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Abstract—Traditionally, high performance kernels (HPKs)
have been written in statically typed languages, such as C/C++
and Fortran. A recent trend among scientists—prototyping ap-
plications in dynamic languages such as Python—created a gap
between the applications and existing HPKs. Thus, scientists
have to either reimplement necessary kernels or manually create
a connection layer to leverage existing kernels. Either option
requires substantial development effort and slows down progress
in science. We present a technique, dubbed WAYOUT, which
automatically generates the entire connection layer for HPKs
invoked from Python and written in C/C++. WAYOUT performs
a hybrid analysis: it statically analyzes header files to generate
Python wrapper classes and functions, and dynamically generates
bindings for those kernels. By leveraging the type information
available at run-time, it generates only the necessary bindings. We
evaluate WAYOUT by rewriting dozens of existing examples from
C/C++ to Python and leveraging HPKs enabled by WAYOUT.
Our experiments show the feasibility of our technique, as well
as negligible performance overhead on HPKs performance.

Index Terms—bindings, high performance kernels, dynamic
program analysis, Python

I. INTRODUCTION

Traditionally, high-performance computing (HPC) applica-
tions are written in statically typed (and low-level) program-
ming languages, such as C/C++ and Fortran [1]-[3]. These
languages are the de facto standard in the HPC area due to
the excellent performance of the resulting applications.

HPC applications spend most of their execution time in
so-called high-performance kernels (HPKs), such as linear
algebra operations and solvers [4]. Over the last several years,
the number of HPKs has been steadily growing and existing
HPKs are constantly optimized and updated to support new
hardware platforms.

Recently, several frameworks were introduced to enable
developers to write performance portable HPKs. Namely, a
developer can write an HPK only once and the framework
automatically enables the execution of that HPK on a variety of
hardware platforms (e.g., Intel CPUs, Nvidia GPUs, and AMD
GPUs). Some of the most notable frameworks that support
performance portability include Kokkos [5], [6] and RAJA [7].
These frameworks enable the rapid development of new HPKs,
although they are still based on C/C++.

Meanwhile, scientists are transitioning to dynamically typed
languages, such as Python [8], Julia [9], or Lua, for writing
their applications. In order to obtain good performance, sci-
entists have to either: (a) implement HPKs in their language
of choice (using high-performance libraries like Numba [10]

or PyKokkos [11]), or (b) create bindings to existing HPKs
implemented in C/C++ or one of the frameworks that supports
performance portability (using libraries like pybind11 [12]).
In either case, substantial work is required [13], [14]. Main-
tenance of manually written bindings (as HPKs evolve) intro-
duces additional challenges.

We present WAYOUT, a novel approach to automati-
cally generating connection layers for existing (performance
portable) HPKSs to be used by Python applications. WAYOUT
is the first approach that combines static and dynamic pro-
gram analysis. Specifically, for a given header file, WAYOUT
performs static analysis to create: (1) wrapper classes and
functions, i.e., a Python API provided to scientists that reflect
the given header file, and (2) header files with templated
bindings that will be instantiated at run-time. When a Python
application is executed and one of the wrapper functions is in-
voked, WAYOUT intercepts the call, instantiates and generates
the bindings for the given types, and invokes an existing HPK.
One of the key insights behind WAYOUT is that it postpones
binding generation until it has the types needed (which are not
available statically in Python). WAYOUT also caches generated
bindings, so only the very first invocation of each function
(with one set of type arguments) introduces some overhead;
the cache is saved across application runs.

We designed WAYOUT to overcome the limitations of
cppyy [15] and pyximport [16], which target the same task, but
take very different approaches. Unfortunately, neither of the
two mentioned approaches could be used to invoke existing
HPKs from within a Python application. Cppyy depends on
a powerful but immature tool chain, including PyPy [17],
an alternative implementation of the Python interpreter, and
Cling [18], an interactive C++ interpreter. On the other hand,
pyximport does not support dynamic instantiation of templates
and thus is unable to instantiate bindings if types are known
only at run-time.

We overcome a set of critical challenges to realize WAY-
OUT, including: (1) the lack of function and method over-
loading in Python; (2) concurrent use of multiple template
instantiations of the same class; (3) inferring types of returned
objects; and (4) ambiguously typed template arguments.

We evaluate WAYOUT by automatically generating bindings
for Kokkos Kernels [4], one of the most popular frameworks
for HPKs, and Thrust [19], a powerful template library con-
taining parallel algorithms. We rewrote a number of existing
examples (that use Kokkos Kernels and Thrust) from C/C++



to Python. Our experiments show the feasibility of our tech-
nique, as well as its negligible performance overhead on HPK
performance. In our experiments, we also show that WAYOUT
does not impact the performance portability of HPKs: we were
able to execute all the examples on both CPUs and GPUs.

This paper makes the following key contributions:

o Design of WAYOUT, a novel approach for automatically
generating a connection layer for existing HPKs to be used
in Python applications. WAYOUT uses a hybrid approach—
a combination of static and dynamic program analysis—to
instantiate the connection layer.

o Implementation of WAYOUT for Python. The design of
WAYOUT is modular and others could use our processing
of header files to support connection layer with other pro-
gramming languages, e.g., Lua. Source code of WAYOUT is
available at https://github.com/EngineeringSoftware/wayout.

« Evaluation of WAYOUT by rewriting a number of existing
examples from C/C++ to Python and using existing HPKs
from Kokkos Kernels and Thrust. We chose Kokkos because
it is a popular performance portability framework and it
currently has only a few manually written bindings; we
chose Thrust to demonstrate the generality of our approach.

II. MOTIVATION

In this section, we provide some background on HPKs and
binding generation, as well as motivation for WAYOUT.

A. HPKs

The usage of hand-optimized HPKSs in scientific computing
is extremely common. Typically, these kernels are written
using high performance C/C++ frameworks that can exploit
parallelism on multi-core processors, such as OpenMP [20] for
CPUs and CUDA [21] for GPUs. More recently, frameworks
such as Kokkos [5], [6] and RAJA [7] build abstractions on
top of these device-specific frameworks to enable performance
portability, i.e., code that is portable across devices while still
achieving good performance. As such, these frameworks are a
natural choice for writing high-performance kernels. Kokkos,
for example, is used by numerous applications and packages
for large-scale scientific computing, such as Trilinos [22],
LAMMPS [23], Albany [24], Empire [25], and others.

Kokkos Kernels [4] is a collection of performance portable
kernels written in Kokkos. It includes a large variety of math
kernels and data structures commonly used in linear algebra
and graph algorithms. One such example of a linear algebra
kernel is the sparse matrix vector multiply kernel, or SpMV
for short. The following code snippet shows how SpMV can
be called in a Kokkos (C++) application, where A is a sparse
matrix, alpha and beta are scalars, and x and y are vectors.

KokkosSparse: :spmv("N", alpha, A, x, beta, y);

B. Binding Generation

The target audience for these HPKs is largely composed
of scientists [4], [22] who need them for simulations and
experiments. However, these scientists typically do not have
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Fig. 1: An illustration of language bindings.

formal training in programming, so using C++, which is
notorious for its poor error messages and complicated build
systems, can be a huge deterrent. Instead, they prefer higher
level languages with “batteries included” [8], such as Python.
Several attempts have been made to expose these libraries
and kernels to other languages [11], [26], [27]. This requires
the use of language bindings, which allow for interoperability
between different languages. Figure 1 shows a high-level
illustration of language bindings between Python and C++.
Numerous frameworks have been implemented to provide
Python bindings to C++ code, such as Boost.Python [28],
pybind11 [12], and SWIG [29]. The following code snippet
shows what a call to SpMV could look like once it has been
exposed to Python through one of the binding frameworks.

spmv (char_ptr("N"), alpha, A, x, beta, y)

However, manually writing these bindings can be tedious
and challenging. For example, the Python bindings for creating
a Kokkos View [13], the main multi-dimensional data structure
in Kokkos, are written in pybindl1. Despite only binding
a small part of Kokkos, the total lines of code for these
bindings is over 900, as they make heavy use of C++ macros
and compile-time template instantiation to generate all the
different combinations of template arguments. For Kokkos
Views, this includes different data types (int16_t, int32_t,
double, etc.), dimensions (one through eight), memory lay-
outs, memory spaces, and memory traits. Each combination
of these arguments forms a single template instantiation. The
following code snippet shows one such instantiation.

Kokkos: :View<int*, LayoutLeft, HostSpace>;

Besides being hard to write, compiling the bindings takes
a large amount of time (around 6 hours on our machines
for a commonly used subset of all combinations) due to the
large number of template instantiations that need to happen. In
addition to the time overhead, compilation occasionally runs
out of memory due to the large number of template argument
combinations, meaning that the process will not terminate
successfully on some machines.

Prior work on automatic generation of Python bindings for
C++ code [30], [31] extracts library APIs by parsing header
files for class and function declarations. While this simplifies
writing the bindings, it requires that the user manually adds
code to instantiate all the needed template arguments since
these frameworks employ static analysis. Also, this does not



solve the compilation issues for large numbers of template
instantiations. Therefore, such an approach does not work well
for templated libraries such as Kokkos Kernels and Thrust.

As a result, we propose generating these bindings dy-
namically, i.e., on demand at run-time such that only the
necessary template instantiations are created. This allows types
to be passed at run-time, removing the need for the user to
manually add template instantiation. It also reduces the cost
of compilation by compiling bindings only when needed. We
show that this approach can achieve performance comparable
to manually written bindings.

III. WAYOUT OVERVIEW

In this section, we show an example of high performance
kernel (HPK) from Kokkos Kernels, and then use this HPK to
demonstrate the workflow of WAYOUT.

We encountered multiple challenges during the design and
implementation of WAYOUT. We highlight these challenges
Y% like so, and then outline our design choices and how we
solved these challenges.

A. Example

Figure 2 shows the function signature of the SpMV HPK
spmv (line 4) and the class declaration of CrsMatrix, the
sparse matrix data structure it operates on (line 13). This kernel
performs the operation y = beta * y + alpha * A * x.

The template parameters of spmv are used to set the types
used in the kernel at compile-time: AlphaType, BetaType
are the scalar types, XVector and YVector are the vector
types, and AMatrix is the sparse matrix type, which can be
set to CrsMatrix in this example. The template arguments
for CrsMatrix are as follows: ScalarType is the type of
entries contained in the matrix, OrdinalType is the type
of the matrix index, Device specifies on which device’s
memory (e.g., GPU) the matrix is located in, MemoryTraits
specifies the Kokkos memory access trait to be used (Atomic,
RandomAccess, etc.), and SizeType specifies the type of the
row offset.

Figure 3 shows an example using spmv and CrsMatrix.
To call the kernel, the user first defines mat_t to alias the
instantiated CrsMatrix type (line 3) and instantiates the
matrix and vectors (lines 7-10). The CrsMatrix constructor
takes in as arguments the number of rows, columns, and
elements, followed by Views containing the matrix entries,
row offsets, and column indices. Views y and x represent the
one-dimensional vectors, and their constructor specifies the
size of the View. The View constructor is templated on the
datatype and dimensionality (one-dimensional double in this
case). Finally, the user can call the spmv kernel (as shown
on line 12). The arguments passed to the call are a string
specifying the operation mode (no transpose, transpose, or
conjugate transpose), the scalar alpha, the matrix A, the vector
x, the scalar beta, and the vector y. The latter is passed by
reference and will hold the result of the operation upon return
from the function.

1 template <class AlphaType, class AMatrix,

2 class XVector, class BetaType,

3 class YVector>

4 void spmv(const char mode[], const AlphaType &alpha,
5 const AMatrix &A, const XVector &x,

6 const BetaType &beta, const YVector &y);

AVE I

8

9 template <class ScalarType, class OrdinalType,
10 class Device, class MemoryTraits = void,
11 class SizeType = typename Kokkos::ViewTraits

12 <0rdinalType *, Device, void, void>::size_type>
13 class CrsMatrix;
14 /x ... %/

Fig. 2: An example of a kernel and data structure declaration
from Kokkos Kernels.

1 int main() {

2 VAT V)

3 using mat_t = KokkosSparse::CrsMatrix<

4 double, int,

5 Kokkos: :DefaultExecutionSpace, void, int>;
6

7

8

mat_t A = mat_t(numRows, numCols, nnz, val, ptr, in);

9  View<double *> y(N);

10 View<double *> x(N);

11

12 KokkosSparse: :spmv("N", alpha, A, x, beta, y);

13}

Fig. 3: An example using a kernel and data structure from

Kokkos Kernels.

B. Workflow

Figure 4 shows a high-level overview of WAYOUT; in this
section we highlight the user workflow. There are two main
steps to WAYOUT’s workflow. First, the user provides the path
to the header files or the include directory. WAYOUT then
generates a Python API consisting of wrappers for the C++
API, which was declared in the passed header files. The user
can then access the C++ API using the Python API exposed
by the generated wrappers.

1) Header Files: The first step in using WAYOUT is
passing in the header files containing the required class and
function declarations that together constitute the API (step D
in Figure 4).

WAYOUT can then generate Python wrappers that mirror
the C++ API (kernel.py in Figure 4).

2) Python Wrappers: Once the Python wrappers have been
generated, they can be imported (step ) and called (step @)
by the user. Calling a wrapper for the first time will generate
the templated bindings which will then be compiled into a
shared library @. Figure 5 shows the SpMV example using the
generated wrappers. Similar to the C++ version, we first alias
the matrix type (line 3), and then define the matrix and vectors
(lines 5-9). We call the CrsMatrix class method nnz, which
returns the number of entries in the matrix, to demonstrate
how a class method can be called (line 6). Finally, we call the
spmv kernel (line 10).

WAYOUT generates wrappers for both function and class
declarations, as well as wrappers for public fields and methods,
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Fig. 4: An overview of WAYOUT’s workflow.

if __name__ == "__main__"
# assume constructor arguments are initialized
mat_t = CrsMatrix(
float, int, ”Kokkos::DefaultExecutionSpace”, None, int)
A = mat_t(numRows, numCols, nnz, val, ptr, ind)

print("num_elem:”, A.nnz())

1
2
3
4
5
6
7
8 y = View("double ")(N)

9 x = View("double ")(N)

0 spmv(char_ptr("N”), alpha, A, x, beta, b)

Fig. 5: Python WAYOUT example using spmv and CrsMatrix.

if ==

__name__ __main__
# assume constructor arguments are initialized
crsmat_t = CrsMatrix(
float, int, ”"Kokkos::DefaultExecutionSpace”, None, int)
A = generate_structured_matrix2D(
"FD”, structure, template_args=[crsmat_t])

AN AW N -

Fig. 6: Python WAYOUT example using template_args.

in the original C++ API.

Functions. One Python wrapper function is generated for
each C++ function. An issue that arises here is overloaded
functions. ¥ Python does not allow overloaded functions i.e.,
redefining a function with a different number and different
types of arguments. To account for this, WAYOUT instead
generates a single wrapper function with a variable number of
arguments for each unique function name. At run-time, if an
overloaded function is used, the correct instance will be called
based on the number and types of the arguments passed by
the user.

Users can call templated functions normally because the
template arguments can be deduced from the argument types
at run-time in most cases. Y In some cases, these types
cannot be deduced, and so have to be explicitly specified
by the user. For example, Figure 6 shows a code snippet
taken from a Kokkos Kernels tutorial using CrsMatrix.
Instead of calling the constructor directly, it calls the
generate_structured_matrix2D kernel to initialize the
matrix. In C++, this kernel is templated on the type of the
matrix to be initialized. The two arguments are for stencil
type and matrix structure. These arguments do not hint at

what the type of the generated matrix should be, so the users
must pass the template argument to WAYOUT; otherwise, C++
compilation fails. These arguments can be passed in via the
keyword argument template_args.

When the user calls a function, the arguments are passed to
the underlying kernels by reference. However, there are cases
where a kernel expects an argument as a pointer. To support
this, WAYOUT provides a simple class named ptr which the
user can use to wrap their object and indicate that the argument
should be passed as a pointer. A similar issue occurs with
string arguments: some functions require the standard C++
string whereas others accept character pointers. To support
this, Python strings are cast to standard strings by default,
and arguments that are character pointers use the char_ptr
wrapper class. Line 10 in Figure 5 shows an example of this.

If a function returns a pointer, the default behavior is to treat
it as a reference, i.e., assume that C++ retains ownership of
the object. This means that when the resource is freed, Python
would not attempt to garbage collect the object and assume
the C++ run-time would do so. To override this behavior, the
user can set the boolean keyword argument take_ownership
so that Python is responsible for freeing memory.

Classes. One wrapper class is generated for each C++ class.
The __init__ method (i.e., the constructor in Python) of the
wrapper class is used to pass in template arguments, creating
a type object that can also be used as a type alias (Figure
5 line 3). To create an instance of the class, the user calls
the type object, passing in the constructor arguments to the
__call__ method (line 5).

Wrapper classes can accept a variable number of templates
to support optional template arguments. Additionally, if the
template argument is a primitive data type (i.e., int, float,
etc.), the corresponding Python data type can be used. If the
template argument is a class type, it can be set to a type alias or
it can be passed as a string. The latter is useful for referring to
typedefs defined in the header files. For instance, in Kokkos
the DefaultExecutionSpace type is simply a typedef that
changes depending on compile-time flags, but we can still use
it as a template argument in Python by passing it as a string to
the class constructor (line 3). This can also be used to specify



pointer types (e.g., doublex) for template arguments (line 8).

Once an object has been created, it can be used like any
Python object. The wrapper class contains all class fields
and methods present in the C++ version. Private fields and
methods are not accessible. As WAYOUT supports inheritance,
attributes from the parent class are accessible as well. Any
object returned from a function call will be automatically
wrapped using the correct wrapper class.

Figure 7 shows the generated Python wrappers for the
SpMV example. The spmv wrapper is defined on line 1 and
the CrsMatrix wrapper is defined on line 8; the contents of
these wrappers are explained in the next section.

IV. TECHNIQUES

In this section, we describe our binding generation ap-
proach, including both static and dynamic phases. In the
static phase (Section IV-A), WAYOUT parses C++ header files
to generate Python wrappers and templated bindings. In the
dynamic phase (Section IV-B), WAYOUT intercepts calls to the
Python wrappers. Then, it instantiates, compiles, and imports
the templated bindings based on the types known only at
run-time, completing the link between Python and C++. We
then describe the casting mechanisms used to move arguments
from Python to C++ and vice versa (Section IV-C). Next, we
describe our techniques to support inheritance (Section IV-D)
and operator overloading (Section IV-E). Finally, we discuss
GPU support (Section IV-F) and integration with manually
written bindings (Section IV-G).

There are two highlights to our approach: first, generating
Python code in the form of wrapper classes and functions
allows the user to easily use and potentially modify the
generated bindings; second, the lazy approach to binding
instantiation and compilation reduces the otherwise high com-
putational cost of binding and compiling everything ahead of
time. Once a binding has been compiled, it is cached on the
file system for later use.

A. Static Generation

We use Clang [32] to parse the header files and py-
bind11 [12] as the bindings library. We chose pybindl1 due
to its popularity, flexibility, and ease of use. Writing bindings
using pybindl1 involves defining a Python module object
which is used to register classes and functions so that they
can be accessed from Python.

When WAYOUT is invoked by a user, it uses the Clang
Python API to parse the header files and return the root node
of the corresponding Abstract Syntax Tree (AST). WAYOUT
can then extract the API from header files by traversing the
AST recursively to discover classes and functions. One issue
with this approach is that ¥ Python does not allow function
or method overloading, both of which are used heavily in
HPKSs, such as Kokkos Kernels, especially for constructors.
To deal with this, WAYOUT first stores function names in a
set so that only one wrapper function is generated, even if
other overloaded instances exist. Inside the wrapper functions
for overloaded functions, WAYOUT adds code that selects

1 def spmv(xargs, template_args=None, take_ownership=False):

2 mod, name=generate_func_binding("spmv”’, “KokkosSparse”,
3 args, _includes, template_args, take_ownership)

4 args = [get_handle(arg) for arg in args]

5 res = getattr(mod, name)(xargs)

6 return cast_return(res)

.

8

class CrsMatrix:

9 ”Compressed sparse row implementation of a sparse matrix.”””
10 _namespace = "KokkosSparse”
11 def __init__(self, «template_args, _handle=None):
12 self._handle = _handle
13 self._cpp_name = _handle._cpp_type if _handle else \
14 register_class("CrsMatrix”, self._namespace, template_args)
15 def __call__(self, sargs):
16 if self._handle:
17 if hasattr(self, *__cpp_call__"):
18 return self.__cpp_call__(xargs)
19 raise RuntimeError(
20 “Error: can’t call constructor on instance!”)
21 mod,name = generate_constructor(self._cpp_name, args, _includes)
22 args = [get_handle(arg) for arg in args]
23 inst = _copy.copy(self)
24 inst._handle = getattr(mod, name)(:args)
25 return inst
26 def nnz(self, sargs, take_ownership=False):
27 ””//! The number of stored entries in the sparse matrix.”””
28 mod,name = generate_class_func_binding(self, “nnz”, args,
29 _includes, take_ownership)
30 args = [get_handle(arg) for arg in args]
31 res = getattr(mod, name)(self._handle, xargs)
32 return cast_return(res)
33 L w7

Fig. 7: Python wrapper generated by WAYOUT for spmv and
CrsMatrix.

1 #include <pybind11/pybindiil.h>

2 #include <KokkosSparse_CrsMatrix.hpp>

3 template <class T>

4 void generate_class(pybindll::module &_mod,

5 const char *name, const char *cpp_type) {

6 pybind11l::class_<T> _class(_mod, name);

7 _class.def_property_readonly_static("_cpp_type",
8 [cpp_typel (const pybindil::object&) {

9 return cpp_type;

10 b

11 _class.def_readwrite("graph", &T::graph);

12 _class.def_readwrite("values", &T::values);

13 VAT Y

14 3}

Fig. 8: Generated C++ templated header for the CrsMatrix.

the appropriate overloaded instance at run-time based on the
types of the arguments. These types are extracted from the
arguments using the Python built-in function type ().

WAYOUT then generates Python wrappers mirroring the
original C++ API. Figure 7 partially shows the generated
wrappers for the spmv function and CrsMatrix class, with the
latter also containing wrapper methods for its corresponding
C++ class methods.

In addition to Python wrappers, WAYOUT generates one
C++ header file for each class encountered during AST traver-
sal. Figure 8 shows the header generated for the CrsMatrix
class. The header file contains a function templated on T,
where T is the type to be registered via pybindl1. The



function registers the type T with pybindl1, as well as all
the class fields. Since all instances of a templated class
have the same members, the header file can be reused by
different instantiations of the templated class at run-time e.g.,
CrsMatrix<double,...> or CrsMatrix<int,...>.

B. Dynamic Generation

At run-time, the user imports and calls the generated Python
wrappers (shown in Figure 7). Internally, the wrappers call
WAYOUT to instantiate the templated functions based on
the types passed, generating a C++ source file that uses the
templated binding header files generated in the static phase.
WAYOUT then compiles the C++ source into a shared object
file (or simply DSO) that can be imported and used by the
wrapper. Later calls to the same wrappers will reuse the
existing DSO if the types are unchanged.

1) Wrapper: In Figure 7, the spmv wrapper calls the
WAYOUT function generate_function_binding (line 2)
to generate the function binding. This call captures infor-
mation such as function name ("spmv") and namespace
("KokkosSparse") which are needed to uniquely identify
the C++ function that needs to be bound. This is needed in
combination with the arguments and optionally the template
arguments to generate a hash that uniquely identifies the bind-
ing instantiation. Similarly, the methods of CrsMatrix call
WAYOUT to generate instantiated bindings. The generate
functions check to see if a module matching the hash has been
imported. If so, it simply returns the module object containing
the function. If the module has not been imported, WAYOUT
attempts to import it from the file system. If the corresponding
DSO does not exist, then WAYOUT generates the binding
instantiation source code for the function.

2) Binding Generation: There are two main types of bind-
ings. One is for registering classes so pybindl1 knows how
to cast objects between Python and C++, while the other
is for binding an instantiated templated function. For class
registration, the binding source code first includes the class
header (shown in Figure 8) generated during the static phase
and uses it to register classes. For function bindings, WAYOUT
generates intermediate C++ functions that cast arguments from
Python types to the corresponding C++ types and internally
call the API function.

Figure 9 shows examples for both types of bindings. During
class registration, a Python module object is first created using
the PYBIND11_MODULE (line 4). The first argument is the name
of the kernel which is set to the unique hash corresponding
to that instantiation. The second argument is a handle to the
module object that is used to register functions for that module.
Then, the class is registered in pybind11 (line 5).

WAYOUT defines an intermediate function for each method
(lines 15, 26, and 35) which accepts as input an argument of
type pybind11: :args containing a list of arguments. We use
auto as the return type of the intermediate functions and rely
on the compiler to deduce it from the argument types.

Each intermediate function explicitly casts each argument to
its corresponding C++ type (e.g., lines 16-17) and then calls

/ /
/* generated binding code for registering CrsMatrix */
#include "CrsMatrix.hpp"
PYBIND11_MODULE(f_f8ee838d9c3174dc82a, k) {
generate_class<KokkosSparse: :CrsMatrix<
double, int,
Kokkos: :DefaultExecutionSpace, void, int>>(
k, "f_f8ee838d9c3174dc82a",
"KokkosSparse: :CrsMatrix<double,int,"
"Kokkos: :DefaultExecutionSpace,void,int>");

e B Y L

— =
- O 0o

}

[ —
[SSIN )

/ /
/* generated binding code for CrsMatrix constructor */
auto func(pybindll::args args) {
auto a0 = args[0].cast<std::string>();
auto al = args[1].cast<int>();
VAT
return new KokkosSparse::CrsMatrix<double, int,
Kokkos: :DefaultExecutionSpace, void, int>
{a0, al, a2, a3, a4, ab, a6};

N — — —
N = O 0 03N s

}

NI
B W

/ /
/* generated binding code for nnz method of CrsMatrix */
auto func(pybindll::args args) {
auto &a0 = args[0].cast<
KokkosSparse: :CrsMatrix<double, int,
Kokkos: :DefaultExecutionSpace, void, int> &>Q);
return a0.nnz();

}

L L L W N NN
W= O 0 03U

/ /
/* generated binding code for spmv */
auto func(pybindll::args args) {

auto a0 = args[0].cast<std::string>();

auto al = args[1].cast<double>();

VA

L L L L L W
O 0N N

40 }

Fig. 9: Generated C++ binding instantiation code for the
SpMV example.

the C++ API function. The first function calls the CrsMatrix
constructor (line 19), the second function calls the nnz class
method (line 30), and the third function calls the standalone
spmv function (line 39).

The bindings are then compiled into object files. Intuitively,
WAYOUT would then link the files containing all the instan-
tiations into one single DSO file and import it. Whenever a
new instantiation is generated and linked, WAYOUT would
reload the DSO. However, this will not work because ¥
Python does not provide support for dynamically reloading
DSOs unless their reference count reaches zero and they are
garbage collected. Waiting for the garbage collector to run is
unreliable and might not even happen before the application
completes. Our solution is to generate a separate DSO for each
template instantiation of every class and function. This has the
added benefit of avoiding the extra linking overhead when new
bindings are generated. It also allows WAYOUT to elegantly
support overloading and templates by separating them into
different modules and avoiding re-definition errors in Python,
since each combination of arguments would correspond to a
different module.

return KokkosSparse::spmv(a0.c_str(), al, a2, a3, a4, ab);



The generated Python wrapper can then access and call
functions registered in the module using the built-in getattr
function (Figure 7, lines 5, 24, and 31).

C. Casting

When the user calls a bound function (such as spmv in
Figure 5, line 10), WAYOUT casts the passed arguments from
types that are valid in Python to types that are valid in C++.
Once control returns to the Python side, the returned binding
object is also cast to the correct wrapper class. WAYOUT uses
three forms of casting: explicit, implicit, and autocasting.

1) Explicit Casting: As mentioned previously, intermediate
functions accept as input a list of arguments (args). Explicit
casting refers to calling the pybindl1 cast method on ele-
ments of args to convert them into types that can be used in
C++, storing them in local variables (Figure 9, lines 16-17).
These variables can then be passed to the C++ function call.

The type to be cast to is passed as a template argument.
Since the binding instantiation is generated at run-time, these
types are chosen based on the types of the passed arguments.
This form of casting works fine if the argument is a primitive
(e.g., int). However, if the argument type is one of the
wrapper classes (e.g., CrsMatrix), an additional implicit cast
may be required.

2) Implicit Casting: In heavily templated classes, it is
common for objects with slightly different template instantia-
tions to be semantically equivalent. For instance, the Kokkos
View object has an execution space template argument, which
can either be of type Device or MemorySpace, which are
interchangeable. In the SpMV example, spmv can accept both
Kokkos: :View<double *, HostSpace> and
Kokkos: :View<double *, Device<OpenMP, HostSpace>
for its View arguments, even if they are different types, be-
cause Kokkos internally implements implicit casting between
the two.

In order for pybindl1’s cast to work on non-primitive
types, WAYOUT must use the type that was obtained during
class registration, as that is the type that pybind11 recognizes.
Otherwise, cast throws an exception for an illegal cast.

In some cases, different parts of a C++ API depend on
different template instantiations of the same class, even if
they are semantically equivalent. vx This is a challenge for
WAYOUT since it uses pybindl1 to cast objects to the exact
type needed by functions, which will result in an exception if
there is any difference in types.

To solve this, WAYOUT caches information about the C++
type of a binding object by adding an extra _cpp_type field
during class registration. This extra field is a string set to
the fully qualified C++ type name. Therefore, during binding
generation, WAYOUT can use this stored name to cast the
argument to the appropriate type.

3) Autocasting: ¥ When an object is returned from a
function, pybindll does not cast it to one of WAYOUT'’s
wrapper classes, so it cannot be used to access the fields
and methods. Ideally, the functions would return objects of
the same type as the generated wrapper class.

WAYOUT therefore wraps these objects in the appropriate
wrapper class so the class fields and methods can still be
accessed normally (Figure 7, line 6). To do so, WAYOUT
first checks if the returned object has the _cpp_type field.
If not, then the returned object is a primitive and no casting
is needed. Otherwise, WAYOUT initializes a wrapper object
using the binding object as the handle.

Additional complications occur when the return type has not
been registered with pybind11. For example, assume the user
calls a function that returns a matrix type that has not been
instantiated before. To solve this, we also generate dummy
functions which return empty instances of the return type.
When a module is imported, WAYOUT also calls the dummy
function. If the class is not registered, a TypeError will be
thrown by pybind11, which we catch and parse to extract the
class that needs to be registered. Since this only needs to be
done once when a module is imported, the overhead is minimal
and guarantees that all return types are registered.

D. Inheritance

Inheritance is a commonly used feature in C++ to facilitate
code reuse. While it is not used much in Kokkos Kernels,
Thrust [19] extensively utilizes inheritance in its various
structures. WAYOUT supports inheritance during the static
phase, where the name of the parent can be extracted from
the AST. Then we can naturally emulate the C++ inheritance
relationship by having the Python wrapper class of a C++ child
class inherit from the Python wrapper class of the parent.

E. Operator Overloading

Operator overloading in C++ is used to implement the built
in operators for custom datatypes, e.g., using the [ ] operator
to access elements in a data structure. WAYOUT supports
operator overloading by treating them as class methods, with
the caveat that the method name is mapped to the corre-
sponding Python magic method name (e.g., operator[] to
__setitem__ and __getitem__). Since WAYOUT already
uses the __call__ magic method for invoking the constructor,
we map the C++ call operator to a new __cpp_call
method which is invoked when a class instance is called
(e.g., Figure 7 line 17). WAYOUT currently supports the C++
addition, subtraction, bracket, call, and dereference operators,
although support for others is planned.

F. GPU Support

As most HPKs support heterogeneous systems, it is impor-
tant for WAYOUT to support GPUs as well. Code that runs
on GPUs (e.g., CUDA or HIP) typically cannot be compiled
using a regular C++ compiler such as g++. Instead, it needs to
be compiled with a specific compiler (e.g., NVCC for CUDA).
This is easy to do in WAYOUT, as the only modification
needed is to switch to the right compiler. Additionally, since
one of the main targets of our work is Kokkos, the kernel
interface does not change when running with a GPU, so no
further modifications to WAYOUT are needed.



G. Integration of Manually Written Bindings

There are instances where it is still beneficial to use man-
ually written bindings for convenience reasons. For instance,
the Kokkos View object is a general purpose n-dimensional
data structure. It overloads the parentheses operator for reading
and modifying data instead of the commonly used square
brackets (e.g., int x = view(1) ;). This does not work well
with pybindl1 since the parentheses operator returns a refer-
ence to a primitive, which pybind11 handles by passing by
value to Python, meaning that modification of the contents
is not possible. However, Kokkos does have Python bindings
(manually written) for Views [13]. These bindings leverage a
pybind11 feature that allows the Python buffer protocol [33]
to be implemented for the raw data buffer contained in Views,
which allows the internal data to be accessed normally from
Python. Since they are implemented using pybindll, these
bindings can be used seamlessly with WAYOUT.

V. EVALUATION

We evaluate WAYOUT by answering the following four
research questions:

RQ1. How effective is WAYOUT at generating bindings for
Kokkos Kernels and CUDA Thrust?

RQ2. What is the run-time performance overhead of the
bindings generated by WAYOUT?

RQ3. How does the run-time performance of the automatically
generated bindings compare to handwritten bindings?

RQ4. What is the time needed to generate the bindings?

We ran all experiments on an Ubuntu 18.04 machine with a 6-
core Intel Core 17-8700 3.20GHz CPU and 64GB of RAM, and
an Nvidia GeForce 1080 GPU with 8GB of memory. We used
Python 3.8.5, GCC 7.5, OpenMP 4.5, and CUDA 10.2. We
used Kokkos 3.1.01, and Kokkos Kernels from the “develop”
branch (commit 62985984). Finally, we used Thrust 1.12.0.

All data presented are averaged over 3 runs and the Thrust
subjects were run for 100 iterations.

A. Results

RQI: How effective is WAYOUT at generating bindings for
Kokkos Kernels and CUDA Thrust?

Using WAYOUT, we automatically generated bindings for
all the kernels in the Kokkos Kernels framework. We verified
that WAYOUT is able to run all 39 kernels present in the
Kokkos Kernels wiki [34], as well as the sparse matrix
container CrsMatrix and numerous other helper functions
used for memory allocation and initialization.

We then ported existing C++ programs that use these kernels
to Python. Specifically, we implemented 7 applications from
the official Kokkos repository [35] in Python:

« CGSolve: Implements a conjugate gradient algorithm for

solving systems of linear equations of the form Az = b.

« CGSolve_SpILUKprecond: Similar to CGSolve, but

uses preconditioning for faster convergence.

« GaussSeidel: Implements the Gauss-Seidel method for

solving a system of linear equations.

« GraphColoring: Assigns colors to elements of a graph

such that no neighboring nodes have the same color.

« InnerProduct: Calculates the inner product of the form

(y, Axz)=y" * Axzx.
« SpPGEMM: Implements sparse matrix-matrix multiplica-
tion in two phases: symbolic followed by numeric, with
a kernel for each phase.
« SpILUK: Implements sparse k-level incomplete LU fac-
torization.
We also need Python bindings for Kokkos Views as they
appear frequently in our test subjects and in Kokkos Kernels.
In our subjects, we used both the manually written Python
bindings and bindings automatically generated by WAYOUT.
As mentioned before, Views use the C++ parentheses operator
to modify data, meaning that they cannot be directly modified
in Python using the automatically generated bindings, so we
implement only four of our subjects using the latter.

To demonstrate the generality of our approach, we also
generated bindings for kernels in the Thrust library. We ported
7 examples from the official Thrust repository [36] to Python:
histogram, mode, saxpy, set_operations, sort, sparse, and sum.

In summary, WAYOUT successfully generated bindings to
Kokkos Kernels and Thrust, which we were able to use to port
workloads from C++ to Python.

RQ2: What is the run-time performance overhead of the
bindings generated by WAYOUT?

Figure 10 shows plots of computation time (y-axis) vs. input
data size (x-axis) for our subjects from Kokkos Kernels and
Thrust. For WAYOUT, we show computation time after the
bindings have been instantiated and compiled for all types that
occur in each subject. We show binding generation time in
RQ4. The time shown does not include time spent to initialize
the subject, as most subjects initialize arrays in sequential
loops, which dominates the running time for larger input sizes.
Including that time would mean comparing Python to C++
rather than measuring the overhead of the generated bindings.

For most subjects, our Python implementation can achieve
performance comparable to the original C++ implementation.

For the CGSolve subject, we observe overhead that scales
with the size of the input data. This happens because the
subject runs most of its computations in a loop that calls the
kernel internally. It also computes a square root in Python
using the math.sqrt () function. The number of iterations of
this loop scales with the size of the input data, increasing the
number of calls to math.sqrt (), which in turn increases the
total time taken compared to the C++ implementation.

We also observe noticeable performance overhead for the
set_operations subject (Figure 10k). This subject invokes var-
ious functions that each allocates a result vector and calls
a different set operation (e.g., merge, union). In C++, the
result vector is allocated on the stack, while in Python, the
object must be allocated on the heap. Both heap allocation and
Python’s garbage collector introduce substantial overhead.

Thus, these two outliers can be attributed to Python itself
rather than WAYOUT. In summary, bindings generated by
WAYOUT introduce minimal performance overhead.
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Fig. 10: Kernel time using WAYOUT generated bindings vs. original Kokkos Kernels/Thrust implementation.



TABLE I: Performance of Generated versus Manually Written Bindings.

Subject Size OpenMP Time [s] CUDA Time [s]
Manual  Generated Ratio Manual Generated Ratio
CGSolve_SpILUKprecond 22 99.14 10249  1.03 3146 3051 097
GaussSeidel 2%t 43.09 4333 1.01 18.14 1976 1.09
InnerProduct 2% 3165 3162 1.00  212.82 21379 1.00
SpILUK 22! 3.18 312 098 9.66 971 101

TABLE II: Bindings Build Time (Kokkos Kernels on the left and Thrust on the right).

Subject Kernels Modules Static Dynamic Dynamic Subject Kernels Modules Static Dynamic Dynamic

Phase Phase Phase Phase Phase Phase

[s1 (g+d)[s] (NVCO) [s] [s1 (g++)[s] (NVCO) [s]

CGSolve 7 12 3.43 32.13 82.93 histogram 13 34 421 98.84 281.24
CG_SpILUK 23 35 5.94 96.17 248.01 mode 10 28 4.15 81.86 230.83
GaussSeidel 8 15 5.77 43.17 111.63 saxpy 6 17 3.52 49.41 139.40
GraphColoring 11 17 5.13 51.29 130.21 set_operations 11 17 3.68 49.50 144.43
InnerProduct 2 2 3.05 7.59 26.28 sort 5 12 3.61 34.79 98.36
SpGEMM 7 12 437 33.23 85.83 sparse 9 33 3.81 96.60 273.38
SpILUK 18 28 5.31 76.49 196.39 sum 4 11 3.50 31.92 90.87

RQ3: How does the run-time performance of the automatically
generated bindings compare to manually written bindings?

We compare the manually written Python bindings provided
in the Kokkos repository for the View class against the bind-
ings generated by WAYOUT. Table I shows the performance
of the generated bindings versus the handwritten ones with
both OpenMP and CUDA. The first column shows the name
of the subject. The second column shows the size of the input
data. The rest of the table shows computation time for both
the manually written and automatically generated bindings, as
well as the ratio of generated time to manual time.

The results show that the performance of the bindings
generated by WAYOUT matches that of the manually written
bindings. This is expected as both sets of bindings use py-
bind11, and WAYOUT only generates an additional lightweight
Python wrapper which has minimal performance overhead.
RQ4: What is the time needed to generate the bindings?

Table II shows the average time taken to automatically
generate the bindings for each library. The columns show the
name of the subject, the number of kernels used, the number
of modules generated (i.e., DSOs that instantiate the classes
and functions), the time taken during the static phase, and
the time taken during the dynamic phase for g++ and NVCC
respectively.

The results show that WAYOUT has acceptable execution
time. The largest cause of performance overhead in either
phase is caused by calling the C++ compiler. The time taken
during the static phase is mostly caused by compiling the
enums DSO file and does not vary greatly across subjects.
The time taken during the dynamic phase varies depending
on the number of modules generated and the compiler used.
More kernel calls with different types results in more template
instantiations, and therefore more modules generated. For
example, the CGSolve_SpILUKprecond subject has a large
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dynamic phase execution time, as it calls 23 kernels and
generates 35 modules, more than any other subject.

It is important to note that the execution time shown here
only occurs once, when the bindings are instantiated for the
first time. Later calls of kernels with the same types, and
even later runs of the same application would not incur this
overhead as the modules are cached on the filesystem.

WAYOUT is also considerably faster than the approach used
in the Kokkos View bindings [13], which is a purely static
approach that instantiates all combinations of types during
compilation. On our machine, compiling those bindings takes
over 6 hours, and runs out of memory on another machine.

VI. LIMITATIONS

C++ allows passing arguments and returning values by
value, pointer, or reference. Python always passes primitives
by value and objects by reference. As such, the Python API
generated by WAYOUT will not always exactly match the
functionality of the C++ API: primitives are always passed and
returned by value, and objects are always passed by reference
or pointer. WAYOUT allows passing pointers with ptr and
character pointers with char_ptr.

Another limitation of WAYOUT is that the generated wrap-
pers may not be very “Pythonic”. For example, while ptr
and char_ptr are practical solutions to pointer arguments,
such constructs will be unfamiliar to Python programmers.
Additionally, the generated wrappers do not make use of
certain Python features such as keyword arguments (i.e.,
xxkwargs) and dynamic typing.

It would be possible to make the generated APIs more
Pythonic by adding another layer of abstraction on top of the
wrappers generated by WAYOUT. Currently, this would require
additional effort from the user, although we plan to explore a
way to automate this step in future work.



Some kernels in Thrust accept a function object as an argu-
ment in order for the user to define kernel behavior. WAYOUT
does not support these kernels as this would require translating
Python code to C++; an earlier work, PyKokkos [11], supports
translation from Python to C++. However, since the goal of
WAYOUT is to bind existing HPKs where the behavior is
already defined, this is a minor limitation.

Finally, we focused primarily on Kokkos and Thrust in
our evaluation. We chose Kokkos because it is a popular
performance portability framework with a large number of
kernels, and Thrust is a popular CUDA library.

VII. RELATED WORK

A. Binding Frameworks

Boost.Python [28], pybind11 [12], SWIG [29], and pyxim-
port [16] are frameworks that allow binding C or C++ code so
that it can be called from Python. Typically, these frameworks
require that the user specify the C++ interface to be bound
using some form of domain-specific language or configuration
file. WAYOUT only asks the user for the header files containing
class and function declarations, and automatically generates
the bindings with no extra effort from the user.

B. Static Binding Generation

CFFI [37] is a Python library that can import C code using
C-like declarations and generate the necessary bindings in a C
file. However, it does not support C++ and requires the user
to manually declare the interface. AutoWIG [30] provides a
Python API to pass in header files and then generates bindings
using Boost.Python. Additionally, the user has to provide a
header file that contains all the needed template instantiations
for templated classes and functions. Afterwards, the user
must compile the generated bindings. Similarly, Binder [31]
statically parses header files to obtain all classes and functions.
As with AutoWIG, the desired template instantiations must
be explicitly used or specified in the header files. In contrast
to AutoWIG, it is meant to be used entirely through the
command-line. WAYOUT is more flexible and more Pythonic
through its dynamic analysis: templates are only instantiated
at run-time through types passed to automatically generated
Python wrapper classes. The user does not have to specify all
the types that they want to use ahead of time.

C. Dynamic Binding Generation

Cppyy [15] dynamically generates bindings to C++ libraries.
It uses Cling [18], a C++ interpreter based on Clang and
LLVM, to generate C++ code that instantiates and calls classes
and functions included in header files, and then binds that
code to enable accessing it from Python. The definitions
of those classes and functions are loaded at run-time by
dynamically linking a shared object library. This presents a
problem for libraries such as Kokkos Kernels, which currently
can only be compiled to a static library. WAYOUT provides the
flexibility of linking a static library during compilation, instead
of exclusively requiring shared object libraries as cppyy does.
Additionally, WAYOUT’s use of pybind11 to interface between
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Python and C++ allows the user to manually write bindings
for some classes to make them more Pythonic if desired.

Furthermore, the dependence on Cling also limits supported
libraries to features supported by Cling. For instance, it does
not have support for thread level storage symbol relocation,
which is used in the shared object for Kokkos. Another
example is CUDA support. Since WAYOUT invokes a compiler
to compile shared objects, it has flexibility of choosing NVCC
rather than g++ as the compiler, whereas Cling support for
CUDA is still experimental.

D. High Performance Python

PyKokkos [11] is a framework for writing performance
portable kernels in Python. The user writes kernels in a
small, statically typed subset of Python, which PyKokkos
then translates to C++ (Kokkos) to obtain better performance.
Numba [10] is a Python JIT compiler based on LLVM.
Cython [16] adds C-like language extensions to Python to
improve performance. WAYOUT is not meant for writing
kernels. WAYOUT provides access to pre-existing, hand-tuned
high-performance kernels.

NumPy [27] and SciPy [26] both contain data structures and
kernels used in scientific computing. A significant part of both
libraries is implemented in C and C++ and manually wrapped
so it can be accessed from Python. WAYOUT automatically
generates bindings to interoperate between Python and C++.

VIII. CONCLUSION

We present WAYOUT, a technique for automatically gen-
erating Python bindings for C++ code, specifically high-
performance kernels. WAYOUT combines static and dynamic
analysis in order to reconcile Python’s dynamic nature with
C++’s static typing, and is able to support heavily templated
classes and functions. We implement WAYOUT by building
Python and C++ code generators that produce a connection
layer between the two languages. Our evaluation shows that
WAYOUT can support Kokkos Kernels framework and CUDA
Thrust with minimal performance overhead. Additionally,
WAYOUT can generate bindings at an acceptable performance
cost, making it more feasible than manually written and stati-
cally generated bindings. We believe that WAYOUT enables
faster development of scientific applications by connecting
Python, a high-level language frequently used by scientists,
to existing HPKs written in C++.
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