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Molecular dynamics (MD) simulations provide a wealth of high-dimensional data at all-atom and femtosec-
ond resolution but deciphering mechanistic information from this data is an ongoing challenge in physical
chemistry and biophysics. Theoretically speaking, joint probabilities of the equilibrium distribution contain
all thermodynamic information, but they prove increasingly difficult to compute and interpret as the dimen-
sionality increases. Here, inspired by tools in probabilistic graphical modeling, we develop a factor graph
trained through belief propagation that helps factorize the joint probability into an approximate tractable
form that can be easily visualized and used. We validate the study through the analysis of the conformational
dynamics of two small peptides with 5 and 9 residues. Our validations include testing the conditional de-
pendency predictions through an intervention scheme inspired by Judea Pearl. Secondly we directly use the
belief propagation based approximate probability distribution as a high-dimensional static bias for enhanced
sampling, where we achieve spontaneous back-and-forth motion between metastable states that is up to 350
times faster than unbiased MD. We believe this work opens up useful ways to thinking about and dealing
with high-dimensional molecular simulations.

I INTRODUCTION

Understanding the relationships between the many dif-
ferent degrees of freedom constituting a generic high-
dimensional molecular system is a problem of longstand-
ing theoretical and practical interest.1–3 For a system
with k � 1 degrees of freedom, in principle one could con-
sider the full k–body probability distribution P , which
would account for any and all correlations between the k
different components. However, a full k–body probabil-
ity distribution is not always necessary as can be intuited
with the popularity of the Ising model, where nearest-
neighbor interactions can capture arbitrarily long-range
communication and correlations, and the full joint proba-
bility is not needed to model these relationships. Further-
more, fitting such a k−dimensional P to data would in-
volve k−dimensional histograms which becomes imprac-
tical as k > 2 ∼ 3. In fact, learning tractable probabilis-
tic models for high dimensional data is a problem that
extends far beyond molecular sciences and pervades nu-
merous aspects of modern day life and data science.4 Un-
derstanding the dependencies in data is thus the first step
toward understanding the processes that generated the
data, and for further simulating these processes efficiently
through advanced sampling methods for instance.5

In this work our specific interest is in data coming from
Molecular dynamics (MD) simulations, a tool very com-
monly used to study the dynamics of chemical systems
at all-atom spatial resolution and femtosecond temporal
resolution. This leads to a deluge of high-dimensional
data which can be hard to make sense of. Specifically for
biomolecules, here we would like to characterize which
residues are fluctuating in a mutually correlated manner,
and use this information to better understand the gov-

erning biophysical processes. Furthermore, due to the
high temporal resolution of MD, timescales associated
with practical problems such as protein folding and drug
unbinding are inaccessible even using most modern high
power computing resources. Thus we are also interested
in using these tractable probability distributions govern-
ing the high-dimensional MD to enhance the simulation
itself.6 To do so we propose a framework using meth-
ods from probabilistic graphical models4 to construct a
factorization of input degrees of freedom. Among other
works in this area, our work is inspired by Ref. 7–8.
Given our eventual interest in sampling slow, represen-
tative degrees of freedom, we take the liberty to call
these degrees of freedom as order parameters (OPs). We
chose to use probabilistic graphical models taking inspi-
ration from their successes in a variety of fields ranging
from identifying disaster victims9 to decoding messages10

where the relationships between unknowns are leveraged
to perform an inference task with levels of efficiency that
wouldn’t be possible otherwise.

The key ideas, detailed in Sec. II, can be summarized
as follows. We start with high-dimensional data with
complicated and a priori unknown dependencies between
the various OPs, with the ultimate objective of approxi-
mating this intractable high-dimensional probability dis-
tribution with a factorized, tractable probability com-
prising up to triplet terms. For this, we first assess the
conditional dependencies between the OPs using Markov
random fields (MRF)11 detailed in section II A. MRFs
are graphical models where non-adjacent nodes are con-
ditionally independent. We use graphical lasso,12 an esti-
mator for the inverse covariance matrix to determine the
conditional dependence relationships used in the MRF.
In Sec. II B we describe how these conditional depen-
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FIG. 1: The two model systems simulated in this work capped Ala3 (a) and Aib9 peptide (b). Alanine peptide
atoms are shown with an example of a φ and ψ angle overlayed in red. Aib9 peptide is shown as a ribbon to
highlight its helical secondary structure.

dency relationships are converted into a bipartite graph
known as factor graph, where the two disjoint sets of ver-
tices denote respectively OPs and the functions connect-
ing them. These functions are then learnt using the belief
propagation algorithm (Sec. II C).8,13 In order to assess
the benefits of this factor graph-based approach we apply
it to simulations of two well-studied small peptides14–16

Ala3 and Aib9 peptide that display rich conformational
dynamics in spite of their small sizes (Fig. 1), and can
be described using their φ and ψ dihedral angles. The
factor graphs are validated using a range of additional
simulations in Sec. III, which include (i) an intervention
protocol in the sense of Pearl17 that directly confirms our
predictions of conditional dependency between different
degrees of freedom and (ii) a demonstration of how this
knowledge can lead to up to three orders of magnitude
enhanced sampling along all degrees of freedom, with
hysteresis-free back-and-forth movement between differ-
ent metastable states. We believe this work represents
a new use of ideas from the field of probabilistic graphi-
cal models4 in the study of molecular simulations aiding
with better interpretations and superior sampling.

II METHODS

In this Section we describe the theory underlying our
key ideas as summarized in the Introduction above, as
well as the workflow for its implementation (Fig. 2).

II.A Markov Random Fields (MRF)

Our starting point is sampling of high-dimensional OPs
arising from molecular dynamics (MD) simulations (see
supplementary information (SI) for details) but the pro-
posed procedure should be more generally applicable. In
order to partition OPs in to simpler lower-dimensional
factors, we first assess the relationships between the OPs
themselves. Consider any 3 random variables A, B, and
C. A particularly informative measure of the dependen-

cies between such variables is conditional independence,
denoted (A ⊥⊥ B)|C.18 This measure is used in the pair-
wise Markov property of Markov random fields (MRF),
and denotes that the two variables A and B are statisti-
cally independent given knowledge of C. Mathematically
this can be written as

(A ⊥⊥ B)|C ⇐⇒ p(A ∩B|C) = p(A|C)p(B|C) (1)

with p denoting respective probability densities. Here we
call variables equivalently as nodes shifting to a graphical
modeling perspective. Generalizing Eq. 1 to all possible
nodes, the pairwise Markov property is satisfied if two
nodes are conditionally independent given all other nodes
as shown in Eq. 2, where Xi and Xj denote nodes and
XN\{i,j} denotes all other nodes.

Xi ⊥⊥ Xj |XN\{i,j} (2)

A MRF is an undirected graphical model such that
all nodes without edges between them have the pairwise
Markov property and those with edges do not have it.4

This can be interpreted as meaning that any correlation
between connected nodes can not be “explained away” by
a third node causing the correlation. The presence of the
pairwise Markov property is estimated for all possible
edges by estimating an inverse covariance matrix (Θ).
All pairs of variables Xi, Xj that have a zero at the
associated position in the inverse covariance matrix (Θi,j)
can be expected to have the pairwise Markov property.4

To efficiently calculate this inverse covariance matrix, we
use the graphical lasso12 estimator shown in Eq. 3:

Θ̂ = argmin
Θ

tr(ΣΘ)− log det(Θ) + λ
∑
j 6=k

|Θjk|

 (3)

where Θ is the inverse covariance, Θ̂ is the inverse co-
variance returned by graphical lasso, Σ is the observed
covariance, λ is a parameter that controls how strongly
off-diagonal terms are penalized, tr is the matrix trace,
and det is the matrix determinant. This λ parameter can
be effectively used to control the sparsity of the resulting
MRF as is shown later for our examples (Fig. 6). In prac-
tice, we tune this parameter to produce the most densely
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FIG. 2: Schematic of the workflow done in this
manuscript as a bipartite graph with objects shown in
blue and algorithms shown in red. The workflow
proceeds from top to bottom.

connected MRF that contains at most triplet interactions
(in other words, the factor graph later described in Sec.
II B should have clique size no larger than three).

II.B Factor Graphs (FG)

Once we have a MRF, we can use this graph structure
to partition the OPs into independent sets or factors that
make up the joint distribution. It is important to note
that these independent sets are not necessarily disjoint,
and the same variable could be a part of different factors
as we show for practical examples in Sec. III. The struc-
ture of these factors can be obtained from the cliques, or
sets of fully connected nodes, of the MRF. Each maxi-
mal clique, or clique that is not part of a larger clique,
contains the variables in one factor of the joint probabil-
ity. This relationship is illustrated through a schematic
in Fig. 3a. It is important to note that at this point we
know the variable sets used for each factor but not their
functional form. More technically, this is defined in Eq.

4 where C(G) is the set of all maximal cliques on a graph
G and fc(Xc) is each factor as a function of the variables
contained in the associated clique:

p(X) =
∏

c∈C(G)

fc(Xc) (4)

This clique factorization can be shown more simply in
another graph structure called a factor graph (FG). Fac-
tor graphs are bipartite graphs with nodes that are either
factors or variables, and edges only connecting nodes be-
tween these two sets, but not within the sets (i.e. func-
tion node connected to variable node is the only allowed
edge). This shows which variables are associated with
which factor and how the factors are related through mu-
tual connection to the same variable. This representation
also simplifies the representation of the joint probability
as shown in Eq. 5 because the product is now over fac-
tor nodes (F ) and their associated edges (Xa) instead of
cliques (C(G)) and the nodes that compose them(Xc).

p(X) =
∏
a∈F

fa(Xa) (5)

II.C Belief Propagation

Thus far we have determined the relationship between
our set of OPs using graphical lasso and converted this
structure into a factor graph using clique factorization.
We now know the OP sets we will use for each factor but
have not learned the factors themselves or the joint prob-
ability they compose. We do so with the belief propaga-
tion (also known as sum-product) algorithm.13,19,20 This
method updates an approximate factorized model q(X)
of the joint distribution defined in Eq. 6 and composed
of approximate factors f̃a(Xa):

q(X) =
∏
a∈F

f̃a(Xa) (6)

The objective of the belief propagation (BP) algo-
rithm, first proposed by Pearl in 1982,13 is to approx-
imate factors f̃a(Xa) that will be iteratively updated so
that their product q(X) approaches the true joint distri-
bution p(X) in Eq. 5. To learn such factors, estimates of
all other approximate factors are communicated to any
single given factor at a time which is then adjusted de-
pending on this “belief” about the other factors. The
adjustment itself is carried out so that p and q mirror
each other as closely as possible given the beliefs.
We now detail the BP equations that are used to calcu-

late marginal probabilities and update messages. Here we
index factors with a, b and variables with i, j. We denote
sets of variables and factors with capital symbols X and
F while the individual nodes comprising them are indi-
cated with lowercase symbols x and f respectively. The
sets F and X contain all nodes connected to the node
with their index, for example Xa represents all variable
nodes x connected to the factor fa.
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FIG. 3: Depictions of clique factorization and message passing for an arbitrary set of variables where A - D
represent variables and fi represent factors. (a) shows an MRF on the left with two cliques circled in orange and
green converted into two factors circled in the same colors in the FG on the right. (b) shows all of the incoming and
outgoing messages for factor f2 in the factor graph shown in (a).

The central idea in our workflow is to mix kernel den-
sity estimation21,22 with traditional belief propagation.
Specifically, we use kernel density estimation to model
the marginal associated with each factor p(Xa). We ini-
tialize all messages m to arrays of ones equivalent to
passing no information about their factors. After this
initialization step, our iteration begins as follows:

1. Select a factor to update, this is done at random
for our simple case but could use more sophisticated
methods.23

2. Apply Eq. 7 updating f̃a(Xa) such that q(Xa) =
p(Xa) from the kernel density estimator.

q(Xa) = f̃a(Xa)
∏

xi∈Xa

mxi→fa(xi) (7)

3. Apply Eq. 8 to update the factor’s outgoing mes-
sages.

mfa→xi
(xi) =

∑
Xa\xi

f̃a(Xa)
∏

xj∈Xa\xi

mxj→fa(xj) (8)

=
∑

Xa\xi

q(Xa)

mxi→fa(xi)

4. Apply Eq. 9 to update the messages outgoing from
each variable associated with the factor.

mxi→fa(xi) =
∏

fb∈Fx\fa
mfb→xi

(xi) (9)

5. Repeat steps 1 – 4 until factors converge.

This procedure yields a factorized model for the joint
probability that when marginalized will reproduce the

marginal probabilities from kernel density estimation.
This particular implementation of belief propagation was
designed to be easily extended to use time evolving den-
sity estimators similar to that of metadynamics.6,24,25

III RESULTS

In this section, we report detailed results of apply-
ing the methods described so far in this manuscript to
two test biomolecules, namely capped Ala

3
and Aib

9

.14,16,26,27 These respectively comprise 5 and 9 residues
in explicit water, thus containing many complicated in-
tertwined degrees of freedom. While the methods could
easily be extended to consider solvent degrees of free-
dom as well,28 here we focus on the protein torsional
degrees of freedom as the input OPs, numbering 6 and
18 for Ala

3
and Aib

9
respectively. For both systems we

learn Markov random fields using graphical lasso. In ad-
dition, for Ala

3
we learn a factor graph and use belief

propagation to estimate the factors themselves. Thus
we reduce the 6– and 18– dimensional probability distri-
butions respectively to a combinations of pair and triplet
interactions. The learned approximate lower-dimensional
interactions are then analyzed and validated for both the
systems in different ways, including intervention,17 en-
hanced sampling,5,29 and network analysis.

III.A Capped Ala
3

We performed 1 μs long unbiased MD simulation (de-
tails in SI) recording three φ and three ψ dihedral angles
every 200 fs. The trajectory of these six OPs was used
to construct a MRF using graphical lasso as described
in Sec. IIA and this MRF was converted to a FG using
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FIG. 4: Graphical models of Ala3 calculated using a 1 μs long molecular dynamics trajectory and comparison of
the intervention results with the inverse covariance calculated with graphical lasso. (a) shows the MRF from
graphical lasso with edge thickness showing the underlying inverse covariance, i.e. pairs of variables with thinner
edges between them are more conditionally independent. (b) shows the FG calculated using clique factorization on
(a). (c) shows the result of the intervention test that validates (a), by comparing the inverse covariance to the KL
divergence between the observed probability during the intervention test and the independent probability model.
We see that graphical lasso will favor drawing edges that clearly do not have the pairwise Markov property.

clique factorization as described in Sec. II B. The MRF
and the FG so learned are shown in Fig. 4.

III.A.1 Validating the MRF through intervention

In order to validate this MRF, we perform a series of
enhanced sampling simulations in the spirit of the inter-
vention approach pioneered by Pearl.17 For each of these
simulations we chose two OPs and restrained all other
dihedrals in the MRF using a quadratic bias potential.
This intervention procedure prevents any large fluctua-
tions in the restrained OPs allowing us to directly assess
the conditional independence hypothesis between the un-
restrained OPs. Specifically, if a given pair of OPs are
indeed conditionally independent given other OPs, then
in the presence of such a restraint, the joint probability
for this pair of OPs should be the same as the product of
their marginal probabilities. Thus, in light of the MRF
shown in Fig. 4, under respective constraints, we expect
the joint probability to be closest to the product of con-
stituent marginals for the pair Ψ2,Φ2, followed by Ψ2,Ψ1

and finally for Ψ2,Φ3. In order to assess this hypothesis,
we use the Kullback–Leibler (KL) divergence30 to mea-
sure how close the sampled distribution is to the product
of marginals. This represents an assessment of how well
Eq. 1 models the sampled distribution. In Fig. 4 we
show that indeed this is the case by comparing the KL
divergence to the magnitude of the inverse covariance
from graphical lasso. We see that the order of the in-
verse covariance and KL divergence match showing that
graphical lasso did draw edges that lack conditional in-
dependence. The simulations were run for 1 μs using all
simulation details (except the restraint) identical to the

initial Ala3 simulations, detailed in SI.

III.A.2 Validating the FG through enhanced sampling

With confidence in the MRF through the intervention
procedure demonstrated in Fig. 4, these MRFs were then
converted to factor graphs with up to triplet interactions.
Given such a joint probability distribution expressed as
product of terms up to triplets, we can directly use it
to build a very high-dimensional bias potential that en-
hances the sampling simultaneously in all degrees of free-
dom, as defined below:

V (X) = kBT log(p(X)) ≈ kBT log(q(X)) (10)

The central idea here is that the exact high-
dimensional probability distribution p(X), if we knew it,
would have led to the ideal bias for importance sampling
which perfectly enhanced all fluctuations in the molec-
ular system.6 The quality of the approximation q(X) in
Eq. 6 can thus be ascertained by using it to construct an
approximate bias as in Eq. 10. When added as a static
bias to the system’s potential energy, a good approxima-
tion p ≈ q should then lead to spontaneous and enhanced
back-and-forth movement between different metastable
states. We convert the joint probability q to a bias po-
tential using Eq. 10 with the caveat that we do not bias
any regions of configurational space with a sampled prob-
ability of less that 0.001 in order to avoid adding bias to
transition states. This threshold can be made higher or
lower without affecting the nature of this discussion. The
output of this calculation is a set of static external bias
files to be used with PLUMED.31–33 The factor graph
bias was used to conduct a 150 ns simulation using the
same parameters used in the previous unbiased simula-
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(d) (e) (f)

(g)

FIG. 5: (a)–(f) Trajectories of six OPs for Ala3 for factor graph biased (blue) and unbiased (orange) simulations.
It is clearly evident that the factor graph based biased simulations achieve spontaneous back-and-forth movement
across high-dimensional configuration space. The acceleration relative to unbiased MD is quantified in (g), which
shows the commute time for pathways between every pair of states for factor graph biased (blue) and unbiased
(orange) simulations of capped Ala3. We use the state definitions described in Ref. 26. Points on the dotted line
were not sampled and do not correspond to a commute time of 105.

tions for capped Ala3, implementing the bias through
PLUMED.

As can be seen from the various time series in Fig. 5,
the simulations conducted using the static bias potential
enhanced the fluctuations of all individual OPs. We also
consider the transition rates for all of the

(
8
2

)
= 28 transi-

tions between the eight dominant metastable states, cor-
responding to the positive and negative regions of the Ra-
machandran plot for each of the three Alanine residues.
These are shown in Fig. 5(g) as the average interconver-
sion or commute time between different states.26 When
compared to the unbiased sampling, the factor graph bi-
ased simulations have significantly enhanced sampling (at
least twice as fast, and up to 350 times faster among
those sampled in both simulations) along 22 of the 28

transitions. The only transitions that are not enhanced
are the ones that were fast to begin with except the no-
table exception of S2 to S5 which was not sampled in
150 ns of simulation with the factor graph bias. Inter-
estingly, the low barrier transitions are not significantly
slowed down due to biasing, which has been a concern
in enhanced sampling.34 Finally, in addition to the bias
associated with the factor graph, we repeated both the
bias generation and biased simulation for a factor graph
without any edges which corresponds to biasing each OP
in parallel without considering any correlations. These
simulations are used for additional comparison in the SI.
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(a) (b) (c)

FIG. 6: Markov random fields calculated using trajectories of Aib9’s dihedral angles with edge thickness showing
the magnitude of the inverse covariance. (a) corresponds to a penalty parameter lower than that obtained with
5-fold cross validation. (b) corresponds to the cross-validated penalty parameter value. (c) corresponds to a penalty
parameter lower than the cross-validated value.

III.B Aib9 Peptide

Aib9 is a α−aminoisobutyric acid-based 310-
helix15,16,27 that displays conformational transitions
at different timescales ranging from picoseconds to
microseconds, and that may very well vary with solvent.
Here we study Aib9 in explicit water with 200 ns of
simulation (see SI for details).35 The most distinct of
these is the transition between right- and left-handed
helices, as shown in Fig. 1. Aib9 requires nine φ
and nine ψ dihedrals for a complete description of the
conformational dynamics. The trajectory of these 18
OPs was used to calculate Markov random fields shown
in Fig. 6 which shows the change in graph structure as
the graphical lasso penalty parameter is tuned.

The secondary structure of Aib9 causes these OPs to
be correlated in larger groups which are not amenable to
our procedure limiting the factor graph to at most triplet
interactions. This means that additional techniques36–39

will be required to reduce the dimensionality of the OPs
associated with larger factors in more complex systems
which will be the subject of future investigation. Nev-
ertheless, we can infer interesting conclusions regarding
the underlying network governing the conformational dy-
namics of Aib9 from Fig. 6. Firstly, irrespective of the
value of the penalty parameter λ in Eq. 3, we never
find the two ends of the peptide to be connected with
a significant inverse covariance, in contrast to the MRF
we found for the smaller capped Ala3 peptide. Secondly,
the interior residues of the peptide display thicker edges
than the ones on the outside, demonstrating that in-
ner residues move in a more correlated and conditionally
dependent manner. Thirdly, the MRF is roughly sym-
metric as one approaches the center from either end i.e.
clockwise from Ψ9 or anticlockwise from Φ1. This is in-
deed in agreement with measurements from sophisticated
enhanced sampling and much longer (i.e. at least sev-

eral microsecond) simulations, which suggest that Aib9
is achiral and both the left- and right-handed helices
have same free energies.16,27 We also find that applying
the Girvan-Newman algorithm40 to the sparse and cross-
validated MRFs yields two communities which are split
by the center of the protein. These communities suggest
the edges crossing the two sides of the protein are in-
volved in many shortest paths between nodes and in turn
the dynamics of the central residues are crucial for con-
formational change. It is interesting to note that MRF
trained on the first 80 ns or longer gives the same result
as the trajectory has sufficiently sampled both right- and
left-handed helices.

IV DISCUSSION

In this work, we have developed and applied a prob-
abilistic graphical models based framework for making
sense of high-dimensional data arising in molecular sim-
ulations. This makes it possible to learn reliable approx-
imations to high-dimensional molecular distributions in
a tractable manner. Our approximations here are re-
stricted up to a family of single, pair and triplet interac-
tions but could be easily extended further if needed.

We validated this framework through detailed analy-
sis of two biomolecular tests systems. First, we used
it to learn a factor graph structure for the small pep-
tide capped Ala3 that captures inter-residue correlations
relevant to various conformational transitions in this
molecule. Inspired by recent methods41,42 which conduct
enhanced sampling biasing multiple independent compo-
nents, we demonstrate how our framework can be used
to divide a large number of order parameters (OPs) into
groups for biasing. As such, we use our factor graph
structure along with belief propagation to construct a
static bias for enhanced sampling. Using this bias, with
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no time dependence, we were able to enhance the fluc-
tuations along each OP as well as accelerate the sam-
pling of almost all state-to-state transitions with sponta-
neous back-and-forth movement between states. While
this static bias approach is arguably not a practical en-
hanced sampling method, it illustrates the importance of
including correlations in the biasing variables as well as
the possibility to use factorized models with more sophis-
ticated enhanced sampling methods.39,41 For this system
we also demonstrate an intervention procedure17 that di-
rectly tests the predictions of inter-residue correlations
learned in our framework. As a second illustrative sys-
tem we also model the peptide Aib9 using a Markov field
constructed with graphical lasso. This allows us to high-
light the interpretability of probabilistic graphical models
applied to molecular simulations of this peptide as it un-
dergoes an interesting left-handed to right-handed helix
transition. This graph structure highlights features of
Aib9 such as the the difference in flexibility between cen-
tral and outer residues, and the symmetry of correlations
between residues.

We conclude by noting that despite the limitations of
our simple illustrative strategies, this work can also be
combined with sampling methods that are used to de-
termine effective sets of basis functions for describing
molecular systems43 or those that are used for dimen-
sionality reduction.36,39,44 We envision that these meth-
ods will be used to develop an automated framework
for sampling biomolecules that takes a starting structure
and runs enhanced sampling simulations without the ne-
cessity for expert knowledge. This combination should
allow simulation of new systems where traditional low-
dimensional biasing variables are unsuccessful in a high-
throughput manner, for instance biomolecular complexes
with more than one constituent. Finally, we highlight
that the framework developed in this manuscript is also
closely related to the topic of causal inference.45,46 The
graphs learned for these molecular systems can be con-
verted into directed Bayesian networks when combined
with information about whether past states of an order
parameter are predictive of future states of another. This
would further improve the ability to understand molecu-
lar systems as it allows us to make not just correlational
but causal and mechanistic claims.

Notes

The code needed to reproduce the models used in this
work will be made available at github.com/tiwarylab.
The input files necessary to reproduce the simulations
done in this work will be made available on PLUMED
NEST.47

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation, Grant No. CHE-2044165. ZS was also
supported by University of Maryland COMBINE pro-
gram NSF award DGE-1632976. This work used XSEDE
Bridges through allocation TG-CHE180053, which is
supported by National Science Foundation grant num-
ber ACI-1548562. We also thank UMD’s Deepthought2
and MARCC’s Bluecrab HPC clusters for computing re-
sources. We would like to thank Shams Mehdi for the
Aib9 trajectory. We would also like to thank Pavan
Ravindra, Yihang Wang, Michael Strobel, and Nathan
Zimmerberg for discussion and feedback about the direc-
tion of this project.

1J. G. Kirkwood and E. M. Boggs, The Journal of Chemical
Physics 10, 394 (1942).

2R. Kikuchi, Physical review 81, 988 (1951).
3J. D. Weeks, D. Chandler, and H. C. Andersen, The Journal of
Chemical Physics 55, 5422 (1971).

4D. Koller and N. Friedman,
Probabilistic graphical models: principles and techniques (MIT
press, 2009).

5P. Tiwary and A. van de Walle, “A review of enhanced
sampling approaches for accelerated molecular dynamics,”
in Multiscale Materials Modeling for Nanomechanics, edited by
C. R. Weinberger and G. J. Tucker (Springer International Pub-
lishing, Cham, 2016) pp. 195–221.

6O. Valsson, P. Tiwary, and M. Parrinello, Annual review of phys-
ical chemistry 67, 159 (2016).

7S. Somani, B. J. Killian, and M. K. Gilson, The Journal of
chemical physics 130, 04B603 (2009).

8R. M. Donovan-Maiye, C. J. Langmead, and D. M. Zuckerman,
Journal of chemical theory and computation 14, 426 (2018).

9Forensic Science International: Genetics Supplement Series 3,
e119 (2011), progress in Forensic Genetics 14.

10R. J. McEliece, D. J. C. MacKay, and Jung-Fu Cheng, IEEE
Journal on Selected Areas in Communications 16, 140 (1998).

11J. Moussouris, Journal of Statistical Physics 10, 11 (1974).
12J. Friedman, T. Hastie, and R. Tibshirani, Biostatistics
9, 432 (2007), https://academic.oup.com/biostatistics/article-
pdf/9/3/432/17742149/kxm045.pdf.

13J. Pearl, in AAAI (1982) pp. 133–136.
14O. Valsson and M. Parrinello, Journal of Chemical The-

ory and Computation 11, 1996 (2015), pMID: 26574405,
https://doi.org/10.1021/acs.jctc.5b00076.

15V. Botan, E. H. Backus, R. Pfister, A. Moretto, M. Crisma,
C. Toniolo, P. H. Nguyen, G. Stock, and P. Hamm, Proceedings
of the National Academy of Sciences 104, 12749 (2007).

16M. Biswas, B. Lickert, and G. Stock, The Journal of
Physical Chemistry B 122, 5508 (2018), pMID: 29338243,
https://doi.org/10.1021/acs.jpcb.7b11800.

17J. Pearl, Statistical Science 8, 266 (1993).
18T. M. Cover, Elements of information theory (John Wiley &

Sons, 1999).
19T. Minka, “Divergence measures and message passing,” Tech.

Rep. MSR-TR-2005-173 (2005).
20J. Yedidia, W. Freeman, and Y. Weiss, in

Exploring Artificial Intelligence in the New Millennium, edited
by G. Lakemeyer and B. Nebel (Morgan Kaufmann Publishers,
2003) Chap. 8, pp. 239–236.

21M. Rosenblatt, The Annals of Mathematical Statistics 27, 832
(1956).

22E. Parzen, The Annals of Mathematical Statistics 33, 1065
(1962).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.28.450193doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450193
http://creativecommons.org/licenses/by-nd/4.0/


9

23G. Elidan, I. McGraw, and D. Koller, in
Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence,
UAI’06 (AUAI Press, Arlington, Virginia, USA, 2006) p.
165–173.

24G. Bussi, A. Laio, and P. Tiwary, “Metadynam-
ics: A unified framework for accelerating rare events
and sampling thermodynamics and kinetics,” in
Handbook of Materials Modeling : Methods: Theory and Modeling,
edited by W. Andreoni and S. Yip (Springer International Pub-
lishing, Cham, 2018) pp. 1–31.

25A. Barducci, G. Bussi, and M. Parrinello, Physical Review Let-
ters 100, 020603 (2008).

26S.-T. Tsai, Z. Smith, and P. Tiwary, “Sgoop-d: Estimat-
ing kinetic distances and reaction coordinate dimensionality for
rare event systems from biased/unbiased simulations,” (2021),
arXiv:2104.13560 [physics.comp-ph].

27A. Perez, F. Sittel, G. Stock, and K. Dill, Journal of Chemi-
cal Theory and Computation 14, 2109 (2018), pMID: 29547695,
https://doi.org/10.1021/acs.jctc.7b01294.

28P. Tiwary, The Journal of Physical Chemistry B 121, 10841
(2017).

29C. Abrams and G. Bussi, Entropy 16, 163 (2014).
30S. Kullback and R. A. Leibler, The Annals of Mathematical

Statistics 22, 79 (1951).
31G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and

G. Bussi, Comput. Phys. Commun. 185, 604 (2014).
32M. Bonomi, G. Bussi, C. Camilloni, G. A. Tribello, P. Banáš,
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