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Abstract: In this paper we establish commmutator estimates for the Dirichlet-to-Neumann Map associ-
ated to a divergence form elliptic operator in the upper half-space R™*! := {(x,£) € R" x (0, )}, with
uniformly complex elliptic, L™, #-independent coefficients. By a standard pull-back mechanism, these
results extend corresponding results of Kenig, Lin and Shen for the Laplacian in a Lipschitz domain,

which have application to the theory of homogenization.
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1 Introduction

Let £ := —div(AV), defined in R"*!(n > 1), where A = A(x) is a n+ 1 xn+ 1 matrix with complex-valued,
bounded and #-independent coefficients satisfying the uniform (complex)-ellipticity condition

n+l

YIEP < Re(A()£,£) = Re [Z A,-j<x)§,-§_j], Ml <y7", (1.1)

i,j=1

for some y € (0, 1], and all £ € C**!, x € R". Moreover, throughout our paper, we shall further assume

that there exists Ag, a uniformly elliptic, t-independent matrix as above, which in addition is real and

*The first author is supported by NSF grant DMS-2000048. The second author is supported by the NNSF (11771023) of
China.



symmetric, such that
A = Aollz~ < €, (1.2)
where € depends only on 7, y.

If we assume f € C(R"), then the Dirichlet problem

Lu=0 inR™!

lin& u(-, 1) = f, (13)

has a unique solution u € W!2(R™*1), the space of functions modulo constants with seminorm given by
the norm of Vu in L>(R"*!), and the Dirichlet-to-Neumann map, defined by

ou
f - A(f) = a_ = aVAu ‘= —lntl ‘A(VM) ’
VA t=0

extends to a mapping from H 2Ry = /Q(LZ(RH)) to H~'/2(R"), where H~'/>(R") denotes the dual
space of the fractional Sobolev space H 1/2(R") (see [HKMP]); here I, ;2 denotes the usual 1/2 order ho-
mogeneous fractional integral operator (i.e., Riesz potential). We also define the homogeneous Sobolev
space Lf(R”) to be the completion of C 7 (R") with respect to the seminorm ||V f||>. For convenience, we
set H/(RY) := L%(R”), and we define the inhomogeneous version by H YR" = L*(R") n H'(R"). For

€ > 0 small enough, depending only on n and vy, we obtain that
A H'(RY) — L*(R"). (1.4).

In fact, (1.4) is an immediate consequence of the solution of the Regularity problem given in [AAAHK,
Theorem 1.14].

We let C%!(R") denote the space of Lipschitz functions, with norm

_ lg(x) — g(y)|
”g”CO’](R") = Sup _—
x,yER": x#£y lx — y |

Now we can state our main results as follows. The first generalizes the classical commutator theorem
of A. P. Calder6n [Cal].

Theorem 1.1 Suppose that A satisfies (1.1) and (1.2) with € sufficiently small, depending on dimension
and ellipticity. Then, for any f € L*(R") and g € C*'(R™),

A, 81D 2ny < ClISfll 2@ lIgllco genys (1.5)

where the constant C depends only on n and .

Theorem 1.2 Suppose that A satisfies the hypotheses of Theorem 1.1. Then, for any f € L¥(R") and
g e H'(RY,
A, g1z < Cllllzs@nllgl s (1.6)

where the constant C depends only on n and .
Analogous results were previously obtained in [KLS], for the Laplacian in a Lipschitz domain, as part

of the authors’ study of homogenization. Our results, with A real and symmetric, include this case, by

a well-known pullback mechanism. A different generalization of the results in [KLS] has been obtained



in [Sh], for elliptic systems in Lipschitz domains, with Holder continuous coefficients. Neither our work
nor that of [Sh] subsumes the other. The approach to these commutator results in both papers [KLS]
and [Sh], is based on a bilinear estimate of Dahlberg [D], and it’s extension in [Sh] to certain variable
coeflicient elliptic systems. In [H], the first author of this paper established Dahlberg’s bilinear estimate
for the class of second-order elliptic operators enjoying the same assumptions that we impose here, i.e.,
the matrix A satisfies (1.1) and (1.2) with € small enough, in the upper half-space. The latter result, along
with layer potential technology for the operators under consideration, will allow us to follow the strategy
in [KLS] and [Sh], to obtain the stated theorems.

Remark 1. In our Theorem 1.2, as compared to its analogue [Sh, Theorem 1.2], we obtain an estimate in
terms of the L™ norm of the boundary data, as opposed to that of the solution u itself, since we establish

an Agmon-Miranda maximum principle for our solutions (see [Sh, Remark 1.4], and Section 4 below).

The paper is organized as follows. In the next section we discuss certain preliminaries. In Section 3,
we prove Theorem 1.1. In Section 4, we establish an Agmon-Miranda maximum principle for the class

of operators under consideration, which we then use in Section 5 to give the proof of Theorem 1.2.

2 Preliminaries

We begin by setting some notational conventions. For convenience, we often write B < D, and B = D, to
mean that there exists a positive constant C, depending only on dimension and the quantitative hypotheses
of our theorems, such that respectively, B < CD, and C™'D < B < CD. We normally use Q to denote
cubes in R", and for A > 0, we let AQ be the concentric dilate of Q with side length A£(Q).

Let us now recall the De Giorgi-Nash-Moser estimates: under the same assumptions as in Theorem

1.1 (in fact -independence is not required), there is a constant C and an exponent a > 0, both depending
only on dimension and ellipticity, such that for any ball B = B(X, R), if Lu = 0in 2B = B(X, 2R), then

Y -7 a 1/2
() — u(Z)| < c(' - ') ( JEB |u|2) , (DGN)
whenever Y, Z € B, and i
1
sup [u(Y)| < C( f |u|2) . (M)
YeB 2B

As is well known, these results may be found in [DG, M, N] in the case of real coeflicients; the extension

to the case of complex perturbations of real coeflicients is due to Auscher [A] (see Theorem 4.1 below).

We shall make use of the theory of layer potential operators associated to an operator £ = —div AV
asin (1.1), 1.2). Let E(x,t,y,s) = Ez(x,t,y, s) be the fundamental solution of L. The existence of the
fundamental solution in our setting is given in [HK]. By #-independence of our coefficients, we have that

E(-x’ t’y’ S) = E(-x’t_ S5, 0) (21)

The single and double layer potential operators associated to L are defined, respectively, by

Sif(x) = SEf(x) = f E(x,1,y,0)f(0)dy, teR, xeR"
RVL

Dif(x) = Z)ff(x) = f 0y E*(3,0,x,) f(y)dy, t#0, xeR", 2.2)
Rn

3



where A" is the hermitian adjoint of A and

n+1
By E° 0,05 0) = = ) Ary 05,0050 = —er - AOVE'Gus x| o Q3
j:l s=

Here, E* = E g+ denotes the fundamental solution of £*, the hermitian adjoint of £, and we have
E*(y,s,x,t) = E(x, 1,9, 5). 2.4)

We shall use the following notations: D; := a% = axj, 1 < j<n+1, where x,41 :=t (so that D41 = ;),
and for a vector v .= (vi,va,..vps1) € R we let v = (V1,v2, .., 0) = (v1,v2,...v,) denote the
projection of v onto R" x {0}. Similarly, we define V| := (dy,, ..., 0y,). We shall set

SV 0= [ Vot o]y F)

so that
(S:Dpi1) = -0:S;, SV f = =S, (divyf ). (2.5)

for, say, fe C(l)(R", C™). For all m > 1, it follows from (2.1)-(2.5) that
adj(Vor (S, V) = +Va"1(SE V) (2.6)

(here the choice of “plus” or “minus” depends on m), and

adj(Va" ' D,) = +8,,. 0" (S5 V), 2.7)
where S[B denotes the single layer potential with associated to £*, the adjoint co-normal derivative is
defined by 0,,. = — ;’:11 A} i1 Dj, and adj(T') denotes the hermitian adjoint of an operator T acting in
R".

Remark 2. By [AAAHK, Theorems 1.12 and 1.13 ], for £ = divAV, with A satisfying (1.1) and (1.2)
with € small enough depending on dimension and ellipticity, we have the layer potential bounds*

sup (IV SE fllzn + ISE D Sllaen) < 1l -
t#0

In particular, this yields L? boundedness of the double layer potential O,, uniformly in ¢. Of course,
analogous results hold with £ replaced by its adjoint L*.
Given xo € R" and 8 > 0, define the cone I'g(xo) := {(x,17) € R’fl ; |xo — x| < Bt}, then for measurable

function F : R"*! — C, the non-tangential maximal operator N’f is defined

NE(F)(x0) = sup  |F(x, 1),
(x,0€lp(x0)
and note that when 8 = 1, we shall often simply write I' = I'}, and N.(F) := N!(F). We recall that the
L*-norms of N, = Nj and Nf are equivalent for any 5 > 0 (see [FS]). Following [KP], we also introduce

1/2

N.(F)(x0) :==  sup (JE \F(y, )’ dyds|
(x,0€l (x0) \WI(x,)—(y,s)l<t/4

*These bounds continue to hold in the absence of condition (1.2) (for a suitable definition of the layer potentials): see [R].



where the symbol f denotes the mean value, i.e. J% f=I|E! fE f. Wesay u — f n.t. to mean that for
a.e. x € R", limgy, 5 (x,0) u(y, 1) = f(x), where the limit runs over (y, ) € I'(x), and in the sequel, we shall
use the notation ||| - ||| as a short-hand for the 77 tent-space norm (see [CMS]), i.e.,

dxdr\'?
IIF|| := (ff IF(x,t)lz—) .
R{:—‘Fl t

Next, we state a technical lemma concerning the single layer potential, as well as general solutions.

The lemma will follow essentially immediately from known results, and will be useful in the sequel.

Lemma 2.1 Suppose that A, L satisfy the same hypotheses as in Theorem 1.1. Let f € L>(R", C™1),
fe L®R",C"™Y), and let m > 1. Then

sup 127V (SFE V) fll 2y S 1|2y (2.8)
>
eV (SEV) || < IIfll 2, (2.9)
and
{(Q) > dxdt
P 1o f f "V (SEV @) = < [l - (2.10)

Furthermore, for every cube Qandall) <t <164(Q),

2m
1,QL —nk~2k
||tmvam (S V) (flzk-HQ\sz)”Lz(Q) 279 (%) ” ||L2(2k+1Q\2kQ)’ Vk=>1. (211)
Finally, suppose that Lu = 0 in R™! with Sup,.q llu(-, Hll2 < oo. Then
"V ulll < sup lluC:, )l (2.12)

>0
In all of these estimates, the implicit constants depend on m, n, and ellipticity. Of course, the correspond-

ing estimates hold also in the lower half-space, and with L replaced by L*.

Sketch of Proof Given the L? bounds discussed in Remark 2, the case m = 1 of estimate (2.8) is
[AAAHK, Lemma 2.11] (we caution the reader that the exponents in [AAAHK, Lemma 2.11] are written
differently, so that the case m = —1 there corresponds to our case m = 1). The case m > 1 may be
reduced to the case m = 1 by an induction argument which exploits the “Caccioppoli on slices” estimate
in [AAAHK, Proposition 2.1]. We omit the details.

For m = 1, the square function bound (2.9) is [HMaM, Lemma 3.1], the Carleson measure estimate
(2.10) is [HMaM, Corollary 3.3, estimate (3.4)], and the square function bound (2.12) is [H, Lemma 3.1].
For each of (2.9), (2.10), and (2.12), the case m > 1 may be reduced to the case m = 1 by an induction
argument that uses Caccioppoli’s inequality in Whitney boxes. We omit the details.

Finally, using again the “Caccioppoli on slices” estimate in [AAAHK, Proposition 2.1], one may
reduce estimate (2.11) to [AAAHK, Lemma 2.9 (i)]. Again we omit the details. O

We shall also require some of the main results in [AAAHK], which we summarize as follows:

Theorem 2.2 ([AAAHK, Theorem 1.14]). Suppose that L := —div(AV), A and A are defined as above,

then the Dirichlet problem
Lu=0 inR™!

limu(,0) =f in L*(R") and n.t. (D)¥
—

INll2 + [[|tVull] < 11£1l2,



and the Regularity problem
Lu=0 inR™!

limu(1) = f i L3R n.t. (R~
—
IN.(Vill2 < 11V fllz,

are both solvable if € is sufficiently small, depending only on n and y. The solution of (D)ZL is unique and

the solutions of (R)f are unique modulo constants. Analogous conclusions hold for L*.

3 Proof of Theorem 1.1

Under the same assumptions of our main theorems, using the results of [AAAHK], we see that if u is the
solution of the Regularity problem (R)%, with data f € H'(R™), then

0 _
IAfll := ||£||2 <INVl < 11V f1l2,

i.e., (1.4) holds for the Dirichlet-to-Neumann map A.

Remark 3. We note that for f € H'(R") = L*(R") N H'(R"), we may solve both (R); and (D)5 with
boundary data f, and the respective resulting solutions uz amd up, are the same’. This fact follows from
the “compatible solvability” of the solutions constructed in [HKMP, Theorem 1.11].

The commutator of A with a function g is defined by

(A, gl(f) := A(gf) — gA(f).

Note that for gf € H'(R") and f € H'(R"), both A(gf) and gA(f) are well-defined. Let ¢ € Cy (B, 1)),
such that ¢ is radial, 0 < ¢ < 1 and fR" ¢ =1, and set

Vix,t) = Pig:=¢r g, 3.1

where ¢,(x) = r"¢(7). Observe that P, thus defines a nice approximate identity. In particular, P;1 = 1
and VP;1 = 0. Let us note for future reference the elementary fact that

IVV(x, D =l (Vg)(x) + (9rpp) * (g = Co)(0)] < J[ IVigldy (3.2)

[x=yl<t

by Poincare’s inequality, where we have chosen C,; = fo—yl< L8 dy,.

For any h € C7(R"), by Theorem 2.2, we let u be the solution of (D)f with boundary data f, us,
be the solution of (D)f with boundary data fg and H be the solution of (D)zﬁ with boundary data h.
Thus, according to the definition of the Dirichlet-to-Neumann map A, along with a standard variational

"More precisely, they are equal modulo an additive constant.



formulation of the divergence theorem for solutions,

[ inasi- f i [ e

= f f AVus,VH — f f AVuVHYV — f f AVuVVH
Rﬁ+l X Rn++l Rrrl

:ff Vung*VH—ff VuA*VHV—ff AVuVVH
RT—I RT—] R1+1

= f f Vus,A*VH — f f V(uV)A*VH + f f uVVA*VH — f f AVuVVH
Rn+1 R'H'] Rn+1 R'H'l
fg ff uVVA*VH — ff AVuVVH

aVA* aVA* le R”“

= f f uVVA*VH — f f AVuVVH,

Rﬁ+l RTI

where in the next-to-last step we have used the fact that uy,(-,0) = fg = u(-,0)V(-,0).

We may assume that f € C°(R"), by density of the latter space in L>(R™). Since g € CY'(R™), if V is
defined as above, then ||[VV||;~ < ||V g/~ and

3.3)

dxdt
= V2V (x, z)|2xT is a Carleson measure on R”*! with norm ||ull. < [|Vygllz=. (3.4)

f [A, g1fh
Rn

To prove (3.5), we see from the equality (3.3) that

f [A, glfh = ff uVVA*VH — ff AVuVVH =: 1+ J.
R~ Rn+l n+1

We observe that the two terms, I and J, are of essentially the same type, since u is the solution of (D)ZL
with boundary data f € L*(R™), while H is the solution of (D)f* with boundary data i € L*(R™). We

now claim that it suffices to prove the estimate

'ff AVU-W
RTrl

where A satisfies (1.1) and (1.2), and where LU := —divAV U = 0 in R”*!. Indeed, taking (3.6) for

granted momentarily, we may apply the latter estimate to term J in the case that the values of U, A, W

Our goal is to show that

S Vgl 11f12 A2, Y h e CF(RY). (3.5)

S (NIl + ([ U AN (W)ll2 + [[[e VW) , (3.6)

are respectively u, A, VVH, or to term I with these values given respectively by H, A*, VVu. In the former

scenario, by Theorem 2.2, we have

IN@ll2 + [[[tVull| < 112,

INo W)z = IN(VVEDIl2 S IVVIIe=lIN<«(EDIl2 < [IVygllz=lAll2 ,

and

VW < (l1IVVVH || + [I| V*VH) $ (IVVilzs [[| (Y || +193gll= IN. (D) < 1938z 1ALz,



where we used (3.4). A similar discussion is applicable to the other case, and (3.5) follows.

It remains to prove (3.6). We will actually prove a slightly sharper version of (3.6), which is a
generalization of the Dahlberg-type bilinear estimate in [H]. For notational convenience, we shall remove
the “tilde”, and just write £ = —divAV, where A satisfies (1.1) and (1.2), and we shall replace U by u,
and ‘W by its complex conjugate. Recall the definition of the standard Y1 space:

2(n+1)
YRR = (e LR Vu e @),

Lemma 3.1 Let A, L be as above, and let M be an arbitrary bounded (n + 1) X (n + 1) matrix-valued
function on R". Suppose that W € Wllo’f(R",C”“), and that u € Y'Y (R"™1) is a solution of Lu =
0 in R, Then

’f MVu-W
R’_:_H

Of course, Lemma 3.1 (with u = U) implies (3.6), since trivially sup,.q [[u(-, Dl 2@ny < [Nl 2gn).-

< 1My sup G, Dll 2y (INe (W)l 2ny + [[IVWI]).

>0

Proof. Without loss of generality, we may suppose that ||M||;~®" < 1. The special case that M = I, the
(n+ 1) X (n+ 1) identity matrix, is proved in [H], and the argument there may be readily adapted, mutatis
mutandis, to prove this version. For the sake of self-containment, and because will shall need to pursue
this point anyway to prove Theorem 1.2, we shall present a slightly different proof (similar but with a
small modification) to that of [H]. The proof of Theorem 1.1 will still be a rather routine adaptation of
the arguments in [H]. In the case of Theorem 1.2, matters will be a bit more subtle. For now, as in [H],

it is enough to show

2p
sup M, := sup JC
O<pxl O<pxl Jp

1/6
f M(x)Vu(x,t) - W(x, t)dxdt|do
0 R”
< Sugllu(-,I)IILz(Rn) (INe (W)l + [[IIVW) . B.7)
>

We may assume sup,..q [[u(-, D)l j2gny + INo(Wll2 + [[[tVW||| < oo, since otherwise (3.7) is trivial.

For each fixed p, integrating by parts in ¢, we obtain the bound

2p
W< f
P

1/6
f M(x)Vou(x,t) - W(x,t)dx tdt‘d@
0 R”

2p
+ f
P

1/6 .
f Mx)Vu(x, 1) - 0 W(x, 1) dxtdi|d6 + “B”
0 R”

= I+ 1+ “B”. (3.8)

Here, the term “B” is a sum of two boundary terms, satisfying

2r 172
“B”s(sup f f r2|Vu<x,r)|2dxdt) sup W, r)ll2 < sup lluC, Ml sup W, P,
r n

r>0 r>0 r>0 r>0

as desired, where in the integral involving Vu, we have split R” into cubes of side length ~ r and used

Caccioppoli’s inequality. For term /[ in (3.8), by Cauchy-Schwarz we have the bound

1 s |[evu | {levwil < Su(I)’H”("t)HLz(R") Il VW,
>

8



where we have used the case m = 1 of (2.12) to obtain the inequality |||¢Vul|| < sup,.q llu(:, D)l 2n)-

We turn now to term /. By the change of variable + — 2¢, and an integration by parts in ¢,

2p
1:235
P

1/(26)
f M(x)VOou(x,2t) - Wi(x,2t) dx tdt‘d@
0/2 R

20
< f
P
2p
‘1
o)

where B is a sum of boundary terms which may be treated like “B” above (now using Caccioppoli twice).

1/(26)
f MV u(-, 2t) - W(-, 21) dx tdt|d6
(%

/2 R7

1/(26) — —_
f MVc?tu(-,2t)-8[W(-,2t)dxt2dt‘d9 +B=1+5L+B,
0/2 R»

We handle I, like term 1 above: by Cauchy-Schwarz, and the case m = 2 of (2.12), we have

L 5 |2 Vo ||| VW < sup lluC:, Dllzae I VW
>

To bound term I, we integrate by parts again® in 7, to obtain
4 44
L s +17,
where

1/(26)
f M(x)V&u(x, 21) - W(x, 21) dx t3dt‘d9 , (3.9)
0/2 R

2p
i~ f
P
20
144
I = Jf
1Y

Term I{’ can be treated just like terms /7 and I, using Cauchy-Schwarz and the case m = 3 of (2.12). We

and

1/(26)
f MV&u(-,21) - 8, W(-,20)dx ’di|d6 .
(7

/2 Rn

omit the now familiar details.

It remains now only to consider Ii. With ¢ > 0 fixed, set f;(x) = d,u(x, t), and note that
lfill 2y < t! Sug lluC, Dll2@ny < o0,
™

by the Moser-type local boundedness assumption (M) above, and Cacioppoli’s inequality. Moreover, by

t-independence of the coefficients, d,u(-, t + -) is a solution in R’fl, so by Green’s formula®, we can write
(.t +5) = —Ds(fy) + S50y, (Opu(-, 1+ ). (3.10)

Observe that, at least formally, using #-independence and the fact that d,u is a solution,

n+l

By, @1+ ) = = > Dyt (Awer Dyt + 9|
=1

N
N
—_

+
- DA Djutx, 1+ 9)] g = Vi (AVuC, D),
i=1 j

~
Il
—

*The point is to accumulate enough z-derivatives in order to ensure sufficient decay; see (3.12) below.
$See, e.g., [BHLMP, Theorem 4.16] for a justification of the Green formula in this setting (in fact, in a more general setting).



where we interpret the identity in the weak sense on R", see [AAAHK, Lemma 2.15]. Consequently,
setting s = ¢ in (3.10), we get

(Vo7u) .20 = = (V67 Dy) (f) — (VE7(S,V)) (AVuC. D)) (3.11)

where we have used (2.5). We may then obtain the bound

< K@+ L(),

M(x)Vu(x, 21) - W(x,2t) dx
Rn

where, by (2.7) and the definition of f;,

K@) = | M) (VD) (f)(x) - W(x, 20 dx| = f Ay, 1) (B, H(SE V) (M W(-, 20)) dx| ,
R" R"
and by (2.6)
L) := fR M(x) (VF(S:V))) ((AVuC. 1)) (x) - W(x, 21) dx

f (AVuC, 1), - (V02(SE V) (M*W(-, 20)) dx|.

In turn, plugging these bounds into (3.9) and using Cauchy-Schwarz, we obtain the bound

< f (K(2) + L(1)) tdt
0
dxdr\'"? 2 dxdt '
( f f | Vu(x, 22 ) ( Y (VOA(SE V) (MW, 20) (x)] 2 )
=1 AXB.
Observe that A = |||tVul||, and since u is a solution, by the case m = 1 of (2.12), we have

A= |||tVu||| < sup ||M(, t)”LZ(]R") .
>0

Consider now the factor B. Recall that our goal is to show that B < [IN.(W)ll 2y + [[|[tVW/||. To this

end, we set
0, := PV (SEV),

and as above, let P, be a nice approximate identity with a smooth, radial, compactly supported kernel.

We then write
O(M*W(-,20))(x) = ©; M*(x) PLW(,20)(x) + RW(-,20)(x),

where for a function f valued in C**! (in particular, for f = W(:, 2¢) with r momentarily fixed), we define
R f(x) = O, (M*f)(x) — O M*(x) P f(x).

(For future reference, we observe that one may define R, on (n + 1) X (n + 1) matrix-valued functions in

the obvious way). We then have

B < [[[(© M) (PWCE20) ||| + | RWE.20) |||

10



By the Carleson measure estimate (2.10), applied to L, in the lower half space, with m = 3, we have
Il (@ M*) (PAWE, 20| S IN.PAWE 20)I 2y € INZ W)z S ING(Wl2geny »

where in the last step we have used the well-known observation of [FS] that non-tangential maximal
functions defined using cones with different apertures are equivalent in L” norm.

Finally, we consider the contribution of the remainder term R,. By (2.11) applied to L*, in the lower
half-space, with m = 3,

6 4
2 —nk2k [T 2 k1 2
”®l (f12k+'Q\2kQ)||L2(Q) < 2 " 2 (2k€(Q)) ||f||L2(2k+1Q\2kQ) < 2 " (Zkf(Q)) ”f”LZ(Zk“Q\ZkQ) ) (312)

uniformly for each k > 1, and 0 < ¢ < 16£4(Q). In addition, by (2.8), ®, is bounded on L*(R", C"*1y,
uniformly in £ > 0. By [AAAHK, Lemma 3.11] and the definition of P;, these facts continue to hold
with R; in place of @,. In turn, this allows one to define R;1 as an element of leoc, where 1 denotes the
(n+ 1) x (n+ 1) identity matrix, and by construction R,1 = 0, since the approximate identity P, preserves
constants. Thus, we may apply [AAAHK, Lemma 3.5] to R;, to deduce that

IRW (x, 20)|>dx < 1 f IV, W(x,20)dx.
R}‘l Ril

Consequently,
IRWE 20| < [leVvWE 20

as desired. This completes the proof of Lemma 3.1, and hence that of Theorem 1.1. O

4 Solvability with L™ data, and an Agmon-Miranda Maximum Principle

Recall the following result of Auscher [A]:

Theorem 4.1 ([A]) Let A, Ag and L be as above, but possibly t-dependent. If € is small enough, depend-
ing only on n and vy, then there is a positive exponent a and a constant C (each depending only on n and
v) such that, given u solving Lu = 0 in a ball 2B := B(X,2R), with R > 0,

(|Y_Z|)(I( ) 1/2
u(¥) ~ u@)| < €| f w?| . VY.ZeB=BYR. 4.1)
2B

(Here, capital letters denote points in R e, g, X :=(x,0).

From Theorem 4.1, we may deduce the following.
Corollary 4.2. Let A, Ay and L be as above, but possibly t-dependent. If € is small enough, depending
only on n and vy, then there is a positive exponent a and a constant C (each depending only on n and
v) such that, given any cube Q C R”", and its double 2Q, along with their associated Carleson boxes
Ro := O x (0,Q)), and Ry := 20 x (0,2/(Q)), and a solution u € W'*(Ryp), vanishing in the trace

sense on 20, then

1/2

t\"( 1
'”(x’t)'sc(aQ)) (K(Q)"” ffRZQ'”'z) - Tenefe “2
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Proof. The proof follows immediately from Theorem 4.1 by making an odd reflection across the bound-
ary 20 X {0}. We omit the details. O

Corollary 4.3. Let A, Ay and L be as in Theorems 1.1, 1.2 (in particular, t-independent), and 4.1, with
€ small enough that (D)f and (R)2£ are both solvable (see Theorem 2.2). Let f € L*(R"), and let u be
the solution of (D)f with boundary data f. If f vanishes on 2Q, then the conclusion of Corollary 4.2

continues to hold.

Proof. Note that if we were to assume f € H'(R"), then the solution of (R)ZL with boundary data f
satisfies the assumptions in Corollary 4.2, thus (4.2) holds. Moreover, as we have previously mentioned,
by [HKMP], the problems (D)QL and (R)ZL are compatibly solvable, in particular, for data f € H I(R™), the
solution of (D)ZL with data f equals the solution of (R)f with data f (the latter is unique only up to an
additive constant, but will be equal to the former for a suitable choice of this constant).

Since f € L*(R"), and vanishes on 2Q, we can approximate f in L> norm by f; € C* n H'(R"), with
each f} vanishing on %Q. Let uy denote the solution to (D)L, and compatibly, to (R)l, with data fj. Since
Corollary 4.2 clearly holds with %Q in place of 20, we find that (4.2) holds for each u, uniformly in k.
We may then pass to the limit as follows. Observe that (4.2) holds with u replaced by uy, and that by the
L? estimates for (D)L,

sup [lu(-, 1) — uk(, Dl S NIf = filb = 0, ask — co.
>0

Consequently, for (x,7) € R"*! fixed, combining the latter estimate with the interior Moser-type local

boundedness estimate we obtain

2t
(e, 1) — (3 )] S ( f/ 2 Jlf )~ 9 dyds)
t x—yl<t

2t 12
< (t_”f lu(y, s) — ug(y, s)| dyds) — 0, ask — oo.
1/2 Jrn

1/2

Similarly, for any fixed cube Q c R",

Q)
ff i — up)* < f f lu(y, s) — ux(y, $)> dyds — 0, ask — .
Ry 0 R~

We conclude that (4.2) holds for u. O

In the sequel, let
A(x,r):={yeR": |x—y| <r}

denote the surface ball of radius r and center x, on R” = gR*!,

Lemma 4.4. Let A, L be as in Corollary 4.3. Let x € R", and 0 < t < ﬁR, with R < R’ < oo. Suppose
that g € L™ with
supp(g) C Srr = Srr(X) := A(x,R') \ A(x, R).

Let v solve (D)ZL with boundary data g. Then there exists a constant C = C(n,y) such that
t [e2
w0l < € () Tl (4.3)
uniformly in R’, for R’ > R, where a > 0 is the exponent in Corollaries 4.2 and 4.3.

12



Proof. Set
Ar = A(x) := A, 2K = {y e R s Ix—y| < 28, k=0,1,2, ...,

and
Sk=Ms1\ Ay, keZ.
Thus
KR
Srr C U Sk,
k=k(R)
where 2K® ~ R and 2K®) ~ R’. Consequently,
KR
V= Z Vi,
k=K(R)

where vy solves (D)ZL with boundary data g := gls,. By Corollary 4.3 and the solvability of (D)%, we

ok 1/2 1/2
|vk<x,r)|s(i)a f f vil? s(i)a o-hn f gl S(i)aHgHLw-
2k 0 Ar 2k Sk 2k

Summing up k > k(R), we get (4.3).

have

We are now able to prove the following.

Proposition 4.5. Let A, Ay and L be as in Corollary 4.3. Let f € L (R"). Then there is a solution
u of Lu = 0 in R such that u(-,0) = f in the sense of non-tangential convergence, satisfying the

Agmon-Miranda maximum principle

”u”L""(R’fl) < C”f”L""(R"),
where C = C(n,y).

Proof. Given apoint xy € R”, we define the dyadic surface balls centered at xo on R” = R"x{0} = BRTI
by
A = Mi(xo) = A(x0,2) == {y e R" 1 [xg — )| < 2}, ke Z

and set
Sk =M1\ A, k€Z,
so that UpS;, = R"\ {0}.
We let f; := fls, and u; be the solution of (D)f with boundary data fi. Define

N

N
N o= Z fir uV = Z Ug.

k=—c0 k=—0c0

Clearly, " is the unique solution of (D)f with boundary data fV. To prove the proposition, we will

show that the limit
u:= lim uV

N—oo
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exists at each point of R’fl and satisfies the conclusion of the theorem. Moreover, u is well-defined, in
the sense that if «’ is constructed in the same way as u, but for a different center xé, then u = u’. To this
end, we fix a point (x, 1) € R"*! and suppose that 2¥ > 2V > ¢ + |x — x¢|. Then by the definition of f%,

supp(f* = f) € S (),
where R ~ 2V and R’ ~ 2™, By Lemma 4.4,
N M A\
5,0 = (501 < (55 ) Wflliomn = 0, as NoM =0, (44)
Thus, " converges pointwise, and in fact, uniformly on compacta, in R”*!, hence also in L? (R™*!). By

loc
M

Caccioppoli’s inequality applied to " — u™, we further see that # converges in Wllo’f (R™*1), whence the

limit u also solves Lu = 0 in R,

Let us now show that u satisfies the required properties.

Definition of u is independent of center xy. Fix two distinct points xj, x, € R" and construct the cor-
uVii = 1,2, and u' = limy_e uV,i = 1,2 as above, with xi, x in place of xp. Let

(x,1) € Rﬁ“ and consider M, N such that

responding NV,

M SN st 4 x— x|+ x— x3.
Then
supp(f™! — V%) c Sgrw,

where R ~ 2" and R’ ~ 2M. Again we invoke Lemma 4.4 to get

t a
2(x, 1) — u (x, 1) < c(z—N) fllzen — 0, as N, M — 0. 4.5)

N,

Therefore, u™* and u™! converge to the same limit u.

Non-tangential convergence to f. Fix xo € R”, and build ¥ and u" as above, relative to the center xo.
By (D)£, each u converges non-tangentially to fN ,fora.e. x € R". Thus, thereis asetZ = UyZy C R",
of measure zero, such that #" converges non-tangentially to f for every N, and at every point x € R"\ Z.
Fix such an x # xp and let € > 0. Consider the truncated cone at x of height € :

Cé(x) = {(y, ) e R [x—y| <1 < €).

Observe that (4.4) continues to hold with y in place of x, for (y, 1) € I'°(x), with € small, and N, M large.
We therefore have for such (y, ¢) that

1) = 01 = Jim 1,0 = 001 < (57 ) Il 4.6)

On the other hand, if we fix N so large that f¥(x) = f(x) and use that «" converges non-tangentially to
f at x, then for (y, 1) € I'(x), we have

¥ (v, 1) = f(X)] = o(1), ase— 0.

Letting € — 0, we see that u(y, t) — f(x) non-tangentially.

Agmon-Miranda maximum principle. Let (x,1) € R™"!. We seek to show that
lu(x, Ol < Cliflle
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with C = C(n,vy). Since the definition of u is independent of the choice of xy used in the construction,
we may choose xp = x. We then define Ay = Ag(x), Sk = Si(x), fi = f1s, and uy as above. Choose k(¥)

such that 20 ~ ¢ and write
K(D)+10

u= Z uy + Z u, =: Uy + Us.

k=—00 k=k(t)+11

By Moser local boundedness and (D)L,

172 12
U1(x, r>|<(f f wo. s)|2) s(t‘” [ |f|2) < Il
[x=yl<t [x=y|<C2k®

since 2K ~ ¢, where all of the implicit constants in the display depend only on dimension and ellipticity.

Furthermore, for k > k(¢), by Lemma 4.4, we have

ue(x, 1)l < ( ) 1l ey,

2k
and so we may sum over k > k(t) + 11 to see that |U>(x, 1)| < || fllz=m®n). O

Remark 4. Note that by construction, if f € L*(R") is compactly supported, then the solution of (D)%
with boundary data f, and the solution of (D)f with boundary data f, are the same.

We conclude this section with the following. Recall that A(x, r) denotes the “surface ball” centered
at x, of radius r, on R" = 6Rﬁ+1. Given A = A(x,r),let Ry := A% (0,r) C R’}r“ denote the usual Carleson

cylinder above A.

Proposition 4.6. Let A, Ag and L be as in Proposition 4.5 (i.e., as in Corollary 4.3). Let f € L™(R"),
and let u € L®(R™") be the solution of Lu = 0 in R, with data f, constructed in Proposition 4.5. Set
du(x,t) := |tVu(x, 0? - dxdt. We then have the Carleson measure estimate

e = sup — f Va0 2L < Ol

where C depends only on dimension and ellipticity.

Proof. Given our preceding work in this section, the argument is standard, but we include it here for the
sake of completeness. Fix a surface ball Ag := A(xg, r) C R”, set Ay := A(xp, 2kp), and Sg := Agsr \ Ax.
Now define f; = fls,, let ux solve (D)fo (equivalently, (D)L, see Remark 4) with boundary data f;, and
as in the proof of Proposition 4.5, set

N

N
=S = Y @.7)

k:—OO k:—oo

so that u” is the solution of (D)f (and of (D)%) with boundary data V. As noted above, u¥ — u in
wh 2(RT‘), hence, for each 6 € (0, r),

loc
d dxdt r dxdt
f 1V (x, P L f Va2 L as N - oo
§ JAo t § JAg t

Thus, it is enough to show that

. dxdt
r f Vi (e, O —— < 11 - (4.8)
0 JAg
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uniformly in N. Using the notation of (4.7), we write

so that

r dxdr\'"?
(fijﬂwm%iJ
0 JAg t
- 12 N " 1/2 N
dxdt dxdt
< |va°(x,z)|2—) + ( f f ItVuk(x,t)Iz—) = I+ > I.
(‘fO«fAQ 4 ; 0 JAy t Z

k=1

By (2.12) with m = 1, and the solvability of (D)%, we have

mﬁmﬂ@m=f P dx < Pl -

A(x0,2r)
as desired.

By construction, f; vanishes outside of S, so by Corollary 4.3, u; is Holder continuous up to the
boundary outside of S, and we may therefore use Caccioppoli’s inequality at the boundary and then
Corollary 4.3 (i.e., inequality (4.2), but with surface balls in place of cubes), to write

r 2r
L) <r f f IVur(x, 0> dxdt < 7! f f lug(x, D) dxdt
0 JAy 0 A(xq,2r)

=2k 2 =2k 2
s 2 arn“uk”Loo(Ri‘Fl) S 2 arn”f”Lw(Rn) ’

where in the last step we have used the Agmon-Miranda maximum principle. We may now sum a

geometric series to conclude. O

5 Proof of Theorem 1.2

In this section, we focus on the proof of Theorem 1.2, which, together with the results in the previous
section, comprise the main new contributions of this paper. The proof will be split into two parts. In Part
1, we present a suitable definition of the commutator [A, g](f), under the assumptions that f € L*(R")
and g € H'(R"). In Part 2, we prove a variant of Dahlberg’s bilinear estimate by a more refined version of
the procedure used to prove Lemma 3.1. The conclusion of the theorem then follows. As in the preceding

section, we let A(x,r) := {y € R" : |[x — y| < r} denote the surface ball of radius r and center x, on R".

Part 1: definition of [|[A, g]()ll;2.

Under the hypotheses of Theorem 1.2, we have from Theorem 2.2 that both (D), and (R), are solvable
for £, and its adjoint L.

We let A* to denote the adjoint of A. Observe that A* is the the Dirichlet-to-Neumann map for the
adjoint operator £*, as may be seen by the Gauss-Green formula.

For f € L (R"), let u be the solution of (D)fo with boundary data f, as constructed in section 4. We
may assume that g € C° (R™), which is dense in H'(R").

16



For0 <6 < 1,and 1 < R < oo, set f5 := u(-,6), and choose ng € C5’(B(0,2R)) with ng = 1 on
B(0, R). Let us g be the solution of (D)2£ (equivalently, the solution of (D)fo; see Remark 4) with boundary
data fsnr. By the Agmon-Miranda maximum principle proved in section 4, f5 := u(-, 6) satisfies that

(lsin(l)f(;(x) = f(x), ae.xeR", and supllfsllzo®n < Iflleo®n). (5.1
- 0>0

For any h € C7’(R"), we shall prove the following estimate

skl := ‘ f | Asrg)h — sA(finp)h| ]s ol Iell 2 1Vgllzz < Il Nl 9 glliz. (5.2)
R}‘l

uniformly in ¢ and R; in fact, the implicit constants depend only on n, y, provided e is small enough, with

the same dependence. Observe that we have used (5.1) in the last step.

Taking (5.2) for granted momentarily, we seek to extend estimate (5.2) to the limiting case as 6 — 0

and R — oo. To this end, we define
f |A(f@)h — gA(f)R] := lim lim f |A(fsnrg)h — gA(fsmp)h] =: lim lim I . (5.3)
Rn R—006—0 Jpn R—00 60

Let us show that this definition is reasonable, and in particular that the limit exists. We observe that at

least formally,

[ [roi - eh 0] = [ [reR TR - fAGn). (5.4)
R” R
so our goal is to show that the limit in (5.3) exists, and is equal to the right hand of (5.4).

By [AAAHK, Theorem 1.14] (solvability of (R)ZL), the analogue of (5.4) does hold for any ¢ > 0 and

R < oo, i.e., we can write Isg as

low= [ {fome (e7Ch) - Ao 5.5)

By the solvability of (R)f, we know that A*(h), A*(gh) € L? (recall that we have taken g h € C7 by

density). Consequently, by (5.1) we may use dominated convergence to obtain

tim Foe = lim [ (e (650 ~ K| = [ [ e (e7Ch) ~ Ao | =

n

Since (as we shall prove) (5.2) holds uniformly in ¢ > 0, we also have that

IRl < A llz=lIAll 211V gl 2 (5.6)

Set

¥ = W(g. 1) = (A (h) ~ A*(gh)).
Since (5.6) holds for any f € L*(R"), we have

SUPf [Pldx < IAll211V)gll2,
[x|<R

R<oo

by the definition of ng, and thus using monotone convergence theorem we also have that
¥l ey < 1Al 20IVEI L2

Consequently, we obtain the desired limit

R—o

lim lim g = lim | fre¥(e.h) = f F¥(g. )
6—0 R— R” R~
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by dominated convergence theorem. This completes Part 1. It remains to prove (5.2).

Part 2: the proof of (5.2).

We now fix 0 < 6 < 1,and 1 < R < oo, let f5 and ng be defined as in Part 1 above, and for
notational convenience, we set f = fsng. Recall also that by density, we may assume that g, € Cp’.
Then qualitatively, with this revised notation, fg € H'(R") and f € H'(R"). Of course, by hypothesis,
we also have a quantitative L™ bound for f, and moreover f now has compact support. We let u be the
solution of (D)OLO (equivalently, the solution of (D)L; see Remark 4) with boundary data f, and as above,
we let H be the solution of (D)f with boundary data 4, and set V(x, 1) = ¢, * g = P; g, where P, is a nice
approximate identity with a smooth, radial, compactly supported kernel ¢;.

Thus, (5.2) will follow immediately once we establish the following estimate:
‘f [A(fg)ﬁ - gA(f)E] ‘ S VAT ) ||h||L2(Rn) IIV||gIILz(Rn) >
Rl’l

forall g,h € CP(R"), and every f € H LR™) N L*(R") with compact support.

Exactly as in (3.3), we have

f |A(f@)h — gA(f)R] = ff uVVA*VH - ff AVuVVH :=1+J. (5.7)
Rn RTM RT—]

By Lemma 3.1, and the solvability of (D)E',

1l < sup 1 )l 2 (||N*(uvv>||Lz + V@) || )

>0

< llzz (ING@YW)llg2 + [[6Vu- YV ||| + ||| ¥ V]| )
=: [lAll2 (M + M3 + M3) .
In turn, to handle term /, it is therefore enough to show that
M + Mz + M3 < Ifllze@n V)8l -
To this end, let us note that by Proposition 4.6,
dp = tVu(x, z)|2dx7dt is a Carleson measure on R} with norm [|ulle < || f17en - (5.8)

Recall that V = P,g, so that by (3.2), N.(VV) < M(Vg), where M denotes the Hardy-Littlewood
maximal operator. Moreover, V2V = 0:(V|8), where O satisfies the classical Littlewood-Paley estimate

NIOF Il < NF N2
for arbitrary F € L?>(R"). Consequently,
INTWllzz + [[11V2V] < 198l (5.9)
With these observations in hand, by the Agmon-Miranda maximum principle and (5.9), we have

M < [lull ooty INS(VWIr2 < 1l V8122 -
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By (5.8), Carleson’s lemma, and (5.9),

M, < [Ifllzo@n INCYW)Iz2 S I llo@n V8122
and by the Agmon-Miranda maximum principle and (5.9),

M; < flllsqey [ V2V S 1 @ ()8l -

This concludes out treatment of term 1.

It remains to estimate term J (see (5.7) above), which is the heart of the matter. The basic strategy
will be that of Lemma 3.1, but in the present setting we shall need to proceed more carefully. As in the
proof of Lemma 3.1, it suffices to prove

2p
sup JC
O<pxl Jp

For any p > 0 small, integrating by parts in ¢, we have the following

1/6
f f AX)Vu(x, 1) - VV(x, 1) H(x, 1) dxdt|df < 1| fllzecen Wl 1958l 2.
H n

1/6
f f A(x)Vu(x, 1) - VV(x, 1) Hdxdt
0 n

1=1/8 1/6 .
- f f AVo,u - VV H dx tdt
=0 0 R?

1/6 . 1/6 .
— f f AtVu-Vo,VHdxdt — f f AtVu-VV 9,H dxdt
0 " 0 "

= Jl—Jz—J3—J4.

= ( f Atvu(-,z)-w(-,z)ﬁdx)

We start with the last of these. Uniformly in 6, and hence in p, we have

dxdr\"? ([ dxdr)'
al < ( f |Vu(x, ) - YV (x, z)|2x—) ( f f |0, H(x, ) x—)
RT—] t 0 R? t

< eV - VV [ [1IVH] < 1 lz=@nlIVgllz2llAll2,

where we have used (5.8), (5.9) (as for the term M, above), along with (2.12) for the adjoint solution H,
and the solvability of (D)Zﬁ.

By Cauchy-Schwarz,
sl < ([ 1eVul IHC, o1 || |92V ]|

S Wz @ny IN<H 2wy IVl 2y S 1 @y Al 2y (V)81 2200y »
as desired, uniformly in € (hence also in p), where we have used (5.8) and Carleson’s lemma, (5.9), and
the fact that H solves (D)f with data A.

The boundary terms J; are handled as follows:

20 2r
f |J11d6 < sup f [tVu(x, ) IVV(x, )] |H(x, £)] dx dt
1 r R7

r>0
) 1/2
dxdt
< ( f (Vu(x, O IVV(x, D) 7) N (D 2y
0 R)l

S I llze@n) IVigllz2geny 1l 2gen »
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uniformly in p, by (5.8), Carleson’s lemma and (5.9), and the fact that H solves (D)f with data 4.

It remains to treat J,. To this end, we begin by recording the following generalization of (5.8), which
follows from the latter by the #-independence of A and Caccioppoli’s inequality in Whitney boxes: for

any m > 1,
m m—1 Zdth . n+1 . 2
dpy, = 1"V u(x, 1)| - is a Carleson measure on R} with norm |||, < ||f||Lm(Rn), (5.10)

with implicit constant depending of course on m, as well as on dimension and ellipticity.

To control the term J,, we integrate by parts up to a total of N + 1 times in ¢ (that is, N additional
times: we have already done so once), for some suitably large integer N to be chosen, stopping the first
time that a z-derivative falls on either VV or H. In either of the latter two cases, the result is a term of the
same form as J3 or Jy4, along with boundary terms of the same form as Ji, except with tVu replaced by
t’”V(?;"‘lu, for some 2 < m < N + 1. Using (5.10) in lieu of (5.8), we may handle these terms exactly like
their counterparts with m = 1, already treated above. The one scenario that remains to be considered is
that which occurs when all N + 1 derivatives in ¢ fall upon u, i.e., it remains only to show that

2p
sup £
O<pxl Jp

1/6
f f AV u(x, 1) - VV(x, ) H(x, 1) dx V! dt’de
9 n

2p
= supf 1O dO < || fllz=@nllAllz2@nlVigll2@ny,  (S.11)
O<p<l Jp

provided that N is chosen large enough; in particular, it will be enough to take N = n + 2 in the sequel.

To prove (5.11), we shall follow the outline of the argument in Section 3. We first make the change

of variable t — 21, to obtain
1/6
Q) = Cy f f AX)VON T u(x, 20) - VV(x, 26)H(x, 21) dx ¥ dt
H n

and then we use the Green formula (3.10) (bearing in mind our qualitative assumptions on u), and set

s =t , to get the following generalization of (3.11):
(VO1u) (.20 = = (VAN D)) () — (VoY (SV)) ((AVuc-. 1)) -

where as before, f; := 0;u(-,t). We may then set W(-, 1) := VV(-,1)H(-, 1), and use (2.6) and (2.7) to write

< Kn() + Ly(1),

f AV u(x, 20) - VV(x, 20H(x, 21) dx

where

’

Ky() := ‘ fR A (VoY D) (f(x) - W(x, 21) dx

= ’ f duu(-, 1) (y,. 0N (S5 V) (A*W(., 20)) dx
Rﬂ

and

Ly(p) =

fR A (VoY (SiV))) ((AVu(-, 1)) (x) - W(x, 21) dx

f (AVuC, 1), - (V0N (SE V) (A*W(-, 20)) dx
Rn
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Using (2.9), we observe that these expressions make sense, by virtue of our qualitative assumptions on u,
and the fact that H(-, 1) € L*(R") (qualitatively, because the data i € C’; see Remark 4), for each fixed
¢ > 0, and therefore ‘W(-, 1) € L3(R") (again qualitatively). Note that

Kn(f) + Ly(®) < f |Vu(-, 1) | VoV (SL V)) (A*W(-,21))| dx,
hence, plugging this bound into the definition of €(), and in turn into (5.11), it suffices to prove that

0 . dxdt
f f |(Vu(, 0| |© (A* W, 20)| = S Wllmceny Wellzceey 198l (5.12)
0 Rn

where

= "veN (8L V)

(note that the operator @, defined in Section 3 was exactly the same, but with N = 2). Let P, be the nice
approximation of the identity with a smooth, compactly supported kernel, introduced previously. Just as

in Section 3, we then write
O[A"W(,20))(x) = ©,A"(x) PW(,20)(x) + RW(,21)(x),
where for a function f valued in C"*! (in particular, for f = W(-, 2¢) with  momentarily fixed), we define
R f(x) := 0,(A"f) (x) — O, A (x) P, f(x).
We first consider the contribution of ®; A*(x) P,W(:,2t)(x) in (5.12). Note that

)
ol .

dxdt

(IQI f I(Q)f rvuc, ”'MW) (é fol@fg

S N llzewny Al Lo@ny = I fllze@ny

w2 dxdt 12
t

uniformly in Q, by (2.10), (5.8) and ellipticity. Recall that W(.,t) := VV(-,1)H(-, 1), so by Carleson’s

lemma, we have

f f |(Vu(x, 0| |©, A*(x) PAW(., 20)(x)| — dxd

S ey INS(PWE 20 ey S NNl @y ING(VV)I 2 lINCH |2
S ey ||h||L2(R") ”VHg”L2(R") ,

as desired.
Last, we deal with the remainder term R,. We begin by recording two facts, for future reference. The
first entails precise quantitative dependence on the aperture of the cones used to define the non-tangential

maximal function:
INY(H)llr2 < B2 INLC)I2 (5.13)

for any f € L? and 8 > 1; the proof can be found in [FS, Lemma 1, p. 166]. The second indicates the
off-diagonal decay for ®,, and hence for R;: for every cube Q and all ¢ < £(Q),

t
2/(Q)

)2N+2

I1£112 Vji=>1, (5.14)

2 -njn2j
||R1‘(f12j+1Q\2jQ)”L2(Q) < 272 ]( L2(2/+10\2/Q)’ =
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for any £ € L*>(R", C™*!). For @, the latter estimate is simply (2.11) for £*, in the lower half-space, with
m = N + 1. As in Section 3, where we considered the case N = 2 (see (3.12) above), we may use (2.8),
[AAAHK, Lemma 3.11] and the definition of P, to extend the estimate to R;, which is (5.14). As in
Section 3, we may then define R,1 as an element of leoc, where 1 denotes the (n + 1) X (n + 1) identity
matrix, and by construction R,1 = 0.

As above, let D; denote the grid of dyadic cubes on R” of length £(Q) = 2. Let Q € Dy, suppose
that t € (25, 2K*1], and for i > 1, set [Whig = fziQ"W(-,Zt). For j > 1, since t = £(Q), we then have

1/2
( f [ W(x,21) - [W]2Q|2dx)
2j+l 0

) 1/2 J ' IR
s ( f W20 = [ Wy dx) + Z(zf"|Q||[w12f+1Q — [ Wlg| )
2]+1Q

i=1
. 2 Jo 172
< 2/ ( f IV W(x, 2t)|2dx) + Z(zv—l)" 22 f (V. W(x, 2t)|2dx)
2-/+1Q ) 2i+IQ

1/2
< j2iM2i ( f |N;W(x,2z)|2dx) ,
2j+]Q

by Poincaré’s inequality. Thus, since R;1 = 0, and t ~ £(Q), we see from (5.14) that

1/2
( f (R, 20)(x) dx) < ( f
0 (@)

R, ((W(-, 26)(x) - [(W]QQ)le)‘ dx)l/z

il

1/2
R ((’W(-, 20)(x) = [Whg)lzﬂ'Q\zfQ)’ dx)

00 1/2
IR ( f ItV W(x, 2t)|2dx) (5.15)
= 2410

We shall now use the preceding estimate to establish the following.

Claim. Define the conical square function

2 dydt 172
AW (x) := ( f f [RW(, 20| ny+1 ) .
x—yl<t r
We then have
||~7{W||L1(R'1) < ”V”g”LZ(Rn) ||h||L2(Rn)- (5-16)

Proof of Claim. Using (5.15), we find that for some purely dimensional constant M,

k+1 172
> 2 dyd
AW() < [Z D f2 k fQ [RW 2000 tnyﬂtJ

k=—c0 QeDy: dist(x,Q)<2k+1

2k+ 1

1/2
> v | dydt
in—J(N-1) 2
S Z] ] 2 [ Z Z ﬁk Lj+lQ |tVy(W(y’ 2t)| tn+1 ]
J:

k=—co Qely: dist(x,Q)<2k+!

< ijZ‘j(N‘“ ( f f v, W, 202 2 ‘”)1/2 .
= posl<mie .
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Recall that in the present context, W(-,t) = VV(-,1)H(-,t). For notational convenience, we set
g1:=Vg, Gi(x, 1) :=VV(,20(x), g :=h, Gx,1):=H(x?2t),

so that
[tV W, 20| < 1tVG1]IGa| + VGl |Gyl

Note that by (5.9), (2.12), and the solvability of (D),
IN«(Gllp2ny + VG| < Ngill 2 i=1,2.

Thus, to prove the claim, it suffices to show that

1/2

iV dydt
iy [ ( [ W96i0.0P 620 0PRT ) dx < 169G | NGl 517
P n lx—y|<M2it !

along with a similar estimate with the roles of G; and G, reversed. Since the roles of G; and G, are

symmetrical, we need only treat the version stated in (5.17). Note that for |x — y| < M2/t, we have
G2, 0] < N Go (),

i.e., the non-tangential maximal function defined with respect to a cone of aperture M2/. Thus, the left
hand side of (5.17) is bounded by

o : dydr\'"?
S jaite f NY2 () ( f f VG (5, 2L ) dx
n+]
= R [x—y|l<M2it
had dydt
< 2]2 J(N— l)llNM2]G2||L2(R" (f ff , |tVG1(y, t)|2 3:—1 X
= R” [x—yl<M2/t

< > j2 N2 NG| gy 2772 || 1YG
j=1

1/2

where in the last step we have used (5.13), along with the following estimate, obtained via Fubini’s

theorem:
dyd © dydt
f ff G5, 02 2 ax = f f VG (3, 1) t_"f dx 25 < 20 || VG |
n JIx—y1<m2is 1t 0 Jrn le—yl<M2Jt !
We now choose N = n + 2, to obtain (5.17), and hence the claim. O

With (5.16) in hand, and using the Carleson measure estimate (5.8), we then obtain

el AW gy S Iz 1Vl 2y Wll 2 e - (5.18)

We also claim that
K = f f a0 RWE 2000 2L < 1l 1AW e (5.19)

Momentarily taking (5.19) for granted, we then immediately obtain the desired estimate (5.12) for the
contribution of the R, term, by combining (5.18)-(5.19). The conclusion of Theorem 1.2 follows.
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It remains only to discuss (5.19). In fact, the latter is actually a classical estimate of Fefferman (see
[FS, pp. 148-149]), but for the reader’s convenience, we shall reproduce the argument here. To this end,

for 0 < h < oo, set

dyd dyd
ApW(x) _( f f| | h|72fW( 20|’ ny+f) . AV () _( f fl | hjtv u(y, 0|’ nyH’ )
x—y|<t< xX—y|<t<

(thus, for all # € (0, 00), AW < AW as defined above). By (5.8) (i.e., Proposition 4.6), for all y € R",
and all /1 € (0, c0),

f| | h(ﬂh(tVu)(x))de < Collullc A", (5.20)
[y—x|<

with Cy depending only on dimension. Set
h(x) = sup{h > 0 : AVu)(x) < Cillle}
with C; a sufficiently large dimensional constant to be chosen momentarily. Note that in particular,
Py (V)(x) < Cillele” . (5.21)
Then for every y € R", there is a uniform constant ¢ such that
HxeR": |x—y| <h < h(x)}| >ch". (5.22)

Indeed, by definition, if h(x) < h, then A,(1Vu)(x) > Cyljulll’?, so that by Tchebychev’s inequality

[l v =yl < hand h > h(OY < [fx : 1x =yl < b and AEVu)(x) > Clule’)|

< 1
~ CHlle

f| | h(&zlh(tVu)(x))z dx < l|{x: x =yl <hjf,
x—y|<

2

by (5.20), provided that C; is chosen large enough, depending on Cy. Consequently, using (5.22), we see
that

" dyd
Ks [ [ W] mweaomn e [ a2
0 JR le—yl<t<h(x) t

dydt
=f ff |19u(y, ] RWE, 20(0] ot d
n |x—y|<t<h(x) t
> dyd dydr\'?
< L[]l ]) [ mwconor 9] ax
n [x—yl<t<h(x) [x=yl<t<h(x)

Ao (EVu)(x) AW dx s [kl 1AW gy
Rn

by (5.21), so that (5.19) holds.

This concludes the proof of Theorem 1.2. ]
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