum computing’. One-qubit and
two-qubit gate operations have previously been demonstratedinlarge
arrays"” "’ using qubits that have excellent coherence properties and
can bereliably measured. In the past few years, techniques have been
introduced that have enabled atomic rearrangement for deterministic

array loading®® 2. Our approach, as shown in Fig. 1, combines these
recent advances to provide multi-qubit circuit capability in an archi-
tecture based on rapid scanning of tightly focused optical control
beams. Atoms are laser cooled and then trapped in a blue-detuned
optical lattice. Atom occupancy and quantum state measurements
are determined by imaging near-resonant scattered light onto an
electron-multiplying charge-coupled device camera. A red-detuned
optical tweezer rearranges the detected atoms to deterministically load
asubset of atom traps used for computation. After state preparation,
we perform quantum computations using a universal gate set consist-
ing of global microwave rotations, local R, phase gates and two-qubit
C, gates (see Methods). With this platform, we created 2-6-qubit GHZ
states, demonstrated the quantum phase estimation algorithm and
implemented QAOA for the MaxCut problem.

GHZ state preparation

Entanglementis perhaps the quintessential feature of quantum infor-
mation science. The non-local correlations present in an entangled
quantum state can be stronger than is classically possible. These cor-
relations areleveraged asaresource in quantum computing algorithms,
quantum metrology and many quantum communication protocols.
Entangled states can be composed of any number of particles and there
are many classes of entangled states with various properties.

'Department of Physics, University of Wisconsin-Madison, Madison, WI, USA. *ColdQuanta, Inc., Madison, WI, USA. *ColdQuanta, Inc., Boulder, CO, USA. “ColdQuanta UK, Oxford Centre for
Innovation, Oxford, UK. *Riverlane, Cambridge, UK. ®Present address: Department of Physics, University of Central Florida, Orlando, FL, USA. Present address: Department of Physics, Harvard
University, Cambridge, MA, USA. ®Present address: Department of Physics, Columbia University, New York, NY, USA. °These authors contributed equally: T. M. Graham and Y. Song. *e-mail:

msaffman@wisc.edu

Nature | Vol 604 | 21April2022 | 457


https://doi.org/10.1038/s41586-022-04603-6
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-04603-6&domain=pdf
mailto:msaffman@wisc.edu

Article

a d 0] A N
EMCCD fﬁ‘ || ﬂ f /\ I i f f\ i
| camera os VLU (VL
' “H‘#\‘ i H‘H#H\‘\ RREnRn
| | | | ‘* | |
LU I &/‘ NIARRAANA \c{ / | |
LR I hpop
s UM AR
2 m‘\“m\ /\“J‘ N
= ot T
- R AR AT
: OIM \H/u\/Ji}’«}\\\Mﬁ\
Rydberg excitation R P
ydberg 1.0] ) | \ hof ‘ I
1,040-nm X-Y AOD excitation and ﬂ‘ H“ x\ “ ‘N‘, | ?“6 “ o{\‘, ‘q f{\ ” I | }ﬂ\
local phase gates “““\“\“ NI \““‘M“
111 ] phase g o5{/ {1/ \UHHH\
459-nm X-Y AOD W\HHH RTRTN ”‘{ | J‘H“
: NARRRENRNARA AR
0O 3 600 30 60 0 30 60
9.2-GHz Microwave pulse time (us)
Atom rearrangement 2D line grid array microwaves P :
1,064-nm X-Y AOD 825 nm global single- e 1.0
qubit gates
0.8
b c 3 um c
o 0.6
758, — T Rydberg level k=
B EEENREEFE ;.
1,040 nm + + . . . . r 0.0
‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 0
PR . . . 0 1 2 3 4 5
P2 Az + + + b 459-nm pulse time (us)
om | g5 FEsEmEERE
&p optical traps >
3/2 =
852- g
6p4,, COO”:;n + L . - . . . §
©
895-nm 1,064-nm *5
opt. pump/ tweezer beam F F [ B N N B 3
cooling —=O-5-[1) @
Bs12 @ Qubit E R B ERE % /2 7 a2 on
|0y Rotation angle ¢

Fig.1|Experimental quantum computing platform. a, Experimental layout
for trapping and addressing atomic qubits. Atoms are trappedina
blue-detuned linegrid array (see Methods for details), which isimaged onto the
atom-trappingregionwithaNA=0.7lens. Atom occupationis determined by
collecting atomic fluorescence using NA = 0.7 lenses at opposite faces of the
celland imaging the light onto two separate regions of an EMCCD camera.
A1,064-nmtweezerbeamisusedtorearrange atomsinto desired sites for
circuitoperation. Circuits are decomposed into a universal gate set consisting
of global R,(0) rotations aboutan axisin thex-y plane driven by microwaves,
localR,(6) rotations driven by the 459-nmbeam and C, entangling gates using
simultaneous Rydberg excitation of atom pairs by the 459-nm and 1,040-nm
beams (see Methods). b, Atomic-level diagram and wavelengths used for
cooling, trapping and qubit control. c, Averaged atomic fluorescence image of

GHZ states, also known as cat states, compose one such class and
are oftheform|GHZ),, = (|00 .0y +e?|11...1),),inwhich Nisthe
number of particles occupymg thestateand ¢ is a phase shift between
the two terms. GHZ states provide the strongest non-local correlations
possible for an N-particle entangled state?. However, GHZ states are
very fragile, as loss of a single particle completely destroys the entan-
glement. Also, because all particles contribute to the phase evolution,
the dephasing time decreases with the particle number. Such states
are challenging to create, requiring either many particles to interact
with each other or a series of two-particle interactions performed in
sequence. These properties have made GHZ state productionastand-
ard benchmark for quantifying the performance of a quantum com-
puter. GHZ states with 18 particles have been produced using
superconducting qubits?* and 24 particles using trapped-ion qubits®.
GHZ states have also been produced using up to 20 neutral-atom
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the 49-site array with spacing3 pm. Each camera pixelis 0.6 x 0.6 umat the
atoms. d, Global microwave Rabi rotations on ablock of nine qubits at 76.5 kHz.
The microwave phase, amplitude and frequency are controlled by an arbitrary
waveformgenerator. e, ARamsey experiment with microwave /2 pulses and
thefocused 459-nm beam providing a R () rotation on asingle site. Stark shifts
ofaround 600 kHz are used, so that the 15-nsrise/fall time of the on/off AOMs
(not pictured) can be neglected when calculating the pulse time for R,(0) gates.
f, Parity oscillation of atwo-qubit Bell state created usinga C, gate. Ade facto
measure of the performance of an entangling gateis its ability togenerate aBell
state. The measured and uncorrected Bell state fidelity was 92.7(1.3)% for an
optimized qubit pair (about 95.5% corrected for SPAM errors), with the average
forall connected qubit pairs used in circuits being 90% (about 92.5% SPAM
corrected).

qubits®; however, these GHZ states were encoded onaground-Rydberg
state transition and were correspondingly short-lived (coherence life-
timesareless than 2 ps for N > 4) owing to decay and the high sensitiv-
ity of Rydberg states to environmental perturbations. We have created
and measured the first N> 2 GHZ states that are encoded on the long-
lived hyperfine ground state qubits of neutral atoms.

Using quantum circuits consisting of global microwaves, local R, gates
and C, gates, we have created GHZ states with up to N = 6 qubits. To quan-
tify how accurately these states were created, we measured their quan-
tum state fidelity. The fidelity of a GHZ state can be determined from
the populations P|O>Nand Pmeor states|0),=100...0)yand [1), = [11...1),,
respectively, and the coherence between these states. We determined
the population from a direct measurement in the qubit basis and the
coherence from a parity oscillation measurement. To measure the par-
ity, we used amicrowave pulse toimplement the global unitary, ﬂyzlei%”{ﬂ,
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Fig.2|Preparation of GHZ states. a, Parity oscillations for GHZ states with2-6
qubits. The oscillation frequency shows the characteristic linear dependence
onthe number of qubits. b, The fidelity of the created GHZ state versus qubit
number. GHZ states were prepared by applying aHadamard gate to the central
qubit1, followed by asequence of CNOT gates on pairs1-2,1-3,1-4,1-5and 5-6,
asindicated by thebluelines. Compiled circuits expressedin our native gate
setareshowninthe Supplementary Information. GHZ states with 2-5 qubits
have anuncorrected fidelity indicating they are entangled. Assuming a1.5% per

inwhich 0{,; = cos(@)X;+ sin(@)Y; and X;and Y; are Pauli operators on
qubitj. After this rotation, the atoms are measured in the logical basis
and the parity is computed from P = Py, = Poyq, in Which Penoaq is the
probability of observing an even (odd) state. By measuring the parity
for various values of ¢, we obtain parity oscillation curves for GHZ states
up to N=6, as shown in Fig. 2a. The fidelity of a GHZ state is
Fouzy = (Poy, * Py, + Gy)/2, inwhich Cy is the amplitude of the N-qubit
parity oscillation. We observe the expected factor of Nscaling in parity
oscillation frequency?. This enhanced collective oscillation rate has
applicationsin quantum metrology®®butalsoleads to a faster dephasing.

The scaling of the coherence time with the size of the GHZ state
depends on the properties of the relevant dephasing sources.
The coherence of optically trapped neutral-atom hyperfine qubits is
primarily limited by three mechanisms®: magnetic field noise, fluctua-
tions of the trap light intensity and atomic motion. Fluctuations of the
trap intensity and the magnetic fields cause differential frequency shifts
on the qubit levels®. These correlated and non-Markovian perturba-
tions lead to a1/Nscaling of the GHZ coherence time®. This scaling is
observed in Fig. 2c, despite the use of blue-detuned traps, where the
atoms are localized at a local minimum of the optical intensity, and
m=0clockstates, which have only aweak quadratic Zeeman sensitiv-
ity. All GHZ states up to N = 6 retain coherence for more than 600 ps,
about 500 times longer than previously reported neutral-atom GHZ
states®. This increased coherence results from the fact that the GHZ
states prepared here are encoded on a ground hyperfine qubit basis,
rather than the ground-Rydberg basis used in previous experiments.

The third mechanism, atomic motion, is also non-Markovian, but is
not collective because the phase of the atomic motionin different traps
is not correlated. This should lead to a slower1/-/N scaling in addition
tothe1/Ncontributions mentioned above. This motion can be reduced
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qubitaveraged over all six sites. Theerror barsinband care t1o.

andthe coherence extended by means of deeper cooling. Alternatively,
dynamical decoupling sequences can be applied to suppress all of the
non-Markovian sources of dephasing. For single qubits, we have
observed coherence timesaslongas1susing XY8 pulse sequences and
more thanafactor of fiveimprovement of the coherence time of GHZ,,
states. The achievable GHZ coherence time, and the resulting scaling
exponent using optimized decoupling sequences, is left for future
studies.

Phase estimation algorithm

Quantum phase estimation was one of the original algorithms respon-
sible for the rapid growth of interest in quantum computing?. This
algorithmis used to estimate the complex phase of an operator acting
on an eigenstate and has broad applications as a subroutine in other
quantum algorithms, including factoring and quantum chemistry.
Quantum phase estimation is one of a class of related algorithms that
achieves a quantum advantage by means of the exponential speed-up
ofthe quantum Fourier transform over the classical Fourier transform
algorithm.Inthis algorithm, thereis astate register and ameasurement
register. The state register consists of aset of qubits that areinaneigen-
state |¢) of a unitary operator, U, such that U|y) = e?|¢). To perform
phase estimation, information about the action of U on the state regis-
ter is encoded on the measurement register by means of a series of
controlled unitary operations shown in Fig. 3a. In this procedure, the
state of qubitjin the measurement register controls whether a unitary
u? s applied to the state register. After these controlled unitary
operations, aninverse quantum Fourier transformis performed on the
qubits in the measurement register, which are then measured in the
computational basis. The phase, ¢, can be roughly determined from
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Fig.3| Quantum phase estimation using three and four qubits. a, Phase
estimation circuit using four qubits. An eigenstate (or near eigenstate) of the
operator Uisencoded on the state qubit, [¢). Controlled unitary operators are
then performed between qubits1to3inthe measurementregister and the
state qubit. The two-qubit controlled unitaries each require two CNOT gates.
Aquantum inverse Fourier transformis then performed on the measurement
qubits and their outputismeasured. The measured bit string encodes the
phase shift on [¢) whenacted on by U. b, Quantum phase estimation results
using three qubits. For this demonstration, each of the four unitary operators
measured had |1) as an eigenstate. The phase shiftimparted by U was able to be
perfectly represented by asingle two-bit value. The theoretical value (light
blue bars) was100% probability in the target bit string. Inall cases, the

0 iﬁ
00 01

the measured bit string. Each bit-string value corresponds to a particu-
lar phasevalue ontheinterval [0, 2m). If ¢ is between these values, then
several bit strings will be measured at the end of the circuit. Similarly,
if the state [¢) is not an exact eigenstate of U, then phase signatures of
the eigenvalues of each eigenstate composing |¢) willbe presentin the
output measurements. As more qubits are used in the measurement
register, ¢ can be determined with greater accuracy, as there are more
unique bit strings to represent phases on the [0, 21) interval.

Asafirst test, showninFig.3b, we performed phase estimation with
three qubits (one qubitin the state register and two qubitsin the meas-
urement register) with U =1, Z*2, Z and Z*?, which act on state |1) with
phase shifts ¢ = 0, /2, mand 31/2, respectively. These phase shifts can
be exactly represented with two bits. The measured probabilities of
the desired output states were >64% in all cases. The deviation from
the ideal 100% output probability results from the accumulation of
gate errors (see Methods for further details).

As asecond example, we performed phase estimation for a proto-
typical quantum chemistry calculation, themolecular energy of ahydro-
gen molecule. An eigenstate of a time-independent Hamiltonian
acquires a phase shift that is proportional to its energy,
Uly) = e |y) = |yp).Quantum phase estimation s then used to meas-
ure the phase for a particular chosen time (¢,) and the state energy can
be determined from the measured phase, £ = ¢/t,. The time required
foracomplete classical calculation of molecular energies scales expo-
nentially with the number of electronic orbitals. However, quantum
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measured (dark blue bars) target bit strings had >60% probability (1,000
measurements were made for each unitary). ¢, Quantum phase estimation with
four qubits to estimate the molecular energy of aH, molecule. In this
calculation, we use the Hartree-Fock state [¢) = [1) (see main text for details).
This experiment was repeated 700 times. Note that, even theoretically, none of
thebitstrings has a100% probability. Thisisaresult of two factors. First, the
target eigenvalue cannot be exactly represented by a three-bit number.
Second, the Hartree-Fock state does not have a100% overlap with the ground
eigenstate. Partial overlap with both eigenstates of Uleads to non-zero
probability for the101and O11bit strings. Note that the former effect hasavery
smallinfluence onthe output probabilities, so most of the probability is
contained inthe10land O11bitstrings. Theerrorbarsinband care tlo.

phase estimation allows polynomial time energy estimates®. We consider
aHamiltonianthat represents a hydrogenmoleculeinthe STO-3Gbasis
making use of the Bravyi-Kitaev transformation® and tapering qubits
corresponding to the total number of electrons, the zcomponent of
the spin and a reflection symmetry®*. With these approximations, the
molecular energy estimation reduces to a single-qubit problem.
The Hamiltonian has the form H = a, + q,Z + a,X. If we assume a bond
length of 0.7414 angstroms, then a, =-0.328717, a, = 0.787967 and
a,=0.181289, allin units of hartrees (Ha). This Hamiltonian has aground
state of 0.112828|0) + 0.993615|1), withanenergy of -1.13727 Ha. The q,
energy offsetis applied classically and can be neglected fromthe quan-
tum calculation. The eigenvalues then liebetween -£,, and +£,,,,,, with
Erax = @yl + la,l = 0.9693 Ha and we choose ¢, = T/ ,,,, such that the phases
correspondingto the eigenvalues of Ht lie between ~ttand . We approx-
imated the operator, U, using first-order Trotterizationas U = e!%2Xel@1Z,
Inthe Bravyi-Kitaev basis, the Hartree-Fock state is the product state
of spin-up or spin-down qubits that gives the lowest energy expectation.
For this Hamiltonian, the Hartree-Fock stateis [1), which we used as the
initial state for the state estimation. This state has a probability overlap
of 0.82 and 0.18 with the eigenstates of U, corresponding to energies
of -1.0495and 0.3920 Ha, respectively (note that a,was added back to
the energy obtained from the eigenvalues).

For the computation, we use four qubits (one qubit in the state reg-
ister and three qubits in the measurement register). Inanideal circuit
with infinite resolution, the measured phase values would be 0.6282
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Fig.4|QAOA algorithm for solving MaxCut. a, Circuit diagram for four-qubit
QAOA MaxCutshowingasingle p=1cycle.b, Decomposition of the

ZZ(y) =e '2%®Zinteraction into two CNOT gates and aR, rotation. ¢ Circuit
resultsforp=1,2and 3 with optimized yand S values. Theinsetinthe p=1bar
chartshows the four qubits used, with the bluelines indicating C, gate
connections between qubit pairs. Dark (light) blue bars show the experimental
(ideal theoretical) output probabilities. The experimental approximation

and 0.3718, which are close to 0.625 (0.101in binary) and 0.375 (0.011
inbinary). Thus, inanoise-free circuit, we expect to observe bit strings
101and 01182% and 18% of the time, respectively. After compiling the
circuitinto our native gate set, we ran the circuit 700 times. The most
frequently observed bit string was 101, corresponding to an energy
estimate of -1.06 Ha (again, a, was added to obtain the final result).
Using more sophisticated methods, the molecular energy of hydrogen
was found to be —1.174476 Ha (ref. ). The difference between the more
accurate value and the experimental result arises from the limited num-
ber of qubits used for phase estimation, using the minimal STO-3G basis
rather thanalarger basis set, and the approximations used in the circuit
implementation. Furtherimprovements in precision can be obtained
by using more qubits to represent the phase and using a Hamiltonian
that more accurately represents the molecular energy of hydrogen.

QAOA algorithm

Therehasbeenalarge effort to design quantumalgorithms that leverage
both quantumand classical computing power tosolve problems with fewer
operations than would be required by a classical computer alone. Hybrid
quantum-classical algorithms, which seek to achieve useful computational
results without requiring a full error-corrected quantum computer>®,
combine a quantum core that efficiently generates high-dimensional
quantum states, a task that requires exponential resources on a classical
machine, withaclassical outer loop that selects parameters of the quantum
circuit tooptimize the value of the quantumstate for solving the problem
at hand. Primary examples of such hybrid algorithms are the variational
quantum eigensolver” and the related QAOA”.

QAOA is particularly well suited for solving combinatorial optimiza-
tion problems that admit a Hamiltonian formulation. An ansatz state is
parameterized in terms of unitary evolution operations representing a
cost function (U, = e"¢) and state mixing (U,, = e?"'m), inwhich the yand
Bparameters are set by the classical optimizer and H.and H,, represent
cost and mixing Hamiltonians, respectively. The QAOA circuit consists

ratiosareindicatedinthebar charts. The error barsare +1o. The ideal
theoretical approximationratios forp=1,2and3are0.772,0.934and 1.0,
respectively. Asthecircuit gets longer, the approximation ratioincreases, but
sodoesthecircuitdepth (and accumulation of gate errors). These factors led to
anincrease inapproximationratio for p =2, followed by adrop at p=3. All three
experiments contained 1,000 measurements.

of prepeated layers of cost and mixing Hamiltonians acting onan N-qubit
initial state |s) = (|0) + [1))®". This evolution results in the final state
v, B = Un( B)Uc(Y,) -+ Unn( B)Uc(pls) . The repeated application of mix-
ing and cost Hamiltonians can be regarded as a Trotterized version of
adiabatic evolution of the initial state to the ground state of H... In the
p - *limit, these two processes are equivalent, whereas the availability
of2pvariational parameters provides more degrees of freedom for opti-
mizing the rate of convergence compared with asimple adiabaticramp.
After preparing the ansatz state, the expectation value of the cost Ham-
iltonian is measured and fed into a classical optimizer. The cost Hamil-
tonian is designed to be diagonal in the computational basis, so—after
the classical optimizer finds optimal settings for all y;and ,—a compu-
tational basis measurement yields a bit string that corresponds to the
optimized combinatorial problem solutioniif p is sufficiently large.

The MaxCut problemis an example of an NP-hard problem to which
QAOA canbereadily applied. MaxCut seeks to partition the vertices of
agraphinto two sets, such that the maximum number of edges is cut.
A partition z of a graph with m edges and n vertices can be quantified
witha cost function, C(z) =Y., C,(z),in which C,(2) = 1if the a edge is
cut (thatis, thetwo vertices of the edge are in different sets) and C,(z) =0
for non-cut edges. The maximum cut is found when a partition maxi-
mizes C(z). This cost function can be readily translated into a Hamilto-
nian operating on a set of qubits representing a graph,
H.= % Y- Z,Z,,) inwhicha and a,are qubitindices representing
the vertices of the edge a (ref. 7). The two basis states of the qubit then
map onto the two sets into which the two vertices are grouped.

We haveimplemented QAOA for the MaxCut problemon three-node
and four-node graphs. The first graph measured was a three-vertex
line graph with the centre vertex connected to the two outer vertices.
There aretwo degenerate MaxCut solutions with the centre and outer
vertices in different sets, which gives two cuts. Using optimized values
of yand S (see Supplementary Information), we measured output bit
strings for p=1and p =2.Theresults canbe scored asanapproximation
ratioR, = ﬁ 2;pS;, in which p; is the probability of a particular bit

ax
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string, S;is the number of edge cuts for the bit string and S,,,,, is the
maximum cut number. For the line graph, the p =1circuit achieves an
approximationratio of 0.65(1) (theoretical 0.825) and the p = 2 circuit
achieves an approximation ratio of 0.71(1) (theoretical 1.0). Both
experiments contained 1,000 measurements. We have also imple-
mented MaxCut for graphs with four qubits, as shown in Fig. 4. We see
acleargaininapproximationratiowhenincreasingfromp=1top=2;
however, the approximation ratio drops for p = 3, although the theo-
retical approximation ratio improves. This approximation ratio drop
results from limitations in the two-qubit gate error, which degrades
the approximation ratio more than the theoreticalimprovement from
incrementing p. Further improvements in C, gate fidelity will enable
larger graphs and higher approximation ratios".

Outlook

The experimental results described above demonstrate that an array
of neutral atoms trapped in an optical lattice form a programmable
circuit-model quantum computer. We demonstrated the ability of this
prototype computer to create entangled GHZ states with up to six qubits
and demonstrated quantum algorithms on four qubits with a circuit
depth of up to 18 C, gates (see Supplementary Information for com-
plete circuit diagrams). This capability opens the door ona vast collec-
tion of applications. The creation of long-lived GHZ states has utility
in entanglement-enhanced sensing®. The ability to perform quantum
phase estimation enables a suite of algorithms in addition to the quan-
tumchemistry applications discussed above. Such applicationsinclude
integer factoring® and estimating solutions to linear equations®.Indeed
quantum phase estimation underlies all the known avenues to exponen-
tial quantumspeed-up*’. Hybrid quantum-classical algorithms, including
QAOA demonstrated here, have found wide use in several applications®.

Although the experiments presented above are far from providing
a quantum advantage over classical computation, they represent an
important milestone for the development of neutral-atom, qubit-based
processors. Althoughthe current two-qubit gate fidelity is limited when
compared with more mature computing platforms, this neutral-atom
platform provides a unique combination of properties that facilitate
scalability. In particular, the ability of this platform to increase the qubit
number simply by adding more laser power and changing the number of
RF tones driving the trap acousto-optic deflectors (AODs) is in stark con-
trast to other technologies that require fabrication of completely new
chips ortrapstoincrease qubit number. The factors limiting two-qubit
gate fidelity and algorithmic performance today are well understood,
asisthe engineering roadmap to reach higher performance. Of primary
importance are improved laser cooling to reach the atomic motional
ground state, spatial shaping of the optical control beams for reduced
gate errors, optimization of optical trap parameters for improved
localization and coherence® and higher laser power for reduced scat-
tering from the intermediate 7p,, state. Combining these advancesin
asingle, scalable qubit array will lead to a neutral-atom platform for
high-performance digital quantum computation.

While finalizing this manuscript, we became aware of related work
demonstrating encoding of logical qubits with a complementary
neutral-atom architecture®.
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Methods

Experimental apparatus

The apparatus was similar to that used in ref. **, with new capabilities
as described in the following. Our platform is designed around a 2D
blue-detuned optical trap array consisting of an array of crossed lines
shownin Fig. 1, at a wavelength of 825 nm. We shaped the lines using
atop-hat hologram fabricated by Holo/Or and a cylindrical-lens tel-
escope to adjust the line aspect ratio. Individual lines were split using
an AOD driven with several frequency tones. Using an AOD allowed
the trap number and line spacing to be reconfigured dynamically.
Previous line array implementations suffered from atom detection
noise arising from atomic traps being formed in Talbot planes of the
array”. Inthisimplementation, each line has a different frequency shift
fromthe AOD, thereby destroying the interference effects responsible
for such out-of-plane trapping. This resulted in reduced noise in trap
occupancy measurements. We combined eight horizontal lines with
eight vertical lines using a polarizing beam splitter and imaged them
onto the atom-trapping region of a glass vacuum chamber, forming a
7 x 7 grid of atom traps with aspacing of 3 um. Trap depths were set to
about 0.3 mK during circuit operation andincreased to 0.7 mK during
readout.

Optical access through the cell edges and the front face allowed 3D
cooling of Cs atoms with 852-nm light with red-detuned polarization
gradient cooling, followed by Raman lambda-grey molasses cooling
with 895-nm light to reach temperatures below 5 pK (ref. *). We used a
1,064-nmoptical tweezer beam copropagating with the blue-detuned
array for atomic rearrangement. We controlled the position of this
tweezer beam using crossed, upstream AODs to move atoms into a
desired pattern using the Hungarian algorithm to determine the atomic
move order. After rearrangement, we used atoms in sites separated
by three array periods, or 9 um, for circuit operations. Using a larger
spacing reduced crosstalk from scattering in the optical system. A
m-polarized, 895-nm optical pumping beam incident from the side of
the cellpumped trapped atomstothe |1) = |f=4, m = 0) state. After opti-
cal pumping, the atomic temperature was typically 5 pK. A bias magnetic
field of 1.6 mT was used during optical pumping and circuit operation.

Atom occupancy was determined by imaging resonance fluores-
cence from 852-nm molasses beams detuned by —12y (y/2m=5.2 MHz
is the linewidth of the 6p,, state) onto the electron-multiplying
charge-coupled device (EMCCD) camera. For quantum state meas-
urements, atoms inf=4 were pushed out of the traps with aresonant
beam, followed by an occupancy measurement. A dark (bright) signal
indicated a quantum state of [1) (|0)).

Vacuum cell and imaging
The vacuum system consists of a two-dimensional magneto-optical
trap source region where a pre-cooled atomic sample is prepared.
Cs atoms are then pushed through a differential pumping aperture
into the science cell, which has a rectangular shape. The large facing
windows through which trapping and control beams enter are sepa-
rated by 1 cm, sothe atomic qubits are 5 mm fromthe nearest surface.
The facing windows each have four electrodes that are controlled by
low-noise dc voltage supplies to cancel background fields. Cancella-
tion was performed automatically by scanning electrode voltages to
minimize the quadratic Stark shift of the 75s,,, Rydberg state. With-
out compensation, background fields at the level of a few V m™ were
observed. Despite operating at a zero-field condition, intermittent
jumps of the Rydberg energy level were seen. The exact mechanism
causing this is not known, but it is attributed to changes in adsorp-
tion of alkali atoms on the cell walls. To reduce the frequency of such
jumps, we continuously illuminated the cell with 410-nm light from a
light-emitting diode.

To increase photon collection efficiency for atom occupancy and
quantum state measurements, dual-sided imaging was used. A high

numerical aperture (NA) = 0.7 objective lens was mounted on each side
ofthe cell. Using dichroic mirrors, dualimages of the atom array were
routed to adjacent regions of the EMCCD camera. Withtwo NA=0.7
objectives, the theoretical light collection efficiency is 0.286. Account-
ing for various passive losses in optical components and camera quan-
tum efficiency, the detection probability per photon scattered by an
atomis about 0.08. Atom imaging and state measurements used four
of the six magneto-optical trap beams. Two of the beams share the
same axis as the imaging camera and were turned off during measure-
ment. Typical state readout parameters were 90-ms integration time
at detuning —12;/61!,3/2 with four beams in a plane, each with 220-pW
power and 2-mm waist (1/e? intensity radius).

Trap array
To trap the atoms in the array, we use a far-off-resonance optical trap
with ablue detuning. The optical module for generating the trap light
is shown in Extended Data Fig. 1. The far-off-resonance optical trap
is an array of vertical and horizontal, highly elliptical top-hat beams
(thatis, lines). To create theline array, adiffractive optical element first
convertsanelliptical beaminto asingle vertical top-hat line. After some
beam shaping, the top-hatis focused through the AOD, which creates
an array of top-hat lines. Only the first-order diffracted beam is used,
andthearrayis created using asuperposition of pure sinusoidal tones.
Thehorizontal and vertical lines are made in separate beam paths, with
the horizontalllinesinitially vertical lines, but rotated with a periscope,
also giving an opposite polarization. These lines are combined on a
polarizingbeam splitter, further shaped and then they travel through
the objective lens to trap the atoms. For the z-axis confinement, the
atomsare confined by the divergence of the trap beams, asthe linearray
only exists at the image plane of the objective lens. This approach does
not suffer from Talbot planes because eachlineis adifferent frequency,
meaning that nointerference effects arise. Thus, there are only atoms
trapped at the image plane. Furthermore, the horizontal and vertical
lines are of opposite polarization, making it so that these lines do not
interfere either. In addition, each set of horizontal and vertical lines
was powered by a separate single-frequency Ti:Sa laser. The lasers
were tuned to have approximately the same 825-nm wavelength but
frequencies differing by a few hundreds of GHz to prevent any unde-
sired interference effects with regards to atom cooling or trapping.
The tones of the RF signal sent to the AODs are all near the resonant
frequency of the AOD (50 MHz) and are separated in frequency space
by 1.2 MHz. These tones are generated using a software-defined ratio,
allowing for tuning of the relative phase and amplitudes of the indi-
vidual tones. Using this approach, we have created arrays with up to
24 x 24 linesand trapped atomsinarrays with15 x 15lines and 196 sites.
Forthiswork, we used a7 x 7 site array with eight lines per axis. The RF
signal generating the lines goes through a series of non-linear devices,
notably the amplifier and the AOD. Thus, tuning phase and amplitude
areimportant, as there are non-linear compression effects if the instan-
taneous power approaches the compression point of the amplifier or
linearity threshold of the AOD. To tune the amplitude of the tones, a
camerais set up at a pickoff of the trap array image plane (that is, the
same image plane as the atoms). The goal is to have equal power in
each line, and the tone power is adjusted until the array is balanced.
To tune the phase, the power spectrum of the trap array is measured.
Thebeat frequencies of the array lines with each other should only be
seen at 1.2 MHz (and integer multiples thereof), but if the phases are
badly tuned, there may be times at which theinstantaneous amplitude
is too high, such that the non-linear effects cause beating at other,
lower frequencies (order100 kHz). The phase of each toneisrandomly
assigned until an acceptable low-frequency beat spectrum is found.
Atthe atom plane (theimage plane), the lines are separated by 3 um, the
beamwaist (linewidth) is1 pmand the top-hatlengthisaround 40 pm.
The measured trap vibration frequencies were19 kHzand 4 kHzin the
radial and axial dimensions, respectively, at a trap depth of 0.3 mK.
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Trap array analysis

The trap parameters can be described analytically in compact form
assumingideallines with uniformintensity along the line and Gaussian
transverse profiles. Adding the contributions from the nearest lines
in each unit cell, we find the following expressions for a square array
with line spacing d, line waist (1/e? intensity radius) w and aspect ratio
s=d/w

-s2/2
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= Id%(l +2e72),
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with [y= 1,21 /s= P/d? inwhich I, is the peak intensity of each line
and Pis the optical power per unit cell. In these expressions, /. is the
intensity at the centre of each cell, /;is the intensity at the saddle point
midway between the corners of the cell on each line and /;is the effec-
tive trapping intensity.

The above expressions describe the intensity in the plane of the array.
The trapping intensity at distance z perpendicular to the plane of the
arrayis/, () =1.(z) - I.(0). This takes on amaximum value at adistance

Zmax =Lp~s2 -1, with Lz = mw?/A, in which A is the wavelength of the
trapping light. The effective axial trapping intensity is

)
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Note that as the aspect ratio sincreases, the transverse trap depth
proportional to /. increases without bound, but the axial trap depth
I (2 saturates atamaximum value of I, ,(z,,,) = I44/-/21e =0.97,.
Atouroperating pointof s =3,wehave/,/l;=1.17 and /, (z,,,)/14=0.91,
so the confinement barrier is about 20% lower perpendicular to the
plane of the array.

Using these expressions, we can calculate the spring constants k and
trap vibration frequencies w = ,/x/m, for an atom of mass m,. We find
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inwhich{;=- ”gd witha < Oistheatomic polarizability at wavelength
A.Thefactor Uyis Sthe spatially averaged light shift across the array. For
anatom attemperature T,, the corresponding spatial localization can
be expressed in terms of variances given by
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Accurate balancing of the line intensities, and thereby the resid-
ual intensity at the centre of each trap, is verified by measuring
light-induced shifts of the qubit frequencies with microwave spec-
troscopy. Typical dataare shownin Extended Data Fig. 2e. Overall, the
resonance splitting across the array was onthe order of 100 Hz. For the

sixsitesused in the GHZ experiment, the total range of qubit frequen-
cieswas 144 Hz. The circuit execution time for the N = 6 GHZ state was
180 ps, corresponding to a maximum undesired phase differential of
9.3°. Thelongest circuit weimplemented was four-qubit phase estima-
tion, for which the execution time was 1.1 ms, corresponding to 57° of
uncompensated phase. For longer circuit execution times, these shifts
can be cancelled by periodic application of R,(0) gates.

Qubit addressing and crosstalk

Operations on single sites are achieved with laser beams focused to
waistw. Intheideal case of a perfect unaberrated Gaussian TEM,,beam,
this corresponds to an intensity profile in the focal plane of
1(r)= Ioe'z"z/“’z, with w the beam waist and d the distance from the
beam centre. Extended Data Figure 2f shows the intensity spillover on
aneighbouringsite asafunction of the ratio d/w, inwhich dis the qubit
spacing.In practice, ahigher level of intensity spillover is seen. This is
owing to optical aberrations and unavoidable scattering from alarge
number of surfaces in the optical train.

For the experiments reported here, we have operated with
d=9 pm and w=3 pm. The ideal intensity crosstalk level is then
I(d)/I(0) = e =1.5x10"%. The crosstalk of the 459-nm beam was meas-
ured by aligning the beam to a site and measuring the qubit rotation
rate (from a Ramsey interference experiment) at a site 9 um distant,
compared with therotationrate at the targeted site. The ratio of these
rates gives the intensity crosstalk. At the 9-um spacing, the typical
observed crosstalk value was «0.01.

The crosstalk of the1,040-nm beam was measured by adding 9.2-GHz
sidebandsto the beam with an electro-optic modulator so that it could
directly drive Ry(0) rotations. We then measured the intensity crosstalk
in the same way as for the 459-nm beam. A typical observed crosstalk
value was also «0.01.

There are trade-offs between optical crosstalk, qubit spacing and
beam waist. Although crosstalk can be reduced by operating with a
smaller beam waist, doing so increases sensitivity to optical alignment
and atom motion. The sensitivity to beam profile can be mitigated using
shaped beams with a flat top*, as has been effectively demonstratedin
experiments that used global optical addressing beams®.

Two-qubit simultaneous addressing

Consider scanning an optical beam with an AOD to address an atomic
transition in atoms at different spatial locations. Because the optical
frequency varies with the scan angle, resonance cannot simultane-
ously be achieved at several locations with a single laser frequency.
This limitation can be overcome by using a two-photon transition
with the frequency shifts of the photons arranged to cancel each
other.

To be explicit, assume we are driving a resonance using beams of
wavelength A, and A,. The beams are deflected to positions x; using
a configuration of AOD-distance f-lens focal length f-distance f,
followed by an imaging magnification M, for each beam. The beam
positioninthe output plane using diffraction order m;and diffraction
angle 6,is

xj:fed:mj M;, j=1,2.

nu

Theacoustic velocity isv,, the applied frequency isf,;, n;is theindex of
refraction of the modulator and 4;is the vacuumwavelength of beamj.
We caninvert this to write

e

- X;.
J

v mAMf

Putting x, = x, = xand imposing the resonance conditionf,, +f,,=0
we get
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Choosing m, =1and m, = -1, we can satisfy this relation using

M, An
M A ©)
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We may also want the sizes of the scanned beams to be identical.

If each beam has waist w; at the AOD, the waist at the output plane is

A
w?”‘:Mj—*f.
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Setting w{" = w3 gives the condition
w, AM
w A @
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Combining equations (6) and (7) gives

w, m
w; ng’

As an example using A, =1.038, A, = 0.459 and n, = n,, we find

M2
M- 0.442
and
w2 = wl

We haveimplemented this approach to enable simultaneous address-
ing of pairs of sites that are in the same row or the same column of the
qubitarray. Fine adjustment of the ratio M,/M, was achieved with azoom
lens mounted in the 459-nmoptical train. Sites that areinadifferent row
and adifferent column (diagonally opposite corners of arectangle) can
be addressed, but undesired beams will also appear at the other corners
oftherectangle. With thisbeam-steering system, C, gates are therefore
constrained to qubits in the same row or column. This constraint can
be relaxed by implementing more advanced beam-steering devices,
such as spatial light modulators.

An unexpected issue was encountered when implementing this
dual-site addressing scheme. Although the sum of the two laser fre-
quencies at each addressed site is constant, the individual frequencies
of the 459-nm and 1,040-nm beams differ from site to site. Thusasmall
amount of intensity spillover from the edge of the Gaussian beam or
diffuse scattering from optical surfaces leads to time-dependent mod-
ulation of the intensity of each colour, as the two frequency compo-
nents of each colour are coherent with each other. This time-dependent
modulation can lead to large qubit control errors even for intensity
crosstalk at the 1% level. For this reason, we operated at a qubit spac-
ing of 9 um, which was sufficient to reduce the crosstalk to «0.01.
Amodified beam-scanning system thatisbeingimplemented will provide
simultaneous addressing with exactly the same frequencies at both sites
and remove this issue, thereby enabling operation at smaller spacings.

Rydberglasers

Rydberg states are excited with a two-photon transition. A first
photon at 459 nm couples the 6s,, ground state to 7p,,,. A second
photon near 1,040 nm couples 7p,,, to the Rydberg 75s,,, state.
The 459-nm light is prepared by frequency doubling an M Squared
SolsTiS Ti:Sa system pumped by an M Squared Equinox pump laser

(we mention commercial vendor names for technical reference and
are not endorsing any commercial products). The 918-nm light is
frequency stabilized and locked to a high-finesse ultralow-expansion
glassreference cavity in atemperature-stabilized vacuum can using
a Pound-Drever-Hall locking scheme. The reference cavity has
afree spectral range of 1.5 GHz and a linewidth of about 10 kHz.
A set of acousto-optic modulators (AOMs) is used to fine-tune
the frequency of the laser light relative to the fixed frequency of
the ultralow-expansion cavity mode. Frequency doubling occurs
in a home-built resonant ring doubler with an LBO crystal. The
singly-resonant doubling cavity is stabilized to the 918-nm light with
aHinsch-Couillaud lock. The intensity of the light is then stabilized
using an AOM-based noise eater that operates in the dc-100-kHz
range and a slow stabilization loop on the basis of arotatable wave-
plate and a polarizer. The light is then coupled into a single-mode
fibre for transportto the science cell. The1,040-nmlight is generated
and stabilized in a similar fashion with an M Squared pump laser and
Ti:Salaser operating at 1,040 nm.

Both locking schemes involve three feedback loops. A fast loop
sends feedback to an electro-optic modulator inside the SolsTiS
cavity, which is responsible for feedback in the frequency range of
100 kHz-10 MHz. This loop involves a PID using the Vescent D2-125
Laser Servo. The medium loop feeds back to the fast piezoin the SolsTiS,
which hasabandwidth of dc-100 kHz. Thisloopisa PID loop controlled
by the fast loop in amodified MOGLabs Fast Servo Controller (FSC, for
larger output range). Last, thereis aslowloop (about 40-Hzbandwidth),
which controls the slow piezointhe SolsTiSandisaPllloop, controlled
with the same modified MOGLabs FSC. The FSC units were modified
to increase the voltage range of the integrator for long-term locking
(servos were modified for larger integrator rails). A diagram of the
scheme is shown in Extended Data Fig. 3.

Thislocking scheme allows us to achieve a very narrow linewidth for
the Rydberg lasers, with servo resonance peaks less than -50 dBC for
frequencies greater than 20 kHz from the carrier. To measure the noise
spectrum of the lasers, we use a fibre-based self-heterodyne system.
This system beats light shifted by a100-MHz AOM with a time-delayed
beam, split from the original laser and sent through a 10-km fibre.
Thebeat signal is measured with a photodiode to determine the laser
spectrum. Ameasurement of the 918-nm spectrumisseenin Extended
DataFig. 3. Althoughwe did not directly measure the carrier linewidth
of the stabilized lasers, previous tests involving beating two systems
constructedinasimilar fashionindicate linewidths of around 200 Hz.

Qubit coherence

Trapped-atom lifetimes limited by residual vacuum pressure were
observed to be about 10 s at the 1/e population decay point.
The qubit 7, time was about 4 s, with roughly equal lifetimes seen
forthe|0) - |1) and |1) > |O) transitions. The T3 time as observed by
Ramsey interference was typically 3.5 ms, although 7% = 8 ms was
observed under conditions of optimized cooling. Using a sequence
of X, =X, X, =X,... dynamical decoupling pulses, a homogeneous
coherence time of T, of about 50 ms was observed. Using a XY8 pulse
sequence®, T, of about1swas observed. For the circuit data reported
here, no dynamical decoupling was applied, so the limiting coher-
encetimewasT5.

The primary contributions to transverse qubit coherence are mag-
netic noise, intensity noise of the trap light and atom motion causing
time-dependent qubit dephasing?*¢, We introduce a magnetic dephas-
ing time T3 g and a motional dephasing time T3 | con- IN @ Gaussian
approximation, these can be combined to give

T*Z,BTE,motion
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Assuming Gaussian magnetic noise with variance ¢, the coherence
timeis

1/2. 242
x 27 nh Velock
2,B™ 2
uzBoo

with i Planck’s constant, i the Bohr magneton, B, the bias mag-
netic field and v, = 9,192,631,770 Hz, the Cs clock frequency. A
semi-classical approximation to the atomic motion gives the follow-
ing for the motional coherence time

. _ h
T2,motion_ 1.947 kBTa"]'

with ki the Boltzmann constant, T, the atomic temperature and 7 a
parameter that characterizes the differential Stark shift exerted on
the qubit states by the trapping light. For 825-nm trapping light,
n~-0.00079. Although the motional dephasing rate is not strictly
Gaussian, it can be well approximated as such, which leads to equa-
tion (8) for the combined magnetic and motional dephasing.

Qubit coherence was measured using Ramsey interference with
microwave pulses. The average across the six sites used for the GHZ
preparation experiment was (T3) =3.5ms. The calculated T3 from
equation (8) isshownin Extended Data Fig. 4. On the basis of magnetic
noise measurements and measured coherence time, we estimate the
atomic temperature to be T, ~ 5 pK. Independent temperature meas-
urements on the basis of trap drop and recapture are similar but tend
to give avalue 1-2 pK higher.

The calculated T3 neglects any contribution from trap laser intensity
noise. The blue-detuned line array localizes atoms at local minima of
the intensity, which reduces the sensitivity to trap laser noise. For the
parameters chosen in the experiment, the intensity seen by a cold
trapped atom is about a factor of 22 smaller than the intensity corre-
sponding to the trapping potential. Thisimplies a factor of 22 reduction
insensitivity to intensity noise compared withared-detuned trapping
modality. The acceptable agreement between calculated and observed
T5and T, values suggests that the contribution to the qubit coherence
from intensity noise was not notable. This was the case even though
thetraplasers were free running (two Ti:Salasers) without any further
stabilization or noise eating.

Quantum gate set

After qubitinitialization, quantum circuits were run following compila-
tioninto the hardware native gate set. The physical pulse sequences cor-
responding tothe GHZ, phase estimation and QAOA circuitsare givenin
the Supplementary Information. A universal set of quantum gates was
provided by resonant microwaves and two narrow-band laser sources
at 459 nm and 1,040 nm. A pulsed 40-W microwave source resonant
withthe|0)=|f=3,m=0) > |1) =|f=4,m=0) transition provided global
R,(0) rotations, inwhich ¢ denotes arotation axis in the x-y plane of the
Blochsphere and 6 denotes the rotation angle. The microwave-driven
Rabi frequency was 76.5 kHz. We applied single-site R,(6) rotations
using a focused 459-nm laser, which was +0.76 GHz detuned from the
65, =4~ 7p,;, (centre of mass) transition. This laser provided a dif-
ferential Stark shift of +600 kHz between |0) and [1). We applied the
R,(0) gate by pulsing the 459-nm laser for atime corresponding to the
desired rotation angle. With the combination of these two gates, we
could apply site-selective, single-qubit R, (6) rotations.

To complete a universal gate set, we used simultaneous two-atom
Rydberg excitation to implement a C, gate*. For Rydberg excitation,
we used two lasers at 459 nm and 1,040 nm to induce a two-photon
excitation to the 75s,, Rydberg state. The 1,040-nm (459-nm) Rydberg
beams co-propagated (counter-propagated) with the 825-nmtrap light.
We controlled the Rydberg beam pointing using crossed AODs. Beams
were focused to 3-pum waists, which allowed single-qubit addressing.

The1,040-nm and 459-nm beams were pointed at two sites simultane-
ously (horizontally or vertically displaced) by driving one of the scanner
AODs for each colour with two frequencies. Because beams diffracted by
an AODreceive frequency shifts equivalent to the AOD drive frequency,
two-photon resonance was maintained at both sites by using diffraction
orders of opposite sign for the 459-nm and 1,040-nm scanners. This
required adjusting the magnification of the optical train after the 459-nm
and1,040-nmscanners, such that the displacement in theimage region
versus AOD drive frequency was the same for both Rydberg beams.

The C, gate protocol used was the detuned two-pulse sequence
introduced in ref. ¥/, with parameters modified for a relatively weak
Rydberginteraction outside the blockade limit. For the C, gate pulses,
the one-atom Rydberg Rabi frequency was 1.7 MHz and the Rydberg
blockade shift was 3 MHz. Before the Rydberg pulses, we used two
extra459-nm pulses, one targeting each atom, to provide local R,(6)
rotations needed to achieve a canonical C, gate. The gate fidelity was
characterized by creating an entangled Bell state with 92.7(1.3)% raw
fidelity (about 95.5% state preparation and measurement (SPAM) cor-
rected). CNOT gates were implemented with the standard decomposi-
tion CNOT = (1® H)C,(1® H).

Global R;?)(e) gates are driven by microwaves resonant with the Cs
clocktransition 6s|f=4,m=0) - 6s|f=3,m=0). The microwave signal is
derived frommixing astable 9-GHz oscillator with the output of anarbi-
trary waveformgenerator (AWG). Both the 9-GHz generator and the AWG
clock are referenced to a10-MHz timing signal that is derived from a
GPS-stabilized crystal oscillator. The negative sideband of the mixer is
filtered out, leaving a control signal centred at the 9.1926-GHz clock fre-
quency. Changing the duration and phase of the AWG output allows for
arbitrary R ,(0) rotations, with ¢ denoting the axisinthex-yplane of the
Bloch sphere about which the qubitis rotated and 8 the pulse area. Using
a40-W amplifier and astandard microwave hornlocated afew centime-
tres from the vacuum cell, we achieve a Rabi frequency of 76.5 kHz.

Single-qubit R,(0) gates are implemented by addressing a qubit with
459-nmlight thatis detuned by A from the 6s,,, f=4 - 7p,, transition.
We can approximately describe the differential Stark shift on the qubit
by ignoring the hyperfinestructure of 7p,,. In this approximation, we
find a phase accumulation

BZ[IQWIZ 1048 ©
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in which Qs is the 6s,,, — 7p,, Rabi frequency, Q is the effective qubit

Rabi frequency, w, is the qubit frequency (Cs clock frequency) and ¢
isthe pulse duration.

Global RE,,G)(H) rotations and local R,(6) rotations are combined to

givelocal R,(0) gates onindividual qubits using the construction

Ry(0) =Ry /o /2)Ry(ORG ), o(~11/2). (10)

When compiling circuits, sequential appearance of R;,G)(O) and

Rﬁf’(—@) operations can be eliminated to reduce the gate count and
circuit duration.

C,gates

To complete a universal gate set, we implement C, gates using Rydberg
interactions"?. We have used the protocolintroduced in ref. * combined
with local Hadamard rotations to provide a CNOT gate.

One-qubitgate fidelity

Global microwave rotation gates have been shown in an earlier work
to have a fidelity of 0.998 from randomized benchmarking experi-
ments”. The primary difference between the earlier work and the pre-
sent experiment is the introduction of a higher-power microwave
amplifier toincrease the Rabifrequencyto 76.5 kHz. The fidelity of the



R{(6) gates was characterized at each site of a 7 x 7 = 49-qubit array
using randomized benchmarking over the Clifford group. The results
for the SPAM error per qubit and gate fidelity are shown in Extended
Data Fig. 5.

Local R,(0) gates use a detuned laser pulse to impart a differential
Stark shift on the qubit states. The gate rotation angle is proportional
totheintegratedintensity at theatom during the pulse. These gates are
sensitive to several primary error mechanisms. Thefirstis fluctuations
inthe pulseintensity on timescales slow compared with the duration of
asingle pulse. The second s variations in the intensity seen by the atom
owingto position variations under the Gaussian envelope of the address-
ingbeam. The thirdis photon scattering from the detuned laser pulse.

The fidelity of local single-qubit R,(6) and R ,(6) gates was charac-
terized at the six sites used for GHZ state preparation and algorithm
demonstrations using randomized benchmarking over the Clifford
group. The results for the SPAM error per qubit and gate fidelity are
shownin Extended DataFig. 5.

Dephasing mechanisms

Shot-to-shot variations in the intensity lead to dephasing of the qubit
rotations. Llet the optzical intensity be normally distributed according

—(]— 2
top) = ﬁe (=1077291 \yith standard deviation g, Assuming A is
1

large compared with the linewidth of the 459-nm light, we can write
Q =alwith a a constant. It follows that the gate phase (pulse area 6 of
the R,(0) gate) is

0,
O=alt=al -2,
Qo
inwhich 8, = Q.t. Assuming Gaussian intensity noise, the phase is dis-
tributed as

p(6) = 1 o (6-00/20}
J21mo}

inwhich

We see that the phase uncertainty increases with 8,, whichimplies a
decreasing oscillation amplitude proportional to the pulse area.

The Rabi oscillationamplitudeis proportional to {e’®y and, assuming
aGaussianintensity distribution, the oscillation amplitude will decay as

. el . 1 R
(el = J' dbei® _e (6-60)%/20}
- 2mnoy

=ei90e—a§/2 an

=eifo e—ega;/z/g .

The Rabi amplitude as a function of intensity noise is shown in
Extended Data Fig. 6, together with measured shot-to-shot power
fluctuations. To maintain good pulse stability for extended operation
times, the optical power inside the science cell is periodically sampled
to generate an error signal that is fed back to a rotatable waveplate
and polarizer combination on the laser table. The observed fluctua-
tions imply an expected error of 107* for a it pulse, which is negligible
compared with the observed gate fidelity of about 0.01for a Tt pulse.

The observed gate infidelity is dominated by the second and third
error mechanisms. Atomic motion causes the atom to see a slightly
differentintensity for each shot. The timescale of the motion (around
1/(20 kHz)) islong compared with the gate time, so we may assume that
the intensity is constant during the gate. This effect can be described

analytically or numerically®®*and leads to an exponential decay of the

Rabiamplitude with thelength of the pulse. We define a figure of merit as
ft,the product of the Rabifrequencyfinthe time rfor the amplitudeto
decaytol/e. Thisimpliesanerror per 1t pulse of € = (1/€)/(2ft) = 0.0046.
Anumerical simulation using experimental parameters, see Extended
DataFig. 6, gives fr=46 and an error per Tt pulse of € = 0.0040.

The final error contribution results from spontaneous scattering
fromthe 7p,, level. Because the detuning from 7p,, is small compared
with the qubit frequency, the scattering error is negligible for atoms
in|0) = |f=3,m=0)and, foranatomin|1) = |f=4, m = 0), the scattering
probability in a Tt pulse is approximately

. :(Q /Q 1Qy5/° :[Q 2
scatter 2) T7p1/2 2A2 Z)Ar7pl/z .

This expression uses the standard result of Q%*2A? for the
time-averaged excited-state population of a two-level system with
detuned drive multiplied by a prefactor of 1/2, which accounts for the
coherence decay in the limit of a long pulse time compared with the
excited-state lifetime. Using A = 21t x 760 MHz and Ty ™ 155ns,we find
€carer = 0.0042. This error canbe reduced by operating at larger detun-
ing.

To summarize this section, we estimate the errors for the three
mechanisms as €y ensity = 0.0001, €,5iti0n = 0.0040 and €, = 0.0042.
Adding these errors in quadrature gives an estimate of € = 0.0058,
which would correspond to fr = 32. Experimental tests of the Ramsey
amplitude asafunction of thelength of anembedded Stark pulse show
up to fT =40, which is reasonably consistent with these estimates.
The qubits used in the main text had a higher average gate error from
randomized benchmarking of 0.0075, as is shown in Extended Data
Fig.5. Toimprove the local R,(0) gate fidelity further, tighter confine-
ment from lower-temperature or deeper traps, as well as larger detun-
ing toreduce light scattering, will be needed.

C, gate tuning and characterization

We use the symmetric C, gate introduced by Levine et al.*’. This gate
is composed of two detuned Rydberg excitation pulses collectively
driving two selected sites. Each pulse is designed to give the [11) state
a2mrotation. The [10) and |01) states receive only a partial rotation
fromeach pulse. Therelative phases of the two pulses are adjusted such
that these states return to the ground state at the end of the second
pulse (see Extended Data Fig. 7a). The phase that each state acquires
during these gate pulses depends on the area enclosed on the Bloch
sphere during the state evolution. By adjusting the detuning and phase
betweenthe two pulses, the phase acquired by each of these terms can
be tuned such that ¢, - ¢, — o, = (2n + 1)1, in which ¢ is the phase
state |ij) acquires during the gate pulses and nis an integer. Provided
this conditionis satisfied, the gate is maximally entangling and canbe
converted to a canonical C, gate with local phase rotations.

Our optical control architecture is different from that in ref. ¥/, so
our gate calibration and characterization protocols are also different.
Inref. ¥, Rydberg beams with large waists of around 20 pm propagated
along aline of atoms such that each atom saw essentially the same
intensity. In ourimplementation, Rydberg excitation beams are tightly
focused to w =3 um and propagate perpendicular to the plane of the
qubit array. This allows for individual control of each atom, but also
requires further calibration to ensure uniform coupling to each atom
whenimplementing a C, gate. Using several tones driving the scanner
AODs, we simultaneously drive Rydberg transitions on both atoms
with the same two-photon excitation frequency. To symmetrically
illuminate both atoms, the power of both Rydberg beams was balanced
by tuning the power in each AOD tone such that the diffracted beam
powerswere balanced when viewed on amonitor camera. Fine-tuning
for the intensity balance of the 459-nm beam was performed using R,
rotations on both sites. The rotation angle on each site was measured
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in a ground-state Ramsey experiment, confirming that the 459-nm
beam intensities were matched to within 2%. Fine-tuning for the power
balance of the 1,040-nm beam was accomplished by adding 9.2-GHz
sidebands to the beam to drive Raman transitions. By balancing the
Raman Rabifrequency onbothsites, we confirmed that the1,040-nm
intensity on both sites was balanced to within 2%. Once beam powers
were tuned using the method described above, the two-photon Rydberg
Rabi frequency was matched to within 5%.

Forthe circuits demonstrated in the main text, we used a qubit separa-
tion of d =9 um. We have also demonstrated a C, gate with two sites that
were separated by only 3 um. In this configuration, the Rydberg beams
were reconfigured to have a 7.5-um waist that was focused midway
betweenthetwo selected sites. To symmetrically illuminate both sites
inthis configuration, the beam alignment was scanned by adjusting the
AOD frequency until the intensity on both sites was equal to within 2%.
Asdescribed above, R, rotations and Raman Rabi oscillations were used
tobalance the 459-nmand1,040-nmintensities on the twosites. Note
that this configuration is not compatible with single-site addressing
and was not used in circuit experiments but demonstrates the ability
to tune gate parameters to operate with very different qubit spacings
and very different Rydberg interaction strengths.

After theintensities addressing the two atoms were balanced, we cali-
brated the C,gate pulses. Thefirst step in this process was calculating
the optimal detuning, A, for each pulse such that the two-atom states
acquire the correct phases as described above. The Rydberg block-
ade shift between selected sites was 3 MHz for d =9 pm (1.03 GHz for
d=3um)usingthe75s,,Rydbergstate. We set the single-atom resonant
Rydberg Rabi frequency to be Qy/21 =1.7 MHz. Given these param-
eters, we calculated that the optimal gate pulses should be detuned
by A =-0.250Q; for d =9 um (-0.377 for d = 3 um). Calculations were
performed by numerically solving the time-dependent Hamiltonian as
describedinref. * and selecting optimal gate parameters by inspection.
The pulse length, 7, and the relative phase between the two pulses, &,
were then fine-tuned using Rydberg excitation experiments. We tuned
rusingasingle A detuned Rydberg pulse to drive [11). The pulse length
time, 7, was scanned about the calculated 2m to optimize the population
returning to [11). Once 7 was optimized, we drove the state, [10), with
two gate pulses while scanning the phase between them, £, to maximize
the single-atom return to ground.

Afteroptimal A, rand Ewere determined, the phases on the [10) and
|01) states, ¢,; and ¢,,, respectively, were compensated to obtain a
canonical C, gate. We performed this compensation using local R,
gates with focused 459-nm pulses. The compensation pulse lengths
were calibrated with ground Ramsey experiments that had a C, gate
(with compensation pulses) sandwiched between two global /2 pulses.
In these Ramsey experiments, only one atom of the selected pair was
loadedinto the array. The phase-compensation pulse time was scanned
to maximize the atom retention. This condition corresponds to com-
pensating the ¢, and ¢,, phases.

After the C, gates were calibrated, we measured their performance
by preparing Bell states|gp) = 10941 3nd measuring the Bell state fidel-
ity. We performed this characterization by measuring the parity and
Bell state populations as described in the main text. The parity and
populations were used to calculate the fidelity of atwo-qubit Bell state
(see Extended Data Fig. 7), which gave a maximum observed fidelity
of Fg = 0.927(0.013) without SPAM correction. A similar calibration
procedure was performed for each gate pair; the average fidelity meas-
ured without SPAM correction was 0.90 (see Extended Data Fig. 7).

SPAM errors markedly contribute to the observed raw fidelity.
We calibrate this error onthe basis of several experiments. The measure-
menterroris dominated by atomloss during the readout process; this
loss was measured to be about1.5% per atom. Imperfect optical pump-
ingtothe 1) state was found to be the main source of state preparation
errors, contributing between 0.0% and 0.5% per atom, depending on
the atom site. The SPAM errors shown in Extended Data Fig. 5, which

were extracted from randomized benchmarking, were 2.5% per qubit
onaverage. Simply subtracting the SPAM errors from the raw infidelity
overestimates the corrected gate fidelity.

To get a more accurate estimate of the SPAM-corrected fidelity,
we use the measured SPAM values with a quantum process analysis®.
The analysis models how state preparation and measurement errors
affect the measured output state by means of a two-qubit quantum
process formalism. Imperfect retentionis modelled as loss that is split
between the two atom readout periods. Similarly, atoms that are not
pumped to the m = 0 Zeeman state of the f= 4 hyperfine manifold are
modelled as atom loss out of the qubit basis during the state prepara-
tion. We then propagate theinitial state through these error channels
and anideal C, gate, and observe how much the SPAM affects the popu-
lation and parity oscillations. We estimate that SPAM errors contribute
between2.2%and 3.1% error to the measured Bell state fidelities. Thus,
the maximum observed fidelity with SPAM correction was between
0.949 and 0.958, and the average SPAM-corrected Bell state fidelity was
between 0.921and 0.931. Note that these methods do notinclude some
ofthe subtleties of how blow-away-based state measurement biases the
measurementsinthe|1) state¥. Correcting this effect requires measure-
ments that were not performed during the gate characterization. Note
thatthe traps were turned off during Rydberg excitation pulses for each
C,gate. This prevented position-dependent and trap-power-dependent
dephasing. Future experiments using magic trapping of Rydberg states
should remove the need for turning off the trap light during Rydberg
experiments*.
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The data presented here are available from the corresponding author
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Extended DataFig.1|Opticalmodule for generation of trapping light. This procedureis performed intwo paths to create arrays of horizontal and
Thelightenters by means of asingle-mode fibre thatis collimated and then vertical lines. The arrays are then combined on a polarizingbeam splitter to
converted into a uniformintensity line with a diffractive optical element. createthegrid of trap light, whichisimaged onto the atoms.
Thelineisthendividedinto Nlinesby drivingan AOD with NRF tones.
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Extended DataFig.2|Characterization of optical trap array. a, Geometry of
thelinearray. b, Intensity landscape of traps for s = 3. ¢, Vibrational
frequencies. The circles show the measured trap vibration frequencies of
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function of atom temperature and magnetic field noise for 825-nm trap light measurementsis o <20 mGand theaverage measured coherence timeis
and abias magnetic field of 1.6 mT. The contours are labelled with the value of (T3)=3.5ms,whichindicates anatomic temperature near 5 pK.



a) SPAM error b) RB error per gate (10%)
0.060 0.000300
o - 0.024 0.025 geKZEN 0.026 0.034 0.032 0.031 =}
0.055 0.000275
- 0.02 .042 : .02 ; 0.03 .032
~ - 0.025 K¢} 003N 0.023 FOEER 0.03 G50 — 0.000250
~ - 0.034 0.035 0.027 0.032 0.034 0.025 0.045 ~ 0.000225
m - 0.028 0.036 0.026 0.026 0.023 0.027 0.026 0.040 m 0.000200
<« -0.023 0.028 0.032 0.021 MO.oss 0.031 - 0.035 < -0.000175
‘ ' -0.030
in-0.025 0.028 0.037 0.03 0033 ' : 0.033 ' " - 0.000150
B " ‘ -0.025 B
mm0.032 0.023  0.033 [IX7Y 0.033 QK o Q000125
| ! [ -0.020
| - 0.000100
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Q) SPAM error d) RB error per gate (1073)
0.035
o- 0 0 o XM o 0 0 0 0 0 19 0 0 0 0.010
0.030
-- 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.008
0.025
~- 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.020 0.006
- . . . P o o o o
0.015
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.004
-0.010
- 0 0 0 0 0 0 0 0 0 0 0 0 0
o . -0.002
- 0.005
” ﬁ o o B o o o o o o o o
1 1 1 1 1 - 0.000 1 1 I I 1 - 0.000
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Extended DataFig. 5| Randomized benchmarking of single-qubit gates. error pergateis2.2x 107, ¢, Characterization of SPAM errors for the six sites
a, Characterization of SPAM errorsina49-qubitarray. The array-averaged usedinthe maintext. The average SPAM erroris 2.5%.d, Fidelity of R,(6) and

SPAMerroris3.1%.b, Rff’(e)gate fidelity for Clifford gates. The array-averaged R,(0) gates. The average error per gateis 7.5 x 107>,



Article

1.00 x 1.0 c)
o a) b) 01/19=0.00046
5 098 Qo=mt 20 " 08¢ 5
> [
= (o))
TD. 0.96 1% ‘5 0.6 1
E 2n 5
© 0.94 10 és 04+ 1
— 3n
Qo
4m ©
[§] s 0.2+ 1
S 082 e ]
0.90O 00 0.02 0.04 0.06 0.08 010 09 n 0.99 nes 11005 1 1 105 102 1025 0.0 L X . X ]
' ' oo ' ' normalized power 0 50 100 150
Stark phase (rad.)
Extended DataFig. 6 | Analysis of one-qubit gate fidelity. a, Amplitude of Ramsey signal with R,(¢) gate (red dots) and fit toa, + a, cos(a;p)e /% (blue
Rabioscillation owing to shot-to-shotintensity noise for several values of the lines), which gives T = 46. The numerical simulation isintegrated over the 3D
pulsearea. b, Measured shot-to-shot variation of the 459-nm pulse power ata atomand light distributions using A, = 825 nm, Wy, =1pm,d =3 pum,

location after the AOD scannersin front of the vacuum cell. ¢, Simulated

Uy=300 pK, w,so =3 pmand 7, =5 pK.



a) phase correction Rydberg pulses

) -RZ(_¢10) ................................ S ;
QI(QR,A) clEQ/(QR,A) ;
2 Re(—do)—t R
00 01 10 11
1
b) d=3 um _
0.5 e
2 g
2 Z0
§0.25 E \/ \u
a
9
a
0 -1
0 /2 T 3n/2 2=n
1
2 § /\ //\\
] S
- (7] 0 |
a =
9 S
a o
-1
00 01 10 11 0 nf2 n 3n/2 2n

rotation phase

Extended DataFig.7|C,gateimplementationand characterization by
preparation of Bell states. a, Symmetric C, gate with phase-correction pulses.
Thegateinthe dashed boxistheuncorrected C’'; thatiscomposed of two
Rydberg pulses that collectively drive both atoms. Pulses are detuned from
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The detuned, single-atom Rabi frequency is O’ = J()ﬁ +A% . Thesecond pulseis
drivenwith aphase €relative to the first pulse. The two phase-compensation
pulses correctresidual single-atom phases, ¢, and ¢,,, and are used to
transformthe gateinto acanonical C,. In principle, the compensation phases
should be the same, but in practice, we find that better gate performance is
achieved by allowing the phases to differ, which compensates for the lack of
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perfectbalance between the Rydberg pulses at the two sites. The
phase-compensation pulses can be applied before or after the Rydberg pulses.
b, Two qubits spaced by d =3 pmaddressed with large beams of waist w =7.5 um
focused halfway inbetween the qubits. Atd =3 pum, thereisastrong blockade of
B/2m=1.03 GHz. Measured values were Py, = 0.475(0.01), parity amplitude
C=0.440(0.01) and fidelity Fg.; = 0.914(0.014). ¢, Two qubits spaced by d =9 pm
addressed with separate beams with waist w =3 pm. At this spacing, the
blockadeis weak, B/2m=3.0 MHz. Measured values were Py, = 0.483(0.009),
parityamplitude C=0.444(0.010) and fidelity Fg., = 0.927(0.013).

d, Characterization of C, gate fidelity for five qubit pairs. Reported values are
without SPAM correction and the average fidelity is 0.90.
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