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Abstract
For high dimensional gene expression data, one important goal is to identify a small
number of genes that are associated with progression of the disease or survival of the
patients. In this paper, we consider the problem of variable selection for multivariate
survival data. We propose an estimation procedure for high dimensional accelerated
failure time (AFT) models with bivariate censored data. The method extends the
Buckley-James method by minimizing a penalized L2 loss function with a penalty
function induced from a bivariate spike-and-slab prior specification. In the proposed
algorithm, censoredobservations are imputedusing theKaplan-Meier estimator,which
avoids a parametric assumption on the error terms. Our empirical studies demonstrate
that the proposed method provides better performance compared to the alternative
procedures designed for univariate survival data regardless of whether the true events
are correlated or not, and conceptualizes a formal way of handling bivariate survival
data for AFT models. Findings from the analysis of a myeloma clinical trial using the
proposed method are also presented.

Keywords Buckley-James estimator · Bayesian penalization · Multivariate survival
data · Variable selection

1 Introduction

Emerging developments in sequencing technology have made it easier to collect
massive amount of gene expression data that can be used for understanding cancer
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genomics. One popular model that associates survival times with covariates is the
proportional hazards model, or often known as the Cox model (Cox 1972). It is well-
known that the Coxmodel may not fit the survival data well if the proportional hazards
assumption is not satisfied. As a useful alternative to the Cox model, the accelerated
failure time (AFT) model has recently received great attention (Miller 1976; Buckley
and James 1979; Koul et al. 1981; Schneider and Weissfeld 1986; Wei et al. 1990;
Tsiatis 1990; Wei 1992; Stute and Wang 1993; Jin et al. 2003, 2006a; Huang et al.
2007, 2009; Kalbfleisch and Prentice 2011; Wang and Song 2011; Khan and Shaw
2016; Huang et al. 2020).

In biomedical and epidemiologic studies, it is common that multiple events could
have happened during the study such that more than one event time is collected from
the same group of patients. For such multivariate survival data, since those events
are about the same patient, it is nature to utilize all available data in the analysis
even though not all events are of major interest. One challenge in associating multiple
event times with covariates through AFT models is that the true multivariate survival
distribution is very difficult to estimate.Meanwhile, it is also very difficult tomodel the
correlation structure between the events. To address these concerns, both parametric
and nonparametric methods have been considered for modeling either the marginal
survival distribution or the joint survival distribution. Parametric methods such as
bivariate Weibull distribution and bivariate normal distribution have been suggested
for modeling joint survival distribution for bivariate survival data (Hanagal 2006; Yi
and He 2006; Lu 2007). Nonparametric approaches such as extensions of Buckley-
James estimator (Hornsteiner and Hamerle 1996; Pan and Kooperberg 1999; Chiou
et al. 2014; Pan and Louis 2000), rank-based estimating equations (Jin et al. 2006b;
Li and Yin 2009; Wang and Fu 2011), and other nonparametric modeling methods
(Lu 2007; Yin and Cai 2005; Visser 1996; He and Lawless 2005; Huang 2002; Chang
2004) have been proposed.

The problem of variable selection often arises in analyzing gene expression data,
which is usually high dimensional with the number of features p being greater than
the sample size n. None of the methods reviewed above for multivariate AFT models
can handle high-dimensional data or address the problem of variable selection. For
univariate AFT models, some variable selection methods have been developed based
on Buckley-James method or rank-based approaches (Johnson et al. 2009; Wang et al.
2008; Li et al. 2014; Cai et al. 2009; Xu et al. 2010) while others have been proposed
based on the Stute’s weighted least squares (Huang et al. 2006; Huang and Ma 2010;
Wang and Song 2011; Hu and Chai 2013; Khan and Shaw 2016; Khan et al. 2019;
Khan and Shaw 2019; Huang et al. 2020). FromBayesian aspects, Sha et al. (2006) and
Lee et al. (2017) developed variable selection methods for log-normal AFT models,
while Lee and Mallick (2004) and Duan et al. (2018) studied Weibull AFT models.
Nonparametric Bayesian AFT models have also been explored (Ahmed et al. 2012;
Konrath et al. 2015).

In this paper, motivated by the lack of such variable selection approaches, we con-
sider high-dimensional bivariate survival datawith the same designmatrix and develop
aBayesian variable selection framework assuming that the two events are independent.
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The relationship between the two events can be studied through the prior specifica-
tion of regression coefficients. The remaining of this paper is organized as follows. In
Sect. 2, we introduce the imputation of the censored observations using Kaplan-Meier
estimator under univariate AFT models which is equivalent to the Buckley-James
estimator using an iterative procedure. In Sect. 3, we elaborate the variable selection
approach inspired by the Bayesian framework for bivariate survival data and discuss
the details of the computation process along with some remarks. Sect. 4 assesses
empirical results of the proposed method using three simulation studies, as well as a
detailed analysis of a myeloma clinical trial in Sect. 4.3. Finally Sect. 5 concludes the
paper with a brief discussion.

2 Background

2.1 Bivariate AFTmodel

Let {(T i ,C i , X i ) , i = 1, . . . , n} be independent and identically distributed random
vectors where T i = (Ti1, Ti2) denotes the log-transformed bivariate survival time,
C i = (Ci1,Ci2) denotes the log-transformed bivariate censoring time, and X i ’s are
the p-dimensional covariate vectors. For ease of exposition, we assume that the design
matrices for two columns of survival times are the same. Due to the right censoring of
survival time T i , the observed data consists of the triplets {(Y i , δi , X i ) , i = 1, . . . , n},
where Y i = (min {Ti1,Ci1} ,min {Ti2,Ci2}) is the bivariate censored survival time
and δi = (I {Ti1 ≤ Ci1} , I {Ti2 ≤ Ci2}) is the bivariate censoring indicator such that a
zero value indicates censoring for the corresponding survival time for i-th observation.
Throughout we assume that censoring time Cik is independent of survival time Tik
conditioning on covariates X i for k = 1, 2 and i = 1, . . . , n.

In this paper, we focus on the AFTmodel for the analysis of bivariate time-to-event
data, which has the general form:

T i = X iβ + εi , i = 1, . . . , n, (1)

where β = (β1,β2
)
is a p-by-2 matrix of regression coefficients, and εi = (εi1, εi2)

denotes independent and identically distributed bivariate randomerror term.We further
assume that εi1 and εi2 follow unspecified distribution functions F1 and F2, which
have zero means and finite variances σ 2

1 and σ 2
2 , respectively. We denote the first and

the second survival time as T ·1 and T ·2.
Popular parametric choices for F1 and F2 include Gaussian distribution, log-

normal distribution, or Weibull distribution. For example, Hanagal (2006) considered
a bivariate Weibull regression model and derived a maximum likelihood estimator
for regression coefficients while Yi and He (2006) discussed estimation method for
bivariate normal AFT models. For nonparametric approaches, Lu (2007) proposed a
χ2-type test statistic for testing independence structure between the bivariate survival
datawith unshared covariates by assuming a joint unspecified distribution and utilizing
a Gehan weighted log-rank estimating function.
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2.2 Buckley-James estimator for univariate AFTmodels

The main challenge with the AFT model is that the actual survival time T i may not be
observable for some cases due to censoring. Next, we review prior work, especially the
Buckley-James estimator for regression coefficient β. With slight abuse of notation,
in this particular subsection, we consider a marginal univariate AFT model and let
T ,Y , δ and ε be vectors of length n and β be a vector of length p.

When there is no censoring and the survival times Ti ’s are fully observed, the most
natural estimator for β is the least squares estimator β̃ given by

β̃ = (X ′X
)−1 X ′T

which is obtained from solving the score equation

n∑

i=1

X ′
i (Ti − X iβ) = 0.

When T is censored, the least-square principle has been extended to accommodate
censoring by many researchers such as Miller (1976); Buckley and James (1979);
Koul et al. (1981) and many others. One popular estimator is the Buckley-James
estimator (Buckley and James 1979) which imputes the censored observations by
their conditional expectations given corresponding censoring times and covariates as
follows:

T̂i = E
[
Ti
∣∣ δi = 0, X i

]

= E
[
Ti
∣∣ (Ti > Yi ) , X i

]

= X iβ + E
[
εi
∣∣ (εi > Yi − X iβ)

]

= X iβ +
∫ ∞

Yi−X iβ

tdF (t)

1 − F (Yi − X iβ)
, (2)

where F (·), the distribution function of error terms εi = Ti − Xiβ, is estimated by
its Kaplan-Meier estimator F̂ε,β defined on εi ’s. Then the least squares estimator with
censored survival times can be computed as

β̂ = (X ′X
)−1 X ′T̂ , (3)

where T̂i = Yi , if δi = 1, and T̂i is defined in Equation (2) if δi = 0.
Since T̂i contains β, estimating β requires an iterative procedure. In the spirit of the

EM algorithm, Schneider and Weissfeld (1986) suggested the following computation

procedure: at the t-th iteration, given the current estimate β̂
(t)
, operate the E-step by

computing

T̂ (t)
i = δi Yi + (1 − δi ) E F̂ (t)

[
Ti
∣∣ (Ti > Yi ) ,β(t)

]
, (4)
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where F̂ (t) denotes the Kaplan-Meier estimator F̂
ε,β̂

(t) (·) based on errors at the t-th

iteration ε
i,β̂

(t) = Yi − X i β̂
(t)
:

F̂
ε,β̂

(t) (s) = 1 −
∏

i :ε
i,β̂

(t)<s

⎡

⎢
⎣1 − δi

∑n
j=1 I

{
ε
j,β̂

(t) ≥ ε
i,β̂

(t)

}

⎤

⎥
⎦ ;

then operates the M-step by updating β̂
(t+1)

via Equation (3) using T̂ (t)
i ’s.

Let ε(i) be the order statistic of εi,β̂(t)’s and δ(i) be the corresponding ordered vector

for the censoring indicator δi ’s. Then F̂
ε,β̂

(t) (s) can be written as a step-wise function

in the following form

P
(
ε
i,β̂

(t) ≤ s
)

= F̂ (t)

ε,β̂
(s) =

n∑

i=1

wi I
{
ε(i) ≤ s

}
,

where wi ’s are weights or jumps for T which can be computed as

w1 = δ(1)

n
, wi = δ(i)

n − i + 1

i−1∏

j=1

(
n − j

n − j + 1

)δ( j)

.

3 Bayesian variable selection for bivariate AFTmodels

In gene expression data, it is common that the dimension p is large and potentially
larger than sample size n. Many approaches have been proposed under univariate AFT
models for both low and high dimensional problems under the conditional indepen-
dence assumption. Extending variable selection to bivariate survival data is difficult
due to the unknown dependence structure between T ·1 and T ·2. Parametric methods
for jointly modeling two survival times have been proposed (Hanagal 2006; Yi and
He 2006). However, when the parametric distribution is misspecified for the survival
data, the results are usually unsatisfactory. Assuming an unspecified joint distribution
F(T ·1, T ·2) is one option for nonparametric methods but finding the nonparametric
estimator of the joint distribution function is very difficult.

To address the above issues, we develop a new methodology inspired by the
Bayesian framework and present a computational procedure that borrows ideas from
the EM algorithm. The proposed method extends the Buckley-James approach by
using penalized least squares with a penalty function pen(β) induced from the so-
called spike-and-slab prior (Ročková and George 2014). To be specific, we consider
the minimization problem of the following penalized L2 loss function

min
β

2∑

k=1

n∑

i=1

(
T̂ik − X iβk

)2 + pen (β) ,
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where T̂ik’s are imputed censored observations for bivariate survival data computed
based on Equation (4) for k = 1, 2 following Buckley-James approach described
in Sect. 2.2. Here we assume that T ·1 and T ·2 are marginally independent which
allows us to find the nonparametric estimators of F1 and F2 marginally. To utilize
shared information across β, we design a new penalty function from the Bayesian
perspective, i.e., the penalty function pen(β) is induced by the negative logarithm
of a prior specification π (β). The connection between penalty function and negative
logarithm of a prior specification has been mentioned in Park and Casella (2008), and
more deeply discussed by Van Erp et al. (2019). Then the loss function l (β) can be
defined as

l (β) =
2∑

k=1

n∑

i=1

(
T̂ik − X iβk

)2 − logπ (β) . (5)

Minimizing Equation (5) is equivalent to maximizing exp{−l(β)}, namely,

L
(
T̂
∣∣ X,β, σ 2

)
= exp {−l(β)}

∝
2∏

k=1

n∏

i=1

exp
{
−(T̂ik − X iβk)

2
}

× π (β) .
(6)

In other words, theminimization problem is naturally transformed into amaximization
problem involving a product of a working Gaussian likelihood and a prior distribution
of β.

Next we describe the details of our bivariate prior specification π (β), and the
algorithm for the maximization problem, and end Sect. 3 with some remarks.

3.1 Bivariate spike and slab priors

3.1.1 Univariate spike and slab

When there is only one response variable, a useful prior that applies to the Bayesian
variable selection framework for high-dimensional problems is the spike-and-slab
prior. The key idea of spike-and-slab prior is to zero out non-relevant coefficients by
making the posteriormean values of those coefficients small. The hyper-variances con-
trol the magnitudes of posterior mean values for relevant and non-relevant coefficients
which correspond to the spike and the slab.

We define a binary latent variable γ j to indicate whether the j th covariate is active.
A binary index vector γ = (γ1, . . . , γp

)
is provided for themodel under consideration.

A hierarchical prior structure for β starts with a prior distribution π (γ ) and then a
prior distribution of β conditional on γ denoted by π

(
β
∣
∣ γ
)
.

For univariate cases, popular choices for the hierarchical prior structure include
the Bernoulli families for γ j and the “spike and slab” prior (Mitchell and Beauchamp
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1988) for β j such that

π
(
β j
∣∣ γ j
) = γ j g1

(
β j
)+ (1 − γ j

)
g0
(
β j
)
,

where g1 (·) is usually the density function of a symmetric distribution such as a normal
distribution with mean 0, and g0 (·) denotes the distribution function of a point mass
at 0. Another popular choice is to consider a combination of two normal distributions
such that

π
(
β j
∣
∣ γ j
) = (1 − γ j

)
N
(
0, v0γ j

)
+ γ jN

(
0, v1γ j

)
,

where 0 < v0 < v1 (George and McCulloch 1997; Narisetty et al. 2014; Ročková
and George 2014). By construction, setting v0 small and v1 large results in N (0, v0)
as concentrated and N (0, v1) as diffused. The likelihood and priors induce a joint
distribution over the data, parameters, and the model space. The selection of any
model can be made based on the posterior distribution over γ given the observed data.

The selection of j-th variable is determined using theBarbieri-Bergermedianmodel
(Barbieri and Berger 2004). That is, let γ j = 1, if

π
(
γ j = 1

∣∣ Y , β j , σ
2
)

> 0.5.

3.1.2 Bivariate spike and slab

Extending the same idea to bivariate cases, we propose a bivariate spike-and-slab prior
as the following:

β j | γ j ∼ γ j1γ j2N (0, v1)N (0, v1)

+ γ j1
(
1 − γ j2

)
N (0, v1)N (0, v0)

+ (1 − γ j1
)
γ j2N (0, v0)N (0, v1)

+ (1 − γ j1
) (
1 − γ j2

)
N (0, v0)N (0, v0) ,

γ j | (π11, π10, π01, π00)) ∼ Bivariate Bernoulli (π11, π10, π01, π00) ,

where β j = (β j1, β j2
)
and γ j = (γ j1, γ j2

)
for j = 1, . . . , p.

We consider a matrix of binary indices γ of size p by 2 such that γ j = (γ j1, γ j2
)

corresponds to the binary index vector of pair β j = (β j1, β j2
)
. A bivariate Bernoulli

distribution is assigned to γ j such that all four different outcomes aremodeled through
hyper-parameters π11, π10, π01, and π00. By design, the prior distribution π (β | γ )

follows a bivariate Gaussian distribution where N (0, v0) and N (0, v1) are two inde-
pendent Gaussian distributions.

Similar to univariate cases, setting v0 small and v1 large results in a concentrated or a
diffused bivariate Gaussian distribution in both directions of a two-dimensional space.
The selection of anymodel can bemade based on the posterior distribution over γ given
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the observed data.With the bivariate Bernoulli distribution, four posterior probabilities
corresponding to four outcomes of pair β j = (β j1, β j2

)
can be computed. Let

φmax = max
l,m

π
(
γ j1 = l, γ j2 = m | Y ,β j , σ

2
1 , σ 2

2

)
.

The selection of j-th variable is determined by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ j1 = 1, γ j2 = 1 if φmax = π
(
γ j1 = 1, γ j2 = 1 | Y ,β j , σ

2
1 , σ 2

2

)

γ j1 = 1, γ j2 = 0 if φmax = π
(
γ j1 = 1, γ j2 = 0 | Y ,β j , σ

2
1 , σ 2

2

)

γ j1 = 0, γ j2 = 1 if φmax = π
(
γ j1 = 0, γ j2 = 1 | Y ,β j , σ

2
1 , σ 2

2

)

γ j1 = 0, γ j2 = 0 otherwise.

To summarize, we consider the following priors for fully observed data, For j =
1, ..., p, consider the hierarchical model:

T̂ik = X iβk + εik,

εik
i.i.d∼ Fk with E (εik) = 0, V AR (εik) = σ 2

k ,

β j | γ j
i.i.d∼ γ j1γ j2N (0, v1)N (0, v1)

+ γ j1
(
1 − γ j2

)
N (0, v1)N (0, v0)

+ (1 − γ j1
)
γ j2N (0, v0)N (0, v1)

+ (1 − γ j1
) (
1 − γ j2

)
N (0, v0)N (0, v0) ,

γ | (π11, π10, π01, π00) ∼ Bivariate Bernoulli (π11, π10, π01, π00) ,

(π11, π10, π01, π00) ∼ Dirichlet(α11, α10, α01, α00),

σ 2
k ∼ IG

(
λ0,k/2, λ0,kσ

2
0,k/2

)
,

(7)

where IG
(
λ0,k/2, λ0σ 2

0,k/2
)
stands for an inverse gamma distributionwith parameters

λ0,k and σ 2
0,k . In practice, we recommend to consider v1 = 1, λ0,1 = λ0,2 = 1, and

σ 2
0,1 = σ 2

0,2 = 1. For the hyper-parameters (α11, α10, α01, α00), we also recommend
choosing α11 = α10 = α01 = α00.

3.2 Computation

Utilizing the Gaussian working likelihood induced by penalized L2 loss proposed
in Equation (6), we want to derive the computational process for the maximization
problem. Following computations for Buckley-James estimator from Schneider and
Weissfeld (1986) and borrowing ideas from the EM algorithm suggested by Ročková
and George (2014) for Bayesian variable selection, we propose a “full” working like-
lihood involving censored observations. By performing an EM-like algorithm, we are
able to handle imputations of censored observations and to compute expectations of
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latent variables in the Bayesian framework while maximizing the working likelihood
and the posterior distribution within the same iteration. That is, in each iteration, we
first perform E-step computation to impute the censored observations based on current
estimate of β and update expectations of latent variables, then at M-step we maxi-
mize the working likelihood defined in Equation (6) with corresponding T̂ik’s and the
updated values of latent variables.

Let the censored survival time Yik = min {Tik,Cik} and censoring indicator δik =
I {Tik ≤ Cik} for k = 1, 2 be observed for the bivariate censored survival data.We first
adopt the augmentation approach proposed by Tanner and Wong (1987) and consider
the augmented data W k = (W1k,W2k, . . . ,Wnk)

′ for each survival time such that

{
Wik = Yik if δik = 1

Wik > Yik if δik = 0.

We want to impute Wik’s with δik = 0 marginally using the predictive distribu-
tion π (T ·k | Y ·k) without borrowing information from the other event and use the
imputations to approximate the posterior distribution π (· | Y). For k = 1, 2, define
Δ0,k = {i : δik = 0} and Δ1,k = {i : δik = 1} such that Δ0,k is the index set for cen-
sored data points andΔ1,k is the index set the uncensored data points for survival time
T·k .

Let π = (π11, π10, π01, π00)
′ and α = (α11, α10, α01, α00)

′. The “full” working
likelihood involving censored observations corresponding to the hierarchical model
defined in Equation (7) can be expressed as

L
(
W ,β,π , σ 2

1 , σ 2
2

∣∣ X
)

=
2∏

k=1

n∏

i=1

1
√
2πσ 2

k

exp

{

− 1

2σ 2
k

(
Wik − Xiβk

)2
}

×
p∏

j=1

π
(
β j |γ j

) p∏

j=1

q1
(
γ j

∣∣ π
)
q2
(
π
∣∣ α
)

× q3
(
σ 2
1

∣∣ λ0,1, σ 2
0,1

)
q4
(
σ 2
2

∣∣ λ0,2, σ 2
0,2

)
,

whereπ (·), q1 (·), q2 (·), q3 (·)and q4 (·) are density functions of the priors assigned
on β j , γ j , π , σ

2
1 , and σ 2

2 respectively.
By the design of the augmented data W k for k = 1, 2, we need to impute

{Wik : i ∈ Δ0.k} and
{
W 2

ik : i ∈ Δ0,k
}
and also compute expectations for latent vari-

ables
{
γ j : j = 1, . . . , p

}
.

E-step

Suppose after t-th iteration, β(t) =
(
β

(t)
1 ,β

(t)
2

)
, π (t), σ 2

1
(t)

and σ 2
2

(t)
are obtained as

the current estimates of β, π , σ 2
1 , and σ 2

2 respectively. We want to compute expected
values of

{
Wik : i ∈ Δ0,k

}
,
{
W 2

ik : i ∈ Δ0,k
}
for k = 1, 2, and

{
γ j : j = 1, . . . , p

}

with respect to the current conditional distribution of T given observed outcome data
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Y , covariates X , and the current estimates of the parameters
(
β(t),π (t), σ 2

1
(t)

, σ 2
2

(t)
)

:

E
[
Wik

∣
∣ Yik,β

(t)
k ,π (t), σ 2

k
(t)
]
,

E
[
W 2

ik

∣∣ Yik,β
(t)
k ,π (t), σ 2

k
(t)
]
, and

E
[
γ j

∣∣ Y ,β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
]
.

Finding the conditional distribution of T ·k given X and
(
β

(t)
k ,π (t), σ 2

k
(t)
)
is equiv-

alent to finding the conditional distribution of ε·k given X and current estimates at
t-th iteration. In Sect. 2.2, we have shown that, given β

(t)
k as an estimate of βk , one

is able to use the Kaplan-Meier estimator to compute the conditional expectations

E
[
Wik

∣
∣ Yik,β

(t)
k ,π (t), σ 2

k
(t)
]
marginally as

Wik
(t) = E

[
Wik

∣
∣ Yik,β

(t)
k ,π (t), σ 2

k
(t)
]

=
n∑

h=1

wk
i,hε(h)k + XT

i β
(t)
k , (8)

where ε(h)k is the order statistic of residual ε
(t)
·k =

(
ε
(t)
1k , . . . , ε

(t)
nk

)
at t-th iteration.

The sub-weights wk
i,h’s for k-th survival time are defined as

wk
i,h =

⎧
⎪⎨

⎪⎩

wk
h

1−F̂
ε·k ,β

(t)
k

(
Yik−XT

i β
(t)
k

) if ε(h)k > ε
(t)
ik

0 otherwise,

such that F̂
ε·k ,β(t)

k
is the Kaplan-Meier estimator at t-th iteration computed marginally

based on ε
(t)
·k , and wk

h’s are Kaplan-Meier weights following computation described
in Sect. 2.2 for k = 1, 2.

Similarly, we can find the conditional expectation of W 2
ik given Yik , X i , and β

(t)
k

by the Kaplan-Meier estimator:

W 2
ik

(t) = E
[
W 2

ik

∣∣ Yik,β
(t)
k ,π (t), σ 2

k
(t)
]

=
n∑

h=1

wk
i,hε

2
(h)k +

(
XT
i β

(t)
k

)2 + 2XT
i β

(t)
k

n∑

h=1

wk
i,hε(h)k .

(9)

After imputing censored observations marginally for the bivariate survival data, our
next step is to compute the posterior distribution of γ j = (γ j1, γ j2) for j = 1, . . . , p.
Since the relationship between T ·1 and T ·2 aremodeled through the prior specification
of β, the posterior distribution of γ j is able to capture such information and pass it on
to the next iteration. The posterior distribution of γ j also follows a bivariate Bernoulli
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distribution such that

π
(
γ j | ·) ∝

[
π11

1

2
√

v1 × v1
exp

{
− 1

2v1
β2
j1 − 1

2v1
β2
j2

}]γ j1γ j2

+
[
π10

1

2
√

v1 × v0
exp

{
− 1

2v1
β2
j1 − 1

2v0
β2
j2

}]γ j1(1−γ j2)

+
[
π01

1

2
√

v0 × v1
exp

{
− 1

2v0
β2
j1 − 1

2v1
β2
j2

}](1−γ j1)γ j2

+
[
π00

1

2
√

v0 × v0
exp

{
− 1

2v0
β2
j1 − 1

2v0
β2
j2

}](1−γ j1)(1−γ j2)
.

Letφ j = (φ j,11, φ j,10, φ j,01, φ j,00
)′ be the probabilities of four possible outcomes

for j-th variable. Based on the posterior distribution of γ j , the conditional expectation
of four combinations of γ j1 and γ j2 given Y , X , and the current estimates of the

parameters
(
β(t),π (t), σ 2

1
(t)

, σ 2
2

(t)
)
can be computed as

φ
(t)
j,lm = E

[
γ j1 = l, γ j2 = m

∣∣∣∣ Y ,β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
]

with

φ
(t)
j,11 ∝ π11

1

2
√

v1 × v1
exp

{
− 1

2v1
β2
j1 − 1

2v1
β2
j2

}
,

φ
(t)
j,10 ∝ π10

1

2
√

v1 × v0
exp

{
− 1

2v1
β2
j1 − 1

2v0
β2
j2

}
,

φ
(t)
j,01 ∝ π01

1

2
√

v0 × v1
exp

{
− 1

2v0
β2
j1 − 1

2v1
β2
j2

}
,

φ
(t)
j,00 ∝ π00

1

2
√

v0 × v0
exp

{
− 1

2v0
β2
j1 − 1

2v0
β2
j2

}
,

(10)

where φ
(t)
j,11, φ

(t)
j,10, φ

(t)
j,01, and φ

(t)
j,00 are all normalized for each j = 1, . . . , p.

We define two diagonal matrices Dγ ,1 and Dγ ,2 such that both Dγ ,1 and Dγ ,2
have size p × p:

Dγ ,1 = diag

{
γ j1γ j2

v1
+ γ j1(1 − γ j2)

v1
+ (1 − γ j1)γ j2

v0
+ (1 − γ j1)(1 − γ j2)

v0

}p

j=1
,

Dγ ,2 = diag

{
γ j1γ j2

v1
+ γ j1(1 − γ j2)

v0
+ (1 − γ j1)γ j2

v1
+ (1 − γ j1)(1 − γ j2)

v0

}p

j=1
.
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Then the conditional expectations of D(t)
γ ,k = E

[
Dγ ,k

∣∣ Y ,β(t),π (t), σ 2
k

(t)
]
for

k = 1, 2 given Y , X , and β(t) can be computed as

D(t)
γ ,1 = diag

{
φ

(t)
j,11

v1
+ φ

(t)
j,10

v1
+ φ

(t)
j,01

v0
+ φ

(t)
j,00

v0

}

= diag

{
φ

(t)
j,1·
v1

+ φ
(t)
j,0·
v0

}

,

D(t)
γ ,2 = diag

{
φ

(t)
j,11

v1
+ φ

(t)
j,10

v0
+ φ

(t)
j,01

v1
+ φ

(t)
j,00

v0

}

= diag

{
φ

(t)
j,·1
v1

+ φ
(t)
j,·0
v0

}

,

(11)

where φ
(t)
j,1·, φ

(t)
0· , φ

(t)
·1 , and φ

(t)
·0 are marginal posterior probabilities for γ j1 and γ j2 at

t-th iteration.
For k = 1, 2, let Ŵ k =

(
Ŵ1k, . . . , Ŵnk

)
and Ŵ

2
k =

(
Ŵ 2

1k, . . . , Ŵ 2
nk

)
be

the augmented data for k-th survival time such that censored outcomes are imputed
marginally using the Kaplan-Meier estimator. After t-th iteration, we can update the

augmented data Ŵ
(t) =

(
Ŵ

(t)
1 , Ŵ

(t)
2

)
and Ŵ2(t) =

(
Ŵ2(t)

1 , Ŵ2(t)

2

)
with imputations

as

̂Wik
(t) =

{
Yik if δik = 1

W (t)
ik if δik = 0

, ̂W 2
ik

(t)
=
{
Y 2
ik if δik = 1

W 2
ik

(t)
if δik = 0

.

M-step

Given Ŵ
(t)

, Ŵ2(t)
, D(t)

γ ,1, D
(t)
γ ,2 and

{
γ

(t)
j : j = 1, . . . , p

}
, we are able to maximize

the objective function Q
(
β,π , σ 2

1 , σ 2
2

∣∣ β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
)
with respect to the

parameters β = (β1,β2
)
, π = (π11, π10, π01, π00)

′, σ 2
1 , and σ 2

2 . That is, we want to
find the MAP estimators of β, π , σ 2

1 , and σ 2
2 with the objective function

Q
(
β,π , σ 2

1 , σ 2
2

∣∣ β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
)

= −
2∑

k=1

∥∥∥Ŵ
(t)
k − XTβk

∥∥∥
2

− βT
k D

(t)
γ ,kβk + Const.

We first maximize Q
(
β,π , σ 2

1 , σ 2
2

∣∣ β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
)
with respect to βk

and σ 2
k for k = 1, 2:

β
(t+1)
k =

(
XT X + Dγ ,k

)−1
XT Ŵ k

(t)
, (12)

σ 2
k

(t+1) =
∑n

i=1

[
̂W 2

ik

(t)
+
(
XT
i β

(t+1)
k

)2 − 2̂Wik
(t)
XT
i β

(t+1)
k

]
+ λ0,kσ

2
0,k

n + λ0,k + 2
.

(13)
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Next we maximize Q
(
β,π , σ 2

1 , σ 2
2

∣∣ β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
)

with respect to

hyper-parameterπ11, π10, π01, andπ00 subject to constraintπ11+π10+π01+π00 = 1,
and obtain

π11
(t) =

∑p
j=1 φ

(t)
j,11 + α11 − 1

p + α11 + α10 + α01 + α00 − 4
,

π10
(t) =

∑p
j=1 φ

(t)
j,10 + α10 − 1

p + α11 + α10 + α01 + α00 − 4
,

π01
(t) =

∑p
j=1 φ

(t)
j,01 + α01 − 1

p + α11 + α10 + α01 + α00 − 4
,

π00
(t) =

∑p
j=1 φ

(t)
j,00 + α00 − 1

p + α11 + α10 + α01 + α00 − 4
.

(14)

Algorithm1:AnAlgorithmUsingKaplan-Meier Estimator for Bivariate Survival
Data

1 Initialize φ
(0)
j , β

(0)
k , π (0), and σ 2(0)

k for j = 1, . . . , p and k = 1, 2;

2 for t = 1 : max I ter do

3 Update the approximate posterior parameterŝWik
(t)

,
̂W 2

ik

(t)
, φ

(t)
j , and D(t)

γ ,k from

Equation (8), (9), (10), and (11);

4 Update the MAP estimators β
(t+1)
k , σ 2

k
(t+1)

, and
(
π

(t)
11 , π

(t)
10 , π

(t)
01 , π

(t)
00

)′
from

Equation (12), (13) and (14);
5 if stopping criterion is satisfied then
6 break;
7 end
8 end

Deterministic annealing

Since the method proposed above is analogous to the EM algorithm, a potential draw-
back of the algorithm is that it can be prone to entrapment in local maximummodes for
multi-modal posterior landscapes (Ročková and George 2014). To migrate this issue,
we follow Ročková and George (2014) and further propose a deterministic annealing
variant of the iterative algorithm. That is, consider a tempered version of the objective
function derived from Equation (6) which embeds Equation (6) as a special case:

lt
(
W ,β,π , σ 2

1 , σ 2
2 | X

)
= 1

t
log

2∑

k=1

n∑

i=1

{
− (Wik − X iβk

)2 × π (β)
}t

, (15)
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where 0 < t ≤ 1 and 1/t determines the degree of separation between the multiple
modes of lt . The M-step for maximizing Equation (15) stays the same as Algorithm 1.
The E-step, on the other hand, can be obtained following Algorithm 1 except for
Equation (10),

φ
(t)
j,lm =

{
E
[
γ j1 = l, γ j2 = m

∣∣ Y ,β(t),π (t), σ 2
1

(t)
, σ 2

2
(t)
]}t

. (16)

In practice, to optimize Equation (15), we consider a decreasing sequence 1/t1 >

1/t2 > · · · > 1/tmax I ter suggested by Ročková andGeorge (2014), where the solution
at 1/ti serves as the starting point for the computation at 1/ti+1. When t approaches
0, the unique solution can be found for Equation (15),

β ini t
k =

[
XT X + v0 + v1 + 1

2v0v1
I p

]−1

XT Ŵ k,

where Ŵ ’s are the imputed censored observations calculated from one-step Kaplan-
Meier weights. Following Ročková and George (2014), β ini t

k can be served as a very
promising general initialization value for the proposed algorithm.

3.3 Remarks

There are a few remarks on the algorithm described above for bivariate survival data.

– In our framework, we assume that the design matrix X is shared by both columns
of survival times. The data structure fits many biomedical studies where multiple
types of event times are collected. The framework cannot be applied to recurrent
events but allows T ·1 and T ·2 to have any kind of correlation structures. In our real
data analysis, we first consider event-free time which characterizes the length of
time that the patient remains free of disease after primary treatment of the study for
the disease ends. These events may include the return of the cancer or the onset of
certain symptoms. We also consider overall survival which stands for the length of
time that the patient has survived from the start of the study for a disease. In such
cases, there is only one set of covariates collected for two different types of event
times. However, our framework can be easily extended to fit cases that when two
studies consist of the same group of patients but collect overlapping covariates.
Therefore the dimension p for β1 and β2 are also not required to be the same.

– If we assume that both F1 and F2 follow specified distributions such as inde-
pendent Gaussian distributions with mean zero and finite variance σ 2

1 and σ 2
2

respectively, the estimation steps of Equation (8) and Equation (9) can be replaced
by computing the first and the second moment of truncated Gaussian distributions.

It is easy to show that, for k = 1, 2, the conditional distribution Wik given Yik ,

X i , and current estimates
(
β

(t)
k ,π (t), σ 2

k
(t)
)
follows a Gaussian distribution with

mean XT
i β

(t)
k and variance σ 2

k
(t)

truncating at Yik .
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Let αk = Yik−XT
i β

(t)
k

σ
(t)
k

and Φ (·) , φ (·) be the distribution function and the den-

sity function for a standard Gaussian respectively. Specifically, Equation (8) and
Equation (9) can be replaced by

W (t)
ik = XT

i β
(t)
k + φ(αk)

1 − Φ(αk)
σ

(t)
k ,

W 2
ik

(t) = σ 2
k

(t)

[

1 + αkφ (αk)

1 − Φ(αk)
−
(

φ(αk)

1 − Φ(αk)

)2]

+
[
W (t)

ik

]2
.

(17)

Other parametric distributions such as Weibull distribution or log Student’s t-
distribution can also be considered and the corresponding parameters can be
estimated in a similar manner.

4 Empirical results

4.1 Simulation setups

The performance of the proposed method is examined using three simulation studies.
For each study, we generate the design matrix X frommultivariate normal distribution
withmean zero and covariancematrixwith elementsΣ i j = 0.5|i− j |. Thenwe generate
two survival times U and V independently following either normal distribution or
exponential distribution. To better mimic the pattern of different types of bivariate
survival times in real life,we consider aweight variable c such that c controls howmuch
the two survival times T ·1 and T ·2 are correlated. That is, we generate T = (T ·1, T ·2)
such that

T ·1 = U, T ·2 = (1 − c)U + cV ,

where 0 < c ≤ 1.
When c takes value 1, we end up with two independent survival times T ·1 and T ·2.

On the other hand, when 0 < c < 1, two survival times T ·1 and T ·2 fit into the case
of event-free survival and overall survival which are the types of data we encounter
in the real data analysis. Censoring times C ·1 = C ·2 are generated from Unif(0, η).
When 0 < c < 1, the value of η is chosen such that 40% and 60% censoring rates are
achieved for two events respectively. When c = 1, the value of η will be chosen such
that 40% of censoring is achieved by both events.

Let sample size n be 100 and dimension p be 100, 500, or 800. For each n, p
combination, 10 nonzero coefficients are randomly selected for each column of the
true β matrix. All of the simulation studies are repeated by 200 times. We generate
nonzero coefficients independently from N(3, 0.5) and fix the true coefficient values
for all simulation runs.

In total four methods are compared to demonstrate the performance of the proposed
method: Univariate Coxnet which is a L1 penalized method of the Cox model devel-
oped by Tibshirani (1997) for univariate survival data with λmin or λ1se; Univariate
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Adaptive Elastic Net (Univariate AEnet) for AFTmodels which is a penalized method
developed for univariate AFT models under the marginal independence assumption
(Khan and Shaw2016); Univariate Bayesian penalizedBuckley-James estimator (Uni-
variate BP-BJ) which is the same framework as the proposed method developed
under univariate spike-and-slab prior; and the proposed Bivariate Bayesian penalized
Buckley-James estimator (Bivariate BP-BJ) for bivariate survival data. Since there are
no readily implemented variable selection methods for multivariate survival data, we
take these approaches for comparison purpose.

For methods developed for univariate survival data, we will apply the method sepa-
rately on each survival time and evaluate the combined results based on false positive
(FP), false negative (FN), sensitivity, specificity, and Matthews correlation coefficient
(MCC) which are defined as the following

sensitivity = TP

TP + FN
, specificity = TN

TN + FP
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Higher scores in sensitivity, specificity, and MCC indicate better performance in
model selection. For all of the simulation studies, values of v0 are obtained by tuning
parameter selection procedure proposed in Sect. 4.2 while fixing v1 = 1.

[Study 1] No-sharing

We randomly pick the positions of nonzero coefficients in the true β matrix and ensure
that there is no overlap between the relevant variables in β1 and β2 by design. We
only consider the case c = 1 such that T ·1 and T ·2 are independent.

The results of Study 1 are summarized in Tables 1 and 2. We see that in terms
of false positives and false negatives, treating the survival times separately results in
frequent selections of the noise variables but is able to recognize most of the relevant
variables for both low and high-dimensional designs. The Univariate AEnet method
selects fewer noise variables and misses more relevant variables. Since our design of
the simulation study invalidates the marginal independence assumption of the AEnet
method, we observe different behaviors of false positives and false negatives for the
method compared with other univariate competing methods. The proposed bivariate
method, on the other hand, is able to achieve the bestMCCscore for all of the designs of
Study 1with relatively low sensitivity scores and high specificity scores. The algorithm
is more strict in selecting relevant variables and is able to help recognizing zero
elements in β1 and β2 by updating the posterior distribution.

[Study 2] All-sharing

WLOG, we assume that the first 10 variables are relevant variables for both T ·1 and
T ·2. That is, the nonzero positions for β1 and β2 are exactly the same. Here we only
consider c = 1 as a special case.
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The performance of four methods are reported in Tables 3 and 4. Study 2 represents
an extreme case that the two survival time are independent but they are both affected
by the exact same set of covariates. By applying the method separately, large number
of false negatives suggests that marginal models fail to capture the connection between
the two events. However, in the proposedmethod, if we select a variable that is relevant
with one of the events, with high probability that the variable is also a signal variable
for the other event. The proposed method indicates great performance comparing to
any of the univariate models in both false positives and false negatives with lower
sensitivity but higher specificity scores while achieving the best MCC scores for all
of the designs.

[Study 3] Some-sharing

For most of the real world scenarios, only partial variables are shared by the two
events. For both T ·1 and T ·2, we assume that the first 5 variables are relevant and then
randomly selected another 5 variables from the rest such that only the first 5 variables
are shared by T ·1 and T ·2. For the some-sharing cases, we consider c = 0.3, 0.5, 0.7,
or 1. By design, the number of true relevant variables in total will be 25 for c = 0.3, 0.5
and 0.7. If c = 1, there are still 20 relevant variables.

The results of Study 3 can be found in Tables 5 and 6. When c 
= 1, the proposed
method fails to recognize about half of the relevant variables for all of the high-
dimensional designs. The reason is that, once a variable is recognized as irrelevant in
one of the columns, it is highly likely to be also recognized as a noise variable unless
the signal is strong enough to be identified in its own column. The proposed method
tends to have lower false positives with the increase in dimensionality but is still able
to achieve the best MCC scores among all competing methods. We also see that the
nonparametric imputation is able to give robust estimates for censored observations
as there is almost no much difference between designs with exponential distribution
and Gaussian distribution.

Overall, the proposed method not only provides a procedure with how to deal with
bivariate survival data, it also demonstrates better performance comparing to treating
the event one at a time. By applying univariate methods to bivariate survival data,
we also intend to conceptualize a way of dealing with bivariate survival data more
formally. Note that all of the datasets generated for empirical studies are available
from the corresponding author on request.

4.2 Tuning parameter selection

Recall the Bayesian hierarchical framework defined in Eq. (7), the tuning parameters
are identified as (v0, v1), λ0,k, σ

2
0,k for k = 1, 2, and (α11, α10, α01, α11). In practice,

we recommend to choose λ0,k = 1, σ 2
0,k = 1, α11 = α10 = α01 = α11 = 2 and to fix

v1 = 1.
We see that the v0 in spike-and-slab priors controls the regularization power of the

variable selection,which is similar to the penalty parameterλ inLASSO.Sabourin et al.
(2015) proposed a data-driven method for choosing penalty parameter λ in LASSO
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problems using permutation, which motivates us to design a similar algorithm for
choosing v0. Sabourin et al. (2015) proposed that, by randomly permuting the response
variable Y , an underlying null model can be achieved as the true model, and one would
be able to find the point of λ such that the first variable enters the null model with a
pre-specified sequence of λ choices, and record the previous step of λ as the tuning
parameter selection.

In this paper, we propose a similar data-driven algorithm with permutation for
selecting the appropriate value of v0 within the context of survival analysis. By ran-
domly permuting pairs of (Y i , δi ), we tune v0 with a pre-specified sequence, re-scaled
with

√
log(p)/n for cooperating with the relationship between p and n. For each v0

candidate, we repeat the permutation process for at least 50 times to obtain the aver-
aged posterior probabilities and make sure that the posterior probabilities are stable
and not affected by randomness. Since for each p, the tuple of posterior probabilities
has four components, we check in total how many variables have φ00 as the maximum
value within the tuple and find the value of v0 such that the first variable enters the
null model.

The algorithm is designed to start with any pre-specified sequence V0. In practice,
we recommend to start with a relatively long sequence but with larger gaps between
each step for V0. The permutation selectionmethod can also be applied to anyBayesian
variable selection methods.

Algorithm 2: Tuning Parameter Selection

9 initialize λ0,k = σ 2
0,k = 1 and fix v1 = 1;

10 initialize α11 = α10 = α01 = α00 = 2;

11 initialize V0 = V0 ×
√

log p
n ;

12 for j = 1 : length(V0) do
13 for Repeat in 1:50 do

14 Permute (Y i , δi ) to get
(
Ỹ i , δ̃i

)
;

15 run the proposed algorithm on
(
X, Ỹ i , δ̃i

)
with v0 = V0 j ;

16 get posterior probabilities;
17 end
18 Compute averaged posterior probabilities;
19 if the first variable enters the null model then
20 break;
21 record j∗ = j ;
22 end
23 end
24 Return V0 j∗−1;
25 Special case: If j∗ = 1, take V01.
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4.3 Real data analysis

Multiple myeloma is a cancer of plasma cells which can be developed from mono-
clonal gammopathy. The abnormal plasma cells produce abnormal antibodies, which
can cause kidney malfunctions or even form a mass in the bone marrow or soft tis-
sue. The myeloma patients have been widely studied in clinical trails and have been
observed to survive from a few months to more than 10 years after diagnosis. Gene
expression profiling of myeloma plasma cells can be obtained to identify a gene signa-
ture associated with short survival in myeloma patients (Shaughnessy Jr et al. 2007).
Understanding the cancer genomics and identifying risk groups with a high predictive
power could also contribute to selecting patients for personalized therapy.

To examine the performance of the proposedmethod, we studied event-free survival
and overall survival from newly diagnosed multiple myeloma patients enrolled in
clinical trials UARK 98-026 and UARK 2003-33 (Zhan et al. 2006; Shaughnessy Jr
et al. 2007). Two treatment regimes, total therapy II (TT2) and total therapy III (TT3),
are compared in the clinical trails. In total there were 340 patients in TT2 with 191
events in event-free survival and 126 death in overall survival. The average follow-up
time is 47.1 months for event-free survival and 55.8 months for overall survival. In
TT3, among 214 patients there were 55 events for event-free survival and 43 death
for overall survival. The average follow-up time in TT3 is 35.6 months for event-free
survival and 37 months for overall survival. If the patient is censored for event-free
survival, the patient is also censored for overall survival. Gene expression values
of 54675 probesets were measured for each patient using Affymetrix U133Plus2.0
microarrays. The data was retrieved from theMicroArray Quality Control Consortium
II GEO entry (GSE24080) (Shi et al. 2010).

We apply our proposed method along with competing methods suggested in the
empirical studies to the bivariate survival data of the TT2 patients to select significant
genes. Then by fitting a Buckley-James regression model to the TT2 patients with
selected genes, we develop the risk scores for the TT3 patients and further estimate
the C-statistics of those models on the TT3 patients (Uno et al. 2011). We first pre-
process the data with the screening procedure proposed by Zhu et al. (2011). The
procedure is able to provide sure screening for any single-index model including the
AFT model. Since the screening procedure is designed for unviariate single-index
model, we apply the procedure to marginal AFT models for T ·1 and T ·2 following
criteria suggested by Zhu et al. (2011) and Li et al. (2014). Using the combined soft-
and hard- thresholding rule, we choose up to n/ log(n) covariates for each event with a
procedure involving randomly generated auxiliary variables. After combining retained
variables for event-free survival and overall survival, in total 98 covariates are kept
after pre-processing. Note that the Univariate AEnet selects an empty model therefore
we skip reporting the result here.

Instead of performing heavy tuning on the proposed method, we adopt the knockoff
framework proposed in Candès et al. (2018) with the recommended v0 choice to select
relevant variables. The knockoff framework creates a fixed fake feature matrix X̃ of
size n by p such that one is able to perform variable selection purely based on model

results of
(
Y , X, X̃

)
without any advanced tuning procedures. The selection can be
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Table 7 Validation C-statistics on TT3 for univariate Coxnet with λ1se and λmin , univariate BP-BJ, and
the proposed bivariate BP-BJ

Method Model size of β1 Model size of β2 C-statistic of
event-free survival

C-statistic of over-
all survival

Univariate Coxnet 10 10 62.7% 62.3%

Univariate BP-BJ 10 10 59.7% 54.7%

Bivariate BP-BJ 3 3 62.2% 63.8%

Table 8 Genes selected by the proposed method

Probesets Gene name

225834_at FAM72A /// FAM72B /// FAM72C /// FAM72D

236641_at KIF14

218672_at SCNM1 /// TNFAIP8L2-SCNM1

made by observing the difference in model results, such as estimated coefficients for
frequentist methods or posterior probabilities for Bayesian frameworks, between the
real variables and the fake ones. Intuitively if the difference for a real variable is huge,
then the variable is very likely to be relevant, otherwise the variable is very likely to be
a noise variable. For the proposed method, we generate a fixed knockoff design matrix
X̃ following Barber et al. (2015) and apply the proposed method with the combined

covariate matrix
(
X, X̃

)
. To measure the differences between the real variables and

the fake ones, we first compute differences in all four posterior probabilities, then for
each variable, we select the outcome that corresponds to the maximum difference. We
consider a difference between the real and the fake variable as huge if the magnitude
of the difference is above the 90-th percentile of all maximum differences. We apply
the proposed method under the knockoff framework and evaluate the C-statistics of
both event-free survival and overall survival for TT3 patients. The univariate BP-BJ
results can be obtained in a similar manner. For Coxnet, we also avoid tuning for λ and
instead of comparing differences of coefficients magnitudes, we compare λ j and λ̃ j

which are values at which the j-th variable and its knockoff enter the model. Then we
consider the following signed maximum statistic suggested by Barber et al. (2015)

Wj = max
(
λ j , λ̃ j

)
sign

(
λ j , λ̃ j

)
.

If w j is above the 90-th percentile of all of the w j ’s, then the j-th variable is selected.
The real data analysis results are reported in Table 7. We see that both Coxnet and

the proposed method have similar performances with validation C-statistics around
62% for both event-free survival and overall survival. Coxnet performs slightly better
for event-free survival while the proposed method performs better for overall survival.
Unfortunately the univariate BP-BJ algorithm gives the worst results but the its per-
formance can be improved with fine tuning in other hyper-parameters. On the other
hand, the proposed method is able to achieve the same performance with Coxnet with
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only 6 selected variables, demonstrating that the selections of the proposed method
have significant effect in survival times of myeloma patients.

Table 8 reports the genes identified by the proposed method. In a recent study
FAM72D is identified to be associated with cell proliferation in multiple myeloma
(Chatonnet et al. 2020; Noll et al. 2015) while KIF14 has been recognized to be one
of the signature genes related with survival for multiple myeloma patients in various
analysis (Shaughnessy 2005; Shaughnessy Jr et al. 2007; Hawley et al. 2013).

5 Discussion

In this paper, we have studied the high-dimensional estimation procedure for bivariate
AFTmodels by utilizing the Buckley-James estimator under the Bayesian framework.
By applying a bivariate spike-and-slab prior, we proposed a variable selection method
which minimizes the penalized L2 loss function with penalty induced from the prior
specification. Being inspired by the EM algorithm, we suggested an iterative pro-
cess for computing the proposed method using an EM-like algorithm with a working
Gaussian likelihood. Themethod has demonstrated the ability to be scalably applied to
high-dimensional bivariate censored regression models and have shown outstanding
performance compared with treating the event one at a time using empirical studies.
We applied the proposed method to study the data from the multiple myeloma clinical
trial, and showed that our method could achieve comparable validation C-statistics
with less selected genes.

Many methods have been developed for multivariate survival data analysis under
the Cox model. However, multivariate AFT models have received fewer attention
due to the difficulty of estimating the joint survival distribution or handling unknown
correlation structures. In the proposed method, we considered another approach and
assumed that the two events are independent and the connections are carried and learnt
in the prior knowledge of unknown coefficients. We have shown that, even the true
survival times are correlated, the algorithm is able to capture the connection in the
posterior distribution while keeping the imputation steps for censored observations
simple to deal with. The design of the method also allows multiple structures of
multivariate survival data to be handled.

We do realize that the design of the bivariate spike-and-slab prior can be hard to
generalize to multivariate data with more than two event types. However, we also
recognize the advantage of the proposed method, both in computation and in perfor-
mance, which motivates us to look into more accessible designs of prior specifications
to deal with high-dimensional multivariate survival data.

A Multicollinearity design

Let sample size n be 100 and dimension p be 100. Let the first 10 variables be
independently generated from standard normal distribution. Then for j = 11, · · · , 20,
consider
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X j = X j−10 + τ,

where τ is a random error from a standard normal distribution. The rest of the vari-
ables are further generated from multivariate normal distribution with mean zero and
covariance matrix with elements Σ i j = 0.5|i− j |. Following Sect. 4.1, generate T ·1
and T ·2 and corresponding censoring times and censoring indicators. Furthermore,
we assume the relevant variables as the following

– no sharing:
{
j : β j1 
= 0

} = {1, · · · , 10} ,
{
j : β j2 
= 0

} = {21, · · · , 30}
– all sharing:

{
j : β jk 
= 0

} = {1, · · · , 10}
– some sharing:

{
j : β j1 
= 0

} = {1, · · · , 10} ,
{
j : β j2 
= 0

} = {1, · · · , 5, · · · ,

21, · · · , 25}
All of the true relevant variables are generated independently from N(3, 0.5). We
repeat all simulation setups for 200 times and fix the true coefficient values for all
simulation runs.

The results of the multicollinearity design can be found in Tables 9 and 10. For
this simulation design, the univariate AEnet failed to give any results due to the issue
with singular matrix computation, therefore we only report results from the other four
competing methods. We see that all of the methods tend to recognize the ten irrelevant
variables as signals. For no-sharing and all-sharing cases, the proposed method is able
to give the smallest number of false positives while being able to recognize almost all
of the relevant variables, giving almost zero false negatives. For some-sharing cases,
we observe more obvious trade-off between false positives and false negatives for
using λmin and λ1se while the proposed method selects the variables more strictly,
returning with lower false positive scores and higher false negative scores. However,
in terms of MCC score as an overall measure, the proposed method is able to achieve
the highest MCC scores for all setups, demonstrating that the proposed method is able
to outperform existing methods and to handle complicated data examples.

B Dense design

Let n = 100 and p = 100. Following Sect. 4.1, we generate design matrix X from
multivariate normal distribution with mean zero and covariance matrix with elements
Σ i j = 0.5|i− j |. Then we generate T ·1 and T ·2 and corresponding censoring times and
censoring indicators in a similar manner. In this simulation design, we assume that for
each column of the true coefficient matrix, there are 20 relevant variables. That is, for
some-sharing setups, wewill have in total 45 relevant variables. All of the true relevant
variables are generated independently from N(3, 0.5). We repeat all simulation setups
for 200 times and fix the true coefficient values for all simulation runs.

The results of the dense design can be found in Tables 11 and 12. We see that the
proposed method gives consistent performance to have the best MCC scores among
all competing methods. For no-sharing and all-sharing setups, the proposed method
is able to give the best combination of false positives and false negatives, achieving
highest sensitivity and specificity scores. For some-sharing setups, when c 
= 1, the
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proposed method is more strict in selecting signals which results in missing almost
half of the relevant variables. However the proposed method is still able to correctly
identify more relevant variables and noise variables compared with other competing
methods, achieving the highest MCC scores.
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