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Understanding kinetics including reaction pathways and associated transition rates is an important yet dif-
ficult problem in numerous chemical and biological systems especially in situations with multiple competing
pathways. When these high-dimensional systems are projected on low-dimensional coordinates, which are
often needed for enhanced sampling or for interpretation of simulations and experiments, one can end up
losing the kinetic connectivity of the underlying high-dimensional landscape. Thus in the low-dimensional
projection metastable states might appear closer or further than they actually are. To deal with this issue, in
this work we develop a formalism that learns a multi-dimensional yet minimally complex reaction coordinate
(RC) for generic high-dimensional systems. When projected along this RC, all possible kinetically relevant
pathways can be demarcated and the true high-dimensional connectivity is maintained. One of the defining
attributes of our method lies in that it can work on long unbiased simulations as well as biased simulations
often needed for rare event systems. We demonstrate the utility of the method by studying a range of
model systems including conformational transitions in a small peptide Ace-Ala3-Nme, where we show how
two-dimensional and three-dimensional reaction coordinate found by our previously published spectral gap
optimization method “SGOOP” [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. 113, 2839 (2016)] can
capture the kinetics for 23 and all 28 out of the 28 dominant state-to-state transitions respectively.

I INTRODUCTION

It has been a problem of longstanding theoretical
and practical interest to model reaction pathways and
transition mechanisms in generic chemical and biological
systems.1–8 Due to recent progress in high-performance
computing, brute-force Molecular Dynamics (MD) simu-
lations with all-atom resolution have enabled a possible
way to do such analysis in femtosecond temporal and
all-atom spatial precision, making it a useful tool for
studying diverse phenomena. However, this leads to
a deluge of data resulting from explicit enumeration
of all atomic coordinates over a very large number of
MD timesteps. To make sense of such high-dimensional
trajectories resulting from MD, it is a common practice
to project them along low-dimensional coordinates
identified with one of many dimensionality reduction
schemes.9–12 However, more often than not in such
schemes, one ends up losing the kinetic connectivity of
the high-dimensional landscape. This can thus lead to
incorrect interpretation of MD trajectories, for example
making molecular conformations appear closer to each
other than they are and obfuscating interconversion
pathways between them.13

In this work, we develop a formalism that learns
a multi-dimensional yet minimally complex reaction
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coordinate (RC), such that when projected along this
RC, all possible kinetically relevant pathways can be
demarcated and the true high-dimensional connectivity
is maintained. The central idea is to calculate the inter-
conversion times between different pairs of metastable
states, which can be defined a priori or learned on-the-
fly,14 and monitor how these distances change by adding
additional dimensions to the RC. The procedure is
stopped when the interconversion times do not vary with
additional RC components. The interconversion times
are calculated using the commute distance framework
proposed by Noé, Clementi, and co-workers.15,16 While
such a kinetic or commute distance-based procedure
is indeed already recommended best practice in the
construction of Markov State Models (MSMs),17 it is
not directly amenable to rare event systems that might
be undersampled, or accessible only through biased
simulations.

To deal with this issue, in this work we combine
the commute distance15,16 with the Maximum Caliber
based “Spectral Gap Optimization of Order Parameters
(SGOOP)” approach.18 This amounts to inducing a dis-
tance metric, which we call “SGOOP-d” that preserves
kinetic truthfulness, and can be calculated from long un-
biased simulations as well as biased simulations. Such
biased simulations are often unavoidable in the study of
rare events in chemical and biological physics. Here we
use metadynamics19 as an example of the biasing method
to illustrate the usefulness of SGOOP-d while anticipat-
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Figure 1. This flowchart describes the calculation of the
m-th RC component χ(m),m ≥ 1 through multi-dimensional
spectral gap optimization. For each m we calculate d(m) in
Eq. 17, which represents the contribution to commute dis-
tance on the basis of this m-th component. The optimal RC
χ(m) will be fed to the next SGOOP calculation for finding
d(m+1). This iteration will stop when we obtain convergence
in state-to-state d2comm values with addition of RC compo-
nents. The commute distance d2comm will be the sum of all
the d(m) obtained in the iteration.

ing that the method directly applies to other biasing pro-
tocols as well.20 We demonstrate the utility of the method
by studying a range of model systems including confor-
mational transitions in a small peptide Ace-Ala3-Nme.
In this system, for instance, one has a total of at least 28
inter-state transitions. As we show here, with only two
component-RC learned from SGOOP-d we do accurately
capture most of the 28 pairs of distances, with minimal
improvement achieved by adding a 3rd component to the
RC. Similar results are obtained on the basis of input
trajectories coming from metadynamics simulations bi-
ased along pre-selected biasing variables. Open-source
software detailing the method has also been released.

II THEORY

II.1 Commute Distance and Commute Map

Our work builds upon the powerful advances first in-
troduced by Noé, Clementi, and co-workers that allow
quantifying a kinetically truthful distance metric between
generic molecular configurations.15,16 One such notion of
“kinetic distance” was introduced in Ref. 15, which was
then generalized in Ref. 16 as the “commute distance”.
Both of these distances amount to transformations of
the input coordinate space into a new space wherein Eu-
clidean distances directly correspond to interconversion
times. Here we summarize the basic ideas which origi-
nated from diffusion maps21,22 but were later generalized

to Markovian dynamics.15,16

We consider a generic dynamical system undergoing
Markovian dynamics in a finite-dimensional state space
Ω. The local density ρt(x), ∀x ∈ Ω can be propagated in
time t through

ρt+τ (y) =

∫
x∈Ω

ρt(x)pτ (y|x)dx ≡ P ◦ ρt(x) (1)

where pτ (y|x) is the transition density of finding the sys-
tem at state y at time t+ τ given that we have started it
at state x at time t. Equivalently, Eq. 1 defines a Markov
operator P and describes how an initial distribution ρt(x)
at time t propagates to the distribution ρt+τ (y) at a later
time t+τ . One usual assumption made here is that there
exists a unique equilibrium distribution π(x) which sat-
isfies

π(x) = P ◦ π(x) (2)

At the same time, we can write an equivalent equation
for the weighted density νt(x) = ρt(x)/π(x)

π(y)νt+τ (y) =

∫
pτ (y|x)π(x)νt(x)dx = T ◦ νt(x) (3)

where T is the corresponding backward operator, also
called the transfer operator. With this formalism, fol-
lowing the literature on diffusion maps22 one defines a
distance measure D2

τ (x1,x2) between two points x1,x2

in the state space of a random walk as

D2
τ (x1,x2) =

∫
y∈Ω

|pτ (y|x1)− pτ (y|x2)|2

π(y)
dy (4)

This definition can be seen22 as equivalent to (a) prepar-
ing two ensembles initially located at x1 and x2, (b) let-
ting them evolve by a lag time τ , and then (c) computing
the difference between the subsequently resulting proba-
bility distributions. In order to make use of Eq. 4, one
needs the transition density pτ (y|x). To facilitate its
computation,15 we assume that the transfer operator T
has N discrete eigenpairs and assume reversible dynam-
ics/detailed balance π(x)pτ (y|x) = π(y)pτ (x|y):

pτ (y|x) =
N−1∑
j=0

λj(τ)ψj(x)π(y)ψj(y) (5)

where λj and ψj are the corresponding eigenvalues and
eigenvectors of the transfer operator T . With the or-
thonormality condition

∫
π(y)ψj(y)ψk(y)dy = δjk, ap-

plying Eq. 5 to Eq. 4 directly leads to:

D2
τ (x1,x2) =

N−1∑
j=1

(λjψj(x1)− λjψj(x2))2 (6)

In Eq. 6 the summation starts at j = 1 since the j = 0
eigenvector for the transfer operator T is a constant in
x−space. By further integrating out the lag time τ in
Eq. 6, we can make Eq. 6 insensitive to the choice of the
lag time, and in this way we arrive at the definition of
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the commute distance d2
comm:

d2
comm(x1,x2) =

∫ ∞
0

D2
τ (x1,x2)dτ

=
N−1∑
j=1

(√
tj
2
ψj(x1)−

√
tj
2
ψj(x2)

)2

(7)

where tj = − τ
lnλj

is the relaxation timescale associated

with jth eigenvector. Often one uses the rate kj = tj
−1

instead of the timescale.23 Eq. 7 now has a Euclidean dis-
tance form and a direct physical meaning: it is approxi-
mately the average time the system spends to commute
between two states.16 The distance dcomm is thus called
the “commute distance”, and the associated mapping

x 7→ (

√
t1
2
ψ1, ...,

√
tN−1

2
ψN−1) (8)

is called the “commute map”.
Assuming that the dynamics in the x−space is Marko-

vian and fully sampled giving access to eigenvalues and
eigenvectors of T , we can then use Eq. 7 to calculate a Eu-
clidean distance which approximates the commute time
in the x−space. It is also worth pointing out that in Eq.
7 the timescales follow t1 ≥ t2 ≥ ...0, which implies that
the commute distance increases monotonically with con-
sideration of further eigenvectors of T , and that there is
an increasingly vanishing contribution from every addi-
tional eigenvector that we consider. If such a distance can
be obtained through Eq. 7, it is very useful for analyzing
high-dimensional trajectories arising from well-sampled
simulations as shown for instance in Ref. 15 and 16.
However many if not most real-world applications are
characterized by rare events, wherein the system stays
trapped in the part of the configuration space it was ini-
tiated from and rarely visits other regions. Adequate and
reliable sampling of the underlying configuration space
thus remains a longstanding challenge in computational
chemistry and physics. This implies that the eigenvectors
and eigenvalues needed to evaluate the various terms in
Eq. 7 are simply not available or far from reliable. In
fact, the dominant first few components of the commute
map could even serve as biasing coordinates along which
the sampling could be enhanced through methods such as
umbrella sampling, metadynamics, or others. This brings
out the inverse nature of the problem wherein construct-
ing an accurate commute distance depends on sufficient
sampling of the eigenvalues and eigenvectors of the trans-
fer operator, but the sampling itself could benefit greatly
from the knowledge of the commute map.

II.2 Calculating commute distances for rare events

In this section, we develop a formalism for obtaining
commute distances in poorly sampled rare-event systems
where access to T and its eigenvectors/eigenvalues is not
straightforward. The central idea is to perform biased
sampling to accelerate the exploration of the configura-

tion space. Here we use metadynamics as the biased
sampling method, but the developed formalism should
be more generically applicable. While this basic idea is
simple, there are, however, at least two major, immedi-
ate difficulties when applying Eq. 7 with metadynamics
or other similar enhanced sampling methods. First, the
use of any sort of biasing corrupts the kinetics of the
system, critical to calculating accurate eigenvalues and
eigenvectors of the transfer operator T . Second, the bi-
asing itself needs access to the slow modes of the system,
which are the dominant components of the commute map
in Eq. 8. In SGOOP, described in Sec. II 2 1 and II 2 2,
we find these slow modes from the transfer operator of
such a transition matrix but only look at its dynamics
along a 1-d coordinate. We refer to these slow modes
as the reaction coordinate (RC) for the system.24,25 As
mentioned in Sec. II 1 the different components ψi of the
commute map have a vanishing relevance to the calcula-
tion of the commute distance as i� 1, and thus one can
stop after the first few dominant components and bias
these components in any biasing method of choice. How-
ever, without knowing the commute map, it is hard to
calculate the dimensionality and components of the RC
which would then be biased.

II.2.1 Spectral Gap Optimization of Order Parameters
(SGOOP) for 1-dimensional RC

In this sub-section we summarize the “Spectral Gap
Optimization of Order Parameters (SGOOP)” method
for optimizing a multi-dimensional RC.14,18,26 In later
sections, we use SGOOP to develop an approach that cir-
cumvents both of the above-described challenges. Sum-
marily, SGOOP in its original form is a method for ob-
taining a one-dimensional RC given static and dynamic
information about a multi-dimensional system by com-
bining this information in a maximum Caliber or path
entropy framework.27,28 SGOOP constructs the RC as a
combination of pre-selected candidate order parameters
(s1, ..., sd), which can be thought of as a set of basis func-
tions using which we are trying to describe our problem.
The dimensionality d is kept high enough so that dynam-
ics in the high-dimensional s−space is likely Markovian,
needed for the formalism described in Sec. II 1. The cen-
tral ideas behind SGOOP18 in its original form can be
summarized as the following three points:
(i) It uses a reweighting protocol29 to estimate the equi-
librium distribution P0(s1, ..., sd) from an initial metady-
namics simulation performed by biasing some trial RC.
(ii) In addition, it uses short unbiased MD simulations to
obtain dynamical observables pertaining to the system.
These observables could be the position-dependent diffu-
sivity or more typically, the number of nearest-neighbor
transitions along some binned trial RCs.
(iii) By combining (i) and (ii) SGOOP constructs the
transition rate matrices K which can then be formulated
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as follows:

Kmn =

{
−Λ
√

πn
πm
, if n 6= m

−
∑
k 6=mKmk, if n = m

(9)

where π ≡ P0 is the stationary probability along any pu-
tative, spatially discretized RC χ with n denoting the
grid index and Λ is a dynamical observable. As men-
tioned in point (i), the stationary distribution can be ob-
tained from a long unbiased simulation or from a biased
simulation followed by an appropriate reweighting. The
dynamical variable Λ, as discussed in point (ii), can be
calculated by the number of nearest-neighbor transitions
〈N〉 defined as

〈N〉 =
∑
(m,n)

∀|m−n|=1

πmKmnNmn (10)

where Nmn = 1∀|m − n| = 1 and 0 otherwise. Plugging
Eq. 9 into Eq. 10 we obtain an estimate of Λ as:

Λ =
〈N〉∑√
πmπn

(11)

The eigenvalues {kj} of the rate matrix K are nonneg-
ative and satisfy k0 = 0 < k1 ≤ k2 ≤ .... The quantity
e−kn−1−e−kn , which is the “spectral gap” of the transfer
operator T , can be interpreted as the timescale separa-
tion between the n slow mode and all the other hidden
faster modes as projected on the corresponding RC. It
can be shown that the optimal RC has the maximal spec-
tral gap.26 Different candidate one-dimensional RCs are
then first ranked in terms of the number of slow modes
or metastable states they demarcate, and then in terms
of the timescale separation (or the spectral gap) between
the slow and fast modes as projected on any RC. The
optimal RC maximizes both of these.

II.2.2 SGOOP for multi-dimensional RCs and rate matrices

We recently also introduced a multi-dimensional ver-
sion of SGOOP14 which makes it possible to extend the
dimensionality of the RC in SGOOP. Each additional RC
component χ(i), i ≥ 2 is constructed in a way that it cap-
tures features indiscernible in the previous components
through a conditional probability factorization described
in Sec. II 2 2. This de-emphasizes the features already
captured by the components so identified. With multi-
ple iterations of the SGOOP protocol one can identify a
multi-dimensional RC χ = {χ(1), χ(2), ...}. Mathemati-
cally this can be written as follows. Once the first RC
component χ(1) has been learned by SGOOP, we focus
our attention on the probability distribution P1 condi-
tional on the knowledge of χ defined as:

P1(s1, ..., sd) ≡ P0(s1, ..., sd|χ(1))

=
P0(s1, ..., sd)

P0(χ(1))
(12)

where we have used that the equilibrium probability
P0(s1, ..., sd, χ

(1)) = P0(s1, ..., sd) as χ(1) is a determinis-
tic function of (s1, ..., sd). The next round of SGOOP is
then performed on data sampled from P1 instead of P0,
which yields the second RC component χ(2) that captures
features missed by χ(1). The procedure can be repeated
for further RC components and can be performed us-
ing any enhanced sampling method.14 Here we illustrate
it using metadynamics. By performing well-tempered
metadynamics simulation along χ(1) where one builds a
bias Vb(χ

(1)), it can be shown that

P0(χ(1)) ∝ e−βF (χ(1)) ∝ e+β[ γ
γ−1Vb(χ

(1))]

P1 ≡
P0(s1, ..., sd)

P0(χ(1))
∝ e−β[F (s1,...,sd)+Vb(χ

(1))] (13)

where β = 1/kBT , γ is the bias factor for well-tempered
metadynamics,19 and F is the free energy of the system.
Therefore, P1 is simply the unreweighted/biased prob-
ability density obtained by sampling in the presence of
bias potential Vb(χ

(1)).

We now discuss details of the construction of the rate
matrix through SGOOP. Following Eq. 9 and Eq. 10,
the rate matrix along any putative RC χ can be built as
follows:

K(1)
mn =

{
− 〈N〉∑√

πnπm

√
πn
πm
, if n 6= m

−
∑
k 6=mK

(1)
mk, if n = m

(14)

where 〈N〉 is the total number of nearest-neighbor transi-
tions per unit time, counted along a suitably discretized
RC χ = {χn} with n indicating grid index, π ≡ P0 is the
corresponding stationary density and 1 in superscript in-
dicates this is the rate matrix along the first component
χ(1) of the RC. For the first round of SGOOP to learn
χ(1), 〈N〉 is calculated from short unbiased MD simula-
tions. The K(1) matrices are then constructed for differ-
ent putative RCs and its eigenvalues used to screen for
the best RC χ(1) with highest spectral gap.

For learning the second component χ(2) and other
higher-order components, we generalize Eq. 14 as
follows:14

K(2)
mn =

− 〈N〉(1)∑√
π
(1)
n π

(1)
m

√
π
(1)
n

π
(1)
m

, if n 6= m

−
∑
k 6=mK

(2)
mk, if n = m

(15)

In Eq. 15, π(1) ≡ P1 is defined in Eq. 13. 〈N〉(1) denotes
the average number of first-nearest neighbor transitions
along a putative RC observed per unit time, but now
measured in the biased simulation performed by sam-
pling from this conditional probability density P1. The
procedure can then be easily generalized for construct-
ing rate matrices K(3),K(4), ... for learning further RC
components.
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II.2.3 Commute distance calculation for rare events with
SGOOP

Here we use SGOOP to induce a commute distance
metric for complex high-dimensional systems that can be
calculated from a combination of biased simulations and
short unbiased trajectories. Assuming that a satisfacto-
rily large number of components have been included in
χ, any two points {x,x′} ∈ Ω can then be mapped with-
out substantial loss of information to its values in the χ
space as {χ, χ′}. Whether the dimensionality of the RC
χ is indeed sufficient or not is a non-trivial question to
answer, which we will address later in this section and
in Sec. III. With the RC optimized by SGOOP, we can
then reformulate Eq. 7 as

d2
comm(x,x′) = d2

comm(χ, χ′)

=
N−1∑
j=1

1

2kj
[ψj(χ)− ψj(χ′)]

2

=
N−1∑
j=1

1

2k
(1)
j

[
ψ

(1)
j (χ)− ψ(1)

j (χ′)
]2

(16)

In the above equation, we have made use of the mapping
x→ χ learned from SGOOP, but otherwise, it still needs
the eigenvalues and eigenvectors of the transfer operator
T . In the final line, we have introduced a superscript
(1) to indicate the case where the first RC χ(1) learned
from SGOOP is indeed sufficient for the system at hand.
In such a case, SGOOP yields a Maximum Caliber based
rate matrix K(1) for transitions between grid points along
suitably discretized χ(1). Details of the construction of
this rate matrix are described in Sec. II 2 2 while il-
lustrative examples are provided in Sec. III. By diag-
onalizing the rate matrix K(1) we obtain the eigenvalues

k
(1)
1 , k

(1)
2 , ... and corresponding eigenvectors ψ

(1)
1 , ψ

(1)
2 , ...

to use in Eq. 16.

The above commute distance so obtained can be un-
derstood as an estimate of true commute distance us-
ing the 1-dimensional projected RC χ(1). However, as
shown in Sec. III and also emphasized in the liter-
ature on numerous occasions,13 a 1-dimensional pro-
jection is often not kinetically truthful and does not
reflect the connectivity of underlying high-dimensional
space. We thus consider additional RC components
χ(m) from the multi-dimensional SGOOP protocol, with

eigenvalues k
(m)
1 , k

(m)
2 , ... and corresponding eigenvectors

ψ
(m)
1 , ψ

(m)
2 , ..., where m ≥ 1 denotes which RC compo-

nent we are looking at. Each such component induces
its own contribution to the commute distance which we
add to the contribution of the 1st component χ(1) in
Eq. 16 yielding the central equation of this work for

a M−component RC:

d2
comm(x,x′)

=
M∑
m=1

N−1∑
j=1

1

2k
(m)
j

[
ψ

(m)
j (χ)− ψ(m)

j (χ′)
]2
≡

M∑
m=1

d(m)

(17)

Here d(m) is the contribution to the commute distance
arising from the mth RC component, while k

(m)
j and ψ

(m)
j

are the jth eigenvalue and eigenvector of the Maximum
Caliber-based transition matrix K(m) calculated along
along RC-component χ(m) (Sec. II 2 2).

We want to mention two important points here.
Firstly, for any RC component χ(m) for m ≥ 1, the con-
struction of the rate matrix K(m) as detailed in Sec. II 2 2
ensures that the rates are ordered as per 0 < k

(m)
1 ≤

k
(m)
2 ≤ .... This leads to a useful property that the com-

mute distance is a strictly monotonically increasing func-
tion of adding further RC components as well as further
eigenvectors along any RC component. By monitoring
how d2

comm = d(1) + d(2) + ... converges with addition of
RC components, we can quantify the dimensionality of
the RC needed for a given system at hand. Secondly, the
intuitive idea behind going from Eq. 16 to Eq. 17 is that
different eigenvectors are orthogonal to each other allow-
ing for a Euclidean distance measure. This is strictly
true for the SGOOP-derived eigenvectors along a given

RC component, i.e. the dot product of ψ
(m)
j and ψ

(m)
k

is 0 ∀j, k,m ≥ 0 as mentioned in Sec. II 2 2. However

when comparing ψ
(m)
j (χ(m)) and ψ

(n)
k (χ′(n)) for m 6= n

i.e. for different RC components through multiple rounds
of SGOOP14 this is not strictly true, and thus we expect
Eq. 17 to be an upper bound for the commute distance.
Note that the error could come from any eigenpair of
each SGOOP rate matrix arising from redundant con-
tributions due to different RC components having some
aspects of the same dynamical processes. However as
we will show later in Sec. III, as long as each optimal
RC captures the most important features or slowest pro-
cesses, in the next round of SGOOP, such optimal RC will
efficiently reduce the error from the non-orthogonality,
making Eq. 17 a good approximation to those important
features.

III RESULTS

In this section, we demonstrate the usefulness and re-
liability of the SGOOP14,18 based commute distance15,16

protocol developed in Sec. II, which we label “SGOOP-
d” for convenience, by applying it to a range of analytical
potentials, as well as to small molecules with rare confor-
mational transitions between different metastable states.
Low-dimensional projections of these high-dimensional
potentials can in general lead to a spurious number of
barriers and inter-basin connectivity.13,30 Here we show
how to use SGOOP-d to ascertain the minimal dimen-
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sionality of the RC that preserves the kinetic aspects of
the underlying high-dimensional landscape. To do so we
calculate the state-to-state commute distances and moni-
toring how these change and eventually converge with an
increase in RC dimensionality. This is done using either
biased or long unbiased simulations. We can also use the
RC so learned to perform further efficient and reliable
biased simulations. We consider different types of unbi-
ased and biased trajectories to demonstrate the general
applicability of our proposed framework. Numerical and
computational details of these systems have been pro-
vided in the Supplementary Information (SI).

III.1 Analytical potentials

The analytical potentials used here are originally in-
spired from Ref. 13. These are built with two de-
grees of freedom x and y, but with a varying number of
metastable states and barriers separating them. Thus a
1-d projection is not always guaranteed to be kinetically
truthful. Specifically we consider a 3-state potential and
two 4-state potentials labeled 4A and 4B (Figs. 2 (a)-
(c)). For each of these, we build inter-state commute dis-
tances using one-dimensional and two-dimensional RCs,
with different components expressed as linear combina-
tions of x and y. Since the underlying dimensionality is
two, here we will demonstrate the results with up to two-
dimensional RC. In such a case we can simplify Eq. 17
by introducing

d̂(m) = k
(m)
1 d(m) (18)

and then writing

dcomm(x1,x2) = d(1) + d(2)

=
1

k
(1)
1

d̂(1) +
1

k
(2)
1

d̂(2) (19)

To see how good a job the RC components do at re-
constructing the state-to-state connectivity, we further

parameterize Eq. 19 by introducing a K ≡ k
(1)
1

k
(2)
1

for the

ratio of eigenvalues, yielding

k
(1)
1 dcomm(x1,x2) ≡ k(1)

1 dK ≡ d̂(1) +Kd̂(2) (20)

We highlight here that in our framework K is not a free
parameter that needs to be tuned. Instead, it can be
approximated on the basis of Maximum Caliber based
rate matrices (Sec. II 2 2) as:

K∗ ≡ k
(1)
1

k
(2)
1

(21)

where K∗ indicates a Maximum Caliber based estimation
of K. However, as the Maximum Caliber-based rate es-
timates are approximate and might depend on the choice
of the dynamical constraints and quality of sampling,28

in SI we also show that the precise value of K∗ doesn’t
have a large effect on the connectivity.

Systems θ(1)/π θ(2)/π

3-state 0.00 0.21

4-state
4A (Fig. 2(b)) 0.15 0.84

4B (Fig. 2(c)) 0.15 0.84

Table I. In this table, we have shown the first and second
components of the reaction coordinate χ(1) and χ(2) found
for each model analytical potential. The angles θ(1) and θ(2)

in the table define χ(i) = cos(θ(i))x+ sin(θ(i))y.

Fig. 2 and Table I detail the two RC-components
χ(1) and χ(2) so obtained for the different model poten-
tials. Here using K = 0 is equivalent to using only the
first component χ(1) to determine the commute distance,
while increasing non-zero values of K captures increasing
contributions from the second component χ(2) through
Eq. 20. As can be seen for the 3-state system (Fig. 2
(d)), considering only the first component χ(1) would lead
to an erroneous conclusion that the pairs of states AB,
AC, and BC are all kinetically equidistant. This is not
consistent with the high-dimensional data sampled shown
in Fig. 2 (a), where the barrier experienced between the
states BC is much lower than for AB and AC. By adding
the second component χ(2) to the kinetic distance in Eq.
20 using K = K∗, we recover this correct picture. Similar
conclusions regarding kinetically truthful picture consis-
tent with the data can be drawn for the remaining two
4-state potentials shown in Fig. 2. In both Fig. 2 (e) and
(f), using only the 1-d RC χ(1), AB, BC, and CD are
equally short, while AD is the slowest transition. This
erroneous connectivity has been corrected after adding
a second component of RC χ(2), where AB and CD are
equally shortest at K = K∗. Note that in both Fig. 2 (e)
and (f) AD is slightly lower which shows the noisy nature
in the Maximum Caliber-based estimation of transition
rates.

III.2 Alanine dipeptide

The next system we use to illustrate our method is
the well-studied alanine dipeptide. Here we consider the
molecule as characterized by three dihedral angles φ,ψ,
and θ. This molecule has three metastable configurations
(Fig. 3(a)) which can be characterized by using only φ
and ψ, while θ plays a role in characterizing the tran-
sition between the metastable states.31 Here we express
the different RC components as linear combinations of 6
order parameters, namely cosines and sines of the 3 afore-
mentioned dihedrals, with the final optimized coefficients
listed in Table. II. The spectral gap in SGOOP is op-
timized using a basin-hopping algorithm.32–34 These RC
components and associated information are then plugged
into Eq. 20 to estimate the commute distance dK . In
Figs. 3(b)-(c) we show the commute distance so calcu-
lated using an input biased trajectory and a benchmark
long unbiased trajectory respectively. The biased trajec-
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Figure 2. (a)-(c) show the 3-state and 4-state potentials 4A, 4B as sampled during molecular dynamics respectively. In

(a)-(c) we have also provided the two RC components χ(1) (solid red lines) and χ(2) (dashed blue lines) evaluated using Eq. 20.
Contours in all plots are separated by 0.89kBT . In (d)-(f) we show the estimated commute distances dK between different
pairs of metastable states (in arbitrary units) at K = 0 and K = K∗. As explained in Sec. III 1, using K = K∗ gives the right
kinetic connectivity between different metastable states for each of the model potentials. The results with statistical averages
and error bars are shown in SI. Here we only show the result with one pair of RC for each model system in order to show how
the second RC component captures the missing features of the first RC component.

Systems RCs Coefficients

Alanine dipeptide
χ(1) (0.643, 0.778,−0.133,−0.088,−0.221,−0.165)

χ(2) (0.827, 1.166,−0.120, 0.578, 0.013, 0.240)

Ace-Ala3-Nme
χ(1) (0.187,−1.127,−0.228,−2.362, 0.230, 1.176)

χ(2) (1.174, 0.738, 0.132, 0.716, 0.356, 2.827)

χ(3) (−0.037,−0.839, 0.557, 1.454, 1.693, 1.624)

Table II. This table shows the reaction coordinates found for alanine dipeptide and Ace-Ala3-Nme. For alanine dipeptide, two
RC components both expressed as χ = a cosφ+ b sinφ+ c cosψ+d sinψ+e cos θ+f sin θ with their 6 respective coefficients are
listed. For Ace-Ala3-Nme, three RC components all expressed as χ = a cosφ1 + b sinφ1 + c cosφ2 + d sinφ2 + e cosφ3 + f sinφ3

with their 6 respective coefficients are listed.

tory was generated by doing well-tempered metadynam-
ics along 1-d RC χ(1) defined in Table. II. See SI for
further details of both the biased and unbiased simula-
tions.

For this simple system, the commute distances dK
show similar connectivities for K = 0 and K = K∗,
which shows that one RC is indeed sufficient to describe
the system in terms of recovering state-to-state connec-
tivity between all 3 metastable states. Both types of
input trajectories show a near degenerate structure with

two pairs of states kinetically separated from each other,
while one pair is very close.

III.3 Ace-Ala3-Nme

In this final section, we demonstrate our method on a
more complicated molecular system, namely the peptide
Ace-Ala3-Nme with a much larger number of metastable
states, and an even larger number of state-to-state tran-
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Figure 3. (a) Free energy surface as a function of φ and ψ obtained by reweighting metadynamics simulation biasing along

1-d RC χ(1) specified in Table. II . The positions of three metastable states are specified. (b) shows the SGOOP-d k(1)dK at
K = 0 using one RC and at K = K∗ using two RCs for each pair of metastable states (in arbitrary units) obtained from a
long unbiased simulation (blue triangles and blue circles respectively, left axis) and the biased simulation (blue squares, blue
diamonds, left axis). In (b), we also provide the estimated commute time tcomm(red triangles, right axis) calculated from the
long unbiased simulation.

Figure 4. In this figure, (a) provides the molecular structure of Ace-Ala3-Nme with the corresponding dihedral angles. The
corresponding metastable states and their conformations are detailed in SI. (b) shows the calculation of SGOOP-d which
provides the estimated commute distances using one-dimensional, two-dimensional and three-dimensional RC respectively
(blue triangles, blue circles and blue squares, left axis). The coefficients of these RCs are shown in Table II. Corresponding to

their calculation, these are labelled respectively k
(1)
1 dK=0, k

(1)
1 dK∗ and k

(1)
1 dK∗,L∗ (in arbitrary units) as shown in the legend.

(b) also provides the estimated commute time tcomm (red triangles, right axis) calculated from long unbiased simulation of
Ace-Ala3-Nme. The slowest transitions which are not sampled in the long unbiased simulation are denoted by star markers in
the plot. Their commute times are not quantitatively reliable and serve only as guide to the eye.

sitions.35 Simulation details are provided in SI. As dis-
cussed in Ref. 35 the three dihedral angles φ1, φ2,

φ3 are sufficient to characterize the 23 = 8 dominant
metastable states corresponding to positive and negative
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parts of the Ramachandran diagram for the 3 central
Alanine residues. The RC components used in comput-
ing SGOOP-d distances are calculated as a linear com-
bination of cosines and sines of these 3 dihedral angles,
thereby amounting to a total of 6 order parameters. We
consider the 8 most dominant metastable states labelled
S1,..., S8 and the associated

(
8
2

)
= 28 inter-state tran-

sitions. The corresponding dihedral angles for these 8
states are tabulated in the SI. Here we consider up to
three RC components and demonstrate that after con-
sidering 3 components the commute distances converge
especially for the slower state-to-state transitions. They
are also in agreement with the benchmark calculations
on this system through counting transitions in the higher
dimensional underlying space from a long unbiased tra-
jectory. The final optimized solutions for all three RC
components are shown in Table. II. Here in order to add
a third RC component, we generalize Eq. 20 by introduc-
ing an additional parameter L:

k
(1)
1 dK,L ≡ d̂(1) +Kd̂(2) + Ld̂(3) (22)

Similar to what was done for K∗ in Eq. 21 we can ap-
proximate L∗ as

L∗ ≡ k
(1)
1

k
(3)
1

(23)

With a long enough unbiased MD trajectory, we can
also calculate the commute time tcomm between two
metastable states through a simple counting protocol (see
SI and Ref. 30). In Fig. 4, we show SGOOP-d distances
calculated using Eq. 22 with 1, 2, and 3 RC components,
and compare them with the corresponding 28 tcomm val-
ues between the 8 metastable states in the same plot. It
can be seen from the plot that with only the use of two
RC components SGOOP-d already provides converged
estimates of relative inter-state connectivity and com-
mute distances between 23 of the 28 pairs of states based
on the visualization of 3-d free energy provided in SI.
Here we must point out that there are eight transitions
that are not sampled by even the reference long unbi-
ased simulation, although SGOOP-d of those transitions
clearly converged. Therefore, the comparison of SGOOP-
d with respect to the unobserved transitions may need a
more cautious evaluation instead of merely looking at
the free energy. However, in order to get the correct con-
nectivity for the remaining 5 pairs of states as well, we
have to include the third RC component. We emphasize
that in Fig. 4 the slowest 8 transitions have been given
the same reference commute time for the sake of clarity,
as we were unable to observe any such transition events
even in the 1 µs long unbiased simulation. Thus the refer-
ence commute times for these states serve as approximate
lower bounds to the true values and are denoted by star
markers in the plot.

IV CONCLUSION

In summary, in this work we have developed a com-
putationally efficient formalism labeled “SGOOP-d” and
summarized in the flowchart in Fig. 1, that can help to-
wards solving a longstanding important problem in chem-
ical physics and physical chemistry. Namely, how many
dimensions should a projection from high-dimensions
into low-dimensional reaction coordinates (RC) have, so
that (1) the projection is kinetically and thermodynami-
cally truthful to the underlying landscape, and (2) these
minimal number of components can then be used to per-
form biasing simulations without fear of missing slow de-
grees of freedom. The formalism here makes the best
of two different approaches, namely commute map16 and
SGOOP.18 This way it induces a distance metric which
we call SGOOP-d that is applicable to biased rare event
systems as well as unbiased trajectories with arbitrary
quality of sampling. The kinetically truthful RC learned
here can then also be used to improve the sampling qual-
ity of the biased simulation itself36 or as a progress co-
ordinate in path-based sampling methods.37–41 We thus
believe that going forward our work represents a useful
tool in the study of kinetics in rare event systems with
multiple states and interconnecting pathways.

V SUPPORTING INFORMATION

The Supporting Information contains: (1) Simulation
details including the setup of model potential and simula-
tions for alanine dipeptide and Ace-Ala3-Nme; (2)A plot
with analytical model potential and averaged SGOOP-d
at K = 0 and K = K∗ with errorbars and a table of RC
corresponding to averaged SGOOP-d; (3) A plot showing
the linear combination of SGOOP-d at different K; (4)
Free energy plots of Ace-Ala3-Nme; (5) A list of landmark
dihedral angles for calculating Fig. 4; (6) Metadynamics
parameters; (7) PLUMED code for computing dihedral
angles.
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Frank Noé. Markov models of molecular kinetics: Generation
and validation. The Journal of chemical physics, 134(17):174105,
2011.

8Daniel Nagel, Anna Weber, and Gerhard Stock. Msmpathfinder:
Identification of pathways in markov state models. Journal of
Chemical Theory and Computation, 16(12):7874–7882, 2020.

9Stefano Piana, Kresten Lindorff-Larsen, and David E Shaw. Pro-
tein folding kinetics and thermodynamics from atomistic simula-
tion. Proceedings of the National Academy of Sciences, 109(44):
17845–17850, 2012.

10Robert B Best and Gerhard Hummer. Reaction coordinates
and rates from transition paths. Proceedings of the National
Academy of Sciences, 102(19):6732–6737, 2005.

11Gerhard Hummer and Attila Szabo. Optimal dimensionality
reduction of multistate kinetic and markov-state models. The
Journal of Physical Chemistry B, 119(29):9029–9037, 2015.

12Gareth A Tribello and Piero Gasparotto. Using dimensionality
reduction to analyze protein trajectories. Frontiers in molecular
biosciences, 6:46, 2019.

13Alexandros Altis, Moritz Otten, Phuong H Nguyen, Rainer Heg-
ger, and Gerhard Stock. Construction of the free energy land-
scape of biomolecules via dihedral angle principal component
analysis. The Journal of chemical physics, 128(24):06B620, 2008.

14Zachary Smith, Debabrata Pramanik, Sun-Ting Tsai, and
Pratyush Tiwary. Multi-dimensional spectral gap optimization
of order parameters (sgoop) through conditional probability fac-
torization. J. Chem. Phys., 149(23):234105, 2018.
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