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2 ABSTRACT 

3 Incidental capture, or bycatch, of marine species is a global conservation concern. Interactions 4 with 
fishing gear can cause mortality in air-breathing marine megafauna, including sea turtles. 5 Despite this, 
interactions between sea turtles and fishing gear - from a behavior standpoint - are 6 not sufficiently 
documented or described in the literature. Understanding sea turtle behavior in 7 relation to fishing gear is 
key to discovering how they become entangled or entrapped in gear. This 8 information can also be used to 
reduce fisheries interactions. However, recording and analyzing 
9 these behaviors is difficult and time intensive. In this study, we present a machine learning-based 10 sea 

turtle behavior recognition scheme. The proposed method utilizes visual object tracking and 11 orientation 
estimation tasks to extract important features that are used for recognizing behaviors 12 of interest with 
green turtles (Chelonia mydas) as the study subject. Then, these features are 13 combined in a color-coded 
feature image that represents the turtle behaviors occurring in a 14 limited time frame. These spatiotemporal 
feature images are used along a deep convolutional 15 neural network model to recognize the desired 
behaviors, specifically evasive behaviors which 16 we have labelled “reversal” and “U-turn.” Experimental 
results show that the proposed method 17 achieves an average F1 score of 85% in recognizing the target 
behavior patterns. This method is 18 intended to be a tool for discovering why sea turtles become entangled 
in gillnet fishing gear. 

19 Keywords: green turtle, chelonia mydas, behavior recognition, color-coding, spatiotemporal features 20 
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 1 INTRODUCTION 
21 Incidental capture of non-target animal species, termed bycatch, in fisheries is a global ecological threat 
22 to marine wildlife (Estes et al., 2011). Fisheries bycatch poses a threat to air-breathing animals such 23 as 
sea turtles. One such gear, gillnets, can create an ecological barrier that does not naturally occur, so 24 there 
is likely no evolutionary mechanism that causes avoidance (Casale, 2011). Various approaches have 
25 been proposed to reduce bycatch rates of sea turtles and other marine megafauna (Lucchetti et al., 2019; 
26 Wang et al., 2010a; Demir et al., 2020). Attempted solutions include: marine policy that sets bycatch 
27 limits for fisheries (Moore et al., 2009); acoustic deterrents similar to pingers used to prevent dolphin 28 

bycatch; buoyless nets and illuminated nets, which have shown promising results for reducing bycatch 
29 in coastal net fisheries (Peckham et al., 2016; Wang et al., 2010b). These bycatch reduction approaches 
30 can involve changing the technical design of gear or introducing novel visual or acoustic stimuli, which 
31 also changes gear configuration. However, as a part of the design process, effectiveness of different 
types 32 of stimuli must be analyzed by observing the associated behavioral response of sea turtles, 
which has 33 not been clearly documented in previous studies. Analyzing sea turtle interactions with 
fishing gear and 34 bycatch reduction technologies (BRTs) is not an easy task, since it requires the 
researcher to monitor the 35 experiment underwater for long periods while identifying and recording 
sea turtle behaviors and ensuring 36 the study subject’s safety. Even when experiments are recorded 
with GoPros, short battery life requires 37 constant monitoring of each camera view, and the subsequent 
manual behavioral analysis is time-intensive 38 for researchers. Fortunately, with the developments in 
computer vision-based approaches, recognition of 39 certain behaviors can be performed automatically 
after training this convolutional neural network with 40 behavioral data. 

41 Various approaches have been proposed to complete the behavior recognition task for different 
42 applications involving humans or animals (Chakravarty et al., 2019; Nweke et al., 2018; Porto et al., 
43 2013; Yang et al., 2018; Bodor et al., 2003; Ijjina and Chalavadi, 2017). Some of the recognition 

algorithms 44 analyze the data captured using wearable sensors (Chakravarty et al., 2019; Nweke et al., 
2018). While 

45 the sensors used in these type of experiments provide valuable information about the activities of 
interest, 

46 they are not applicable in our context as they need to be located on the subject’s body in a controlled 
47 environment. Various methods use vision based approaches for the behavior recognition task (Porto et 

al., 
48 2013; Yang et al., 2018; Bodor et al., 2003; Ijjina and Chalavadi, 2017). Earlier examples of the vision 
49 based methods employ hand-crafted features for analyzing the activities (Porto et al., 2013; Bodor et al., 
50 2003). While these approaches can perform well for differentiating basic behaviors, they are not very 
51 efficient in recognizing complex activities. With the advancements in the machine learning field, recent 
52 studies employ deep neural networks (DNN) successfully for the activity recognition task (Yang et al., 
53 2018; Ijjina and Chalavadi, 2017). Although DNNs provide powerful representations to analyze complex 

54 data sets, end-to-end training approaches usually require large amounts of data samples and a large 
number 55 of network coefficients. In this study, we propose a hybrid approach for the sea turtle 
behavior recognition 56 task. We use domain knowledge for determining base features to recognize 
certain behaviors and convert 57 them into color-coded spatiotemporal 3-D images to train deep 
convolutional neural networks (CNN). 
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58 
In our application, we are specifically interested in recognizing ”U-Turn” and ”Reversal” behaviors of 59 
turtles, since they are important indicators of effectiveness of the given stimuli. In order to recognize these 
60 behaviors, we combine turtle location, velocity, and orientation information in spatiotemporal images and 
61 use these images as inputs to a CNN architecture. 

62 In the U-turn behavior, the turtle makes a u-shaped maneuver in a short amount of time possibly due to 
an 63 external visual stimulus. In Reversal behavior, the turtle moves backwards while facing forward rather 
than 64 changing its orientation. These are avoidance behaviors exhibited by sea turtles when faced with a 
barrier 65 or other deterrent. To differentiate these behaviors from each other and from other motion 
patterns, we use 66 turtle location, speed, and orientation information. In order to extract those features and 
combine them as 67 an input to a deep neural network based architecture, we propose the recognition 
system shown in Figure 1. 

68 Here, we explain how we conduct the physical experiments and provide an overview of the proposed 69 
behavior recognition framework and explain the functional blocks. We then present the results of our 70 
comparative study for the object tracking task on the turtle dataset that we collected. We then report the 71 
performance of the proposed orientation estimation network and behavior recognition network followed by 
72 an explanation of the anticipated results and utility for conservation purposes. 

 2 MATERIALS AND EXPERIMENTAL SET UP 
73 2.1 Animal acquisition and facility maintenance 
74 All sea turtles used in this study were captured by Inwater Research Group (IRG) via dip net, entangling 75 
net, or hand capture after entrainment in the intake canal at the St. Lucie Nuclear Power Plant in Jensen 
76 Beach, FL. Capture of these turtles is necessary for returning them to the open ocean. For our choice 

trials, 
77 we included healthy juvenile and subadult green (C. mydas) turtles with a standard carapace length of 

less 78 than 78 cm. After the IRG team removed turtles from the canal and collected biometric data, all 
turtles 79 were kept in separate 6 ft diameter holding tanks with circulating seawater from the canal. 
Turtles were not 80 held for more than 72 hours. 

81 2.2 Computer Setup 
82 Captured data have been processed using a computer with Intel(R) Core(TM) i7-9750H processor and 83 
NVIDIA RTX 2070 GPU unit and 16GB RAM. For deep neural network architectures, we have used Keras 84 
Libraries1. 

 3 METHODS 
85 3.1 Animal behavior experiments and analysis 
86 We conducted all tank experiments in a 13.9 x 2.3 x 1.5 m concrete tank beside the intake canal at the 87 
St. Lucie Nuclear Power Plant in Jensen Beach, Florida (Figure 2). The two treatments we used in the 
88 development of this method consisted of a gillnet vs. no gillnet set up during the day and at night, meaning 
89 a turtle was given the choice between a pathway with a gillnet fully blocking it or a pathway with nothing 
90 in it (see Figure 2). The variable being changed is time of day with darkness being the most important 91 
factor in nighttime experiments. Each turtle was used in three consecutive 15- minute trials with the same 92 
treatment. All trials were recorded using GoPro Hero8 cameras from 4 different viewpoints, although this 93 

 
1 https://keras.io 
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study focused on behaviors recorded from the primary overhead view, as shown in Figure 2. Turtle behavior 
94 was analyzed from the recordings rather than in real-time due to the need to monitor turtle safety. Here, 
we 95 specifically focus on the novel turtle avoidance behavior identified in relation to the gillnet deployed in 
the 96 treatment sector: Reversal and U-turn. A Reversal occured when a turtle made contact with the gillnet 
and 
97 then escaped by moving backward with its rear flippers and maintaining a forward-facing orientation. A 98 
U-turn involved a 180 degree turn within a 3-second period. Here, we only classify U-turns that occur near 99 
the barrier of interest (i.e. the gillnet or treatment area containing the gillnet). 
100 3.2 Related Work 
101 Our behavior recognition approach requires the turtle location information in every frame. Thus, we 
102 included an object tracking method as part of the design. The visual object tracking problem has long 

been 103 studied in the computer vision field. Early methods have commonly used correlation based 
approaches 

104 and hand-crafted features for the tracking task. In (Ross et al., 2007), the authors proposed a method 105 
(IVT) that employs an incremental principal component analysis algorithm to achieve low dimensional 106 
subspace representations of the target object for tracking purposes. In (Babenko et al., 2009), a multiple 107 
instance learning (MILTrack) framework was used for object tracking where Haar-like features were used 108 
for discriminating the positive and negative image sets. In (Bolme et al., 2010), an adaptive correlation 
109 based algorithm (MOSSE) that calculates the optimal filter for the desired Gauss-shaped correlation output 
110 was proposed. In another approach (Bao et al., 2012), Bao et al. modeled the target by using a sparse 111 
approximation over a template set (L1APG). In this method, an `-1 norm related minimization problem was 
112 solved iteratively to achieve the sparse representation. In (Gundogdu et al., 2015), an adaptive ensemble 
113 of simple correlation filters (TBOOST) was used to generate tracking decisions by switching among the 114 
individual correlators in a computationally efficient manner. (Henriques et al., 2015) presents a method to 115 
use Kernelized Correlation Filters (KCF) operating on histogram of oriented gradients, where the key idea 116 
is to include all the cyclic shift versions of the target patch in the sample set, and train the network in Fourier 
117 Domain efficiently. In (Danelljan et al., 2015), authors propose a discriminative correlation filter based 118 
approach (SRDCF) where they use a spatial regularization function that penalizes filter coefficients residing 119 
outside the target region. In (Demir and Cetin, 2016), authors propose a ”co-difference” feature-based 120 
tracking algorithm (CODIFF) to efficiently represent and match image parts. This idea is further extended 121 
in (Demir and Adil, 2018) by including a part based approach (P-CODIFF) to achieve robustness against 
122 rotations and shape deformations. In (Bertinetto et al., 2016), the authors propose a method (STAPLE) 
123 to combine both correlation based and color based representations to construct a model that is robust 

to 124 intensity changes and deformations. More recent methods use CNNs for the tracking task. Siamese 
network 

125 based methods have achieved remarkable results for the object tracking benchmarks (Kristan et al., 
2019, 

126 2020; Li et al., 2019). In our experiments, we compared the performance of various state-of-the-art 
tracking 127 algorithms on our dataset and used the best performing method for our application. Detailed 
results are 128 given in Section 4.1. 

129 As a part of our design, we also estimated turtle orientation to differentiate some of the behavior 
patterns. 
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130 Various methods have been proposed to estimate the orientation of animals (Wagner et al., 2013), 
humans 131 (Raza et al., 2018), and other objects (Hara et al., 2017). Similar to the tracking and 
behavior recognition 132 problems, deep CNNs have successfully been used for the orientation 
estimation problem as well. In our 133 method, a lightweight CNN architecture is employed to 
estimate the turtle orientation. 

134 3.3 Proposed Method 

135 In this study, we intended to successfully recognize U-turn and Reversal behaviors of sea turtles. To 
136 differentiate these behaviors from each other and from other motion patterns, we use turtle location, 

speed, 137 and orientation information. In order to extract those features and combine them as an 
input to a deep 138 neural network based architecture, we propose the recognition system shown in 
Figure 1. 

139 The turtle location and speed were calculated by the visual object tracker and the turtle orientation 140 
calculated by the angle estimation network are combined to generate color-coded spatiotemporal images. 141 
The images are used by another network as the input for the behavior recognition task. Details of these 142 
building blocks are given in the subsections below. 

143 3.3.1 Visual Object Tracker 
144 The purpose of the visual object tracking block is to find the object location and size in every frame based 

145 on a given initial bounding box. Object location found by the visual object tracker is used to calculate 
the 

146 motion velocity vector (v). Bounding box output is also used to crop the object region from the image for 
147 the angle estimation network. vn is calculated from the current object location pn and the previous object 
148 location pn−1 as shown in Eqn. 1. 

 vn  (1) 

149 In order to employ a successful object tracking algorithm in the proposed framework, we performed a 150 
comparison between the state-of-the-art visual object trackers IVT (Ross et al., 2007), MILTrack (Babenko 
151 et al., 2009), MOSSE (Bolme et al., 2010), L1APG (Bao et al., 2012), TBOOST (Gundogdu et al., 2015), 152 
KCF (Henriques et al., 2015), SRDCF (Danelljan et al., 2015), P-CODIFF (Demir and Adil, 2018), 
153 Staple (Bertinetto et al., 2016) and SiamMargin (Kristan et al., 2019) on our turtle dataset. Based on the 
154 quantitative metrics, we used the best performing tracker. Details of the experimental results are given 
in 155 Section 4. 

156 3.3.2 Orientation Estimation Network 
157 We built a relatively small CNN architecture for detecting the orientation of the turtle. The network 158 

topology is summarized in Table 1. Note that we use two outputs for representing the angle values on 
the 159 unit circle so that we can use the MSE loss function without any modifications. We could use a 
single 160 output for the angle value. However, we would need to redefine the loss function to prevent 
penalizing 161 the jumps between 0◦ and 360◦. For training the network coefficients, we annotated 
nearly 25,000 turtle 
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162 
images with bounding box and orientation labels. We extended this number by rotating the turtle images by 
163 30 to 330 degrees with 30 degree steps and included associated orientation labels based on the rotation 
164 angle. 

165 3.3.3 Color Coding 
166 This block generates spatiotemporal feature images based on the visual object tracking output and 167 

estimates the turtle orientation. We basically aim to represent the turtle behavior occurring over a time 
168 period as an RGB image. In order to generate this image, we draw the path of the turtle using the 
visual 169 object tracking result. However, we also include the orientation and speed information using 
hue and value 170 channels of the hue-saturation-value (HSV) color space. The angular difference 
between the velocity vector 171 (vn) direction and the turtle orientation (θn) is used for determining the 
hue channel, while the magnitude 172 of the velocity vector is used for value channel. An example output 
of the color coding block is given in 173 Figure 3. 

174 3.3.4 Behavior Recognition Network 
175 This block aims to recognize the target turtle behaviors using the color-coded spatiotemporal feature 176 

images. Since we formulate the behavior recognition task as a vision based classification problem, we 
177 adopt a widely used network architecture, ResNet50 (He et al., 2016), for this task. In order to train 
and 178 test the network, we used a dataset consisting of 172 sequences with U-turn, Reversal, and 
random motions. 

179 This dataset is further extended with rotated, shifted, and symmetric versions of the sequences. Since we 
180 have a relatively small dataset, we employed the transfer learning approach where we use the 
coefficients 181 pre-trained on the ImageNet (Deng et al., 2009) dataset. We modified the last two fully-
connected layers 182 for our behavior recognition task so that the network gives a decision between three 
behavior classes. The 183 coefficients in the last two layers are trained using our training set. 
 4 EXPERIMENTAL RESULTS 
184 4.1 Object Tracking and Behavior Recognition 
185 For our visual object tracking experiments, we compared several state-of-the-art algorithms on a dataset 
186 consisting of 59 sequences with nearly 25,000 frames. We use Center Location Error (CLE) and Overlap 
187 Ratio (OR) as two base metrics which are widely used in object tracking problems (Wu et al., 2013). CLE 
188 is the Euclidean distance between the ground truth location and the predicted location, while OR denotes 
189 the overlap ratio of predicted bounding box and ground truth bounding box. Based on these metrics, we 
190 generated the success and precision plots. The precision plot shows the ratio of frames where CLE is 
191 smaller than a certain threshold. The success plot shows the ratio of frames where OR is higher than a 192 
given threshold. Figure 4 shows the performance results of the compared algorithms. 

193 Based on this comparative analysis, we determined that the SiamMargin (Kristan et al., 2019) 
algorithm 194 achieved the highest success and precision graphs among the compared algorithms on the 
turtle dataset. 195 Therefore, we used this algorithm in our visual object tracking block. 

196 For the orientation estimation experiments, we used 70 percent of the images as training samples, 
and the 197 rest for the validation and test samples. We used the batch size as 64, initial learning rate as 1e-
3, and the 198 number of epochs as 50. In every 20 epochs, we dropped the learning rate by using the drop 
factor value of 199 0.1. With these parameters, the model achieved a mean error value of 12.4 degrees on 
the test set. 
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200 
In our final set of experiments, we used color-coded spatiotemporal feature images to recognize turtle 201 
behaviors. For these experiments, we similarly used 70 percent of the behavior sequences in our dataset 202 
to create spatiotemporal motion patterns and trained the last two fully connected layers of the ResNet50 203 
architecture. Then, we used the test sequences to create similar spatiotemporal motion patterns using the 
204 outputs of SiamMargin tracker and orientation estimation network that we trained in the previous step. 
205 Based on the behavior recognition network outputs, we achieved the prediction results given in Table 2. 
206 Corresponding Precision, Recall, and F1 Scores for each behavior are presented in Table 3. 
207 4.2 Anticipated Behavioral Results Using This Method 
208 Studying the effectiveness of bycatch reduction technologies (BRTs) is a difficult task when conditions 
209 are less than ideal for recording sea turtle interactions with fishing gear and BRTs in the field and 

behavioral 210 data requires intensive analysis by researchers even when it can be obtained. Therefore, 
using behavioral 211 data from controlled experiments to train this convolutional neural network 
improves the process. We 212 intend to use this initial study to discover if sea turtles do, in fact, 
recognize fishing nets as a barrier, in 213 which case they would likely avoid the net with a U-turn when 
they can see them (presumably during the 214 day). We expect to identify more Reversal behaviors 
during night trials when sea turtles most likely cannot 215 see the net before them. These behaviors 
can last as little as 3 to 5 seconds, so in one 15-minute trial a 216 sea turtle can perform dozens to 
hundreds of behaviors that require recording by a researcher. With most 217 treatments involving at 
least 15 sea turtles at 3 trials each, it becomes a time-intensive project with natural 218 human error 
that comes along with watching hours of behavior videos. This algorithm can identify these 219 
behaviors and enable a comparison between U-turn and Reversal behaviors in daytime and nighttime 
trials. 

 5 DISCUSSION 
220 5.1 Future Uses and Related Behaviors 
221 While this method has been created and tested exclusively on behavioral data in a controlled setting, 
222 we intend to use this method on field trials in the future. Given that most gillnet fisheries operate at 

night 
223 (Wang et al., 2010b), obtaining high resolution footage of sea turtle interactions is challenging. In 

particular, 224 we plan on assessing video footage of in situ sea turtle interactions with gillnet fisheries 
as a future step of 225 this research project. 

226 We also recognize that the reversal and U-turn behaviors observed here are likely not exclusive to 
gillnet 

227 avoidance. While we were unable to find literature outlining these specific behaviors, we suspect that 
228 reversals and U-turns are evident in other common sea turtle interactions, such as mating (e.g. 
avoidance 229 behavior by females during courtship)(Frick et al., 2000), predator avoidance (Wirsing 
et al., 2008), and 230 competition over food or habitat resources (Gaos et al., 2021). Additionally, 
because this method was 231 created for overhead video, drone footage of sea turtle interactions 
would be an ideal way to collect 232 behavioral data in the field and subsequently detect the behaviors 
of interest in other contexts, which has 

233 become a common technique for capturing sea turtle behavior (Schofield et al., 2019). For example, 
studies 
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234 have captured overhead drone footage of sea turtle courtship behavior (Bevan et al., 2016; Rees et al., 
235 2018). In the future, our machine learning method could be used to detect these behaviors in relation 
to 236 intraspecific aggression, predator avoidance, and other important interactions captured by drone 
footage. 

237 5.2 Conclusion 
238 In this study, we developed a behavior recognition framework for sea turtles using color-coded 239 
spatiotemporal motion patterns. Our approach uses visual object tracking and CNN based orientation 240 
estimation blocks to generate spatiotemporal feature images and processes them to recognize certain 241 
behaviors. Our experiments demonstrate that the proposed method achieves an average F1 score of 85% on 
242 recognizing the behaviors of interest. 
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FIGURE CAPTIONS 

 

Figure 1. Overview of the proposed approach 

 

Figure 2. Experimental tank at the St. Nuclear Power Plant in Jensen Beach, FL. A juvenile green turtle 
(C. mydas) is participating in a daytime net vs. no net trial. Image captured from the primary overhead 
camera used to record all experiments. 
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Figure 3. Color coded spatiotemporal feature images generated using turtle velocity vector and 
orientation information 

 

(a) Succes vs overlap threshold plots of various methods 

 

(b) Precision vs. localization error plots of various methods 

Figure 4. Success and precision plots of various methods. 
Table 1. Topology of Orientation Estimation Network 

Name Explanation 
 

imageinput 64x64x1 input images 
conv 1 8 3x3x1 convolutions, stride 1 
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relu 1 ReLU layer 
avgpool2d 1 2x2 average pooling with stride 2 

conv 2 16 3x3x8 convolutions, stride 1 
relu 2 ReLU layer 

avgpool2d 2 2x2 average pooling with stride 2 
conv 3 32 3x3x16 convolutions, stride 1 
relu 3 ReLU layer 

avgpool2d 3 2x2 average pooling with stride 2 
conv 4 64 3x3x32 convolutions, stride 1 
relu 4 ReLU layer 

avgpool2d 4 2x2 average pooling with stride 2 
conv 5 128 3x3x64 convolutions, stride 1 
relu 5 ReLU layer 

avgpool2d 5 2x2 average pooling with stride 2 
conv 6 128 3x3x128 convolutions, stride 1 
relu 6 ReLU layer 

dropout 20% dropout 
fc 2 Fully connected layers 

regressionoutput Regression with MSE loss function 
Table 2. Normalized confusion matrix showing the percentage of actual and predicted classes for 3 
different behaviors 

Predicted 

 

 
 U-Turn Reversal Random 

U-Turn 83.3 3.7 13.0 
Reversal 0 82.8 17.2 
Random 6.7 5.0 88.3 

 

Table 3. Precision, Recall and F1 Scores of defined behaviors 
 Precision Recall F1 Score 

U-Turn 0.833 0.925 0.877 
Reversal 0.828 0.905 0.865 
Random 0.883 0.745 0.808 

Macro-Avg 0.848 0.858 0.85 
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