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Abstract—Traditionally, high performance kernels (HPKs)
have been written in statically typed languages, such as C/C++
and Fortran. A recent trend among scientists—prototyping ap-
plications in dynamic languages such as Python—created a gap
between the applications and existing HPKs. Thus, scientists
have to either reimplement necessary kernels or manually create
a connection layer to leverage existing kernels. Either option
requires substantial development effort and slows down progress
in science. We present a technique, dubbed WAYOUT, which
automatically generates the entire connection layer for HPKs
invoked from Python and written in C/C++. WAYOUT performs
a hybrid analysis: it statically analyzes header files to generate
Python wrapper classes and functions, and dynamically generates
bindings for those kernels. By leveraging the type information
available at run-time, it generates only the necessary bindings. We
evaluate WAYOUT by rewriting dozens of existing examples from
C/C++ to Python and leveraging HPKs enabled by WAYOUT.
Our experiments show the feasibility of our technique, as well
as negligible performance overhead on HPKs performance.

Index Terms—bindings, high performance kernels, dynamic
program analysis, Python

I. INTRODUCTION

Traditionally, high-performance computing (HPC) applica-

tions are written in statically typed (and low-level) program-

ming languages, such as C/C++ and Fortran [1]–[3]. These

languages are the de facto standard in the HPC area due to

the excellent performance of the resulting applications.

HPC applications spend most of their execution time in

so-called high-performance kernels (HPKs), such as linear

algebra operations and solvers [4]. Over the last several years,

the number of HPKs has been steadily growing and existing

HPKs are constantly optimized and updated to support new

hardware platforms.

Recently, several frameworks were introduced to enable

developers to write performance portable HPKs. Namely, a

developer can write an HPK only once and the framework

automatically enables the execution of that HPK on a variety of

hardware platforms (e.g., Intel CPUs, Nvidia GPUs, and AMD

GPUs). Some of the most notable frameworks that support

performance portability include Kokkos [5], [6] and RAJA [7].

These frameworks enable the rapid development of new HPKs,

although they are still based on C/C++.

Meanwhile, scientists are transitioning to dynamically typed

languages, such as Python [8], Julia [9], or Lua, for writing

their applications. In order to obtain good performance, sci-

entists have to either: (a) implement HPKs in their language

of choice (using high-performance libraries like Numba [10]

or PyKokkos [11]), or (b) create bindings to existing HPKs

implemented in C/C++ or one of the frameworks that supports

performance portability (using libraries like pybind11 [12]).

In either case, substantial work is required [13], [14]. Main-

tenance of manually written bindings (as HPKs evolve) intro-

duces additional challenges.

We present WAYOUT, a novel approach to automati-

cally generating connection layers for existing (performance

portable) HPKs to be used by Python applications. WAYOUT

is the first approach that combines static and dynamic pro-

gram analysis. Specifically, for a given header file, WAYOUT

performs static analysis to create: (1) wrapper classes and

functions, i.e., a Python API provided to scientists that reflect

the given header file, and (2) header files with templated

bindings that will be instantiated at run-time. When a Python

application is executed and one of the wrapper functions is in-

voked, WAYOUT intercepts the call, instantiates and generates

the bindings for the given types, and invokes an existing HPK.

One of the key insights behind WAYOUT is that it postpones

binding generation until it has the types needed (which are not

available statically in Python). WAYOUT also caches generated

bindings, so only the very first invocation of each function

(with one set of type arguments) introduces some overhead;

the cache is saved across application runs.

We designed WAYOUT to overcome the limitations of

cppyy [15] and pyximport [16], which target the same task, but

take very different approaches. Unfortunately, neither of the

two mentioned approaches could be used to invoke existing

HPKs from within a Python application. Cppyy depends on

a powerful but immature tool chain, including PyPy [17],

an alternative implementation of the Python interpreter, and

Cling [18], an interactive C++ interpreter. On the other hand,

pyximport does not support dynamic instantiation of templates

and thus is unable to instantiate bindings if types are known

only at run-time.

We overcome a set of critical challenges to realize WAY-

OUT, including: (1) the lack of function and method over-

loading in Python; (2) concurrent use of multiple template

instantiations of the same class; (3) inferring types of returned

objects; and (4) ambiguously typed template arguments.

We evaluate WAYOUT by automatically generating bindings

for Kokkos Kernels [4], one of the most popular frameworks

for HPKs, and Thrust [19], a powerful template library con-

taining parallel algorithms. We rewrote a number of existing

examples (that use Kokkos Kernels and Thrust) from C/C++
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to Python. Our experiments show the feasibility of our tech-

nique, as well as its negligible performance overhead on HPK

performance. In our experiments, we also show that WAYOUT

does not impact the performance portability of HPKs: we were

able to execute all the examples on both CPUs and GPUs.

This paper makes the following key contributions:

• Design of WAYOUT, a novel approach for automatically

generating a connection layer for existing HPKs to be used

in Python applications. WAYOUT uses a hybrid approach—

a combination of static and dynamic program analysis—to

instantiate the connection layer.

• Implementation of WAYOUT for Python. The design of

WAYOUT is modular and others could use our processing

of header files to support connection layer with other pro-

gramming languages, e.g., Lua. Source code of WAYOUT is

available at https://github.com/EngineeringSoftware/wayout.

• Evaluation of WAYOUT by rewriting a number of existing

examples from C/C++ to Python and using existing HPKs

from Kokkos Kernels and Thrust. We chose Kokkos because

it is a popular performance portability framework and it

currently has only a few manually written bindings; we

chose Thrust to demonstrate the generality of our approach.

II. MOTIVATION

In this section, we provide some background on HPKs and

binding generation, as well as motivation for WAYOUT.

A. HPKs

The usage of hand-optimized HPKs in scientific computing

is extremely common. Typically, these kernels are written

using high performance C/C++ frameworks that can exploit

parallelism on multi-core processors, such as OpenMP [20] for

CPUs and CUDA [21] for GPUs. More recently, frameworks

such as Kokkos [5], [6] and RAJA [7] build abstractions on

top of these device-specific frameworks to enable performance

portability, i.e., code that is portable across devices while still

achieving good performance. As such, these frameworks are a

natural choice for writing high-performance kernels. Kokkos,

for example, is used by numerous applications and packages

for large-scale scientific computing, such as Trilinos [22],

LAMMPS [23], Albany [24], Empire [25], and others.

Kokkos Kernels [4] is a collection of performance portable

kernels written in Kokkos. It includes a large variety of math

kernels and data structures commonly used in linear algebra

and graph algorithms. One such example of a linear algebra

kernel is the sparse matrix vector multiply kernel, or SpMV

for short. The following code snippet shows how SpMV can

be called in a Kokkos (C++) application, where A is a sparse

matrix, alpha and beta are scalars, and x and y are vectors.

KokkosSparse::spmv("N", alpha, A, x, beta, y);

B. Binding Generation

The target audience for these HPKs is largely composed

of scientists [4], [22] who need them for simulations and

experiments. However, these scientists typically do not have

Python

User Code

C++

HPK

Call
HPK

Return
Result

Language
Bindings

Call
Bindings

Return
Result

Fig. 1: An illustration of language bindings.

formal training in programming, so using C++, which is

notorious for its poor error messages and complicated build

systems, can be a huge deterrent. Instead, they prefer higher

level languages with “batteries included” [8], such as Python.

Several attempts have been made to expose these libraries

and kernels to other languages [11], [26], [27]. This requires

the use of language bindings, which allow for interoperability

between different languages. Figure 1 shows a high-level

illustration of language bindings between Python and C++.

Numerous frameworks have been implemented to provide

Python bindings to C++ code, such as Boost.Python [28],

pybind11 [12], and SWIG [29]. The following code snippet

shows what a call to SpMV could look like once it has been

exposed to Python through one of the binding frameworks.

spmv(char_ptr("N"), alpha, A, x, beta, y)

However, manually writing these bindings can be tedious

and challenging. For example, the Python bindings for creating

a Kokkos View [13], the main multi-dimensional data structure

in Kokkos, are written in pybind11. Despite only binding

a small part of Kokkos, the total lines of code for these

bindings is over 900, as they make heavy use of C++ macros

and compile-time template instantiation to generate all the

different combinations of template arguments. For Kokkos

Views, this includes different data types (int16_t, int32_t,

double, etc.), dimensions (one through eight), memory lay-

outs, memory spaces, and memory traits. Each combination

of these arguments forms a single template instantiation. The

following code snippet shows one such instantiation.

Kokkos::View<int*, LayoutLeft, HostSpace>;

Besides being hard to write, compiling the bindings takes

a large amount of time (around 6 hours on our machines

for a commonly used subset of all combinations) due to the

large number of template instantiations that need to happen. In

addition to the time overhead, compilation occasionally runs

out of memory due to the large number of template argument

combinations, meaning that the process will not terminate

successfully on some machines.

Prior work on automatic generation of Python bindings for

C++ code [30], [31] extracts library APIs by parsing header

files for class and function declarations. While this simplifies

writing the bindings, it requires that the user manually adds

code to instantiate all the needed template arguments since

these frameworks employ static analysis. Also, this does not
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solve the compilation issues for large numbers of template

instantiations. Therefore, such an approach does not work well

for templated libraries such as Kokkos Kernels and Thrust.

As a result, we propose generating these bindings dy-

namically, i.e., on demand at run-time such that only the

necessary template instantiations are created. This allows types

to be passed at run-time, removing the need for the user to

manually add template instantiation. It also reduces the cost

of compilation by compiling bindings only when needed. We

show that this approach can achieve performance comparable

to manually written bindings.

III. WAYOUT OVERVIEW

In this section, we show an example of high performance

kernel (HPK) from Kokkos Kernels, and then use this HPK to

demonstrate the workflow of WAYOUT.

We encountered multiple challenges during the design and

implementation of WAYOUT. We highlight these challenges

⭐ like so, and then outline our design choices and how we

solved these challenges.

A. Example

Figure 2 shows the function signature of the SpMV HPK

spmv (line 4) and the class declaration of CrsMatrix, the

sparse matrix data structure it operates on (line 13). This kernel

performs the operation y = beta ∗ y + alpha ∗A ∗ x.

The template parameters of spmv are used to set the types

used in the kernel at compile-time: AlphaType, BetaType

are the scalar types, XVector and YVector are the vector

types, and AMatrix is the sparse matrix type, which can be

set to CrsMatrix in this example. The template arguments

for CrsMatrix are as follows: ScalarType is the type of

entries contained in the matrix, OrdinalType is the type

of the matrix index, Device specifies on which device’s

memory (e.g., GPU) the matrix is located in, MemoryTraits

specifies the Kokkos memory access trait to be used (Atomic,

RandomAccess, etc.), and SizeType specifies the type of the

row offset.

Figure 3 shows an example using spmv and CrsMatrix.

To call the kernel, the user first defines mat_t to alias the

instantiated CrsMatrix type (line 3) and instantiates the

matrix and vectors (lines 7-10). The CrsMatrix constructor

takes in as arguments the number of rows, columns, and

elements, followed by Views containing the matrix entries,

row offsets, and column indices. Views y and x represent the

one-dimensional vectors, and their constructor specifies the

size of the View. The View constructor is templated on the

datatype and dimensionality (one-dimensional double in this

case). Finally, the user can call the spmv kernel (as shown

on line 12). The arguments passed to the call are a string

specifying the operation mode (no transpose, transpose, or

conjugate transpose), the scalar alpha, the matrix A, the vector

x, the scalar beta, and the vector y. The latter is passed by

reference and will hold the result of the operation upon return

from the function.

1 template <class AlphaType, class AMatrix,
2 class XVector, class BetaType,
3 class YVector>
4 void spmv(const char mode[], const AlphaType &alpha,
5 const AMatrix &A, const XVector &x,
6 const BetaType &beta, const YVector &y);
7 /* ... */
8

9 template <class ScalarType, class OrdinalType,
10 class Device, class MemoryTraits = void,
11 class SizeType = typename Kokkos::ViewTraits
12 <OrdinalType *, Device, void, void>::size_type>
13 class CrsMatrix;
14 /* ... */

Fig. 2: An example of a kernel and data structure declaration

from Kokkos Kernels.

1 int main() {
2 /* ... */
3 using mat_t = KokkosSparse::CrsMatrix<
4 double, int,
5 Kokkos::DefaultExecutionSpace, void, int>;
6

7 mat_t A = mat_t(numRows, numCols, nnz, val, ptr, in);
8

9 View<double *> y(N);
10 View<double *> x(N);
11

12 KokkosSparse::spmv("N", alpha, A, x, beta, y);
13 }

Fig. 3: An example using a kernel and data structure from

Kokkos Kernels.

B. Workflow

Figure 4 shows a high-level overview of WAYOUT; in this

section we highlight the user workflow. There are two main

steps to WAYOUT’s workflow. First, the user provides the path

to the header files or the include directory. WAYOUT then

generates a Python API consisting of wrappers for the C++

API, which was declared in the passed header files. The user

can then access the C++ API using the Python API exposed

by the generated wrappers.

1) Header Files: The first step in using WAYOUT is

passing in the header files containing the required class and

function declarations that together constitute the API (step 1©

in Figure 4).

WAYOUT can then generate Python wrappers that mirror

the C++ API (kernel.py in Figure 4).

2) Python Wrappers: Once the Python wrappers have been

generated, they can be imported (step 2©) and called (step 3©)

by the user. Calling a wrapper for the first time will generate

the templated bindings which will then be compiled into a

shared library 4©. Figure 5 shows the SpMV example using the

generated wrappers. Similar to the C++ version, we first alias

the matrix type (line 3), and then define the matrix and vectors

(lines 5-9). We call the CrsMatrix class method nnz, which

returns the number of entries in the matrix, to demonstrate

how a class method can be called (line 6). Finally, we call the

spmv kernel (line 10).

WAYOUT generates wrappers for both function and class

declarations, as well as wrappers for public fields and methods,
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pointer types (e.g., double*) for template arguments (line 8).

Once an object has been created, it can be used like any

Python object. The wrapper class contains all class fields

and methods present in the C++ version. Private fields and

methods are not accessible. As WAYOUT supports inheritance,

attributes from the parent class are accessible as well. Any

object returned from a function call will be automatically

wrapped using the correct wrapper class.

Figure 7 shows the generated Python wrappers for the

SpMV example. The spmv wrapper is defined on line 1 and

the CrsMatrix wrapper is defined on line 8; the contents of

these wrappers are explained in the next section.

IV. TECHNIQUES

In this section, we describe our binding generation ap-

proach, including both static and dynamic phases. In the

static phase (Section IV-A), WAYOUT parses C++ header files

to generate Python wrappers and templated bindings. In the

dynamic phase (Section IV-B), WAYOUT intercepts calls to the

Python wrappers. Then, it instantiates, compiles, and imports

the templated bindings based on the types known only at

run-time, completing the link between Python and C++. We

then describe the casting mechanisms used to move arguments

from Python to C++ and vice versa (Section IV-C). Next, we

describe our techniques to support inheritance (Section IV-D)

and operator overloading (Section IV-E). Finally, we discuss

GPU support (Section IV-F) and integration with manually

written bindings (Section IV-G).

There are two highlights to our approach: first, generating

Python code in the form of wrapper classes and functions

allows the user to easily use and potentially modify the

generated bindings; second, the lazy approach to binding

instantiation and compilation reduces the otherwise high com-

putational cost of binding and compiling everything ahead of

time. Once a binding has been compiled, it is cached on the

file system for later use.

A. Static Generation

We use Clang [32] to parse the header files and py-

bind11 [12] as the bindings library. We chose pybind11 due

to its popularity, flexibility, and ease of use. Writing bindings

using pybind11 involves defining a Python module object

which is used to register classes and functions so that they

can be accessed from Python.

When WAYOUT is invoked by a user, it uses the Clang

Python API to parse the header files and return the root node

of the corresponding Abstract Syntax Tree (AST). WAYOUT

can then extract the API from header files by traversing the

AST recursively to discover classes and functions. One issue

with this approach is that ⭐ Python does not allow function

or method overloading, both of which are used heavily in

HPKs, such as Kokkos Kernels, especially for constructors.

To deal with this, WAYOUT first stores function names in a

set so that only one wrapper function is generated, even if

other overloaded instances exist. Inside the wrapper functions

for overloaded functions, WAYOUT adds code that selects

1 def spmv(*args, template args=None, take ownership=False):
2 mod, name=generate func binding(”spmv”, ”KokkosSparse”,
3 args, includes, template args, take ownership)
4 args = [get handle(arg) for arg in args]
5 res = getattr(mod, name)(*args)
6 return cast return(res)
7

8 class CrsMatrix:
9 ”””Compressed sparse row implementation of a sparse matrix.”””

10 namespace = ”KokkosSparse”
11 def init (self, *template args, handle=None):
12 self. handle = handle
13 self. cpp name = handle. cpp type if handle else \
14 register class(”CrsMatrix”, self. namespace, template args)
15 def call (self, *args):
16 if self. handle:
17 if hasattr(self, ’ cpp call ’):
18 return self. cpp call (*args)
19 raise RuntimeError(
20 ”Error: can’t call constructor on instance!”)
21 mod,name = generate constructor(self. cpp name, args, includes)

22 args = [get handle(arg) for arg in args]
23 inst = copy.copy(self)
24 inst. handle = getattr(mod, name)(*args)
25 return inst
26 def nnz(self, *args, take ownership=False):
27 ”””//! The number of stored entries in the sparse matrix.”””
28 mod,name = generate class func binding(self, ”nnz”, args,
29 includes, take ownership)
30 args = [get handle(arg) for arg in args]
31 res = getattr(mod, name)(self. handle, *args)
32 return cast return(res)
33 ”””/* ... */”””

Fig. 7: Python wrapper generated by WAYOUT for spmv and

CrsMatrix.

1 #include <pybind11/pybind11.h>
2 #include <KokkosSparse_CrsMatrix.hpp>
3 template <class T>
4 void generate_class(pybind11::module &_mod,
5 const char *name, const char *cpp_type) {
6 pybind11::class_<T> _class(_mod, name);
7 _class.def_property_readonly_static("_cpp_type",
8 [cpp_type](const pybind11::object&) {
9 return cpp_type;

10 });
11 _class.def_readwrite("graph", &T::graph);
12 _class.def_readwrite("values", &T::values);
13 /* ... */
14 }

Fig. 8: Generated C++ templated header for the CrsMatrix.

the appropriate overloaded instance at run-time based on the

types of the arguments. These types are extracted from the

arguments using the Python built-in function type().

WAYOUT then generates Python wrappers mirroring the

original C++ API. Figure 7 partially shows the generated

wrappers for the spmv function and CrsMatrix class, with the

latter also containing wrapper methods for its corresponding

C++ class methods.

In addition to Python wrappers, WAYOUT generates one

C++ header file for each class encountered during AST traver-

sal. Figure 8 shows the header generated for the CrsMatrix

class. The header file contains a function templated on T,

where T is the type to be registered via pybind11. The
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function registers the type T with pybind11, as well as all

the class fields. Since all instances of a templated class

have the same members, the header file can be reused by

different instantiations of the templated class at run-time e.g.,

CrsMatrix<double,...> or CrsMatrix<int,...>.

B. Dynamic Generation

At run-time, the user imports and calls the generated Python

wrappers (shown in Figure 7). Internally, the wrappers call

WAYOUT to instantiate the templated functions based on

the types passed, generating a C++ source file that uses the

templated binding header files generated in the static phase.

WAYOUT then compiles the C++ source into a shared object

file (or simply DSO) that can be imported and used by the

wrapper. Later calls to the same wrappers will reuse the

existing DSO if the types are unchanged.

1) Wrapper: In Figure 7, the spmv wrapper calls the

WAYOUT function generate_function_binding (line 2)

to generate the function binding. This call captures infor-

mation such as function name ("spmv") and namespace

("KokkosSparse") which are needed to uniquely identify

the C++ function that needs to be bound. This is needed in

combination with the arguments and optionally the template

arguments to generate a hash that uniquely identifies the bind-

ing instantiation. Similarly, the methods of CrsMatrix call

WAYOUT to generate instantiated bindings. The generate

functions check to see if a module matching the hash has been

imported. If so, it simply returns the module object containing

the function. If the module has not been imported, WAYOUT

attempts to import it from the file system. If the corresponding

DSO does not exist, then WAYOUT generates the binding

instantiation source code for the function.

2) Binding Generation: There are two main types of bind-

ings. One is for registering classes so pybind11 knows how

to cast objects between Python and C++, while the other

is for binding an instantiated templated function. For class

registration, the binding source code first includes the class

header (shown in Figure 8) generated during the static phase

and uses it to register classes. For function bindings, WAYOUT

generates intermediate C++ functions that cast arguments from

Python types to the corresponding C++ types and internally

call the API function.

Figure 9 shows examples for both types of bindings. During

class registration, a Python module object is first created using

the PYBIND11_MODULE (line 4). The first argument is the name

of the kernel which is set to the unique hash corresponding

to that instantiation. The second argument is a handle to the

module object that is used to register functions for that module.

Then, the class is registered in pybind11 (line 5).

WAYOUT defines an intermediate function for each method

(lines 15, 26, and 35) which accepts as input an argument of

type pybind11::args containing a list of arguments. We use

auto as the return type of the intermediate functions and rely

on the compiler to deduce it from the argument types.

Each intermediate function explicitly casts each argument to

its corresponding C++ type (e.g., lines 16-17) and then calls

1 /*==================================================*/
2 /* generated binding code for registering CrsMatrix */
3 #include "CrsMatrix.hpp"
4 PYBIND11_MODULE(f_f8ee838d9c3174dc82a, k) {
5 generate_class<KokkosSparse::CrsMatrix<
6 double, int,
7 Kokkos::DefaultExecutionSpace, void, int>>(
8 k, "f_f8ee838d9c3174dc82a",
9 "KokkosSparse::CrsMatrix<double,int,"

10 "Kokkos::DefaultExecutionSpace,void,int>");
11 }
12

13 /*==================================================*/
14 /* generated binding code for CrsMatrix constructor */
15 auto func(pybind11::args args) {
16 auto a0 = args[0].cast<std::string>();
17 auto a1 = args[1].cast<int>();
18 /* ... */
19 return new KokkosSparse::CrsMatrix<double, int,
20 Kokkos::DefaultExecutionSpace, void, int>
21 {a0, a1, a2, a3, a4, a5, a6};
22 }
23

24 /*==================================================*/
25 /* generated binding code for nnz method of CrsMatrix */
26 auto func(pybind11::args args) {
27 auto &a0 = args[0].cast<
28 KokkosSparse::CrsMatrix<double, int,
29 Kokkos::DefaultExecutionSpace, void, int> &>();
30 return a0.nnz();
31 }
32

33 /*==================================================*/
34 /* generated binding code for spmv */
35 auto func(pybind11::args args) {
36 auto a0 = args[0].cast<std::string>();
37 auto a1 = args[1].cast<double>();
38 /* ... */
39 return KokkosSparse::spmv(a0.c_str(), a1, a2, a3, a4, a5);

40 }

Fig. 9: Generated C++ binding instantiation code for the

SpMV example.

the C++ API function. The first function calls the CrsMatrix

constructor (line 19), the second function calls the nnz class

method (line 30), and the third function calls the standalone

spmv function (line 39).

The bindings are then compiled into object files. Intuitively,

WAYOUT would then link the files containing all the instan-

tiations into one single DSO file and import it. Whenever a

new instantiation is generated and linked, WAYOUT would

reload the DSO. However, this will not work because ⭐

Python does not provide support for dynamically reloading

DSOs unless their reference count reaches zero and they are

garbage collected. Waiting for the garbage collector to run is

unreliable and might not even happen before the application

completes. Our solution is to generate a separate DSO for each

template instantiation of every class and function. This has the

added benefit of avoiding the extra linking overhead when new

bindings are generated. It also allows WAYOUT to elegantly

support overloading and templates by separating them into

different modules and avoiding re-definition errors in Python,

since each combination of arguments would correspond to a

different module.

6



The generated Python wrapper can then access and call

functions registered in the module using the built-in getattr

function (Figure 7, lines 5, 24, and 31).

C. Casting

When the user calls a bound function (such as spmv in

Figure 5, line 10), WAYOUT casts the passed arguments from

types that are valid in Python to types that are valid in C++.

Once control returns to the Python side, the returned binding

object is also cast to the correct wrapper class. WAYOUT uses

three forms of casting: explicit, implicit, and autocasting.

1) Explicit Casting: As mentioned previously, intermediate

functions accept as input a list of arguments (args). Explicit

casting refers to calling the pybind11 cast method on ele-

ments of args to convert them into types that can be used in

C++, storing them in local variables (Figure 9, lines 16-17).

These variables can then be passed to the C++ function call.

The type to be cast to is passed as a template argument.

Since the binding instantiation is generated at run-time, these

types are chosen based on the types of the passed arguments.

This form of casting works fine if the argument is a primitive

(e.g., int). However, if the argument type is one of the

wrapper classes (e.g., CrsMatrix), an additional implicit cast

may be required.

2) Implicit Casting: In heavily templated classes, it is

common for objects with slightly different template instantia-

tions to be semantically equivalent. For instance, the Kokkos

View object has an execution space template argument, which

can either be of type Device or MemorySpace, which are

interchangeable. In the SpMV example, spmv can accept both

Kokkos::View<double *, HostSpace> and

Kokkos::View<double *, Device<OpenMP, HostSpace>

for its View arguments, even if they are different types, be-

cause Kokkos internally implements implicit casting between

the two.

In order for pybind11’s cast to work on non-primitive

types, WAYOUT must use the type that was obtained during

class registration, as that is the type that pybind11 recognizes.

Otherwise, cast throws an exception for an illegal cast.

In some cases, different parts of a C++ API depend on

different template instantiations of the same class, even if

they are semantically equivalent. ⭐ This is a challenge for

WAYOUT since it uses pybind11 to cast objects to the exact

type needed by functions, which will result in an exception if

there is any difference in types.

To solve this, WAYOUT caches information about the C++

type of a binding object by adding an extra _cpp_type field

during class registration. This extra field is a string set to

the fully qualified C++ type name. Therefore, during binding

generation, WAYOUT can use this stored name to cast the

argument to the appropriate type.

3) Autocasting: ⭐ When an object is returned from a

function, pybind11 does not cast it to one of WAYOUT’s

wrapper classes, so it cannot be used to access the fields

and methods. Ideally, the functions would return objects of

the same type as the generated wrapper class.

WAYOUT therefore wraps these objects in the appropriate

wrapper class so the class fields and methods can still be

accessed normally (Figure 7, line 6). To do so, WAYOUT

first checks if the returned object has the _cpp_type field.

If not, then the returned object is a primitive and no casting

is needed. Otherwise, WAYOUT initializes a wrapper object

using the binding object as the handle.

Additional complications occur when the return type has not

been registered with pybind11. For example, assume the user

calls a function that returns a matrix type that has not been

instantiated before. To solve this, we also generate dummy

functions which return empty instances of the return type.

When a module is imported, WAYOUT also calls the dummy

function. If the class is not registered, a TypeError will be

thrown by pybind11, which we catch and parse to extract the

class that needs to be registered. Since this only needs to be

done once when a module is imported, the overhead is minimal

and guarantees that all return types are registered.

D. Inheritance

Inheritance is a commonly used feature in C++ to facilitate

code reuse. While it is not used much in Kokkos Kernels,

Thrust [19] extensively utilizes inheritance in its various

structures. WAYOUT supports inheritance during the static

phase, where the name of the parent can be extracted from

the AST. Then we can naturally emulate the C++ inheritance

relationship by having the Python wrapper class of a C++ child

class inherit from the Python wrapper class of the parent.

E. Operator Overloading

Operator overloading in C++ is used to implement the built

in operators for custom datatypes, e.g., using the [ ] operator

to access elements in a data structure. WAYOUT supports

operator overloading by treating them as class methods, with

the caveat that the method name is mapped to the corre-

sponding Python magic method name (e.g., operator[] to

__setitem__ and __getitem__). Since WAYOUT already

uses the __call__ magic method for invoking the constructor,

we map the C++ call operator to a new __cpp_call__

method which is invoked when a class instance is called

(e.g., Figure 7 line 17). WAYOUT currently supports the C++

addition, subtraction, bracket, call, and dereference operators,

although support for others is planned.

F. GPU Support

As most HPKs support heterogeneous systems, it is impor-

tant for WAYOUT to support GPUs as well. Code that runs

on GPUs (e.g., CUDA or HIP) typically cannot be compiled

using a regular C++ compiler such as g++. Instead, it needs to

be compiled with a specific compiler (e.g., NVCC for CUDA).

This is easy to do in WAYOUT, as the only modification

needed is to switch to the right compiler. Additionally, since

one of the main targets of our work is Kokkos, the kernel

interface does not change when running with a GPU, so no

further modifications to WAYOUT are needed.

7



G. Integration of Manually Written Bindings

There are instances where it is still beneficial to use man-

ually written bindings for convenience reasons. For instance,

the Kokkos View object is a general purpose n-dimensional

data structure. It overloads the parentheses operator for reading

and modifying data instead of the commonly used square

brackets (e.g., int x = view(1);). This does not work well

with pybind11 since the parentheses operator returns a refer-

ence to a primitive, which pybind11 handles by passing by

value to Python, meaning that modification of the contents

is not possible. However, Kokkos does have Python bindings

(manually written) for Views [13]. These bindings leverage a

pybind11 feature that allows the Python buffer protocol [33]

to be implemented for the raw data buffer contained in Views,

which allows the internal data to be accessed normally from

Python. Since they are implemented using pybind11, these

bindings can be used seamlessly with WAYOUT.

V. EVALUATION

We evaluate WAYOUT by answering the following four

research questions:

RQ1. How effective is WAYOUT at generating bindings for

Kokkos Kernels and CUDA Thrust?

RQ2. What is the run-time performance overhead of the

bindings generated by WAYOUT?

RQ3. How does the run-time performance of the automatically

generated bindings compare to handwritten bindings?

RQ4. What is the time needed to generate the bindings?

We ran all experiments on an Ubuntu 18.04 machine with a 6-

core Intel Core i7-8700 3.20GHz CPU and 64GB of RAM, and

an Nvidia GeForce 1080 GPU with 8GB of memory. We used

Python 3.8.5, GCC 7.5, OpenMP 4.5, and CUDA 10.2. We

used Kokkos 3.1.01, and Kokkos Kernels from the “develop”

branch (commit 62985984). Finally, we used Thrust 1.12.0.

All data presented are averaged over 3 runs and the Thrust

subjects were run for 100 iterations.

A. Results

RQ1: How effective is WAYOUT at generating bindings for

Kokkos Kernels and CUDA Thrust?

Using WAYOUT, we automatically generated bindings for

all the kernels in the Kokkos Kernels framework. We verified

that WAYOUT is able to run all 39 kernels present in the

Kokkos Kernels wiki [34], as well as the sparse matrix

container CrsMatrix and numerous other helper functions

used for memory allocation and initialization.

We then ported existing C++ programs that use these kernels

to Python. Specifically, we implemented 7 applications from

the official Kokkos repository [35] in Python:

• CGSolve: Implements a conjugate gradient algorithm for

solving systems of linear equations of the form Ax = b.

• CGSolve SpILUKprecond: Similar to CGSolve, but

uses preconditioning for faster convergence.

• GaussSeidel: Implements the Gauss-Seidel method for

solving a system of linear equations.

• GraphColoring: Assigns colors to elements of a graph

such that no neighboring nodes have the same color.

• InnerProduct: Calculates the inner product of the form

⟨y,A ∗ x⟩ = y
T
∗A ∗ x.

• SpGEMM: Implements sparse matrix-matrix multiplica-

tion in two phases: symbolic followed by numeric, with

a kernel for each phase.

• SpILUK: Implements sparse k-level incomplete LU fac-

torization.

We also need Python bindings for Kokkos Views as they

appear frequently in our test subjects and in Kokkos Kernels.

In our subjects, we used both the manually written Python

bindings and bindings automatically generated by WAYOUT.

As mentioned before, Views use the C++ parentheses operator

to modify data, meaning that they cannot be directly modified

in Python using the automatically generated bindings, so we

implement only four of our subjects using the latter.

To demonstrate the generality of our approach, we also

generated bindings for kernels in the Thrust library. We ported

7 examples from the official Thrust repository [36] to Python:

histogram, mode, saxpy, set operations, sort, sparse, and sum.

In summary, WAYOUT successfully generated bindings to

Kokkos Kernels and Thrust, which we were able to use to port

workloads from C++ to Python.

RQ2: What is the run-time performance overhead of the

bindings generated by WAYOUT?

Figure 10 shows plots of computation time (y-axis) vs. input

data size (x-axis) for our subjects from Kokkos Kernels and

Thrust. For WAYOUT, we show computation time after the

bindings have been instantiated and compiled for all types that

occur in each subject. We show binding generation time in

RQ4. The time shown does not include time spent to initialize

the subject, as most subjects initialize arrays in sequential

loops, which dominates the running time for larger input sizes.

Including that time would mean comparing Python to C++

rather than measuring the overhead of the generated bindings.

For most subjects, our Python implementation can achieve

performance comparable to the original C++ implementation.

For the CGSolve subject, we observe overhead that scales

with the size of the input data. This happens because the

subject runs most of its computations in a loop that calls the

kernel internally. It also computes a square root in Python

using the math.sqrt() function. The number of iterations of

this loop scales with the size of the input data, increasing the

number of calls to math.sqrt(), which in turn increases the

total time taken compared to the C++ implementation.

We also observe noticeable performance overhead for the

set operations subject (Figure 10k). This subject invokes var-

ious functions that each allocates a result vector and calls

a different set operation (e.g., merge, union). In C++, the

result vector is allocated on the stack, while in Python, the

object must be allocated on the heap. Both heap allocation and

Python’s garbage collector introduce substantial overhead.

Thus, these two outliers can be attributed to Python itself

rather than WAYOUT. In summary, bindings generated by

WAYOUT introduce minimal performance overhead.
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Fig. 10: Kernel time using WAYOUT generated bindings vs. original Kokkos Kernels/Thrust implementation.
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TABLE I: Performance of Generated versus Manually Written Bindings.

Subject Size OpenMP Time [s] CUDA Time [s]

Manual Generated Ratio Manual Generated Ratio

CGSolve SpILUKprecond 2
20

99.14 102.49 1.03 31.46 30.51 0.97

GaussSeidel 2
24

43.09 43.33 1.01 18.14 19.76 1.09

InnerProduct 2
30

31.65 31.62 1.00 212.82 213.79 1.00

SpILUK 2
21

3.18 3.12 0.98 9.66 9.71 1.01

TABLE II: Bindings Build Time (Kokkos Kernels on the left and Thrust on the right).

Subject Kernels Modules Static

Phase

[s]

Dynamic

Phase

(g++) [s]

Dynamic

Phase

(NVCC) [s]

Subject Kernels Modules Static

Phase

[s]

Dynamic

Phase

(g++) [s]

Dynamic

Phase

(NVCC) [s]

CGSolve 7 12 3.43 32.13 82.93 histogram 13 34 4.21 98.84 281.24

CG SpILUK 23 35 5.94 96.17 248.01 mode 10 28 4.15 81.86 230.83

GaussSeidel 8 15 5.77 43.17 111.63 saxpy 6 17 3.52 49.41 139.40

GraphColoring 11 17 5.13 51.29 130.21 set operations 11 17 3.68 49.50 144.43

InnerProduct 2 2 3.05 7.59 26.28 sort 5 12 3.61 34.79 98.36

SpGEMM 7 12 4.37 33.23 85.83 sparse 9 33 3.81 96.60 273.38

SpILUK 18 28 5.31 76.49 196.39 sum 4 11 3.50 31.92 90.87

RQ3: How does the run-time performance of the automatically

generated bindings compare to manually written bindings?

We compare the manually written Python bindings provided

in the Kokkos repository for the View class against the bind-

ings generated by WAYOUT. Table I shows the performance

of the generated bindings versus the handwritten ones with

both OpenMP and CUDA. The first column shows the name

of the subject. The second column shows the size of the input

data. The rest of the table shows computation time for both

the manually written and automatically generated bindings, as

well as the ratio of generated time to manual time.

The results show that the performance of the bindings

generated by WAYOUT matches that of the manually written

bindings. This is expected as both sets of bindings use py-

bind11, and WAYOUT only generates an additional lightweight

Python wrapper which has minimal performance overhead.

RQ4: What is the time needed to generate the bindings?

Table II shows the average time taken to automatically

generate the bindings for each library. The columns show the

name of the subject, the number of kernels used, the number

of modules generated (i.e., DSOs that instantiate the classes

and functions), the time taken during the static phase, and

the time taken during the dynamic phase for g++ and NVCC

respectively.

The results show that WAYOUT has acceptable execution

time. The largest cause of performance overhead in either

phase is caused by calling the C++ compiler. The time taken

during the static phase is mostly caused by compiling the

enums DSO file and does not vary greatly across subjects.

The time taken during the dynamic phase varies depending

on the number of modules generated and the compiler used.

More kernel calls with different types results in more template

instantiations, and therefore more modules generated. For

example, the CGSolve SpILUKprecond subject has a large

dynamic phase execution time, as it calls 23 kernels and

generates 35 modules, more than any other subject.

It is important to note that the execution time shown here

only occurs once, when the bindings are instantiated for the

first time. Later calls of kernels with the same types, and

even later runs of the same application would not incur this

overhead as the modules are cached on the filesystem.

WAYOUT is also considerably faster than the approach used

in the Kokkos View bindings [13], which is a purely static

approach that instantiates all combinations of types during

compilation. On our machine, compiling those bindings takes

over 6 hours, and runs out of memory on another machine.

VI. LIMITATIONS

C++ allows passing arguments and returning values by

value, pointer, or reference. Python always passes primitives

by value and objects by reference. As such, the Python API

generated by WAYOUT will not always exactly match the

functionality of the C++ API: primitives are always passed and

returned by value, and objects are always passed by reference

or pointer. WAYOUT allows passing pointers with ptr and

character pointers with char_ptr.

Another limitation of WAYOUT is that the generated wrap-

pers may not be very “Pythonic”. For example, while ptr

and char_ptr are practical solutions to pointer arguments,

such constructs will be unfamiliar to Python programmers.

Additionally, the generated wrappers do not make use of

certain Python features such as keyword arguments (i.e.,

**kwargs) and dynamic typing.

It would be possible to make the generated APIs more

Pythonic by adding another layer of abstraction on top of the

wrappers generated by WAYOUT. Currently, this would require

additional effort from the user, although we plan to explore a

way to automate this step in future work.
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Some kernels in Thrust accept a function object as an argu-

ment in order for the user to define kernel behavior. WAYOUT

does not support these kernels as this would require translating

Python code to C++; an earlier work, PyKokkos [11], supports

translation from Python to C++. However, since the goal of

WAYOUT is to bind existing HPKs where the behavior is

already defined, this is a minor limitation.

Finally, we focused primarily on Kokkos and Thrust in

our evaluation. We chose Kokkos because it is a popular

performance portability framework with a large number of

kernels, and Thrust is a popular CUDA library.

VII. RELATED WORK

A. Binding Frameworks

Boost.Python [28], pybind11 [12], SWIG [29], and pyxim-

port [16] are frameworks that allow binding C or C++ code so

that it can be called from Python. Typically, these frameworks

require that the user specify the C++ interface to be bound

using some form of domain-specific language or configuration

file. WAYOUT only asks the user for the header files containing

class and function declarations, and automatically generates

the bindings with no extra effort from the user.

B. Static Binding Generation

CFFI [37] is a Python library that can import C code using

C-like declarations and generate the necessary bindings in a C

file. However, it does not support C++ and requires the user

to manually declare the interface. AutoWIG [30] provides a

Python API to pass in header files and then generates bindings

using Boost.Python. Additionally, the user has to provide a

header file that contains all the needed template instantiations

for templated classes and functions. Afterwards, the user

must compile the generated bindings. Similarly, Binder [31]

statically parses header files to obtain all classes and functions.

As with AutoWIG, the desired template instantiations must

be explicitly used or specified in the header files. In contrast

to AutoWIG, it is meant to be used entirely through the

command-line. WAYOUT is more flexible and more Pythonic

through its dynamic analysis: templates are only instantiated

at run-time through types passed to automatically generated

Python wrapper classes. The user does not have to specify all

the types that they want to use ahead of time.

C. Dynamic Binding Generation

Cppyy [15] dynamically generates bindings to C++ libraries.

It uses Cling [18], a C++ interpreter based on Clang and

LLVM, to generate C++ code that instantiates and calls classes

and functions included in header files, and then binds that

code to enable accessing it from Python. The definitions

of those classes and functions are loaded at run-time by

dynamically linking a shared object library. This presents a

problem for libraries such as Kokkos Kernels, which currently

can only be compiled to a static library. WAYOUT provides the

flexibility of linking a static library during compilation, instead

of exclusively requiring shared object libraries as cppyy does.

Additionally, WAYOUT’s use of pybind11 to interface between

Python and C++ allows the user to manually write bindings

for some classes to make them more Pythonic if desired.

Furthermore, the dependence on Cling also limits supported

libraries to features supported by Cling. For instance, it does

not have support for thread level storage symbol relocation,

which is used in the shared object for Kokkos. Another

example is CUDA support. Since WAYOUT invokes a compiler

to compile shared objects, it has flexibility of choosing NVCC

rather than g++ as the compiler, whereas Cling support for

CUDA is still experimental.

D. High Performance Python

PyKokkos [11] is a framework for writing performance

portable kernels in Python. The user writes kernels in a

small, statically typed subset of Python, which PyKokkos

then translates to C++ (Kokkos) to obtain better performance.

Numba [10] is a Python JIT compiler based on LLVM.

Cython [16] adds C-like language extensions to Python to

improve performance. WAYOUT is not meant for writing

kernels. WAYOUT provides access to pre-existing, hand-tuned

high-performance kernels.

NumPy [27] and SciPy [26] both contain data structures and

kernels used in scientific computing. A significant part of both

libraries is implemented in C and C++ and manually wrapped

so it can be accessed from Python. WAYOUT automatically

generates bindings to interoperate between Python and C++.

VIII. CONCLUSION

We present WAYOUT, a technique for automatically gen-

erating Python bindings for C++ code, specifically high-

performance kernels. WAYOUT combines static and dynamic

analysis in order to reconcile Python’s dynamic nature with

C++’s static typing, and is able to support heavily templated

classes and functions. We implement WAYOUT by building

Python and C++ code generators that produce a connection

layer between the two languages. Our evaluation shows that

WAYOUT can support Kokkos Kernels framework and CUDA

Thrust with minimal performance overhead. Additionally,

WAYOUT can generate bindings at an acceptable performance

cost, making it more feasible than manually written and stati-

cally generated bindings. We believe that WAYOUT enables

faster development of scientific applications by connecting

Python, a high-level language frequently used by scientists,

to existing HPKs written in C++.
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