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Abstract: In this paper we establish commmutator estimates for the Dirichlet-to-Neumann Map associ-
ated to a divergence form elliptic operator in the upper half-space Rn+1

+ := {(x, t) ∈ Rn × (0,∞)}, with
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1 Introduction

LetL := −div(A∇), defined in Rn+1(n ≥ 1), where A = A(x) is a n+1×n+1 matrix with complex-valued,
bounded and t-independent coefficients satisfying the uniform (complex)-ellipticity condition

γ|ξ|2 ≤ Re 〈A(x)ξ, ξ〉 = Re

 n+1∑
i, j=1

Ai j(x)ξiξ j

 , ‖A‖L∞ ≤ γ
−1, (1.1)

for some γ ∈ (0, 1], and all ξ ∈ Cn+1, x ∈ Rn. Moreover, throughout our paper, we shall further assume
that there exists A0, a uniformly elliptic, t-independent matrix as above, which in addition is real and

*The first author is supported by NSF grant DMS-2000048. The second author is supported by the NNSF (11771023) of
China.
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symmetric, such that
‖A − A0‖L∞ ≤ ε, (1.2)

where ε depends only on n, γ.

If we assume f ∈ C∞0 (Rn), then the Dirichlet problemLu = 0 in Rn+1
+

lim
t→0

u(·, t) = f ,
(1.3)

has a unique solution u ∈ Ẇ1,2(Rn+1
+ ), the space of functions modulo constants with seminorm given by

the norm of ∇u in L2(Rn+1
+ ), and the Dirichlet-to-Neumann map, defined by

f → Λ( f ) :=
∂u
∂νA

= ∂νAu := −en+1 · A(∇u)
∣∣∣∣∣
t=0

,

extends to a mapping from Ḣ1/2(Rn) � I1/2(L2(Rn)) to Ḣ−1/2(Rn), where Ḣ−1/2(Rn) denotes the dual
space of the fractional Sobolev space Ḣ1/2(Rn) (see [HKMP]); here I1/2 denotes the usual 1/2 order ho-
mogeneous fractional integral operator (i.e., Riesz potential). We also define the homogeneous Sobolev
space L̇2

1(Rn) to be the completion of C∞0 (Rn) with respect to the seminorm ‖∇ f ‖2. For convenience, we
set Ḣ1(Rn) := L̇2

1(Rn), and we define the inhomogeneous version by H1(Rn) = L2(Rn) ∩ Ḣ1(Rn). For
ε > 0 small enough, depending only on n and γ, we obtain that

Λ : Ḣ1(Rn)→ L2(Rn). (1.4) .

In fact, (1.4) is an immediate consequence of the solution of the Regularity problem given in [AAAHK,
Theorem 1.14].

We let C0,1(Rn) denote the space of Lipschitz functions, with norm

‖g‖C0,1(Rn) := sup
x,y∈Rn: x,y

|g(x) − g(y)|
|x − y|

.

Now we can state our main results as follows. The first generalizes the classical commutator theorem
of A. P. Calderón [Ca].

Theorem 1.1 Suppose that A satisfies (1.1) and (1.2) with ε sufficiently small, depending on dimension
and ellipticity. Then, for any f ∈ L2(Rn) and g ∈ C0,1(Rn),

‖[Λ, g]( f )‖L2(Rn) ≤ C‖ f ‖L2(Rn)‖g‖C0,1(Rn), (1.5)

where the constant C depends only on n and γ.

Theorem 1.2 Suppose that A satisfies the hypotheses of Theorem 1.1. Then, for any f ∈ L∞(Rn) and
g ∈ Ḣ1(Rn),

‖[Λ, g]( f )‖L2(Rn) ≤ C‖ f ‖L∞(Rn)‖g‖Ḣ1(Rn), (1.6)

where the constant C depends only on n and γ.

Analogous results were previously obtained in [KLS], for the Laplacian in a Lipschitz domain, as part
of the authors’ study of homogenization. Our results, with A real and symmetric, include this case, by
a well-known pullback mechanism. A different generalization of the results in [KLS] has been obtained
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in [Sh], for elliptic systems in Lipschitz domains, with Hölder continuous coefficients. Neither our work
nor that of [Sh] subsumes the other. The approach to these commutator results in both papers [KLS]
and [Sh], is based on a bilinear estimate of Dahlberg [D], and it’s extension in [Sh] to certain variable
coefficient elliptic systems. In [H], the first author of this paper established Dahlberg’s bilinear estimate
for the class of second-order elliptic operators enjoying the same assumptions that we impose here, i.e.,
the matrix A satisfies (1.1) and (1.2) with ε small enough, in the upper half-space. The latter result, along
with layer potential technology for the operators under consideration, will allow us to follow the strategy
in [KLS] and [Sh], to obtain the stated theorems.

Remark 1. In our Theorem 1.2, as compared to its analogue [Sh, Theorem 1.2], we obtain an estimate in
terms of the L∞ norm of the boundary data, as opposed to that of the solution u itself, since we establish
an Agmon-Miranda maximum principle for our solutions (see [Sh, Remark 1.4], and Section 4 below).

The paper is organized as follows. In the next section we discuss certain preliminaries. In Section 3,
we prove Theorem 1.1. In Section 4, we establish an Agmon-Miranda maximum principle for the class
of operators under consideration, which we then use in Section 5 to give the proof of Theorem 1.2.

2 Preliminaries

We begin by setting some notational conventions. For convenience, we often write B . D, and B ≈ D, to
mean that there exists a positive constant C, depending only on dimension and the quantitative hypotheses
of our theorems, such that respectively, B ≤ CD, and C−1D ≤ B ≤ CD. We normally use Q to denote
cubes in Rn, and for λ > 0, we let λQ be the concentric dilate of Q with side length λ`(Q).

Let us now recall the De Giorgi-Nash-Moser estimates: under the same assumptions as in Theorem
1.1 (in fact t-independence is not required), there is a constant C and an exponent α > 0, both depending
only on dimension and ellipticity, such that for any ball B = B(X,R), if Lu = 0 in 2B = B(X, 2R), then

|u(Y) − u(Z)| ≤ C
(
|Y − Z|

R

)α (?
2B
|u|2

)1/2

, (DGN)

whenever Y,Z ∈ B, and

sup
Y∈B
|u(Y)| ≤ C

(?
2B
|u|2

)1/2

. (M)

As is well known, these results may be found in [DG, M, N] in the case of real coefficients; the extension
to the case of complex perturbations of real coefficients is due to Auscher [A] (see Theorem 4.1 below).

We shall make use of the theory of layer potential operators associated to an operator L = −div A∇
as in (1.1), 1.2). Let E(x, t, y, s) = EL(x, t, y, s) be the fundamental solution of L. The existence of the
fundamental solution in our setting is given in [HK]. By t-independence of our coefficients, we have that

E(x, t, y, s) = E(x, t − s, y, 0). (2.1)

The single and double layer potential operators associated to L are defined, respectively, by

St f (x) = SLt f (x) :=
∫
Rn

E(x, t, y, 0) f (y)dy, t ∈ R, x ∈ Rn,

Dt f (x) = DLt f (x) :=
∫
Rn
∂νA∗E∗(y, 0, x, t) f (y)dy, t , 0, x ∈ Rn, (2.2)
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where A∗ is the hermitian adjoint of A and

∂νA∗E
∗(y, 0, x, t) = −

n+1∑
j=1

A∗n+1, j(y)
∂E∗

∂y j
(y, 0, x, t) = −en+1 · A∗(y)∇y,sE∗(y, s, x, t)

∣∣∣∣∣
s=0
. (2.3)

Here, E∗ = EL∗ denotes the fundamental solution of L∗, the hermitian adjoint of L, and we have

E∗(y, s, x, t) = E(x, t, y, s). (2.4)

We shall use the following notations: D j := ∂
∂x j

= ∂x j , 1 ≤ j ≤ n + 1, where xn+1 := t (so that Dn+1 = ∂t),
and for a vector v = (v1, v2, ...vn+1) ∈ Rn+1, we let v‖ := (v1, v2, ...vn, 0) � (v1, v2, ...vn) denote the
projection of v onto Rn × {0}. Similarly, we define ∇‖ := (∂x1 , ..., ∂xn). We shall set

(St∇) f (x) :=
∫
Rn
∇y,sE(x, t, y, s)

∣∣∣
s=0 f (y)dy,

so that
(StDn+1) = −∂tSt , (St∇‖) ~f = −St

(
div‖ ~f

)
, (2.5)

for, say, ~f ∈ C1
0(Rn,Cn). For all m ≥ 1, it follows from (2.1)-(2.5) that

adj
(
∇∂m−1

t (St∇‖)
)

= ±∇‖∂
m−1
t (SL

∗

−t ∇) (2.6)

(here the choice of “plus” or “minus” depends on m), and

adj(∇∂m−1
t Dt) = ±∂νA∗∂

m−1
t (SL

∗

−t ∇), (2.7)

where SL
∗

t denotes the single layer potential with associated to L∗, the adjoint co-normal derivative is
defined by ∂νA∗ = −

∑n+1
j=1 A∗n+1, j D j, and adj(T ) denotes the hermitian adjoint of an operator T acting in

Rn.

Remark 2. By [AAAHK, Theorems 1.12 and 1.13 ], for L = div A∇, with A satisfying (1.1) and (1.2)
with ε small enough depending on dimension and ellipticity, we have the layer potential bounds*

sup
t,0

(
‖∇SLt f ‖L2(Rn) + ‖(SLt ∇) f ‖L2(Rn)

)
. ‖ f ‖L2(Rn) .

In particular, this yields L2 boundedness of the double layer potential Dt, uniformly in t. Of course,
analogous results hold with L replaced by its adjoint L∗.

Given x0 ∈ R
n and β > 0, define the cone Γβ(x0) := {(x, t) ∈ Rn+1

+ ; |x0 − x| < βt}, then for measurable
function F : Rn+1

+ → C, the non-tangential maximal operator Nβ
∗ is defined

Nβ
∗ (F)(x0) := sup

(x,t)∈Γβ(x0)
|F(x, t)| ,

and note that when β = 1, we shall often simply write Γ = Γ1, and N∗(F) := N1
∗ (F). We recall that the

L2-norms of N∗ = N1
∗ and Nβ

∗ are equivalent for any β > 0 (see [FS]). Following [KP], we also introduce

Ñ∗(F)(x0) := sup
(x,t)∈Γ1(x0)

(?
|(x,t)−(y,s)|<t/4

|F(y, s)|2dyds
)1/2

,

*These bounds continue to hold in the absence of condition (1.2) (for a suitable definition of the layer potentials): see [R].
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where the symbol
>

denotes the mean value, i.e.
>

E f ≡ |E|−1
∫

E f . We say u → f n.t. to mean that for
a.e. x ∈ Rn, lim(y,t)→(x,0) u(y, t) = f (x), where the limit runs over (y, t) ∈ Γ(x), and in the sequel, we shall
use the notation 9 · 9 as a short-hand for the T 2

2 tent-space norm (see [CMS]), i.e.,

9F9 :=
("

Rn+1
+

|F(x, t)|2
dxdt

t

)1/2

.

Next, we state a technical lemma concerning the single layer potential, as well as general solutions.
The lemma will follow essentially immediately from known results, and will be useful in the sequel.

Lemma 2.1 Suppose that A,L satisfy the same hypotheses as in Theorem 1.1. Let f ∈ L2(Rn,Cn+1),
f ∈ L∞(Rn,Cn+1), and let m ≥ 1. Then

sup
t>0
‖tm∇∂m−1

t (SLt ∇) f‖L2(Rn) . ‖f‖L2(Rn) , (2.8)

9tm∇∂m−1
t (SLt ∇) f9 . ‖f‖L2(Rn), (2.9)

and

sup
Q

1
|Q|

∫ `(Q)

0

∫
Q

∣∣∣tm∇∂m−1
t (SLt ∇) f(x)

∣∣∣2 dxdt
t
. ‖f‖2L∞(Rn) . (2.10)

Furthermore, for every cube Q and all 0 < t ≤ 16 `(Q),

‖tm∇∂m−1
t (SLt ∇) (f12k+1Q\2kQ)‖2L2(Q) . 2−nk22k

(
t

2k`(Q)

)2m

‖f‖2L2(2k+1Q\2kQ), ∀ k ≥ 1. (2.11)

Finally, suppose that Lu = 0 in Rn+1, with supt>0 ‖u(·, t)‖2 < ∞. Then

‖|tm∇∂m−1
t u‖| . sup

t>0
‖u(·, t)‖2. (2.12)

In all of these estimates, the implicit constants depend on m, n, and ellipticity. Of course, the correspond-
ing estimates hold also in the lower half-space, and with L replaced by L∗.

Sketch of Proof. Given the L2 bounds discussed in Remark 2, the case m = 1 of estimate (2.8) is
[AAAHK, Lemma 2.11] (we caution the reader that the exponents in [AAAHK, Lemma 2.11] are written
differently, so that the case m = −1 there corresponds to our case m = 1). The case m > 1 may be
reduced to the case m = 1 by an induction argument which exploits the “Caccioppoli on slices” estimate
in [AAAHK, Proposition 2.1]. We omit the details.

For m = 1, the square function bound (2.9) is [HMaM, Lemma 3.1], the Carleson measure estimate
(2.10) is [HMaM, Corollary 3.3, estimate (3.4)], and the square function bound (2.12) is [H, Lemma 3.1].
For each of (2.9), (2.10), and (2.12), the case m > 1 may be reduced to the case m = 1 by an induction
argument that uses Caccioppoli’s inequality in Whitney boxes. We omit the details.

Finally, using again the “Caccioppoli on slices” estimate in [AAAHK, Proposition 2.1], one may
reduce estimate (2.11) to [AAAHK, Lemma 2.9 (i)]. Again we omit the details. �

We shall also require some of the main results in [AAAHK], which we summarize as follows:

Theorem 2.2 ([AAAHK, Theorem 1.14]). Suppose thatL := −div(A∇), A and A0 are defined as above,
then the Dirichlet problem 

Lu = 0 in Rn+1
+

lim
t→0

u(·, t) = f in L2(Rn) and n.t.

||N∗(u)||2 + 9t∇u9 . ‖ f ‖2,

(D)L2
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and the Regularity problem 
Lu = 0 in Rn+1

+

lim
t→0

u(·, t) = f in L̇2
1(Rn) n.t.

||Ñ∗(∇u)||2 . ‖∇‖ f ‖2,

(R)L2

are both solvable if ε is sufficiently small, depending only on n and γ. The solution of (D)L2 is unique and
the solutions of (R)L2 are unique modulo constants. Analogous conclusions hold for L∗.

3 Proof of Theorem 1.1

Under the same assumptions of our main theorems, using the results of [AAAHK], we see that if u is the
solution of the Regularity problem (R)L2 , with data f ∈ Ḣ1(Rn), then

‖Λ f ‖2 :=
∥∥∥ ∂u
∂νA

∥∥∥
2 . ‖Ñ∗(∇u)‖2 . ‖∇‖ f ‖2,

i.e., (1.4) holds for the Dirichlet-to-Neumann map Λ.

Remark 3. We note that for f ∈ H1(Rn) = L2(Rn) ∩ Ḣ1(Rn), we may solve both (R)L2 and (D)L2 with
boundary data f , and the respective resulting solutions uR amd uD are the same†. This fact follows from
the “compatible solvability” of the solutions constructed in [HKMP, Theorem 1.11].

The commutator of Λ with a function g is defined by

[Λ, g]( f ) := Λ(g f ) − gΛ( f ).

Note that for g f ∈ H1(Rn) and f ∈ H1(Rn), both Λ(g f ) and gΛ( f ) are well-defined. Let ϕ ∈ C∞0 (B(0, 1)),
such that ϕ is radial, 0 ≤ ϕ ≤ 1 and

∫
Rn ϕ = 1, and set

V(x, t) := Pt g := ϕt ∗ g , (3.1)

where ϕt(x) = t−nϕ( x
t ). Observe that Pt thus defines a nice approximate identity. In particular, Pt1 = 1

and ∇Pt1 = 0. Let us note for future reference the elementary fact that

|∇V(x, t)| = |ϕt ∗
(
∇‖g

)
(x) + (∂tϕt) ∗ (g −Cx,t)(x)| .

?
|x−y|<t

|∇‖g(y)| dy , (3.2)

by Poincare’s inequality, where we have chosen Cx,t =
>
|x−y|<t g(y) dy,.

For any h ∈ C∞0 (Rn), by Theorem 2.2, we let u be the solution of (D)L2 with boundary data f , u f g

be the solution of (D)L2 with boundary data f g and H be the solution of (D)L
∗

2 with boundary data h.
Thus, according to the definition of the Dirichlet-to-Neumann map Λ, along with a standard variational

†More precisely, they are equal modulo an additive constant.
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formulation of the divergence theorem for solutions,∫
Rn

[Λ, g] f h =

∫
Rn

∂u f g

∂ν
h −

∫
Rn

∂u
∂ν

gh

=

"
Rn+1

+

A∇u f g∇H −
"
Rn+1

+

A∇u∇HV −
"
Rn+1

+

A∇u∇VH

=

"
Rn+1

+

∇u f gA∗∇H −
"
Rn+1

+

∇uA∗∇HV −
"
Rn+1

+

A∇u∇VH

=

"
Rn+1

+

∇u f gA∗∇H −
"
Rn+1

+

∇(uV)A∗∇H +

"
Rn+1

+

u∇VA∗∇H −
"
Rn+1

+

A∇u∇VH

=

∫
Rn

f g
∂H
∂νA∗

−

∫
Rn

f g
∂H
∂νA∗

+

"
Rn+1

+

u∇VA∗∇H −
"
Rn+1

+

A∇u∇VH

=

"
Rn+1

+

u∇VA∗∇H −
"
Rn+1

+

A∇u∇VH,

(3.3)
where in the next-to-last step we have used the fact that u f g(·, 0) = f g = u(·, 0)V(·, 0).

We may assume that f ∈ C∞0 (Rn), by density of the latter space in L2(Rn). Since g ∈ C0,1(Rn), if V is
defined as above, then ‖∇V‖L∞ . ‖∇‖g‖L∞ and

dµ = |t∇2V(x, t)|2
dxdt

t
is a Carleson measure on Rn+1

+ with norm ‖µ‖c . ‖∇‖g‖L∞ . (3.4)

Our goal is to show that ∣∣∣∣∣ ∫
Rn

[Λ, g] f h
∣∣∣∣∣ . ‖∇‖g‖L∞ ‖ f ‖2 ‖h‖2, ∀ h ∈ C∞0 (Rn). (3.5)

To prove (3.5), we see from the equality (3.3) that∫
Rn

[Λ, g] f h =

"
Rn+1

+

u∇VA∗∇H −
"
Rn+1

+

A∇u∇VH =: I + J.

We observe that the two terms, I and J, are of essentially the same type, since u is the solution of (D)L2
with boundary data f ∈ L2(Rn), while H is the solution of (D)L

∗

2 with boundary data h ∈ L2(Rn). We
now claim that it suffices to prove the estimate∣∣∣∣∣"

Rn+1
+

Ã∇U · W
∣∣∣∣∣ . (
‖N∗(U)‖2 + 9t∇U9

) (
‖N∗(W)‖2 + 9t∇W9

)
, (3.6)

where Ã satisfies (1.1) and (1.2), and where L̃U := −div Ã∇U = 0 in Rn+1
+ . Indeed, taking (3.6) for

granted momentarily, we may apply the latter estimate to term J in the case that the values of U, Ã,W
are respectively u, A,∇VH, or to term I with these values given respectively by H, A∗,∇Vu. In the former
scenario, by Theorem 2.2, we have

‖N∗(u)‖2 + 9t∇u9 . ‖ f ‖2,

‖N∗(W)‖2 = ‖N∗(∇VH)‖2 . ‖∇V‖L∞‖N∗(H)‖2 . ‖∇‖g‖L∞‖h‖2 ,

and

9t∇W9 .
(
9t∇V∇H 9 + 9 t∇2VH

)
.

(
‖∇V‖L∞ 9 t∇H 9 +‖∇‖g‖L∞‖N∗(H)‖2

)
. ‖∇‖g‖L∞‖h‖2,
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where we used (3.4). A similar discussion is applicable to the other case, and (3.5) follows.

It remains to prove (3.6). We will actually prove a slightly sharper version of (3.6), which is a
generalization of the Dahlberg-type bilinear estimate in [H]. For notational convenience, we shall remove
the “tilde”, and just write L = −div A∇, where A satisfies (1.1) and (1.2), and we shall replace U by u,
andW by its complex conjugate. Recall the definition of the standard Y1,2 space:

Y1,2(Rn+1
+ ) :=

{
u ∈ L

2(n+1)
(n+1)−2 (Rn+1

+ ) : ∇u ∈ L2(Rn+1
+ )

}
.

Lemma 3.1 Let A,L be as above, and let M be an arbitrary bounded (n + 1) × (n + 1) matrix-valued
function on Rn. Suppose that W ∈ W1,2

loc (Rn,Cn+1), and that u ∈ Y1,2(Rn+1
+ ) is a solution of L u =

0 in Rn+1
+ . Then∣∣∣∣∣"

Rn+1
+

M∇u · W
∣∣∣∣∣ . ‖M‖L∞(Rn) sup

t>0
‖u(·, t)‖L2(Rn)

(
‖N∗(W)‖L2(Rn) + 9t∇W9

)
.

Of course, Lemma 3.1 (with u = U) implies (3.6), since trivially supt>0 ‖u(·, t)‖L2(Rn) ≤ ‖N∗(u)‖L2(Rn).

Proof. Without loss of generality, we may suppose that ‖M‖L∞(Rn) ≤ 1. The special case that M = I, the
(n + 1)× (n + 1) identity matrix, is proved in [H], and the argument there may be readily adapted, mutatis
mutandis, to prove this version. For the sake of self-containment, and because will shall need to pursue
this point anyway to prove Theorem 1.2, we shall present a slightly different proof (similar but with a
small modification) to that of [H]. The proof of Theorem 1.1 will still be a rather routine adaptation of
the arguments in [H]. In the case of Theorem 1.2, matters will be a bit more subtle. For now, as in [H],
it is enough to show

sup
0<ρ�1

Mρ := sup
0<ρ�1

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/θ

θ

∫
Rn

M(x)∇u(x, t) · W(x, t)dxdt
∣∣∣∣∣dθ

. sup
t>0
‖u(·, t)‖L2(Rn)

(
‖N∗(W)‖2 + 9t∇W9

)
. (3.7)

We may assume supt>0 ‖u(·, t)‖L2(Rn) + ‖N∗(W)‖2 + 9t∇W9 < ∞, since otherwise (3.7) is trivial.

For each fixed ρ, integrating by parts in t, we obtain the bound

Mρ ≤

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/θ

θ

∫
Rn

M(x)∇∂tu(x, t) · W(x, t) dx tdt
∣∣∣∣∣dθ

+

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/θ

θ

∫
Rn

M(x)∇u(x, t) · ∂tW(x, t) dx tdt
∣∣∣∣∣dθ + “B”

=: I + II + “B”. (3.8)

Here, the term “B” is a sum of two boundary terms, satisfying

“B” .
(
sup
r>0

? 2r

r

∫
Rn

r2|∇u(x, t)|2dxdt
)1/2

sup
r>0
‖W(·, r)‖2 . sup

r>0
‖u(·, r)‖2 sup

r>0
‖W(·, r)‖2,

as desired, where in the integral involving ∇u, we have split Rn into cubes of side length ≈ r and used
Caccioppoli’s inequality. For term II in (3.8), by Cauchy-Schwarz we have the bound

II . 9t∇u 9 9t∇W9 . sup
t>0
‖u(·, t)‖L2(Rn) 9 t∇W9,
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where we have used the case m = 1 of (2.12) to obtain the inequality 9t∇u9 . supt>0 ‖u(·, t)‖L2(Rn).

We turn now to term I. By the change of variable t → 2t, and an integration by parts in t,

I = 2
? 2ρ

ρ

∣∣∣∣∣ ∫ 1/(2θ)

θ/2

∫
Rn

M(x)∇∂tu(x, 2t) · W(x, 2t) dx tdt
∣∣∣∣∣dθ

.

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/(2θ)

θ/2

∫
Rn

M∇∂2
t u(·, 2t) · W(·, 2t) dx t2dt

∣∣∣∣∣dθ
+

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/(2θ)

θ/2

∫
Rn

M∇∂tu(·, 2t) · ∂tW(·, 2t) dx t2dt
∣∣∣∣∣dθ + B̃ =: I1 + I2 + B̃ ,

where B̃ is a sum of boundary terms which may be treated like “B” above (now using Caccioppoli twice).
We handle I2 like term II above: by Cauchy-Schwarz, and the case m = 2 of (2.12), we have

I2 . 9t2∇∂tu 9 9t∇W9 . sup
t>0
‖u(·, t)‖L2(Rn) 9 t∇W 9 .

To bound term I1, we integrate by parts again‡ in t, to obtain

I1 . I′1 + I′′1 ,

where

I′1 =

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/(2θ)

θ/2

∫
Rn

M(x)∇∂3
t u(x, 2t) · W(x, 2t) dx t3dt

∣∣∣∣∣dθ , (3.9)

and

I′′1 =

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/(2θ)

θ/2

∫
Rn

M∇∂2
t u(·, 2t) · ∂tW(·, 2t) dx t3dt

∣∣∣∣∣dθ .
Term I′′1 can be treated just like terms II and I2, using Cauchy-Schwarz and the case m = 3 of (2.12). We
omit the now familiar details.

It remains now only to consider I′1. With t > 0 fixed, set ft(x) = ∂tu(x, t), and note that

‖ ft‖L2(Rn) . t−1 sup
τ>0
‖u(·, τ)‖L2(Rn) < ∞ ,

by the Moser-type local boundedness assumption (M) above, and Cacioppoli’s inequality. Moreover, by
t-independence of the coefficients, ∂tu(·, t + ·) is a solution in Rn+1

+ , so by Green’s formula§, we can write

∂tu(·, t + s) = −Ds( ft) + Ss(∂νA(∂tu(·, t + ·)). (3.10)

Observe that, at least formally, using t-independence and the fact that ∂tu is a solution,

∂νA (∂tu(·, t + ·)) = −

n+1∑
j=1

Dn+1

(
An+1, j D ju(·, t + s)

)∣∣∣
s=0

=

n∑
i=1

n+1∑
j=1

Di

(
Ai, jD ju(x, t + s)

)∣∣∣
s=0 = ∇‖ ·

(
A∇u(·, t)

)
‖ ,

‡The point is to accumulate enough t-derivatives in order to ensure sufficient decay; see (3.12) below.
§See, e.g., [BHLMP, Theorem 4.16] for a justification of the Green formula in this setting (in fact, in a more general setting).
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where we interpret the identity in the weak sense on Rn, see [AAAHK, Lemma 2.15]. Consequently,
setting s = t in (3.10), we get(

∇∂3
t u

)
(·, 2t) = −

(
∇∂2

tDt
)

( ft) −
(
∇∂2

t
(
St∇‖

)) ((
A∇u(·, t)

)
‖

)
, (3.11)

where we have used (2.5). We may then obtain the bound∣∣∣∣∣∫
Rn

M(x)∇∂3
t u(x, 2t) · W(x, 2t) dx

∣∣∣∣∣ ≤ K(t) + L(t) ,

where, by (2.7) and the definition of ft,

K(t) :=
∣∣∣∣∣∫
Rn

M(x)
(
∇∂2

tDt
)

( ft)(x) · W(x, 2t) dx
∣∣∣∣∣ =

∣∣∣∣∣∫
Rn
∂tu(·, t)

(
∂νA∗∂

2
t (SL

∗

−t ∇)
) (

M∗W(·, 2t)
)

dx
∣∣∣∣∣ ,

and by (2.6)

L(t) :=
∣∣∣∣∣∫
Rn

M(x)
(
∇∂2

t
(
St∇‖

)) ((
A∇u(·, t)

)
‖

)
(x) · W(x, 2t) dx

∣∣∣∣∣
=

∣∣∣∣∣∫
Rn

(
A∇u(·, t)

)
‖ ·

(
∇‖∂

2
t (SL

∗

−t ∇)
)

(M∗W(·, 2t)) dx
∣∣∣∣∣ .

In turn, plugging these bounds into (3.9) and using Cauchy-Schwarz, we obtain the bound

I′1 .
∫ ∞

0

(
K(t) + L(t)

)
tdt

.

(∫ ∞

0

∫
Rn

∣∣∣t∇u(x, t)
∣∣∣2 dxdt

t

)1/2 (∫ ∞

0

∫
Rn

∣∣∣∣∣t3
(
∇∂2

t
(
SL

∗

−t ∇
)) (

M∗W(·, 2t)
)

(x)
∣∣∣∣∣2 dxdt

t

)1/2

=: A × B .

Observe that A = 9t∇u9, and since u is a solution, by the case m = 1 of (2.12), we have

A = 9t∇u9 . sup
t>0
‖u(·, t)‖L2(Rn) .

Consider now the factor B. Recall that our goal is to show that B . ‖N∗(W)‖L2(Rn) + 9t∇W9. To this
end, we set

Θt := t3∇∂2
t
(
SL

∗

−t ∇
)
,

and as above, let Pt be a nice approximate identity with a smooth, radial, compactly supported kernel.
We then write

Θt
(
M∗W(·, 2t)

)
(x) = Θt M∗(x) PtW(·, 2t)(x) + RtW(·, 2t)(x) ,

where for a function f valued in Cn+1 (in particular, for f = W(·, 2t) with t momentarily fixed), we define

Rt f(x) := Θt
(
M∗f

)
(x) − Θt M∗(x) Pt f(x) .

(For future reference, we observe that one may define Rt on (n + 1) × (n + 1) matrix-valued functions in
the obvious way). We then have

B ≤ 9
(
Θt M∗

) (
PtW(·, 2t)

)
9 + 9 RtW(·, 2t) 9 .
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By the Carleson measure estimate (2.10), applied to L∗, in the lower half space, with m = 3, we have

9
(
Θt M∗

) (
PtW(·, 2t)

)
9 . ‖N∗(PtW(·, 2t))‖L2(Rn) . ‖N

3
∗ (W)‖L2(Rn) . ‖N∗(W)‖L2(Rn) ,

where in the last step we have used the well-known observation of [FS] that non-tangential maximal
functions defined using cones with different apertures are equivalent in Lp norm.

Finally, we consider the contribution of the remainder term Rt. By (2.11) applied to L∗, in the lower
half-space, with m = 3,

‖Θt (f12k+1Q\2kQ)‖2L2(Q) . 2−nk22k
(

t
2k`(Q)

)6

‖f‖2L2(2k+1Q\2kQ) . 2−nk
(

t
2k`(Q)

)4

‖f‖2L2(2k+1Q\2kQ) , (3.12)

uniformly for each k ≥ 1, and 0 < t ≤ 16 `(Q). In addition, by (2.8), Θt is bounded on L2(Rn,Cn+1),
uniformly in t > 0. By [AAAHK, Lemma 3.11] and the definition of Pt, these facts continue to hold
with Rt in place of Θt. In turn, this allows one to define Rt1 as an element of L2

loc, where 1 denotes the
(n + 1)× (n + 1) identity matrix, and by construction Rt1 = 0, since the approximate identity Pt preserves
constants. Thus, we may apply [AAAHK, Lemma 3.5] to Rt, to deduce that∫

Rn
|RtW(x, 2t)|2dx . t2

∫
Rn
|∇xW(x, 2t)|2dx.

Consequently,
9RtW(·, 2t)9 . 9t∇W(·, 2t)9 ,

as desired. This completes the proof of Lemma 3.1, and hence that of Theorem 1.1. �

4 Solvability with L∞ data, and an Agmon-Miranda Maximum Principle

Recall the following result of Auscher [A]:

Theorem 4.1 ([A]) Let A, A0 and L be as above, but possibly t-dependent. If ε is small enough, depend-
ing only on n and γ, then there is a positive exponent α and a constant C (each depending only on n and
γ) such that, given u solving Lu = 0 in a ball 2B := B(X, 2R), with R > 0,

|u(Y) − u(Z)| ≤ C
(
|Y − Z|

R

)α (?
2B
|u|2

)1/2

, ∀ Y,Z ∈ B = B(Y,R). (4.1)

(Here, capital letters denote points in Rn+1, e.g., X := (x, t)).

From Theorem 4.1, we may deduce the following.

Corollary 4.2. Let A, A0 and L be as above, but possibly t-dependent. If ε is small enough, depending
only on n and γ, then there is a positive exponent α and a constant C (each depending only on n and
γ) such that, given any cube Q ⊂ Rn, and its double 2Q, along with their associated Carleson boxes
RQ := Q × (0, l(Q)), and R2Q := 2Q × (0, 2l(Q)), and a solution u ∈ W1,2(R2Q), vanishing in the trace
sense on 2Q, then

|u(x, t)| ≤ C
(

t
`(Q)

)α  1
`(Q)n+1

"
R2Q

|u|2
1/2

, ∀ (x, t) ∈ RQ. (4.2)
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Proof. The proof follows immediately from Theorem 4.1 by making an odd reflection across the bound-
ary 2Q × {0}. We omit the details. �

Corollary 4.3. Let A, A0 and L be as in Theorems 1.1, 1.2 (in particular, t-independent), and 4.1, with
ε small enough that (D)L2 and (R)L2 are both solvable (see Theorem 2.2). Let f ∈ L2(Rn), and let u be
the solution of (D)L2 with boundary data f . If f vanishes on 2Q, then the conclusion of Corollary 4.2
continues to hold.

Proof. Note that if we were to assume f ∈ H1(Rn), then the solution of (R)L2 with boundary data f
satisfies the assumptions in Corollary 4.2, thus (4.2) holds. Moreover, as we have previously mentioned,
by [HKMP], the problems (D)L2 and (R)L2 are compatibly solvable, in particular, for data f ∈ H1(Rn), the
solution of (D)L2 with data f equals the solution of (R)L2 with data f (the latter is unique only up to an
additive constant, but will be equal to the former for a suitable choice of this constant).

Since f ∈ L2(Rn), and vanishes on 2Q, we can approximate f in L2 norm by fk ∈ C∞ ∩H1(Rn), with
each fk vanishing on 3

2 Q. Let uk denote the solution to (D)L2 , and compatibly, to (R)L2 , with data fk. Since
Corollary 4.2 clearly holds with 3

2 Q in place of 2Q, we find that (4.2) holds for each uk, uniformly in k.
We may then pass to the limit as follows. Observe that (4.2) holds with u replaced by uk, and that by the
L2 estimates for (D)L2 ,

sup
t>0
‖u(·, t) − uk(·, t)‖2 . ‖ f − fk‖2 → 0, as k → ∞.

Consequently, for (x, t) ∈ Rn+1
+ fixed, combining the latter estimate with the interior Moser-type local

boundedness estimate we obtain

|u(x, t) − uk(x, t)| .
(? 2t

t/2

?
|x−y|<t

|u(y, s) − uk(y, s)|2 dyds
)1/2

.

(
t−n
? 2t

t/2

∫
Rn
|u(y, s) − uk(y, s)|2 dyds

)1/2

→ 0 , as k → ∞.

Similarly, for any fixed cube Q ⊂ Rn,"
R2Q

|u − uk|
2 ≤

∫ `(Q)

0

∫
Rn
|u(y, s) − uk(y, s)|2 dyds → 0 , as k → ∞.

We conclude that (4.2) holds for u. �

In the sequel, let
∆(x, r) := {y ∈ Rn : |x − y| < r}

denote the surface ball of radius r and center x, on Rn � ∂Rn+1
+ .

Lemma 4.4. Let A,L be as in Corollary 4.3. Let x ∈ Rn, and 0 < t < 1
100 R, with R ≤ R′ < ∞. Suppose

that g ∈ L∞ with
supp(g) ⊂ S R,R′ = S R,R′(x) := ∆(x,R′) \ ∆(x,R).

Let v solve (D)L2 with boundary data g. Then there exists a constant C = C(n, γ) such that

|v(x, t)| ≤ C
( t
R

)α
‖g‖L∞ , (4.3)

uniformly in R′, for R′ ≥ R, where α > 0 is the exponent in Corollaries 4.2 and 4.3.
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Proof. Set
∆k = ∆k(x) := ∆(x, 2k) := {y ∈ Rn : |x − y| < 2k}, k = 0, 1, 2, ...,

and
S k = ∆k+1 \ ∆k, k ∈ Z.

Thus

S R,R′ ⊂

k(R′)⋃
k=k(R)

S k,

where 2K(R) ≈ R and 2K(R′) ≈ R′. Consequently,

v =

k(R′)∑
k=k(R)

vk,

where vk solves (D)L2 with boundary data gk := g1S k . By Corollary 4.3 and the solvability of (D)L2 , we
have

|vk(x, t)| .
( t
2k

)α ? 2k

0

?
∆k

|vk|
2

1/2

.
( t
2k

)α (
2−kn

∫
S k

|g|2
)1/2

.
( t
2k

)α
‖g‖L∞ .

Summing up k ≥ k(R), we get (4.3).

�

We are now able to prove the following.

Proposition 4.5. Let A, A0 and L be as in Corollary 4.3. Let f ∈ L∞(Rn). Then there is a solution
u of Lu = 0 in Rn+1

+ such that u(·, 0) = f in the sense of non-tangential convergence, satisfying the
Agmon-Miranda maximum principle

‖u‖L∞(Rn+1
+ ) ≤ C‖ f ‖L∞(Rn),

where C = C(n, γ).

Proof. Given a point x0 ∈ R
n, we define the dyadic surface balls centered at x0 onRn � Rn×{0} = ∂Rn+1

+

by
∆k = ∆k(x0) := ∆(x0, 2k) := {y ∈ Rn : |x0 − y| < 2k}, k ∈ Z

and set
S k = ∆k+1 \ ∆k, k ∈ Z ,

so that ∪kS k = Rn \ {0}.

We let fk := f 1S k and uk be the solution of (D)L2 with boundary data fk. Define

f N :=
N∑

k=−∞

fk, uN :=
N∑

k=−∞

uk.

Clearly, uN is the unique solution of (D)L2 with boundary data f N . To prove the proposition, we will
show that the limit

u := lim
N→∞

uN
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exists at each point of Rn+1
+ and satisfies the conclusion of the theorem. Moreover, u is well-defined, in

the sense that if u′ is constructed in the same way as u, but for a different center x′0, then u = u′. To this
end, we fix a point (x, t) ∈ Rn+1

+ and suppose that 2M ≥ 2N � t + |x − x0|. Then by the definition of f N ,

supp( f M − f N) ⊂ S R,R′(x) ,

where R ≈ 2N and R′ ≈ 2M. By Lemma 4.4,

|uN(x, t) − uM(x, t)| ≤ C
( t
2N

)α
‖ f ‖L∞(Rn) → 0, as N,M → 0. (4.4)

Thus, uN converges pointwise, and in fact, uniformly on compacta, in Rn+1
+ , hence also in L2

loc(Rn+1
+ ). By

Caccioppoli’s inequality applied to uN − uM, we further see that uN converges in W1,2
loc (Rn+1

+ ), whence the
limit u also solves Lu = 0 in Rn+1

+ .

Let us now show that u satisfies the required properties.

Definition of u is independent of center x0. Fix two distinct points x1, x2 ∈ R
n and construct the cor-

responding f N,i, uN,i, i = 1, 2, and ui = limN→∞ uN,i, i = 1, 2 as above, with x1, x2 in place of x0. Let
(x, t) ∈ Rn+1

+ and consider M,N such that

2M ≥ 2N � t + |x − x1| + x − x2| .

Then
supp( f M,1 − f N,2) ⊂ S R,R′ ,

where R ≈ 2N and R′ ≈ 2M. Again we invoke Lemma 4.4 to get

|uN,2(x, t) − uM,1(x, t)| ≤ C
( t
2N

)α
‖ f ‖L∞(Rn) → 0, as N,M → 0. (4.5)

Therefore, uN,2 and uM,1 converge to the same limit u.

Non-tangential convergence to f . Fix x0 ∈ R
n, and build f N and uN as above, relative to the center x0.

By (D)L2 , each uN converges non-tangentially to f N , for a.e. x ∈ Rn. Thus, there is a set Z = ∪NZN ⊂ R
n,

of measure zero, such that uN converges non-tangentially to f N for every N, and at every point x ∈ Rn\Z.
Fix such an x , x0 and let ε > 0. Consider the truncated cone at x of height ε :

Γε(x) := {(y, t) ∈ Rn+1
+ : |x − y| < t < ε}.

Observe that (4.4) continues to hold with y in place of x, for (y, t) ∈ Γε(x), with ε small, and N,M large.
We therefore have for such (y, t) that

|u(y, t) − uN(y, t)| = lim
M→∞

|uM(y, t) − uN(y, t)| .
(
ε

2N

)α
‖ f ‖L∞(Rn). (4.6)

On the other hand, if we fix N so large that f N(x) = f (x) and use that uN converges non-tangentially to
f at x, then for (y, t) ∈ Γε(x), we have

|uN(y, t) − f (x)| = o(1), as ε → 0.

Letting ε → 0, we see that u(y, t)→ f (x) non-tangentially.

Agmon-Miranda maximum principle. Let (x, t) ∈ Rn+1
+ . We seek to show that

|u(x, t)| ≤ C‖ f ‖L∞ ,
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with C = C(n, γ). Since the definition of u is independent of the choice of x0 used in the construction,
we may choose x0 = x. We then define ∆k = ∆k(x), S k = S k(x), fk = f 1S k and uk as above. Choose k(t)
such that 2k(t) ≈ t and write

u =

k(t)+10∑
k=−∞

uk +

∞∑
k=k(t)+11

uk =: U1 + U2.

By Moser local boundedness and (D)L2 ,

|U1(x, t)| .
(? 2t

t/2

?
|x−y|<t

|U1(y, s)|2
)1/2

.

(
t−n

∫
|x−y|<C2k(t)

| f |2
)1/2

. ‖ f ‖L∞ ,

since 2k(t) ≈ t, where all of the implicit constants in the display depend only on dimension and ellipticity.
Furthermore, for k > k(t), by Lemma 4.4, we have

|uk(x, t)| .
( t
2k

)α
‖ f ‖L∞(Rn),

and so we may sum over k ≥ k(t) + 11 to see that |U2(x, t)| . ‖ f ‖L∞(Rn). �

Remark 4. Note that by construction, if f ∈ L∞(Rn) is compactly supported, then the solution of (D)L∞
with boundary data f , and the solution of (D)L2 with boundary data f , are the same.

We conclude this section with the following. Recall that ∆(x, r) denotes the “surface ball” centered
at x, of radius r, on Rn � ∂Rn+1

+ . Given ∆ = ∆(x, r), let R∆ := ∆× (0, r) ⊂ Rn+1
+ denote the usual Carleson

cylinder above ∆.

Proposition 4.6. Let A, A0 and L be as in Proposition 4.5 (i.e., as in Corollary 4.3). Let f ∈ L∞(Rn),
and let u ∈ L∞(Rn+1

+ ) be the solution of Lu = 0 in Rn+1
+ , with data f , constructed in Proposition 4.5. Set

dµ(x, t) := |t∇u(x, t)|2 t−1dxdt. We then have the Carleson measure estimate

‖µ‖c := sup
∆

1
|∆|

"
R∆

|t∇u(x, t)|2
dxdt

t
≤ C‖ f ‖2L∞(Rn) ,

where C depends only on dimension and ellipticity.

Proof. Given our preceding work in this section, the argument is standard, but we include it here for the
sake of completeness. Fix a surface ball ∆0 := ∆(x0, r) ⊂ Rn, set ∆k := ∆(x0, 2kr), and S k := ∆k+1 \ ∆k.
Now define fk = f 1S k , let uk solve (D)L∞ (equivalently, (D)L2 , see Remark 4) with boundary data fk, and
as in the proof of Proposition 4.5, set

f N :=
N∑

k=−∞

fk, uN :=
N∑

k=−∞

uk, (4.7)

so that uN is the solution of (D)L2 (and of (D)L∞) with boundary data f N . As noted above, uN → u in
W1,2

loc (Rn+1
+ ), hence, for each δ ∈ (0, r),∫ r

δ

∫
∆0

|t∇uN(x, t)|2
dxdt

t
→

∫ r

δ

∫
∆0

|t∇u(x, t)|2
dxdt

t
, as N → ∞.

Thus, it is enough to show that

r−n
∫ r

0

∫
∆0

|t∇uN(x, t)|2
dxdt

t
. ‖ f ‖2L∞(Rn) , (4.8)
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uniformly in N. Using the notation of (4.7), we write

uN =

0∑
k=−∞

uk +

N∑
k=1

uk = u0 +

N∑
k=1

uk ,

so that(∫ r

0

∫
∆0

|t∇uN(x, t)|2
dxdt

t

)1/2

≤

(∫ r

0

∫
∆0

|t∇u0(x, t)|2
dxdt

t

)1/2

+

N∑
k=1

(∫ r

0

∫
∆0

|t∇uk(x, t)|2
dxdt

t

)1/2

=: I0 +

N∑
k=1

Ik .

By (2.12) with m = 1, and the solvability of (D)L2 , we have

(I0)2 . ‖ f 0‖2L2(Rn) =

∫
∆(x0,2r)

| f (x)|2 dx . rn‖ f ‖2L∞(Rn) ,

as desired.

By construction, fk vanishes outside of S k, so by Corollary 4.3, uk is Hölder continuous up to the
boundary outside of S k, and we may therefore use Caccioppoli’s inequality at the boundary and then
Corollary 4.3 (i.e., inequality (4.2), but with surface balls in place of cubes), to write

(Ik)2 . r
∫ r

0

∫
∆0

|∇uk(x, t)|2 dxdt . r−1
∫ 2r

0

∫
∆(x0,2r)

|uk(x, t)|2 dxdt

. 2−2kαrn‖uk‖
2
L∞(Rn+1

+ ) . 2−2kαrn‖ f ‖2L∞(Rn) ,

where in the last step we have used the Agmon-Miranda maximum principle. We may now sum a
geometric series to conclude. �

5 Proof of Theorem 1.2

In this section, we focus on the proof of Theorem 1.2, which, together with the results in the previous
section, comprise the main new contributions of this paper. The proof will be split into two parts. In Part
1, we present a suitable definition of the commutator [Λ, g]( f ), under the assumptions that f ∈ L∞(Rn)
and g ∈ Ḣ1(Rn). In Part 2, we prove a variant of Dahlberg’s bilinear estimate by a more refined version of
the procedure used to prove Lemma 3.1. The conclusion of the theorem then follows. As in the preceding
section, we let ∆(x, r) := {y ∈ Rn : |x − y| < r} denote the surface ball of radius r and center x, on Rn.

Part 1: definition of ‖[Λ, g]( f )‖L2 .

Under the hypotheses of Theorem 1.2, we have from Theorem 2.2 that both (D)2 and (R)2 are solvable
for L, and its adjoint L∗.

We let Λ∗ to denote the adjoint of Λ. Observe that Λ∗ is the the Dirichlet-to-Neumann map for the
adjoint operator L∗, as may be seen by the Gauss-Green formula.

For f ∈ L∞(Rn), let u be the solution of (D)L∞ with boundary data f , as constructed in section 4. We
may assume that g ∈ C∞0 (Rn), which is dense in Ḣ1(Rn).
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For 0 < δ � 1, and 1 � R < ∞, set fδ := u(·, δ), and choose ηR ∈ C∞0 (B(0, 2R)) with ηR ≡ 1 on
B(0,R). Let uδ,R be the solution of (D)L2 (equivalently, the solution of (D)L∞; see Remark 4) with boundary
data fδηR. By the Agmon-Miranda maximum principle proved in section 4, fδ := u(·, δ) satisfies that

lim
δ→0

fδ(x) = f (x), a.e. x ∈ Rn , and sup
δ>0
‖ fδ‖L∞(Rn) . ‖ f ‖L∞(Rn). (5.1)

For any h ∈ C∞0 (Rn), we shall prove the following estimate

|Iδ,R| :=
∣∣∣∣∣∫
Rn

[
Λ( fδηRg)h − gΛ( fδηR)h

] ∣∣∣∣∣. ‖ fδ‖L∞‖h‖L2‖∇‖g‖L2 . ‖ f ‖L∞‖h‖L2‖∇‖g‖L2 , (5.2)

uniformly in δ and R; in fact, the implicit constants depend only on n, γ, provided ε is small enough, with
the same dependence. Observe that we have used (5.1) in the last step.

Taking (5.2) for granted momentarily, we seek to extend estimate (5.2) to the limiting case as δ→ 0
and R→ ∞. To this end, we define∫

Rn

[
Λ( f g)h − gΛ( f )h

]
:= lim

R→∞
lim
δ→0

∫
Rn

[
Λ( fδηRg)h − gΛ( fδηR)h

]
=: lim

R→∞
lim
δ→0

Iδ,R. (5.3)

Let us show that this definition is reasonable, and in particular that the limit exists. We observe that at
least formally, ∫

Rn

[
Λ( f g)h − gΛ( f )h

]
=

∫
Rn

[
f gΛ∗(h) − f Λ∗(gh)

]
, (5.4)

so our goal is to show that the limit in (5.3) exists, and is equal to the right hand of (5.4).

By [AAAHK, Theorem 1.14] (solvability of (R)L2 ), the analogue of (5.4) does hold for any δ > 0 and
R < ∞, i.e., we can write Iδ,R as

Iδ,R =

∫
Rn

[
fδηR

(
gΛ∗(h) − Λ∗(gh)

)]
. (5.5)

By the solvability of (R)L2 , we know that Λ∗(h),Λ∗(gh) ∈ L2 (recall that we have taken g, h ∈ C∞0 by
density). Consequently, by (5.1) we may use dominated convergence to obtain

lim
δ→0

Iδ,R = lim
δ→0

∫
Rn

[
fδηR

(
gΛ∗(h) − Λ∗(gh)

)]
=

∫
Rn

[
fηR

(
gΛ∗(h) − Λ∗(gh)

)]
:= IR.

Since (as we shall prove) (5.2) holds uniformly in δ > 0, we also have that

|IR| . ‖ f ‖L∞‖h‖L2‖∇‖g‖L2 . (5.6)

Set
Ψ = Ψ(g, h) :=

(
gΛ∗(h) − Λ∗(gh)

)
.

Since (5.6) holds for any f ∈ L∞(Rn), we have

sup
R<∞

∫
|x|<R
|Ψ(x)| dx . ‖h‖L2‖∇‖g‖L2 ,

by the definition of ηR, and thus using monotone convergence theorem we also have that

‖Ψ‖L1(Rn) . ‖h‖L2‖∇g‖L2 .

Consequently, we obtain the desired limit

lim
R→∞

lim
δ→0

Iδ,R = lim
R→∞

∫
Rn

fηRΨ(g, h) =

∫
Rn

f Ψ(g, h)
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by dominated convergence theorem. This completes Part 1. It remains to prove (5.2).

Part 2: the proof of (5.2).

We now fix 0 < δ � 1, and 1 � R < ∞, let fδ and ηR be defined as in Part 1 above, and for
notational convenience, we set f = fδηR. Recall also that by density, we may assume that g, h ∈ C∞0 .
Then qualitatively, with this revised notation, f g ∈ H1(Rn) and f ∈ H1(Rn). Of course, by hypothesis,
we also have a quantitative L∞ bound for f , and moreover f now has compact support. We let u be the
solution of (D)L∞ (equivalently, the solution of (D)L2 ; see Remark 4) with boundary data f , and as above,
we let H be the solution of (D)L

∗

2 with boundary data h, and set V(x, t) = ϕt ∗ g = Pt g, where Pt is a nice
approximate identity with a smooth, radial, compactly supported kernel ϕt.

Thus, (5.2) will follow immediately once we establish the following estimate:∣∣∣∣∣∫
Rn

[
Λ( f g)h − gΛ( f )h

] ∣∣∣∣∣. ‖ f ‖L∞(Rn) ‖h‖L2(Rn) ‖∇‖g‖L2(Rn) ,

for all g, h ∈ C∞0 (Rn), and every f ∈ H1(Rn) ∩ L∞(Rn) with compact support.

Exactly as in (3.3), we have∫
Rn

[
Λ( f g)h − gΛ( f )h

]
=

"
Rn+1

+

u∇VA∗∇H −
"
Rn+1

+

A∇u∇VH := I + J . (5.7)

By Lemma 3.1, and the solvability of (D)L
∗

2 ,

|I| . sup
t>0
‖H(·, t)‖L2(Rn)

(
‖N∗(u∇V)‖L2 + 9t∇(u∇V) 9

)
. ‖h‖L2

(
‖N∗(u∇V)‖L2 + 9t∇u · ∇V 9 + 9 tu∇2V9

)
=: ‖h‖L2

(
M1 + M2 + M3

)
.

In turn, to handle term I, it is therefore enough to show that

M1 + M2 + M3 . ‖ f ‖L∞(Rn) ‖∇‖g‖L2 .

To this end, let us note that by Proposition 4.6,

dµ = |t∇u(x, t)|2
dxdt

t
is a Carleson measure on Rn+1

+ with norm ‖µ‖c . ‖ f ‖2L∞(Rn) . (5.8)

Recall that V = Ptg, so that by (3.2), N∗(∇V) . M(∇‖g), where M denotes the Hardy-Littlewood
maximal operator. Moreover, t∇2V = Qt(∇‖g), where Qt satisfies the classical Littlewood-Paley estimate

9QtF9 . ‖F‖L2(Rn),

for arbitrary F ∈ L2(Rn). Consequently,

‖N∗(∇V)‖L2 + 9t∇2V9 . ‖∇‖g‖L2 (5.9)

With these observations in hand, by the Agmon-Miranda maximum principle and (5.9), we have

M1 ≤ ‖u‖L∞(Rn+1
+ ) ‖N∗(∇V)‖L2 . ‖ f ‖L∞(Rn) ‖∇‖g‖L2 .
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By (5.8), Carleson’s lemma, and (5.9),

M2 . ‖ f ‖L∞(Rn) ‖N∗(∇V)‖L2 . ‖ f ‖L∞(Rn) ‖∇‖g‖L2 ,

and by the Agmon-Miranda maximum principle and (5.9),

M3 ≤ ‖u‖L∞(Rn+1
+ ) 9 t∇2V9 . ‖ f ‖L∞(Rn) ‖∇‖g‖L2 .

This concludes out treatment of term I.

It remains to estimate term J (see (5.7) above), which is the heart of the matter. The basic strategy
will be that of Lemma 3.1, but in the present setting we shall need to proceed more carefully. As in the
proof of Lemma 3.1, it suffices to prove

sup
0<ρ�1

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/θ

θ

∫
Rn

A(x)∇u(x, t) · ∇V(x, t) H(x, t) dxdt
∣∣∣∣∣dθ . ‖ f ‖L∞(Rn) ‖h‖L2(Rn) ‖∇‖g‖L2(Rn).

For any ρ > 0 small, integrating by parts in t, we have the following∫ 1/θ

θ

∫
Rn

A(x)∇u(x, t) · ∇V(x, t)Hdxdt

=

(∫
Rn

A t∇u(·, t) · ∇V(·, t)H dx
) ∣∣∣∣∣t=1/θ

t=θ
−

∫ 1/θ

θ

∫
Rn

A∇∂tu · ∇V H dx tdt

−

∫ 1/θ

θ

∫
Rn

A t∇u · ∇∂tV H dx dt −
∫ 1/θ

θ

∫
Rn

A t∇u · ∇V ∂tH dx dt

=: J1 − J2 − J3 − J4.

We start with the last of these. Uniformly in θ, and hence in ρ, we have

|J4| .

(∫
Rn+1

+

∣∣∣t∇u(x, t) · ∇V(x, t)
∣∣∣2 dxdt

t

)1/2 (∫ ∞

0

∫
Rn

∣∣∣t∂tH(x, t)
∣∣∣2 dxdt

t

)1/2

. 9t∇u · ∇V 9 9t∇H9 . ‖ f ‖L∞(Rn)‖∇‖g‖L2‖h‖L2 ,

where we have used (5.8), (5.9) (as for the term M2 above), along with (2.12) for the adjoint solution H,
and the solvability of (D)L

∗

2 .

By Cauchy-Schwarz,

|J3| . 9 |t∇u| |H(·, t)| 9 9t∇2V9

. ‖ f ‖L∞(Rn) ‖N∗H‖L2(Rn) ‖∇‖g‖L2(Rn) . ‖ f ‖L∞(Rn) ‖h‖L2(Rn) ‖∇‖g‖L2(Rn) ,

as desired, uniformly in θ (hence also in ρ), where we have used (5.8) and Carleson’s lemma, (5.9), and
the fact that H solves (D)L2 with data h.

The boundary terms J1 are handled as follows:? 2ρ

ρ
|J1| dθ . sup

r>0

? 2r

r

∫
Rn
|t∇u(x, t)| |∇V(x, t)| |H(x, t)| dx dt

.

(∫ ∞

0

∫
Rn
|t∇u(x, t)|2 |∇V(x, t)|2

dxdt
t

)1/2

‖N∗(H)‖L2(Rn)

. ‖ f ‖L∞(Rn) ‖∇‖g‖L2(Rn) ‖h‖L2(Rn) ,
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uniformly in ρ, by (5.8), Carleson’s lemma and (5.9), and the fact that H solves (D)L
∗

2 with data h.

It remains to treat J2. To this end, we begin by recording the following generalization of (5.8), which
follows from the latter by the t-independence of A and Caccioppoli’s inequality in Whitney boxes: for
any m ≥ 1,

dµm = |tm∇∂m−1
t u(x, t)|2

dxdt
t

is a Carleson measure on Rn+1
+ with norm ‖µm‖c . ‖ f ‖2L∞(Rn), (5.10)

with implicit constant depending of course on m, as well as on dimension and ellipticity.

To control the term J2, we integrate by parts up to a total of N + 1 times in t (that is, N additional
times: we have already done so once), for some suitably large integer N to be chosen, stopping the first
time that a t-derivative falls on either ∇V or H. In either of the latter two cases, the result is a term of the
same form as J3 or J4, along with boundary terms of the same form as J1, except with t∇u replaced by
tm∇∂m−1

t u, for some 2 ≤ m ≤ N + 1. Using (5.10) in lieu of (5.8), we may handle these terms exactly like
their counterparts with m = 1, already treated above. The one scenario that remains to be considered is
that which occurs when all N + 1 derivatives in t fall upon u, i.e., it remains only to show that

sup
0<ρ�1

? 2ρ

ρ

∣∣∣∣∣ ∫ 1/θ

θ

∫
Rn

A(x)∇∂N+1
t u(x, t) · ∇V(x, t)H(x, t) dx tN+1dt

∣∣∣∣∣dθ
=: sup

0<ρ�1

? 2ρ

ρ
|Ω(θ)| dθ . ‖ f ‖L∞(Rn)‖h‖L2(Rn)‖∇‖g‖L2(Rn), (5.11)

provided that N is chosen large enough; in particular, it will be enough to take N = n + 2 in the sequel.

To prove (5.11), we shall follow the outline of the argument in Section 3. We first make the change
of variable t → 2t, to obtain

Ω(θ) = CN

∫ 1/θ

θ

∫
Rn

A(x)∇∂N+1
t u(x, 2t) · ∇V(x, 2t)H(x, 2t) dx tN+1dt ,

and then we use the Green formula (3.10) (bearing in mind our qualitative assumptions on u), and set
s = t , to get the following generalization of (3.11):(

∇∂N+1
t u

)
(·, 2t) = −

(
∇∂N

t Dt
)

( ft) −
(
∇∂N

t
(
St∇‖

)) ((
A∇u(·, t)

)
‖

)
,

where as before, ft := ∂tu(·, t). We may then setW(·, t) := ∇V(·, t)H(·, t), and use (2.6) and (2.7) to write∣∣∣∣∣∫
Rn

A(x)∇∂N+1
t u(x, 2t) · ∇V(x, 2t)H(x, 2t) dx

∣∣∣∣∣ ≤ KN(t) + LN(t) ,

where

KN(t) :=
∣∣∣∣∣∫
Rn

A(x)
(
∇∂N

t Dt
)

( ft)(x) · W(x, 2t) dx
∣∣∣∣∣ =

∣∣∣∣∣∫
Rn
∂tu(·, t)

(
∂νA∗∂

N
t (SL

∗

−t ∇)
) (

A∗W(·, 2t)
)

dx
∣∣∣∣∣ ,

and

LN(t) :=
∣∣∣∣∣∫
Rn

A(x)
(
∇∂N

t
(
St∇‖

)) ((
A∇u(·, t)

)
‖

)
(x) · W(x, 2t) dx

∣∣∣∣∣
=

∣∣∣∣∣∫
Rn

(
A∇u(·, t)

)
‖ ·

(
∇‖∂

N
t (SL

∗

−t ∇)
)

(A∗W(·, 2t)) dx
∣∣∣∣∣ .
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Using (2.9), we observe that these expressions make sense, by virtue of our qualitative assumptions on u,
and the fact that H(·, t) ∈ L∞(Rn) (qualitatively, because the data h ∈ C∞0 ; see Remark 4), for each fixed
t > 0, and thereforeW(·, t) ∈ L2(Rn) (again qualitatively). Note that

KN(t) + LN(t) .
∫
Rn

∣∣∣∇u(·, t)
∣∣∣ ∣∣∣∣(∇∂N

t (SL
∗

−t ∇)
)

(A∗W(·, 2t))
∣∣∣∣ dx ,

hence, plugging this bound into the definition of Ω(θ), and in turn into (5.11), it suffices to prove that∫ ∞

0

∫
Rn

∣∣∣t∇u(·, t)
∣∣∣ ∣∣∣Θt

(
A∗W(·, 2t)

)∣∣∣ dxdt
t
. ‖ f ‖L∞(Rn) ‖h‖L2(Rn) ‖∇‖g‖L2(Rn) , (5.12)

where
Θt := tN+1∇∂N

t (SL
∗

−t ∇)

(note that the operator Θt defined in Section 3 was exactly the same, but with N = 2). Let Pt be the nice
approximation of the identity with a smooth, compactly supported kernel, introduced previously. Just as
in Section 3, we then write

Θt
(
A∗W(·, 2t)

)
(x) = Θt A∗(x) PtW(·, 2t)(x) + RtW(·, 2t)(x) ,

where for a function f valued in Cn+1 (in particular, for f = W(·, 2t) with t momentarily fixed), we define

Rt f(x) := Θt
(
A∗f

)
(x) − Θt A∗(x) Pt f(x) .

We first consider the contribution of Θt A∗(x) PtW(·, 2t)(x) in (5.12). Note that

1
|Q|

∫ l(Q)

0

∫
Q

∣∣∣t∇u(x, t)
∣∣∣ ∣∣∣Θt(A∗)

∣∣∣ dxdt
t

≤

(
1
|Q|

∫ l(Q)

0

∫
Q

∣∣∣t∇u(x, t)
∣∣∣2 dxdt

t

)1/2 (
1
|Q|

∫ l(Q)

0

∫
Q

∣∣∣Θt(A∗)
∣∣∣2 dxdt

t

)1/2

. ‖ f ‖L∞(Rn) ‖A‖L∞(Rn) ≈ ‖ f ‖L∞(Rn) ,

uniformly in Q, by (2.10), (5.8) and ellipticity. Recall that W(·, t) := ∇V(·, t)H(·, t), so by Carleson’s
lemma, we have∫ ∞

0

∫
Rn

∣∣∣t∇u(x, t)
∣∣∣ ∣∣∣Θt A∗(x) PtW(·, 2t)(x)

∣∣∣ dxdt
t

. ‖ f ‖L∞(Rn) ‖N∗
(
PtW(·, 2t)

)
‖L1(Rn) . ‖ f ‖L∞(Rn) ‖N∗(∇V)‖L2‖N∗H‖L2

. ‖ f ‖L∞(Rn) ‖h‖L2(Rn) ‖∇‖g‖L2(Rn) ,

as desired.

Last, we deal with the remainder term Rt. We begin by recording two facts, for future reference. The
first entails precise quantitative dependence on the aperture of the cones used to define the non-tangential
maximal function:

‖Nβ
∗ ( f )‖L2 . βn/2‖N∗( f )‖L2 (5.13)

for any f ∈ L2 and β ≥ 1; the proof can be found in [FS, Lemma 1, p. 166]. The second indicates the
off-diagonal decay for Θt, and hence for Rt: for every cube Q and all t . `(Q),

‖Rt(f12 j+1Q\2 jQ)‖2L2(Q) . 2−n j22 j
(

t
2 j`(Q)

)2N+2

‖f‖2L2(2 j+1Q\2 jQ), ∀ j ≥ 1, (5.14)
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for any f ∈ L2(Rn,Cn+1). For Θt, the latter estimate is simply (2.11) for L∗, in the lower half-space, with
m = N + 1. As in Section 3, where we considered the case N = 2 (see (3.12) above), we may use (2.8),
[AAAHK, Lemma 3.11] and the definition of Pt, to extend the estimate to Rt, which is (5.14). As in
Section 3, we may then define Rt1 as an element of L2

loc, where 1 denotes the (n + 1) × (n + 1) identity
matrix, and by construction Rt1 = 0.

As above, let Dk denote the grid of dyadic cubes on Rn of length `(Q) = 2k. Let Q ∈ Dk, suppose
that t ∈ (2k, 2k+1], and for i ≥ 1, set [W]2iQ :=

>
2iQW(·, 2t). For j ≥ 1, since t ≈ `(Q), we then have

(∫
2 j+1Q

∣∣∣W(x, 2t) − [W]2Q
∣∣∣2dx

)1/2

.

(∫
2 j+1Q

∣∣∣W(x, 2t) − [W]2 j+1Q

∣∣∣2dx
)1/2

+

j∑
i=1

(
2 jn|Q|

∣∣∣[W]2i+1Q − [W]2iQ

∣∣∣2)1/2

. 2 j
(∫

2 j+1Q
|t∇xW(x, 2t)|2dx

)1/2

+

j∑
i=1

(
2( j−i)n 22i

∫
2i+1Q

|t∇xW(x, 2t)|2dx
)1/2

. j 2 jn/22 j
(∫

2 j+1Q
|t∇xW(x, 2t)|2dx

)1/2

,

by Poincaré’s inequality. Thus, since Rt1 = 0, and t ≈ `(Q), we see from (5.14) that(∫
Q
|RtW(·, 2t)(x)|2 dx

)1/2

≤

(∫
Q

∣∣∣∣∣Rt

((
W(·, 2t)(x) − [W]2Q

)
12Q

)∣∣∣∣∣ dx
)1/2

+

∞∑
j=1

(∫
Q

∣∣∣∣∣Rt

((
W(·, 2t)(x) − [W]2Q

)
12 j+1Q\2 jQ

)∣∣∣∣∣ dx
)1/2

.
∞∑
j=1

j 2− j(N−1)
(∫

2 j+1Q
|t∇xW(x, 2t)|2dx

)1/2

(5.15)

We shall now use the preceding estimate to establish the following.

Claim. Define the conical square function

AW(x) :=
("

|x−y|<t

∣∣∣RtW
(
·, 2t

)
(y)

∣∣∣2 dydt
tn+1

)1/2

.

We then have
‖AW‖L1(Rn) . ‖∇‖g‖L2(Rn) ‖h‖L2(Rn) . (5.16)

Proof of Claim. Using (5.15), we find that for some purely dimensional constant M,

AW(x) ≤

 ∞∑
k=−∞

∑
Q∈Dk: dist(x,Q)<2k+1

∫ 2k+1

2k

∫
Q

∣∣∣RtW
(
·, 2t

)
(y)

∣∣∣2 dydt
tn+1


1/2

.
∞∑
j=1

j 2− j(N−1)

 ∞∑
k=−∞

∑
Q∈Dk: dist(x,Q)<2k+1

∫ 2k+1

2k

∫
2 j+1Q

|t∇yW(y, 2t)|2
dydt
tn+1


1/2

.
∞∑
j=1

j 2− j(N−1)
("

|x−y|<M2 jt
|t∇yW(y, 2t)|2

dydt
tn+1

)1/2

.
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Recall that in the present context,W(·, t) = ∇V(·, t)H(·, t). For notational convenience, we set

g1 := ∇‖g, G1(x, t) := ∇V(·, 2t)(x), g2 := h, G2(x, t) := H(x, 2t) ,

so that
|t∇‖W(·, 2t)| . |t∇G1| |G2| + |t∇G2| |G1| .

Note that by (5.9), (2.12), and the solvability of (D)L
∗

2 ,

‖N∗(Gi)‖L2(Rn) + 9t∇Gi9 . ‖gi‖L2(Rn) i = 1, 2 .

Thus, to prove the claim, it suffices to show that

∞∑
j=1

j 2− j(N−1)
∫
Rn

("
|x−y|<M2 jt

|t∇G1(y, t)|2 |G2(y, t)|2
dydt
tn+1

)1/2

dx . 9t∇G1 9 ‖N∗(G2)‖L2(Rn) , (5.17)

along with a similar estimate with the roles of G1 and G2 reversed. Since the roles of G1 and G2 are
symmetrical, we need only treat the version stated in (5.17). Note that for |x − y| < M2 jt, we have

|G2(y, t)| ≤ NM2 j

∗ G2(x) ,

i.e., the non-tangential maximal function defined with respect to a cone of aperture M2 j. Thus, the left
hand side of (5.17) is bounded by

∞∑
j=1

j 2− j(N−1)
∫
Rn

NM2 j

∗ G2(x)
("

|x−y|<M2 jt
|t∇G1(y, t)|2

dydt
tn+1

)1/2

dx

≤

∞∑
j=1

j 2− j(N−1) ‖NM2 j

∗ G2‖L2(Rn)

(∫
Rn

"
|x−y|<M2 jt

|t∇G1(y, t)|2
dydt
tn+1 dx

)1/2

.
∞∑
j=1

j 2− j(N−1) 2 jn/2 ‖N∗G2‖L2(Rn) 2 jn/2 9 t∇G19 ,

where in the last step we have used (5.13), along with the following estimate, obtained via Fubini’s
theorem:∫
Rn

"
|x−y|<M2 jt

|t∇G1(y, t)|2
dydt
tn+1 dx =

∫ ∞

0

∫
Rn
|t∇G1(y, t)|2 t−n

∫
|x−y|<M2 jt

dx
dydt

t
≈ 2 jn 9 t∇G1 92 .

We now choose N = n + 2, to obtain (5.17), and hence the claim. �

With (5.16) in hand, and using the Carleson measure estimate (5.8), we then obtain

‖µ‖1/2c ‖AW‖L1(Rn) . ‖ f ‖L∞(Rn)‖∇‖g‖L2(Rn) ‖h‖L2(Rn) . (5.18)

We also claim that

K :=
∫ ∞

0

∫
Rn

∣∣∣t∇u(y, t)
∣∣∣ |RtW(·, 2t)(y)|

dydt
t
. ‖µ‖1/2c ‖AW‖L1(Rn) . (5.19)

Momentarily taking (5.19) for granted, we then immediately obtain the desired estimate (5.12) for the
contribution of the Rt term, by combining (5.18)-(5.19). The conclusion of Theorem 1.2 follows.
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It remains only to discuss (5.19). In fact, the latter is actually a classical estimate of Fefferman (see
[FS, pp. 148-149]), but for the reader’s convenience, we shall reproduce the argument here. To this end,
for 0 < h < ∞, set

AhW(x) :=
("

|x−y|<t≤h

∣∣∣RtW
(
·, 2t

)
(y)

∣∣∣2 dydt
tn+1

)1/2

, Ah(t∇u)(x) :=
("

|x−y|<t≤h

∣∣∣t∇u(y, t)
∣∣∣2 dydt

tn+1

)1/2

.

(thus, for all h ∈ (0,∞),AhW ≤ AW as defined above). By (5.8) (i.e., Proposition 4.6), for all y ∈ Rn,
and all h ∈ (0,∞), ∫

|y−x|<h

(
Ah(t∇u)(x)

)2dx ≤ C0‖µ‖c hn , (5.20)

with C0 depending only on dimension. Set

h(x) := sup
{
h ≥ 0 : Ah(t∇u)(x) ≤ C1‖µ‖

1/2
c

}
,

with C1 a sufficiently large dimensional constant to be chosen momentarily. Note that in particular,

Ah(x)(t∇u)(x) ≤ C1‖µ‖
1/2
c . (5.21)

Then for every y ∈ Rn, there is a uniform constant c such that

|{x ∈ Rn : |x − y| < h ≤ h(x)}| ≥ chn . (5.22)

Indeed, by definition, if h(x) < h, thenAh(t∇u)(x) > C1‖µ‖
1/2
c , so that by Tchebychev’s inequality

∣∣∣{x : |x − y| < h and h > h(x)
}∣∣∣ ≤ ∣∣∣∣{x : |x − y| < h andAh(t∇u)(x) > C1‖µ‖

1/2
c

}∣∣∣∣
≤

1
C2

1‖µ‖c

∫
|x−y|<h

(Ah(t∇u)(x))2 dx ≤
1
2

∣∣∣{x : |x − y| < h
}∣∣∣ ,

by (5.20), provided that C1 is chosen large enough, depending on C0. Consequently, using (5.22), we see
that

K .
∫ ∞

0

∫
Rn

∣∣∣t∇u(y, t)
∣∣∣ |RtW(·, 2t)(y)| t−n

∫
|x−y|<t<h(x)

dx
dydt

t

=

∫
Rn

"
|x−y|<t<h(x)

∣∣∣t∇u(y, t)
∣∣∣ |RtW(·, 2t)(y)|

dydt
tn+1 dx

.

∫
Rn

("
|x−y|<t<h(x)

∣∣∣t∇u(y, t)
∣∣∣2 dydt

tn+1

)1/2 ("
|x−y|<t<h(x)

|RtW(·, 2t)(y)|2
dydt
tn+1

)1/2

dx

≤

∫
Rn
Ah(x)(t∇u)(x)AW(x) dx . ‖µ‖1/2c ‖AW‖L1(Rn) ,

by (5.21), so that (5.19) holds.

This concludes the proof of Theorem 1.2. �
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Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. (3) 3 (1957) 25-43.

[FS] Fefferman, C., Stein, E.M., Hp spaces of several variables, Acta Math. 129(3-4) (1972) 137-193.

[H] Hofmann, S., Dahlberg’s bilinear estimate for solutions of divergence form complex elliptic equa-
tions, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4223-4233.

[HKMP] Hofmann, S., Kenig, C., Mayboroda, S.; Pipher, J., The regularity problem for second order elliptic
operators with complex-valued bounded measurable coefficients, Math. Ann. 361 (2015), no. 3-4,
863-907.

[HK] Hofmann S., Kim S., The Green function estimates for strongly elliptic systems of second order,
Manuscripta Math. 124 (2) (2007) 139-172.

[HMaM] Hofmann, S., Mayboroda, S., Mourgoglou, M., Layer potentials and boundary value problems
for elliptic equations with complex L∞ coefficients satisfying the small Carleson measure norm
condition, Adv. Math. 270 (2015), 480-564.

[HMiM] Hofmann S., Mitrea M. and Morris A., The method of layer potentials in Lp and endpoint spaces
for elliptic operators with L∞ coefficients, Proc. Lond. Math. Soc. 111 (3) (2015) 681-716.

[KLS] Kenig C., Lin F., and Shen Z., Periodic homogenization of Green and Neumann functions, Comm.
Pure Appl. Math. 67(8) (2014), 1219-1262.

[KP] Kenig, C., Pipher, J., The Neuman problem for elliptic equations with nonsmooth coefficients,
Invent. Math. 113(3), 447-509 (1993.)

[M] Moser J., On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14
(1961) 577-591.

[N] Nash J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958)
931-954.

25



[R] A. Rosén, Layer potentials beyond singular integral operators, Publ. Mat. 57 (2013), 429-454.

[Sh] Shen, Z., Commutator estimates for the Dirichlet-to-Neumann map in Lipschitz domains. Some
topics in harmonic analysis and applications, 369-384, Adv. Lect. Math. (ALM), 34, Int. Press,
Somerville, MA, 2016.

S. Hofmann,

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: hofmanns@missouri.edu

G. Zhang,

School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China

E-mail address: zhangguoming256@pku.edu.cn

26


