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2 ABSTRACT

3 Incidental capture, or bycatch, of marine species is a global conservation concern. Interactions 4 with
fishing gear can cause mortality in air-breathing marine megafauna, including sea turtles. 5 Despite this,
interactions between sea turtles and fishing gear - from a behavior standpoint - are 6 not sufficiently
documented or described in the literature. Understanding sea turtle behavior in 7 relation to fishing gear is
key to discovering how they become entangled or entrapped in gear. This 8 information can also be used to
reduce fisheries interactions. However, recording and analyzing
9 these behaviors is difficult and time intensive. In this study, we present a machine learning-based 10 sea
turtle behavior recognition scheme. The proposed method utilizes visual object tracking and 11 orientation
estimation tasks to extract important features that are used for recognizing behaviors 12 of interest with
green turtles (Chelonia mydas) as the study subject. Then, these features are 13 combined in a color-coded
feature image that represents the turtle behaviors occurring in a 14 limited time frame. These spatiotemporal
feature images are used along a deep convolutional 15 neural network model to recognize the desired
behaviors, specifically evasive behaviors which 16 we have labelled “reversal” and “U-turn.” Experimental
results show that the proposed method 17 achieves an average F1 score of 85% in recognizing the target
behavior patterns. This method is 18 intended to be a tool for discovering why sea turtles become entangled
in gillnet fishing gear.
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1 INTRODUCTION

21 Incidental capture of non-target animal species, termed bycatch, in fisheries is a global ecological threat
22 to marine wildlife (Estes et al., 2011). Fisheries bycatch poses a threat to air-breathing animals such 23 as
sea turtles. One such gear, gillnets, can create an ecological barrier that does not naturally occur, so 24 there
is likely no evolutionary mechanism that causes avoidance (Casale, 2011). Various approaches have
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been proposed to reduce bycatch rates of sea turtles and other marine megafauna (Lucchetti et al., 2019;
Wang et al., 2010a; Demir et al., 2020). Attempted solutions include: marine policy that sets bycatch
limits for fisheries (Moore et al., 2009); acoustic deterrents similar to pingers used to prevent dolphin 28
bycatch; buoyless nets and illuminated nets, which have shown promising results for reducing bycatch
29in coastal net fisheries (Peckham et al., 2016; Wang et al., 2010b). These bycatch reduction approaches
30 can involve changing the technical design of gear or introducing novel visual or acoustic stimuli, which
31 also changes gear configuration. However, as a part of the design process, effectiveness of different
types 32 of stimuli must be analyzed by observing the associated behavioral response of sea turtles,
which has 33 not been clearly documented in previous studies. Analyzing sea turtle interactions with
fishing gear and 34 bycatch reduction technologies (BRTs) is not an easy task, since it requires the
researcher to monitor the 35 experiment underwater for long periods while identifying and recording
sea turtle behaviors and ensuring 36 the study subject’s safety. Even when experiments are recorded
with GoPros, short battery life requires 37 constant monitoring of each camera view, and the subsequent
manual behavioral analysis is time-intensive 38 for researchers. Fortunately, with the developments in
computer vision-based approaches, recognition of 39 certain behaviors can be performed automatically
after training this convolutional neural network with 40 behavioral data.

Various approaches have been proposed to complete the behavior recognition task for different
applications involving humans or animals (Chakravarty et al., 2019; Nweke et al., 2018; Porto et al.,
2013; Yang et al., 2018; Bodor et al., 2003; ljjina and Chalavadi, 2017). Some of the recognition
algorithms 44 analyze the data captured using wearable sensors (Chakravarty et al., 2019; Nweke et al.,
2018). While
the sensors used in these type of experiments provide valuable information about the activities of
interest,
they are not applicable in our context as they need to be located on the subject’s body in a controlled
environment. Various methods use vision based approaches for the behavior recognition task (Porto et
al.,
2013; Yang et al., 2018; Bodor et al., 2003; ljjina and Chalavadi, 2017). Earlier examples of the vision
based methods employ hand-crafted features for analyzing the activities (Porto et al., 2013; Bodor et al.,
2003). While these approaches can perform well for differentiating basic behaviors, they are not very
efficient in recognizing complex activities. With the advancements in the machine learning field, recent
studies employ deep neural networks (DNN) successfully for the activity recognition task (Yang et al.,
2018; ljjina and Chalavadi, 2017). Although DNNs provide powerful representations to analyze complex
54 data sets, end-to-end training approaches usually require large amounts of data samples and a large
number 55 of network coefficients. In this study, we propose a hybrid approach for the sea turtle
behavior recognition 56 task. We use domain knowledge for determining base features to recognize
certain behaviors and convert 57 them into color-coded spatiotemporal 3-D images to train deep
convolutional neural networks (CNN).
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58
In our application, we are specifically interested in recognizing "U-Turn” and ”“Reversal” behaviors of 59
turtles, since they are important indicators of effectiveness of the given stimuli. In order to recognize these
60 behaviors, we combine turtle location, velocity, and orientation information in spatiotemporal images and
61 use these images as inputs to a CNN architecture.

62 In the U-turn behavior, the turtle makes a u-shaped maneuver in a short amount of time possibly due to
an 63 external visual stimulus. In Reversal behavior, the turtle moves backwards while facing forward rather
than 64 changing its orientation. These are avoidance behaviors exhibited by sea turtles when faced with a
barrier 65 or other deterrent. To differentiate these behaviors from each other and from other motion
patterns, we use 66 turtle location, speed, and orientation information. In order to extract those features and
combine them as 67 an input to a deep neural network based architecture, we propose the recognition
system shown in Figure 1.

68 Here, we explain how we conduct the physical experiments and provide an overview of the proposed 69
behavior recognition framework and explain the functional blocks. We then present the results of our 70
comparative study for the object tracking task on the turtle dataset that we collected. We then report the 71
performance of the proposed orientation estimation network and behavior recognition network followed by
72 an explanation of the anticipated results and utility for conservation purposes.

2 MATERIALS AND EXPERIMENTAL SET UP

732.1 Animal acquisition and facility maintenance

74 All sea turtles used in this study were captured by Inwater Research Group (IRG) via dip net, entangling 75

net, or hand capture after entrainment in the intake canal at the St. Lucie Nuclear Power Plant in Jensen

76 Beach, FL. Capture of these turtles is necessary for returning them to the open ocean. For our choice
trials,

77 we included healthy juvenile and subadult green (C. mydas) turtles with a standard carapace length of
less 78 than 78 cm. After the IRG team removed turtles from the canal and collected biometric data, all
turtles 79 were kept in separate 6 ft diameter holding tanks with circulating seawater from the canal.
Turtles were not 80 held for more than 72 hours.

812.2 Computer Setup

82 Captured data have been processed using a computer with Intel(R) Core(TM) i7-9750H processor and 83
NVIDIA RTX 2070 GPU unit and 16GB RAM. For deep neural network architectures, we have used Keras 84
Libraries?.

3 METHODS
853.1 Animal behavior experiments and analysis
86 We conducted all tank experiments in a 13.9 x 2.3 x 1.5 m concrete tank beside the intake canal at the 87
St. Lucie Nuclear Power Plant in Jensen Beach, Florida (Figure 2). The two treatments we used in the
88 development of this method consisted of a gillnet vs. no gillnet set up during the day and at night, meaning
89 a turtle was given the choice between a pathway with a gillnet fully blocking it or a pathway with nothing
90 in it (see Figure 2). The variable being changed is time of day with darkness being the most important 91
factor in nighttime experiments. Each turtle was used in three consecutive 15- minute trials with the same 92
treatment. All trials were recorded using GoPro Hero8 cameras from 4 different viewpoints, although this 93

1 https://keras.io
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study focused on behaviors recorded from the primary overhead view, as shown in Figure 2. Turtle behavior
94 was analyzed from the recordings rather than in real-time due to the need to monitor turtle safety. Here,
we 95 specifically focus on the novel turtle avoidance behavior identified in relation to the gillnet deployed in
the 96 treatment sector: Reversal and U-turn. A Reversal occured when a turtle made contact with the gillnet
and

97 then escaped by moving backward with its rear flippers and maintaining a forward-facing orientation. A 98
U-turn involved a 180 degree turn within a 3-second period. Here, we only classify U-turns that occur near 99
the barrier of interest (i.e. the gillnet or treatment area containing the gillnet).

100 3.2 Related Work

101 Our behavior recognition approach requires the turtle location information in every frame. Thus, we
102 included an object tracking method as part of the design. The visual object tracking problem has long
been 103 studied in the computer vision field. Early methods have commonly used correlation based
approaches
104 and hand-crafted features for the tracking task. In (Ross et al., 2007), the authors proposed a method 105
(IVT) that employs an incremental principal component analysis algorithm to achieve low dimensional 106
subspace representations of the target object for tracking purposes. In (Babenko et al., 2009), a multiple 107
instance learning (MILTrack) framework was used for object tracking where Haar-like features were used 108
for discriminating the positive and negative image sets. In (Bolme et al., 2010), an adaptive correlation
109 based algorithm (MOSSE) that calculates the optimal filter for the desired Gauss-shaped correlation output
110 was proposed. In another approach (Bao et al., 2012), Bao et al. modeled the target by using a sparse 111
approximation over a template set (LLAPG). In this method, an -1 norm related minimization problem was
112 solved iteratively to achieve the sparse representation. In (Gundogdu et al., 2015), an adaptive ensemble
113 of simple correlation filters (TBOOST) was used to generate tracking decisions by switching among the 114
individual correlators in a computationally efficient manner. (Henriques et al., 2015) presents a method to 115
use Kernelized Correlation Filters (KCF) operating on histogram of oriented gradients, where the key idea 116
is to include all the cyclic shift versions of the target patch in the sample set, and train the network in Fourier
117 Domain efficiently. In (Danelljan et al., 2015), authors propose a discriminative correlation filter based 118
approach (SRDCF) where they use a spatial regularization function that penalizes filter coefficients residing 119
outside the target region. In (Demir and Cetin, 2016), authors propose a ”“co-difference” feature-based 120
tracking algorithm (CODIFF) to efficiently represent and match image parts. This idea is further extended 121
in (Demir and Adil, 2018) by including a part based approach (P-CODIFF) to achieve robustness against
122 rotations and shape deformations. In (Bertinetto et al., 2016), the authors propose a method (STAPLE)
123 to combine both correlation based and color based representations to construct a model that is robust
to 124 intensity changes and deformations. More recent methods use CNNs for the tracking task. Siamese
network
125 based methods have achieved remarkable results for the object tracking benchmarks (Kristan et al.,
2019,
126 2020; Li et al., 2019). In our experiments, we compared the performance of various state-of-the-art
tracking 127 algorithms on our dataset and used the best performing method for our application. Detailed
results are 128 given in Section 4.1.

129  As a part of our design, we also estimated turtle orientation to differentiate some of the behavior
patterns.

This
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130 Various methods have been proposed to estimate the orientation of animals (Wagner et al., 2013),
humans 131 (Raza et al., 2018), and other objects (Hara et al., 2017). Similar to the tracking and
behavior recognition 132 problems, deep CNNs have successfully been used for the orientation
estimation problem as well. In our 133 method, a lightweight CNN architecture is employed to
estimate the turtle orientation.

134 3.3 Proposed Method

135 In this study, we intended to successfully recognize U-turn and Reversal behaviors of sea turtles. To

136 differentiate these behaviors from each other and from other motion patterns, we use turtle location,
speed, 137 and orientation information. In order to extract those features and combine them as an
input to a deep 138 neural network based architecture, we propose the recognition system shown in
Figure 1.

139 The turtle location and speed were calculated by the visual object tracker and the turtle orientation 140
calculated by the angle estimation network are combined to generate color-coded spatiotemporal images. 141
The images are used by another network as the input for the behavior recognition task. Details of these 142
building blocks are given in the subsections below.

143 3.3.1 Visual Object Tracker

144 The purpose of the visual object tracking block is to find the object location and size in every frame based
145 on a given initial bounding box. Object location found by the visual object tracker is used to calculate
the

146 motion velocity vector (v). Bounding box output is also used to crop the object region from the image for

147 the angle estimation network. vnis calculated from the current object location pnand the previous object

148 location pn-1as shown in Egn. 1.

— |:U-'I/'n:| — |:p7n:| - |:p~r'nl:|
Vn Uyn pyn pyn—l (1)

149 In order to employ a successful object tracking algorithm in the proposed framework, we performed a 150
comparison between the state-of-the-art visual object trackers IVT (Ross et al., 2007), MILTrack (Babenko

151 et al., 2009), MOSSE (Bolme et al., 2010), L1APG (Bao et al., 2012), TBOOST (Gundogdu et al., 2015), 152
KCF (Henriques et al., 2015), SRDCF (Danelljan et al., 2015), P-CODIFF (Demir and Adil, 2018),

153 Staple (Bertinetto et al., 2016) and SiamMargin (Kristan et al., 2019) on our turtle dataset. Based on the
154 quantitative metrics, we used the best performing tracker. Details of the experimental results are given
in 155 Section 4.

156 3.3.2 Orientation Estimation Network

157 We built a relatively small CNN architecture for detecting the orientation of the turtle. The network 158
topology is summarized in Table 1. Note that we use two outputs for representing the angle values on
the 159 unit circle so that we can use the MSE loss function without any modifications. We could use a
single 160 output for the angle value. However, we would need to redefine the loss function to prevent
penalizing 161 the jumps between 0° and 360 °. For training the network coefficients, we annotated
nearly 25,000 turtle
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images with bounding box and orientation labels. We extended this number by rotating the turtle images by
163 30 to 330 degrees with 30 degree steps and included associated orientation labels based on the rotation
164 angle.

165 3.3.3 Color Coding

166 This block generates spatiotemporal feature images based on the visual object tracking output and 167
estimates the turtle orientation. We basically aim to represent the turtle behavior occurring over a time
168 period as an RGB image. In order to generate this image, we draw the path of the turtle using the
visual 169 object tracking result. However, we also include the orientation and speed information using
hue and value 170 channels of the hue-saturation-value (HSV) color space. The angular difference
between the velocity vector 171 (v») direction and the turtle orientation () is used for determining the
hue channel, while the magnitude 172 of the velocity vector is used for value channel. An example output
of the color coding block is given in 173 Figure 3.

174 3.3.4 Behavior Recognition Network
175 This block aims to recognize the target turtle behaviors using the color-coded spatiotemporal feature 176
images. Since we formulate the behavior recognition task as a vision based classification problem, we
177 adopt a widely used network architecture, ResNet50 (He et al., 2016), for this task. In order to train
and 178 test the network, we used a dataset consisting of 172 sequences with U-turn, Reversal, and
random motions.
179 This dataset is further extended with rotated, shifted, and symmetric versions of the sequences. Since we
180 have a relatively small dataset, we employed the transfer learning approach where we use the
coefficients 181 pre-trained on the ImageNet (Deng et al., 2009) dataset. We modified the last two fully-
connected layers 182 for our behavior recognition task so that the network gives a decision between three
behavior classes. The 183 coefficients in the last two layers are trained using our training set.
4 EXPERIMENTAL RESULTS

184 4.1 Object Tracking and Behavior Recognition

185 For our visual object tracking experiments, we compared several state-of-the-art algorithms on a dataset
186 consisting of 59 sequences with nearly 25,000 frames. We use Center Location Error (CLE) and Overlap
187 Ratio (OR) as two base metrics which are widely used in object tracking problems (Wu et al., 2013). CLE
188 is the Euclidean distance between the ground truth location and the predicted location, while OR denotes
189 the overlap ratio of predicted bounding box and ground truth bounding box. Based on these metrics, we
190 generated the success and precision plots. The precision plot shows the ratio of frames where CLE is

191 smaller than a certain threshold. The success plot shows the ratio of frames where OR is higher than a 192
given threshold. Figure 4 shows the performance results of the compared algorithms.

193 Based on this comparative analysis, we determined that the SiamMargin (Kristan et al., 2019)
algorithm 194 achieved the highest success and precision graphs among the compared algorithms on the
turtle dataset. 195 Therefore, we used this algorithm in our visual object tracking block.

196 For the orientation estimation experiments, we used 70 percent of the images as training samples,
and the 197 rest for the validation and test samples. We used the batch size as 64, initial learning rate as le-
3, and the 198 number of epochs as 50. In every 20 epochs, we dropped the learning rate by using the drop
factor value of 199 0.1. With these parameters, the model achieved a mean error value of 12.4 degrees on
the test set.

This
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In our final set of experiments, we used color-coded spatiotemporal feature images to recognize turtle 201
behaviors. For these experiments, we similarly used 70 percent of the behavior sequences in our dataset 202
to create spatiotemporal motion patterns and trained the last two fully connected layers of the ResNet50 203
architecture. Then, we used the test sequences to create similar spatiotemporal motion patterns using the
204 outputs of SiamMargin tracker and orientation estimation network that we trained in the previous step.
205 Based on the behavior recognition network outputs, we achieved the prediction results given in Table 2.
206 Corresponding Precision, Recall, and F1 Scores for each behavior are presented in Table 3.

207 4.2 Anticipated Behavioral Results Using This Method

208 Studying the effectiveness of bycatch reduction technologies (BRTs) is a difficult task when conditions

209 are less than ideal for recording sea turtle interactions with fishing gear and BRTs in the field and
behavioral 210 data requires intensive analysis by researchers even when it can be obtained. Therefore,
using behavioral 211 data from controlled experiments to train this convolutional neural network
improves the process. We 212 intend to use this initial study to discover if sea turtles do, in fact,
recognize fishing nets as a barrier, in 213 which case they would likely avoid the net with a U-turn when
they can see them (presumably during the 214 day). We expect to identify more Reversal behaviors
during night trials when sea turtles most likely cannot 215 see the net before them. These behaviors
can last as little as 3 to 5 seconds, so in one 15-minute trial a 216 sea turtle can perform dozens to
hundreds of behaviors that require recording by a researcher. With most 217 treatments involving at
least 15 sea turtles at 3 trials each, it becomes a time-intensive project with natural 218 human error
that comes along with watching hours of behavior videos. This algorithm can identify these 219
behaviors and enable a comparison between U-turn and Reversal behaviors in daytime and nighttime
trials.

5 DISCUSSION
2205.1 Future Uses and Related Behaviors

221 While this method has been created and tested exclusively on behavioral data in a controlled setting,

222 we intend to use this method on field trials in the future. Given that most gillnet fisheries operate at
night

223 (Wang et al., 2010b), obtaining high resolution footage of sea turtle interactions is challenging. In
particular, 224 we plan on assessing video footage of in situ sea turtle interactions with gillnet fisheries
as a future step of 225 this research project.

226 We also recognize that the reversal and U-turn behaviors observed here are likely not exclusive to
gillnet
227 avoidance. While we were unable to find literature outlining these specific behaviors, we suspect that
228 reversals and U-turns are evident in other common sea turtle interactions, such as mating (e.g.
avoidance 229 behavior by females during courtship)(Frick et al., 2000), predator avoidance (Wirsing
et al., 2008), and 230 competition over food or habitat resources (Gaos et al., 2021). Additionally,
because this method was 231 created for overhead video, drone footage of sea turtle interactions
would be an ideal way to collect 232 behavioral data in the field and subsequently detect the behaviors
of interest in other contexts, which has
233 become a common technique for capturing sea turtle behavior (Schofield et al., 2019). For example,
studies
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234 have captured overhead drone footage of sea turtle courtship behavior (Bevan et al., 2016; Rees et al.,
2352018). In the future, our machine learning method could be used to detect these behaviors in relation
to 236 intraspecific aggression, predator avoidance, and other important interactions captured by drone
footage.

2375.2 Conclusion

238 In this study, we developed a behavior recognition framework for sea turtles using color-coded 239
spatiotemporal motion patterns. Our approach uses visual object tracking and CNN based orientation 240
estimation blocks to generate spatiotemporal feature images and processes them to recognize certain 241
behaviors. Our experiments demonstrate that the proposed method achieves an average F1 score of 85% on
242 recognizing the behaviors of interest.
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Figure 1. Overview of the proposed approach

Figure 2. Experimental tank at the St. Nuclear Power Plant in Jensen Beach, FL. A juvenile green turtle
(C. mydas) is participating in a daytime net vs. no net trial. Image captured from the primary overhead
camera used to record all experiments.

Frontiers

11



Sample et al.

Running Title

feature images generated using turtle velocity vector and

Figure 3. Color coded spatiotemporal
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Figure 4. Success and precision plots of various methods.
Table 1. Topology of Orientation Estimation Network

Name

imageinput
conv 1

Explanation

45

64x64x1 input images
8 3x3x1 convolutions, stride 1

50
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relul
avgpool2d 1
conv 2
relu 2
avgpool2d 2
conv 3
relu3
avgpool2d 3
conv 4
relu 4
avgpool2d 4
conv 5
relu5
avgpool2d 5
conv 6
relu 6
dropout
fc
regressionoutput

RelLU layer
2x2 average pooling with stride 2
16 3x3x8 convolutions, stride 1
RelLU layer
2x2 average pooling with stride 2
32 3x3x16 convolutions, stride 1
RelLU layer
2x2 average pooling with stride 2
64 3x3x32 convolutions, stride 1
RelLU layer
2x2 average pooling with stride 2
128 3x3x64 convolutions, stride 1
RelLU layer
2x2 average pooling with stride 2
128 3x3x128 convolutions, stride 1
RelLU layer
20% dropout
2 Fully connected layers
Regression with MSE loss function

Table 2. Normalized confusion matrix showing the percentage of actual and predicted classes for 3

different behaviors

Artnial

Predicted

U-Turn Reversal Random

U-Turn
Reversal
Random

83.3 3.7 13.0
0 82.8 17.2
6.7 5.0 88.3

Table 3. Precision, Recall and F1 Scores of defined behaviors

Precision Recall F1 Score

U-Turn
Reversal
Random

0.833 0.925 0.877
0.828 0.905 0.865
0.883 0.745 0.808

Macro-Avg

0.848 0.858 0.85
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