

Revealing sea turtle behavior in relation to fishing gear using color-coded spatiotemporal motion patterns with deep neural networks

Janie L. Reavis^{1,*}, H. Seckin Demir², Blair Witherington³, Michael Bresette³, Jennifer Blain

Christen², Jesse Senko⁴ and Sule Ozev²

¹School of Life Sciences, Arizona State University, Tempe, AZ, USA

²Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

³Inwater Research Group, Jensen Beach, FL, USA

⁴School for the Future of Innovation in Society, Arizona State University, Tempe, AZ, USA

Correspondence*: Janie L. Reavis jreavis3@asu.edu

2 ABSTRACT

3 Incidental capture, or bycatch, of marine species is a global conservation concern. Interactions 4 with fishing gear can cause mortality in air-breathing marine megafauna, including sea turtles. 5 Despite this, interactions between sea turtles and fishing gear - from a behavior standpoint - are 6 not sufficiently documented or described in the literature. Understanding sea turtle behavior in 7 relation to fishing gear is key to discovering how they become entangled or entrapped in gear. This 8 information can also be used to reduce fisheries interactions. However, recording and analyzing

9 these behaviors is difficult and time intensive. In this study, we present a machine learning-based 10 sea turtle behavior recognition scheme. The proposed method utilizes visual object tracking and 11 orientation estimation tasks to extract important features that are used for recognizing behaviors 12 of interest with green turtles (*Chelonia mydas*) as the study subject. Then, these features are 13 combined in a color-coded feature image that represents the turtle behaviors occurring in a 14 limited time frame. These spatiotemporal feature images are used along a deep convolutional 15 neural network model to recognize the desired behaviors, specifically evasive behaviors which 16 we have labelled "reversal" and "U-turn." Experimental results show that the proposed method 17 achieves an average F1 score of 85% in recognizing the target behavior patterns. This method is 18 intended to be a tool for discovering why sea turtles become entangled in gillnet fishing gear.

 $19 \ \text{Keywords: green turtle, chelonia mydas, behavior recognition, color-coding, spatiotemporal features} \ 20$

This material is based upon work supported by the National Science Foundation under Grant No. 1837473. The research is also supported by Inwater Research Group and Florida Power and Light Company. The work on protected species was conducted under Florida FWC Marine Turtle Permit 20-125.

1 INTRODUCTION

21 Incidental capture of non-target animal species, termed bycatch, in fisheries is a global ecological threat 22 to marine wildlife (Estes et al., 2011). Fisheries bycatch poses a threat to air-breathing animals such 23 as sea turtles. One such gear, gillnets, can create an ecological barrier that does not naturally occur, so 24 there is likely no evolutionary mechanism that causes avoidance (Casale, 2011). Various approaches have

- been proposed to reduce bycatch rates of sea turtles and other marine megafauna (Lucchetti et al., 2019;
- 26 Wang et al., 2010a; Demir et al., 2020). Attempted solutions include: marine policy that sets bycatch
- limits for fisheries (Moore et al., 2009); acoustic deterrents similar to pingers used to prevent dolphin 28 bycatch; buoyless nets and illuminated nets, which have shown promising results for reducing bycatch 29 in coastal net fisheries (Peckham et al., 2016; Wang et al., 2010b). These bycatch reduction approaches 30 can involve changing the technical design of gear or introducing novel visual or acoustic stimuli, which 31 also changes gear configuration. However, as a part of the design process, effectiveness of different types 32 of stimuli must be analyzed by observing the associated behavioral response of sea turtles, which has 33 not been clearly documented in previous studies. Analyzing sea turtle interactions with fishing gear and 34 bycatch reduction technologies (BRTs) is not an easy task, since it requires the researcher to monitor the 35 experiment underwater for long periods while identifying and recording sea turtle behaviors and ensuring 36 the study subject's safety. Even when experiments are recorded with GoPros, short battery life requires 37 constant monitoring of each camera view, and the subsequent manual behavioral analysis is time-intensive 38 for researchers. Fortunately, with the developments in computer vision-based approaches, recognition of 39 certain behaviors can be performed automatically after training this convolutional neural network with 40 behavioral data.
- Various approaches have been proposed to complete the behavior recognition task for different
- 42 applications involving humans or animals (Chakravarty et al., 2019; Nweke et al., 2018; Porto et al.,
- 2013; Yang et al., 2018; Bodor et al., 2003; Ijjina and Chalavadi, 2017). Some of the recognition algorithms 44 analyze the data captured using wearable sensors (Chakravarty et al., 2019; Nweke et al., 2018). While
- the sensors used in these type of experiments provide valuable information about the activities of interest,
- they are not applicable in our context as they need to be located on the subject's body in a controlled
- environment. Various methods use vision based approaches for the behavior recognition task (Porto et al.,
- 48 2013; Yang et al., 2018; Bodor et al., 2003; Ijjina and Chalavadi, 2017). Earlier examples of the vision
- 49 based methods employ hand-crafted features for analyzing the activities (Porto et al., 2013; Bodor et al.,
- 50 2003). While these approaches can perform well for differentiating basic behaviors, they are not very
- efficient in recognizing complex activities. With the advancements in the machine learning field, recent
- 52 studies employ deep neural networks (DNN) successfully for the activity recognition task (Yang et al.,
- 2018; Ijjina and Chalavadi, 2017). Although DNNs provide powerful representations to analyze complex 54 data sets, end-to-end training approaches usually require large amounts of data samples and a large number 55 of network coefficients. In this study, we propose a hybrid approach for the sea turtle behavior recognition 56 task. We use domain knowledge for determining base features to recognize certain behaviors and convert 57 them into color-coded spatiotemporal 3-D images to train deep convolutional neural networks (CNN).

In our application, we are specifically interested in recognizing "U-Turn" and "Reversal" behaviors of 59 turtles, since they are important indicators of effectiveness of the given stimuli. In order to recognize these 60 behaviors, we combine turtle location, velocity, and orientation information in spatiotemporal images and 61 use these images as inputs to a CNN architecture.

62 In the U-turn behavior, the turtle makes a u-shaped maneuver in a short amount of time possibly due to an 63 external visual stimulus. In Reversal behavior, the turtle moves backwards while facing forward rather than 64 changing its orientation. These are avoidance behaviors exhibited by sea turtles when faced with a barrier 65 or other deterrent. To differentiate these behaviors from each other and from other motion patterns, we use 66 turtle location, speed, and orientation information. In order to extract those features and combine them as 67 an input to a deep neural network based architecture, we propose the recognition system shown in Figure 1.

68 Here, we explain how we conduct the physical experiments and provide an overview of the proposed 69 behavior recognition framework and explain the functional blocks. We then present the results of our 70 comparative study for the object tracking task on the turtle dataset that we collected. We then report the 71 performance of the proposed orientation estimation network and behavior recognition network followed by 72 an explanation of the anticipated results and utility for conservation purposes.

2 MATERIALS AND EXPERIMENTAL SET UP

73 2.1 Animal acquisition and facility maintenance

74 All sea turtles used in this study were captured by Inwater Research Group (IRG) via dip net, entangling 75 net, or hand capture after entrainment in the intake canal at the St. Lucie Nuclear Power Plant in Jensen

- Beach, FL. Capture of these turtles is necessary for returning them to the open ocean. For our choice trials,
- we included healthy juvenile and subadult green (*C. mydas*) turtles with a standard carapace length of less 78 than 78 cm. After the IRG team removed turtles from the canal and collected biometric data, all turtles 79 were kept in separate 6 ft diameter holding tanks with circulating seawater from the canal. Turtles were not 80 held for more than 72 hours.

81 2.2 Computer Setup

58

82 Captured data have been processed using a computer with Intel(R) Core(TM) i7-9750H processor and 83 NVIDIA RTX 2070 GPU unit and 16GB RAM. For deep neural network architectures, we have used Keras 84 Libraries¹.

3 METHODS

85 3.1 Animal behavior experiments and analysis

86 We conducted all tank experiments in a 13.9 x 2.3 x 1.5 m concrete tank beside the intake canal at the 87 St. Lucie Nuclear Power Plant in Jensen Beach, Florida (Figure 2). The two treatments we used in the 88 development of this method consisted of a gillnet vs. no gillnet set up during the day and at night, meaning 89 a turtle was given the choice between a pathway with a gillnet fully blocking it or a pathway with nothing 90 in it (see Figure 2). The variable being changed is time of day with darkness being the most important 91 factor in nighttime experiments. Each turtle was used in three consecutive 15- minute trials with the same 92 treatment. All trials were recorded using GoPro Hero8 cameras from 4 different viewpoints, although this 93

¹ https://keras.io

study focused on behaviors recorded from the primary overhead view, as shown in Figure 2. Turtle behavior 94 was analyzed from the recordings rather than in real-time due to the need to monitor turtle safety. Here, we 95 specifically focus on the novel turtle avoidance behavior identified in relation to the gillnet deployed in the 96 treatment sector: Reversal and U-turn. A Reversal occured when a turtle made contact with the gillnet and

97 then escaped by moving backward with its rear flippers and maintaining a forward-facing orientation. A 98 U-turn involved a 180 degree turn within a 3-second period. Here, we only classify U-turns that occur near 99 the barrier of interest (i.e. the gillnet or treatment area containing the gillnet).

100 3.2 Related Work

- Our behavior recognition approach requires the turtle location information in every frame. Thus, we
- included an object tracking method as part of the design. The visual object tracking problem has long been 103 studied in the computer vision field. Early methods have commonly used correlation based approaches

104 and hand-crafted features for the tracking task. In (Ross et al., 2007), the authors proposed a method 105 (IVT) that employs an incremental principal component analysis algorithm to achieve low dimensional 106 subspace representations of the target object for tracking purposes. In (Babenko et al., 2009), a multiple 107 instance learning (MILTrack) framework was used for object tracking where Haar-like features were used 108 for discriminating the positive and negative image sets. In (Bolme et al., 2010), an adaptive correlation 109 based algorithm (MOSSE) that calculates the optimal filter for the desired Gauss-shaped correlation output 110 was proposed. In another approach (Bao et al., 2012), Bao et al. modeled the target by using a sparse 111 approximation over a template set (L1APG). In this method, an `-1 norm related minimization problem was 112 solved iteratively to achieve the sparse representation. In (Gundogdu et al., 2015), an adaptive ensemble 113 of simple correlation filters (TBOOST) was used to generate tracking decisions by switching among the 114 individual correlators in a computationally efficient manner. (Henriques et al., 2015) presents a method to 115 use Kernelized Correlation Filters (KCF) operating on histogram of oriented gradients, where the key idea 116 is to include all the cyclic shift versions of the target patch in the sample set, and train the network in Fourier 117 Domain efficiently. In (Danelljan et al., 2015), authors propose a discriminative correlation filter based 118 approach (SRDCF) where they use a spatial regularization function that penalizes filter coefficients residing 119 outside the target region. In (Demir and Cetin, 2016), authors propose a "co-difference" feature-based 120 tracking algorithm (CODIFF) to efficiently represent and match image parts. This idea is further extended 121 in (Demir and Adil, 2018) by including a part based approach (P-CODIFF) to achieve robustness against

- rotations and shape deformations. In (Bertinetto et al., 2016), the authors propose a method (STAPLE)
- to combine both correlation based and color based representations to construct a model that is robust to 124 intensity changes and deformations. More recent methods use CNNs for the tracking task. Siamese network
- based methods have achieved remarkable results for the object tracking benchmarks (Kristan et al., 2019,
- 2020; Li et al., 2019). In our experiments, we compared the performance of various state-of-the-art tracking 127 algorithms on our dataset and used the best performing method for our application. Detailed results are 128 given in Section 4.1.
- As a part of our design, we also estimated turtle orientation to differentiate some of the behavior patterns.

Various methods have been proposed to estimate the orientation of animals (Wagner et al., 2013), humans 131 (Raza et al., 2018), and other objects (Hara et al., 2017). Similar to the tracking and behavior recognition 132 problems, deep CNNs have successfully been used for the orientation estimation problem as well. In our 133 method, a lightweight CNN architecture is employed to estimate the turtle orientation.

134 3.3 Proposed Method

- In this study, we intended to successfully recognize *U-turn* and *Reversal* behaviors of sea turtles. To
- differentiate these behaviors from each other and from other motion patterns, we use turtle location, speed, 137 and orientation information. In order to extract those features and combine them as an input to a deep 138 neural network based architecture, we propose the recognition system shown in Figure 1.

139 The turtle location and speed were calculated by the visual object tracker and the turtle orientation 140 calculated by the angle estimation network are combined to generate color-coded spatiotemporal images. 141 The images are used by another network as the input for the behavior recognition task. Details of these 142 building blocks are given in the subsections below.

143 3.3.1 Visual Object Tracker

The purpose of the visual object tracking block is to find the object location and size in every frame based 145 on a given initial bounding box. Object location found by the visual object tracker is used to calculate the

146 motion velocity vector (\mathbf{v}). Bounding box output is also used to crop the object region from the image for 147 the angle estimation network. \mathbf{v}_n is calculated from the current object location \mathbf{p}_n and the previous object 148 location \mathbf{p}_{n-1} as shown in Eqn. 1.

$$\mathbf{v_n} = \begin{bmatrix} v_{x_n} \\ v_{y_n} \end{bmatrix} = \begin{bmatrix} p_{x_n} \\ p_{y_n} \end{bmatrix} - \begin{bmatrix} p_{x_{n-1}} \\ p_{y_{n-1}} \end{bmatrix}$$
 (1)

149 In order to employ a successful object tracking algorithm in the proposed framework, we performed a 150 comparison between the state-of-the-art visual object trackers IVT (Ross et al., 2007), MILTrack (Babenko 151 et al., 2009), MOSSE (Bolme et al., 2010), L1APG (Bao et al., 2012), TBOOST (Gundogdu et al., 2015), 152 KCF (Henriques et al., 2015), SRDCF (Danelljan et al., 2015), P-CODIFF (Demir and Adil, 2018), 153 Staple (Bertinetto et al., 2016) and SiamMargin (Kristan et al., 2019) on our turtle dataset. Based on the 154 quantitative metrics, we used the best performing tracker. Details of the experimental results are given in 155 Section 4.

156 3.3.2 Orientation Estimation Network

157 We built a relatively small CNN architecture for detecting the orientation of the turtle. The network 158 topology is summarized in Table 1. Note that we use two outputs for representing the angle values on the 159 unit circle so that we can use the MSE loss function without any modifications. We could use a single 160 output for the angle value. However, we would need to redefine the loss function to prevent penalizing 161 the jumps between 0° and 360° . For training the network coefficients, we annotated nearly 25,000 turtle

images with bounding box and orientation labels. We extended this number by rotating the turtle images by 163 30 to 330 degrees with 30 degree steps and included associated orientation labels based on the rotation 164 angle.

165 3.3.3 Color Coding

162

This block generates spatiotemporal feature images based on the visual object tracking output and 167 estimates the turtle orientation. We basically aim to represent the turtle behavior occurring over a time 168 period as an RGB image. In order to generate this image, we draw the path of the turtle using the visual 169 object tracking result. However, we also include the orientation and speed information using hue and value 170 channels of the hue-saturation-value (HSV) color space. The angular difference between the velocity vector 171 (v_n) direction and the turtle orientation (θ_n) is used for determining the hue channel, while the magnitude 172 of the velocity vector is used for value channel. An example output of the color coding block is given in 173 Figure 3.

174 3.3.4 Behavior Recognition Network

175 This block aims to recognize the target turtle behaviors using the color-coded spatiotemporal feature 176 images. Since we formulate the behavior recognition task as a vision based classification problem, we 177 adopt a widely used network architecture, ResNet50 (He et al., 2016), for this task. In order to train and 178 test the network, we used a dataset consisting of 172 sequences with U-turn, Reversal, and random motions.

179 This dataset is further extended with rotated, shifted, and symmetric versions of the sequences. Since we 180 have a relatively small dataset, we employed the transfer learning approach where we use the coefficients 181 pre-trained on the ImageNet (Deng et al., 2009) dataset. We modified the last two fully-connected layers 182 for our behavior recognition task so that the network gives a decision between three behavior classes. The 183 coefficients in the last two layers are trained using our training set.

4 EXPERIMENTAL RESULTS

184 4.1 Object Tracking and Behavior Recognition

185 For our visual object tracking experiments, we compared several state-of-the-art algorithms on a dataset 186 consisting of 59 sequences with nearly 25,000 frames. We use Center Location Error (CLE) and Overlap 187 Ratio (OR) as two base metrics which are widely used in object tracking problems (Wu et al., 2013). CLE 188 is the Euclidean distance between the ground truth location and the predicted location, while OR denotes 189 the overlap ratio of predicted bounding box and ground truth bounding box. Based on these metrics, we 190 generated the success and precision plots. The precision plot shows the ratio of frames where CLE is 191 smaller than a certain threshold. The success plot shows the ratio of frames where OR is higher than a 192 given threshold. Figure 4 shows the performance results of the compared algorithms.

- Based on this comparative analysis, we determined that the SiamMargin (Kristan et al., 2019) algorithm 194 achieved the highest success and precision graphs among the compared algorithms on the turtle dataset. 195 Therefore, we used this algorithm in our visual object tracking block.
- For the orientation estimation experiments, we used 70 percent of the images as training samples, and the 197 rest for the validation and test samples. We used the batch size as 64, initial learning rate as 1e-3, and the 198 number of epochs as 50. In every 20 epochs, we dropped the learning rate by using the drop factor value of 199 0.1. With these parameters, the model achieved a mean error value of 12.4 degrees on the test set.

200 ____

In our final set of experiments, we used color-coded spatiotemporal feature images to recognize turtle 201 behaviors. For these experiments, we similarly used 70 percent of the behavior sequences in our dataset 202 to create spatiotemporal motion patterns and trained the last two fully connected layers of the ResNet50 203 architecture. Then, we used the test sequences to create similar spatiotemporal motion patterns using the 204 outputs of SiamMargin tracker and orientation estimation network that we trained in the previous step. 205 Based on the behavior recognition network outputs, we achieved the prediction results given in Table 2. 206 Corresponding Precision, Recall, and F1 Scores for each behavior are presented in Table 3.

207 4.2 Anticipated Behavioral Results Using This Method

Studying the effectiveness of bycatch reduction technologies (BRTs) is a difficult task when conditions are less than ideal for recording sea turtle interactions with fishing gear and BRTs in the field and behavioral 210 data requires intensive analysis by researchers even when it can be obtained. Therefore, using behavioral 211 data from controlled experiments to train this convolutional neural network improves the process. We 212 intend to use this initial study to discover if sea turtles do, in fact, recognize fishing nets as a barrier, in 213 which case they would likely avoid the net with a U-turn when they can see them (presumably during the 214 day). We expect to identify more Reversal behaviors during night trials when sea turtles most likely cannot 215 see the net before them. These behaviors can last as little as 3 to 5 seconds, so in one 15-minute trial a 216 sea turtle can perform dozens to hundreds of behaviors that require recording by a researcher. With most 217 treatments involving at least 15 sea turtles at 3 trials each, it becomes a time-intensive project with natural 218 human error that comes along with watching hours of behavior videos. This algorithm can identify these 219 behaviors and enable a comparison between U-turn and Reversal behaviors in daytime and nighttime trials.

5 DISCUSSION

208

209

220 **5.1** Future Uses and Related Behaviors

- While this method has been created and tested exclusively on behavioral data in a controlled setting,
- we intend to use this method on field trials in the future. Given that most gillnet fisheries operate at night
- (Wang et al., 2010b), obtaining high resolution footage of sea turtle interactions is challenging. In particular, 224 we plan on assessing video footage of *in situ* sea turtle interactions with gillnet fisheries as a future step of 225 this research project.
- We also recognize that the reversal and U-turn behaviors observed here are likely not exclusive to gillnet
- avoidance. While we were unable to find literature outlining these specific behaviors, we suspect that 228 reversals and U-turns are evident in other common sea turtle interactions, such as mating (e.g. avoidance 229 behavior by females during courtship)(Frick et al., 2000), predator avoidance (Wirsing et al., 2008), and 230 competition over food or habitat resources (Gaos et al., 2021). Additionally, because this method was 231 created for overhead video, drone footage of sea turtle interactions would be an ideal way to collect 232 behavioral data in the field and subsequently detect the behaviors of interest in other contexts, which has
- become a common technique for capturing sea turtle behavior (Schofield et al., 2019). For example, studies

have captured overhead drone footage of sea turtle courtship behavior (Bevan et al., 2016; Rees et al., 235 2018). In the future, our machine learning method could be used to detect these behaviors in relation to 236 intraspecific aggression, predator avoidance, and other important interactions captured by drone footage.

237 **5.2** Conclusion

238 In this study, we developed a behavior recognition framework for sea turtles using color-coded 239 spatiotemporal motion patterns. Our approach uses visual object tracking and CNN based orientation 240 estimation blocks to generate spatiotemporal feature images and processes them to recognize certain 241 behaviors. Our experiments demonstrate that the proposed method achieves an average F1 score of 85% on 242 recognizing the behaviors of interest.

REFERENCES

- 243 Babenko, B., Yang, M.-H., and Belongie, S. (2009). Visual tracking with online multiple instance learning. 244 In *Computer Vision and Pattern Recognition*, 2009. CVPR 2009. IEEE Conference on. 983–990.
- 245 doi:10.1109/CVPR.2009.5206737
- Bao, C., Wu, Y., Ling, H. L., and Ji, H. (2012). Real time robust l1 tracker using accelerated proximal
- gradient approach. In *Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.* 248 1830–1837. doi:10.1109/CVPR.2012.6247881
- 249 Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., and Torr, P. H. S. (2016). Staple: Complementary
- learners for real-time tracking. In The IEEE Conference on Computer Vision and Pattern Recognition
- 251 (CVPR)
- 252 Bevan, E., Wibbels, T., Navarro, E., Rosas, M., Najera, B., L.A., S., et al. (2016). Using unmanned aerial 253 vehicle (uav) technology for locating, identifying, and monitoring courtship and mating behaviour in the
- green turtle (chelonia mydas). Herpetological Review 47, 27–32
- Bodor, R., Jackson, B., and Papanikolopoulos, N. (2003). Vision-based human tracking and activity
- recognition. In *Proc. of the 11th Mediterranean Conf. on Control and Automation*. vol. 1
- Bolme, D., Beveridge, J., Draper, B., and Lui, Y. M. (2010). Visual object tracking using adaptive
- correlation filters. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. 259
- 2544–2550. doi:10.1109/CVPR.2010.5539960
- 260 Casale, P. (2011). Sea turtle by-catch in the mediterranean. Fish and Fisheries 12, 299–316
- 261 Chakravarty, P., Cozzi, G., Ozgul, A., and Aminian, K. (2019). A novel biomechanical approach for animal 262 behaviour recognition using accelerometers. *Methods in Ecology and Evolution* 10, 802–814
- 263 Danelljan, M., Hager, G., Khan, F. S., and Felsberg, M. (2015). Learning spatially regularized correlation"
- filters for visual tracking. In 2015 IEEE International Conference on Computer Vision (ICCV). 4310–
- 4318. doi:10.1109/ICCV.2015.490
- Demir, H. S. and Adil, O. F. (2018). Part-based co-difference object tracking algorithm for infrared videos. 267 In 2018 25th IEEE International Conference on Image Processing (ICIP). 3723–3727. doi:10.1109/ICIP. 268 2018.8451294
- 269 Demir, H. S., Blain Christen, J., and Ozev, S. (2020). Energy-efficient image recognition system for marine 270 life. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 39, 3458–3466
- Demir, H. S. and Cetin, A. E. (2016). Co-difference based object tracking algorithm for infrared videos.
- 272 2016 IEEE International Conference on Image Processing (ICIP). 434–438. doi:10.1109/ICIP.2016.

- 273 7532394
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale 275 Hierarchical Image Database. In *CVPR09*
- 276 Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., et al. (2011). Trophic downgrading of 277 planet earth. *science* 333, 301–306
- 278 Frick, M., Slay, C., Quinn, C., Windham-Reid, A., Duley, P., Ryder, C., et al. (2000). Aerial observations of 279 courtship behavior in loggerhead sea turtles (caretta caretta) from southeastern georgia and northeastern 280 florida. *Journal of Herpetology* 34, 153–158
- 281 Gaos, A., Johnson, C., McLeish, D., King, C., and Senko, J. (2021). Interactions among hawaiian 282 hawksbills suggest prevalence of social behaviors in marine turtles. *Chelonian Conservation and*
- 283 Biology.
- Gundogdu, E., Ozkan, H., Demir, H. S., Ergezer, H., Akagunduz, E., and Pakin, S. K. (2015). Comparison 285 of infrared and visible imagery for object tracking: Toward trackers with superior ir performance. In
- Computer Vision and Pattern Recognition Workshops, 2015 IEEE Conference on. 1–9. doi:10.1109/287 CVPRW.2015.7301290
- 288 Hara, K., Vemulapalli, R., and Chellappa, R. (2017). Designing deep convolutional neural networks for 289 continuous object orientation estimation. *arXiv* preprint arXiv:1702.01499
- He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
- 291 Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778
- Henriques, J. F., Caseiro, R., Martins, P., and Batista, J. (2015). High-speed tracking with kernelized
- 293 correlation filters. Pattern Analysis and Machine Intelligence, IEEE Transactions on
- doi:10.1109/TPAMI. 294 2014.2345390
- 295 Ijjina, E. P. and Chalavadi, K. M. (2017). Human action recognition in rgb-d videos using motion sequence information and deep learning. *Pattern Recognition* 72, 504–516
- 297 [Dataset] Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., and et al. (2020). The eighth 298 visual object tracking vot2020 challenge results
- 299 Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., and et al. (2019). The seventh visual 300 object tracking vot2019 challenge results. In *Proceedings of the IEEE International Conference on* 301 *Computer Vision Workshops*
- 302 Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., and Yan, J. (2019). Siamrpn++: Evolution of siamese visual 303 tracking with very deep networks. In *Proceedings of the IEEE Conference on Computer Vision and* 304 *Pattern Recognition*. 4282–4291
- 305 Lucchetti, A., Bargione, G., Petetta, A., Vasapollo, C., and Virgili, M. (2019). Reducing sea turtle bycatch 306 in the mediterranean mixed demersal fisheries. *Frontiers in Marine Science* 6, 387
- 307 Moore, J., Wallace, B., Lewison, R., Zydelis, R., Cox, T., and Crowder, L. (2009). A review of marine 308 mammal, sea turtle and seabird bycatch in usa fisheries and the role of policy in shaping management.
- 309 *Marine Policy* 33, 435–451. doi:https://doi.org/10.1016/j.marpol.2008.09.003
- Nweke, H. F., Teh, Y. W., Al-Garadi, M. A., and Alo, U. R. (2018). Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. 312 *Expert Systems with Applications* 105, 233–261
- 313 Peckham, S., Lucero-Romero, J., Maldonado-D´ıaz, D., Rodr´ıguez-Sanchez, A., Senko, J., Wojakowski,´ 314 M., et al. (2016). Buoyless nets reduce sea turtle bycatch in coastal net fisheries. *Conservation Letters* 9, 315 114–121. doi:https://doi.org/10.1111/conl.12176

Porto, S. M., Arcidiacono, C., Anguzza, U., and Cascone, G. (2013). A computer vision-based system for

- the automatic detection of lying behaviour of dairy cows in free-stall barns. *Biosystems Engineering* 318 115, 184–194
- 319 Raza, M., Chen, Z., Rehman, S.-U., Wang, P., and Bao, P. (2018). Appearance based pedestrians' head 320 pose and body orientation estimation using deep learning. *Neurocomputing* 272, 647–659
- 321 Rees, A., Avens, L., Ballorain, K., Bevan, E., Broderick, A., Carthy, R., et al. (2018). The potential 322 of unmanned aerial systems for sea turtle research and conservation: a review and future directions. 323 *Endangered Species Research*, 81–100
- 324 Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. (2007). Incremental learning for robust visual tracking. 325 *International Journal of Computer Vision* 77, 125–141. doi:10.1007/s11263-007-0075-7
- Schofield, G., Esteban, N., Katselidis, K. A., and Hays, G. C. (2019). Drones for research on sea turtles and
- other marine vertebrates—a review. *Biological Conservation* 238. doi:10.1016/j.biocon.2019.108214
- Wagner, R., Thom, M., Gabb, M., Limmer, M., Schweiger, R., and Rothermel, A. (2013). Convolutional area networks for night-time animal orientation estimation. In *2013 IEEE Intelligent Vehicles*
- 330 *Symposium (IV)*. 316–321. doi:10.1109/IVS.2013.6629488
- Wang, J., Fisler, S., and Swimmer, Y. (2010a). Developing visual deterrents to reduce sea turtle bycatch in 332 gill net fisheries. *Marine Ecology Progress Series* 408, 241–250
- 333 Wang, J., Fisler, S., and Swimmer, Y. (2010b). Developing visual deterrents to reduce sea turtle bycatch in 334 gill net fisheries. *Marine Ecology Progress Series* 408, 241–250. doi:https://doi.org/10.3354/meps08577
- Wirsing, A., Abernethy, R., and Heithaus, M. (2008). Speed and maneuverability of adult loggerhead
- turtles (caretta caretta) under simulated predatory attack: do the sexes differ? *Journal of Herpetology* 42,
- 337 411–413
- Wu, Y., Lim, J., and Yang, M.-H. (2013). Online object tracking: A benchmark. In *Proceedings of the* 339 *IEEE conference on computer vision and pattern recognition*. 2411–2418
- Yang, Q., Xiao, D., and Lin, S. (2018). Feeding behavior recognition for group-housed pigs with the faster
- r-cnn. *Computers and Electronics in Agriculture* 155, 453–460

FIGURE CAPTIONS

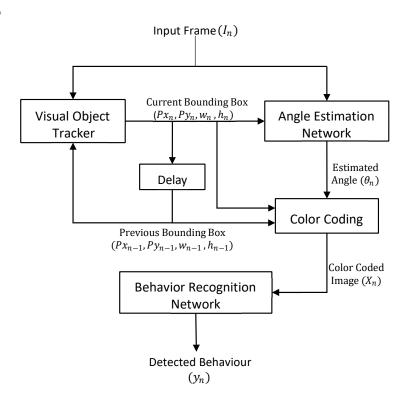


Figure 1. Overview of the proposed approach

Figure 2. Experimental tank at the St. Nuclear Power Plant in Jensen Beach, FL. A juvenile green turtle (*C. mydas*) is participating in a daytime net vs. no net trial. Image captured from the primary overhead camera used to record all experiments.

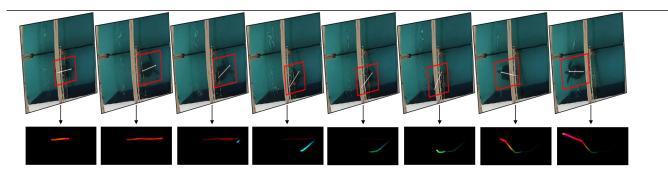
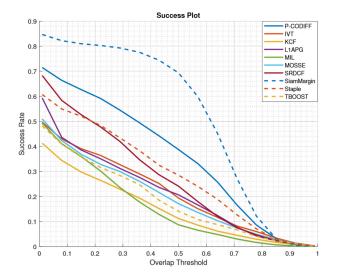
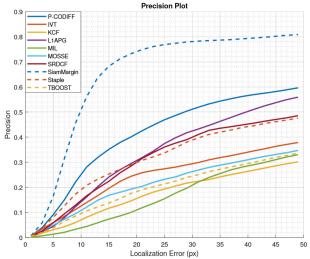


Figure 3. Color coded spatiotemporal feature images generated using turtle velocity vector and orientation information



(a) Succes vs overlap threshold plots of various methods



(b) Precision vs. localization error plots of various methods

Figure 4. Success and precision plots of various methods.

Table 1. Topology of Orientation Estimation Network

Name	Explanation		
imageinput	64x64x1 input images		
conv 1	8 3x3x1 convolutions, stride 1		

ReLU layer		
2x2 average pooling with stride 2		
16 3x3x8 convolutions, stride 1		
ReLU layer		
2x2 average pooling with stride 2		
32 3x3x16 convolutions, stride 1		
ReLU layer		
2x2 average pooling with stride 2		
64 3x3x32 convolutions, stride 1		
ReLU layer		
2x2 average pooling with stride 2		
128 3x3x64 convolutions, stride 1		
ReLU layer		
2x2 average pooling with stride 2		
128 3x3x128 convolutions, stride 1		
ReLU layer		
20% dropout		
2 Fully connected layers		
Regression with MSE loss function		

Table 2. Normalized confusion matrix showing the percentage of actual and predicted classes for 3 different behaviors

| Predicted | U-Turn | Reversal | Random | U-Turn | 83.3 | 3.7 | 13.0 | Reversal | 0 | 82.8 | 17.2 | Random | 6.7 | 5.0 | 88.3

Table 3. Precision, Recall and F1 Scores of defined behaviors

	Precision	Recall	F1 Score
U-Turn	0.833	0.925	0.877
Reversal	0.828	0.905	0.865
Random	0.883	0.745	0.808
Macro-Avg	0.848	0.858	0.85