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ABSTRACT

Global change is influencing production and respi-
ration in ecosystems across the globe. Lakes in par-
ticular are changing in response to climatic variability
and cultural eutrophication, resulting in changes in
ecosystem metabolism. Although the primary drivers
of production and respiration such as the availability
of nutrients, light, and carbon are well known,
heterogeneity in hydrologic setting (for example,
hydrological connectivity, morphometry, and resi-
dence) across and within regions may lead to highly
variable responses to the same drivers of change,
complicating our efforts to predict these responses.
We explored how differences in hydrologic setting
among lakes influenced spatial and inter annual
variability in ecosystem metabolism, using high-fre-
quency oxygen sensor data from 11 lakes over
8 years. Trends in mean metabolic rates of lakes
generally followed gradients of nutrient and carbon
concentrations, which were lowest in seepage lakes,
followed by drainage lakes, and higher in bog lakes.
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We found that while ecosystem respiration (ER) was
consistently higher in wet years in all hydrologic
settings, gross primary production (GPP) only in-
creased in tandem in drainage lakes. However,
interannual rates of ER and GPP were relatively
stable in drainage lakes, in contrast to seepage and bog
lakes which had coefficients of variation in metabo-
lism between 22-32%. We explored how the
geospatial context of lakes, including hydrologic res-
idence time, watershed area to lake area, and land-
scape position influenced the sensitivity of individual
lake responses to climatic variation. We propose a
conceptual framework to help steer future investi-
gations of how hydrologic setting mediates the re-
sponse of metabolism to climatic variability.

Key words: Hydrologic connectivity; Drainage
ratio; Residence time; Lake metabolism; Net
ecosystem production; Landscape position; Stabil-
ity; Annual precipitation; Water retention time.

HIGHLIGHTS

e Residence time determines the sensitivity of
metabolism to precipitation.

e Variability in gross primary production depends
on hydrologic setting.

e Ecosystem respiration is consistently higher in
wet years.
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INTRODUCTION

The balance between carbon (C) fixation and
mineralization in Earth’s ecosystems is changing in
response to global environmental change (Melillo
and others 1990). These metabolic processes con-
trol biogeochemical cycling and system productiv-
ity and integrate multiple scales of organization
from microbes to ecosystems (West and others
1997). Despite occupying a small percentage of
Earth’s surface area, inland waters play a dispro-
portionately large role in the global biogeochemical
cycling (Tranvik and others 2009; Cheng and Basu
2017; Drake and others 2018). Understanding the
role that inland waters play in transforming and
assimilating C and nutrients as they move through
the freshwater continuum is critical. However,
predicting variability in aquatic ecosystem function
is notoriously difficult, in part because lakes inte-
grate signals of terrestrial processes and their me-
tabolism is sensitive to regional and global climatic
change (Adrian and others 2009; Jackson and
others 2016).

Climate, and in particular temperature and pre-
cipitation, influences spatial variability in ecosys-
tem metabolism regimes in terrestrial and aquatic
biomes across the globe (Whittaker 1962; Bern-
hardt and others 2018; Dodds and others 2019).
Interannual variability in precipitation affects the
water quality of lakes, though the magnitude of the
effect varies across a landscape (Collins and others
2019; Oleksy and others 2020). Thus, altered pre-
cipitation patterns are one facet of global environ-
mental change that will have profound
implications for ecosystem metabolism. Many areas
in the Northern Hemisphere are already experi-
encing increases in total annual precipitation, fre-
quency of extreme precipitation events, and
duration of droughts (Groisman and others 2012),
and climate change models predict an intensifica-
tion of hydrologic cycles globally (Held and Soden
2006; Wentz and others 2007). Interannual vari-
ability in precipitation can lead to large swings in
terrestrial production (Fay and others 2011; Hsu
and others 2012), but our understanding of how
sensitive aquatic ecosystem metabolism is to this
variation is limited and primarily focused on pulse
disturbances (for example, hurricanes and storms;
Klug and others 2012; Vachon and Del Giorgio
2014; Zwart and others 2017).

Interannual variation in precipitation can alter
ecosystem metabolism in lakes via two distinct but
interrelated pathways: delivery of solutes and
delivery of water (Figure 1). In simple terms, more
precipitation means that more solutes and more

water are delivered to the lake (Schiff and others
1998). Solutes, particularly nutrients and dissolved
organic matter, can fuel primary production and
respiration (Laas and others 2012; Wilkinson and
others 2013; Richardson and others 2016), but
delivery of water may limit the potential for these
reactions by shortening the residence time of so-
lutes in the lake or by diluting the concentration at
which solutes are delivered (Hotchkiss and others
2018). Lake hydrologic residence time (HRT) is key
constraint on biogeochemical cycling rates (Vachon
and others 2017a; Jones and others 2018), includ-
ing primary production (Giorgio and Peters 1994;
Howarth and others 2000; Hosen and others 2019).

Previous work suggests that responses to varia-
tion in precipitation will likely differ from lake to
lake because of features of the lake and its water-
shed that influence loads of solutes and water
(Figure 1A). We refer to this set of features as a
lake’s hydrologic setting, which we conceptualize in
terms of a few simple features of the landscape. The
size of the watershed relative to the size and depth
of the lake (WA:LA) determines how quickly
hydrologic inflows move through the lake, and in
combination with watershed land cover controls
solute delivery to the lake. The landscape position
of the lake in the hydrologic network determines
the extent to which decreases in precipitation and
surface water runoff may be buffered by ground-
water inputs. Finally, the importance of evapora-
tion in the water budget determines the extent to
which the residence time of solutes may be dis-
connected from that of water, and the potential for
evapoconcentration of solutes during dry periods
(Zwart and others 2018). Ultimately, hydrologic
setting emerges from the interaction between lake
morphometry, lake watershed characteristics, and
climate, all of which work together to influence
temporal variation in loads of water and solutes,
and ultimately give rise to variation in biogeo-
chemical processes.

Three lake archetypes, with distinct hydrologic
settings, are common in many formerly glaciated
lake regions around the globe (Wetzel 2001; Fig-
ure 1B). We describe these in the context of the
region that we studied here, but many aspects of
our description are applicable in other regions as
well. Seepage lakes receive relatively limited inputs
of solutes because they occupy small watersheds
relative to their lake area. Drainage lakes occupy
large watersheds relative to their lake area, have
surface inflows and outflows, and are well con-
nected to groundwater. Bog lakes are intermediate
between seepage and drainage lakes. Their WA:LA
is higher than seepage lakes, overlapping with the
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Figure 1. A A conceptual diagram illustrating the relationship between climate variability (distal control), hydrologic
setting (landscape filter), and lake metabolism (response). Climatic variability (for example, precipitation) exerts control
over hydrologic inflows which, in turn, influence lake metabolism via solute delivery and water renewal. In lake nutrient
availability and hydrologic residence time ultimately interact to give rise to spatial and temporal variability in lake
metabolism. B A cartoon landscape illustrating how three common lake archetypes (seepage, drainage, and bog lakes) vary
in their hydrologic setting. The size and direction of the arrows indicate the importance of various hydrologic gains and
losses to the overall water budget (surface inflows and outflows, direct precipitation, evaporation, groundwater). The
table describes the aspects of landscape position and hydrology of the three lake archetypes, specifically the watershed area
to lake area (WA:LA), hydrologic residence time, and evaporative losses. In gray we highlight the predicted spatial
variability in lake ecosystem metabolism rates and interannual variability in those rates based on established relationships
between landscape position and water chemistry.

low end of the WA:LA continuum for drainage
lakes. Their watersheds are dominated by wetlands
with high areal solute yields, which combined with
relatively large WA:LA means that solute inputs are
high. They receive little, if any, groundwater input
and typically do not have surface outlets, thus
residence times are long and evaporation is an
important component of the water budget (Hanson
and others 2018; Zwart and others 2018).

In this study, our goal was to assess how
hydrologic setting influences lake metabolism re-
sponses to a common climatic driver. Overall, we

expected that hydrologic setting would provide a
template for the baseline biogeochemical condi-
tions and would thus structure spatial variability in
lake metabolism as demonstrated in other land-
scape metabolism studies (Hanson and others 2003;
Solomon and others 2013; Bogard and others
2020). Because increased precipitation generally
results in higher in-lake nutrient concentrations
and dissolved organic matter concentrations (Schiff
and others 1998), we expected that wetter years
would be associated with higher rates of ecosystem
metabolism in all lakes, and that the concomitant
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high allochthonous inputs would result in ER
outpacing GPP (Laas and others 2012; Wilkinson
and others 2013; Richardson and others 2016). We
further hypothesized that the magnitude of inter-
annual variability in metabolism would be modi-
fied by the hydrologic setting based on the
established relationships between landscape posi-
tion and water chemistry, described above (Fig-
ure 1B). To that end, we quantified the patterns in
ecosystem metabolism within and across lakes of
contrasting hydrologic setting, asking how inter-
annual variation in metabolism is related to varia-
tion in precipitation. Finally, we explored what we
can learn from these relationships about the
underlying mechanisms at work.

Specifically, in the case of seepage lakes, we
hypothesized that interannual variation in ecosys-
tem metabolism would exceed that of lakes lower
in the landscape. Our rationale is that the water
budgets of these lakes are not buffered from dry
conditions by groundwater inputs because they are
perched above the regional groundwater table;
consequently, they may experience substantial
groundwater losses in dry years (Kratz and others
1991; McCullough and others 2019) and greater
interannual variability in nutrient concentrations
necessary for fueling ecosystem metabolism
(Webster and others 1996). In contrast, in drainage
lakes, we expected relatively little interannual
variability in metabolism in response to precipita-
tion because these lakes receive high solute loads,
have short residence times, and have dampened
variability in solute concentrations due to hydro-
logic attenuation (Kratz and others 1991, 1997;
Lottig and others 2013). The increased delivery of
water in wet years may limit the potential for these
reactions in lakes with shorter residence times
(Zwart and others 2017; Hotchkiss and others
2018). We hypothesized that interannual variabil-
ity in metabolism of bog lakes would be higher
than drainage lakes because these systems receive
similarly high nutrient inputs but have more time
to process those inputs due to longer HRT. Bog
lakes are additionally connected to a nutrient-rich
bog mat which may provide important DOM-as-
sociated nitrogen (N) and phosphorus (P) subsidies
that may stimulate both phototrophs and hetero-
trophs (Kissman and others 2017). In these humic
lakes, we expected GPP to be more temporally
variable than ER because of the greater potential
for light limitation of phototrophs when terrestrial
loads are relatively high (Kelly and others 2018).

METHODS

We studied 11 lakes representing three hydrologic
setting archetypes (seepage, drainage, and bog). We
conducted a series of analyses to explore how the
hydrologic setting of these 11 lakes influenced the
response of ecosystem metabolism to variation in
annual precipitation over the span of eight years.
All of the lakes are located within a few kilometers
of each other and are thus subjected to the same
climatic drivers and weather. First, we tested
whether lakes in our study represented distinct
types based on hydrology, land cover, and mor-
phometry. Second, we used bi-weekly measure-
ments of water chemistry to ask whether solute
concentrations differed among the lake types and
how variable those concentrations were through
space and time. Third, we used high-frequency
measurements of dissolved oxygen to estimate
ecosystem metabolism and investigated interan-
nual variation in metabolism by lake type. Finally,
we assessed the role of hydrologic setting in mod-
ifying sensitivity of metabolism to variability in
precipitation. We contrast responses by treating
hydrologic setting as a categorical variable (seep-
age, drainage, or bog lake). We also consider con-
tinuous gradients of WA:LA and HRT, which we
hypothesize are the two most important compo-
nents of hydrologic setting that determine both the
magnitude of inputs and degree to which biogeo-
chemical processing can occur within the system
(Figure 1).

Site Description and Data Collection

The study lakes are located at the University of
Notre Dame Environmental Research Center (UN-
DERC), within the Northern Highlands Lake Dis-
trict on the border of Michigan and Wisconsin in
the upper Midwest, USA. This lake district includes
thousands of lakes formed after the last glaciation
(10,000-12,000 years before present), which left
tens of meters of glacial till and sand outwash with
low cation exchange capacity (Kitchell and Car-
penter 1993). The region is a mosaic of second-
growth temperate forests (52%), peatlands (28%),
and open water (13 %) with low human population
density (Peterson and others 2003). Our study
lakes ranged from oligo-mesotrophic to dystrophic
and spanned a range of hydrologic settings (Ta-
ble 1).

For lakes larger than 3000 m?, lake areas were
derived from polygons contained in the USGS Na-
tional Hydrography Dataset (NHD; U.S. Geologic
Survey 2020). For Northgate, which was smaller
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Table 1. Lake Characteristics Including Watershed Area (WA), Lake Surface Area (LA), Volume, Maximum
Lake Depth (zmax), Drainage Ratio (WA:LA), Gross Primary Production (GPP), Ecosystem Respiration (ER),
Total Phosphorus (TP), Chlorophyll 4. (chl), Dissolved Organic Carbon (DOC), Absorbance at 440 nm (abs440),
Total Nitrogen (TN), Light Attenuation Coefficient (kp; m™'), Light Availability at the Bottom of the Mixed

Layer (I,)
Type Lake WA Elev Vol HRT LA in- out- GPP ER
km®> m 1000m> days ha flows flows mgO, L™’ mg 0, L1
day! day™!
bog Bolger (BO) 0.15 508 23 592 0.8 0 0 1.9 (0.6) 2.7 (0.6)
Cranberry (CB) 0.17 510 50 1089 1.6 0 0 0.8 (0.3) 1.2 (0.6)
Hummingbird 0.13 516 27 746 07 O 1 1.3 (0.6) 1.6 (0.7)
(HB)
North Gate (NG) 0.04 514 8 1113 0.2 0 0 0.3 (0.1) 0.7 (0.3)
drainage Brown (BR) 4.5 504 798 381 28.6 1 1 1.3 (0.2) 1.6 (0.3)
Morris (MO) 1.14 506 142 182 51 3 1 1.4 (0.2) 1.7 (0.2)
Ward (WA) 022 509 77 111 1.6 0 1 0.8 (0.2) 0.9 (0.2)
seepage Bay (BA) 2.37 516 2955 1256 68.2 1 1 0.3 (0.1) 0.2 (0.1)
Crampton (CR) 0.61 511 1302 872 264 0 1 0.3 (0.1) 0.4 (0.2)
East Long (EL) 0.19 515 124 286* 32 0 1 0.7 (0.1) 1.0 (0.3)
West Long (WL) 0.1 515 194 706* 5 0 0 0.6 (0.1) 0.9 (0.3)
Type Lake N TP chl DOC abs44o Zmax kp m™! 1, umol
ng L! ng L ! ng Lt mg L ! m! m photons
m st
bog Bolger (BO) 1008 (291) 37.3 (11.2) 21.5(7.3) 22.7 (2.6) 0.6 (0.2) 3.5 9.6 (0.9) 72 (7)
Cranberry (CB) 673 (266) 16.5 (8.5) 7.5 (3.2) 21 (1.9) 0.6 (0.1) 7.9 9.2 (0.6) 74 (4)
Hummingbird (HB) 848 (164) 23.9 (7.5) 13.3 (5.9) 25.6 (3.3) 0.9 (0.2) 7.6 10.8 (1.6) 65 (11)
North Gate (NG) 715 (208) 13.5 (4.6) 7.9 (6.5) 28.8 (4) 0.9 (0.1) 7.9 13.4 (1.8) 51 (9)
drainage Brown (BR) 755 (411)  26.7 (10.4) 14.7 (6.5) 11.9 (3.9) 0.2 (0.1) 4.9 5.3 (1.6) 101 (24)
Morris (MO) 727 (139)  25.3 (7.8) 14.2 (4.4) 19.2 (2.6) 0.4 (0.1) 6.7 82 (1.4) 77 (11)
Ward (WA) 666 (225) 13.4 (4.9) 5.5 (2.6) 13.8(3.2) 0.2(0.1) 82 6 (1.4) 109 (19)
seepage Bay (BA) 567 (305) 12 (4.1) 43 (0.8) 7.3(0.8) 0.1 122 3.2(0.4) 137 (11)
Crampton (CR) 439 (70)  11.4 (4.4) 3.8 (1.6) 5.4 (0.7) 0.1 18.5 2.5(0.3) 171 (12)
East Long (EL) 489 (84)  15.8 (4.2) 7.2(1.7) 9.9 (1.5) 0.3 (0.1) 14  43(0.6) 136 (15)
West Long (WL) 451 (69)  13.9 (4.1) 53 (1.8) 7.5(0.8) 0.1 14  3.3(0.3) 160 (9)

Values are presented as summer means + standard deviation (June-August, inclusive) across all years. *HRT for all lakes except EL and WL were from (Hanson et al. 2018);

estimates for EL and WL are from (Zwart 2017).

than 3000 m? a polygon was created using an
overlay of satellite imagery (Google Earth) and the
USGS NHD shapefile (Zwart and others 2018). The
east and west basins of Long Lake were experi-
mentally separated using a chemically imperme-
able curtain for the entire extent of this study and
therefore custom polygons were created for these
basins as well. Watershed areas were delineated
from 10 m resolution digital elevation model data
provided in the National Elevation Dataset (Gesch
and others 2018) using Whitebox Tools (Lindsay
2016; Wu 2020). Proportional land cover for
watersheds was calculated from the 2016 National
Land Cover Database (Homer and others 2020).

Each year (2012-2018), we collected weekly or
bi-monthly water chemistry samples and temper-
ature-dissolved oxygen profiles for each lake be-
tween mid-May and mid-August. We obtained
integrated water column samples from the upper
mixed layer, which we analyzed for total nitrogen
(TN), total phosphorus (TP), dissolved organic car-
bon (DOC), absorbance at 440 nm (abss40), and
chlorophyll a (chl a). We defined the upper mixed
layer depth as the shallowest depth at which the
vertical temperature gradient exceeded 1 °C m™'.
We measured photosynthetically active radiation
(PAR) every 0.5 m from the surface to the depth at
1% of surface light and used this profile to deter-
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mine the light extinction coefficient (kp). We
analyzed TN and TP using persulfate digestion and
the spectrophotometric method (Olsen 2008,
Menzel and Corwin 1965), chl a using methanol
extraction and a fluorometer (Welschmeyer 1994),
and DOC using a Shimadzu TOC-V total organic
carbon analyzer (Shimadzu Scientific Instruments,
Kyoto, Japan).

Between May and August each year we used
automated sensors to measure dissolved oxygen at
0.5 m depth (miniDot optical DO sensor, Precision
Measurement Engineering Inc., Vista, CA) and wa-
ter temperature at 5-17 depths spanning the entire
water column (Onset HOBO Pendants, Onset Com-
puter Corporation) at 10-min intervals in each of the
11 lakes. We estimated gross primary production
(GPP), respiration (ER), and the difference between
the two (net ecosystem production; NEP = GPP-ER),
using the diel oxygen method (Odum 1956) as
implemented by Solomon and others (2013). Mean
wind speed, air temperature, and PAR from mea-
surements on West and East Long lakes were used in
estimating metabolism for all lakes (Onset HOBO
met station, Onset Computer Corporation). All lake
chemistry and sensor data are available online (So-
lomon and others 2018).

We used the prism R package to obtain estimates
of precipitation for each lake from grid-type climate
data estimations (Hart and Bell 2015; PRISM Cli-
mate Group 2020). We extracted year-round daily
precipitation and calculated total antecedent pre-
cipitation (previous October-current August,
inclusive; analogous to a water-year) for each year
of our study. We excluded the month of September
in our precipitation totals because our metabolism
estimates extended only through the end of Au-
gust.

We obtained hydrologic residence time estimates
from a calibrated surface—groundwater model
developed for the Northern Highlands Lake District
(Hanson and others 2018). We calculated HRT as
the lake volume divided by the sum of evaporation,
groundwater, and surface water losses. We set
surface water outflow values to zero for a few lakes
which we know have no surface water outflows
(CB, BO, NG). Two lakes (EL and WL) have no
modeled HRT estimates because the lake was
experimentally separated by a curtain in 2012
(Zwart and others 2016) and instead use estimates
of HRT from Zwart (2017).

Statistical Analysis

All statistical analyses were performed in R version
3.6.1 (R Core Team 2019). To confirm that the

lakes in our study represented distinct types in
terms of hydrologic setting we ran principal com-
ponent analyses with the FactoMineR package (Lé
and others 2008). We included key descriptors of
hydrologic setting including watershed area, HRT,
lake morphometry (volume, surface area, maxi-
mum depth), land cover, and WA:LA. To examine
the multivariate differences by lake type, we per-
formed permutational multivariate analysis of
variance (perMANOVA) with Euclidean distances
among lakes and 999 permutations using the ado-
nis function in the vegan package (Anderson 2001;
Oksanen and others 2019).

Next, we asked whether mean solute concen-
trations differed among the lake types and how
variable those concentrations were between years
in each lake type. We calculated summer means
(June—August) for each solute and each lake. Be-
cause C, N, and P concentrations in these lakes
were highly collinear, we used PCA to visualize
temporal variability and lake-type groupings in
scaled water chemistry data across the 11 lakes. We
performed perMANOVA analyses to test for mul-
tivariate differences in water chemistry by lake
type, as described above. We then used the Mantel
test in the vegan package to test for multivariate
correlation between hydrologic setting and chem-
istry (Oksanen and others 2019).

Lastly, we asked whether interannual variability
in pelagic metabolism was related to variation in
annual precipitation and if so, how variation in
metabolism differed by lake type. We calculated the
summer mean (June—-August, inclusive) of all
nutrient measurements and daily metabolism esti-
mates. For comparison across sites, metabolism
(GPP, ER, NEP) and water chemistry (DOC, TP, TN,
abs440) variables were scaled (z-transformed) prior
to running correlations with precipitation metrics.
For each summer mean parameter X in lake 7, the
z-score was calculated as (X;,—mean(X))/st. dev(X),
where the mean and standard deviation were cal-
culated for parameter values across the annual
mean in lake i. To assess interannual variability in
metabolism in each lake and lake type, we calcu-
lated the coefficient of variation (c.v.) in metabo-
lism responses for each lake as the standard
deviation across all years divided by the mean
across all years, which we then compared against
variables describing hydrologic setting (WA:LA,
hydrologic residence time). We used a one-way
analysis of variance (ANOVA) to test for differences
in the c.v. of GPP and ER by hydrologic setting and
performed pairwise comparisons among lake types.
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Seepage, drainage, and bog lakes varied in their
hydrologic setting, particularly along gradients of
landscape position, lake morphometry, and water-
shed land cover (perMANOVA F, ;o= 2.6695,
p < 0.001; Figure 2A). In the set of lakes we con-
sidered, seepage lakes have small watersheds and
are at a higher elevation in the landscape, while
drainage lakes have large watersheds dominated by
deciduous forest and are positioned at a lower
elevation in the landscape; bog lakes are somewhat
intermediate, have high proportions of wetlands in
their watersheds, and are also positioned relatively
low in the landscape. The primary axis (HS PC1) of
a principal component analysis explained 35.6% of
the variability among lakes and was characterized
by lake morphometry (lake surface area and vol-
ume). Seepage lakes were relatively deeper and
higher in volume compared to drainage and bog
lakes (Table 1). Another 27.5% of variation among
lakes was described by the second axis (HS PC2),
with strong positive loadings from WA:LA and
deciduous forest cover and strong negative loadings
from maximum lake depth, lake elevation, and
total wetland cover (Figure 2A). Although bogs
and drainage lakes had similarly large WA:LA, bog
lakes had the smallest watersheds and lake surface
areas, and no surface inflows or outflows (except
HB which has a small surface outflow with very
low flow rates). Bog and seepage lakes were situ-
ated at a relatively higher elevation in the land-
scape compared to drainage lakes (Table 1).
Drainage lakes had shorter HRT (231 4+ 117 days,
mean =+ standard deviation) compared to seepage
(1065 + 199) and bog lakes (963 £ 219 days).
Watershed wetland cover was similarly high for
seepage and bog lakes (> 50%, with the exception
of BA) and substantially higher than for drainage
lakes.

Hydrologic setting influenced mean solute con-
centrations and light availability (Mantel r = 0.36,
p = 0.021; Table 1, Figure 2B). Total N, P, chloro-
phyll, and DOC concentrations were lowest in
seepage lakes (Figure 2B). Concentrations of these
solutes were higher in the other two lake types; in
particular, bog lakes tended to have high DOC
concentrations. DOC concentration was highly
correlated with lake color (absorbance at 440 nm;
r=0.93, 95% confidence interval 0.91-0.96), so as
DOC increased, light penetration and mixed layer
depth decreased. Both bogs and drainage lakes had
wide ranges in nutrient PC2 relative to seepage
lakes. While bogs and drainage lakes had similar TP
concentrations (95% confidence interval 18.6-25.0

and 18.6-26.0 ug L', respectively), bog lakes had
slightly higher TN concentrations (95% confidence
interval 694-856 ug L") than drainage lakes (609—-
800 ug LY.

The relationship between total antecedent pre-
cipitation and in-lake nutrient concentrations var-
ied among lake types, suggesting different controls
on nutrient delivery by hydrologic setting (Fig-
ure 3B). Total antecedent precipitation varied
substantially among our study years, though most
years were wetter than the long-term average,
particularly in the spring and summer (Figure 3A,
Figure S1). Wetter years were associated with
lower TP concentrations in seepage (r = -0.46,
p = 0.01) and bog lakes (r = -0.47, p = 0.01), but
not in drainage lakes (r=-0.06, p =0.78). In
contrast, TN and abs,4o were positively correlated
with precipitation in seepage (TN: r = 0.38,
p = 0.03; absyyp: = 0.52, p = 0.003) and drainage
lakes (TN: r=0.52, p=0.01; absgyy: r=0.43,
p = 0.05), but not in bog lakes (TN: r = 0.16,
p =0.39; absyyp: 7=0.29, p =0.12). Only a few
individual lakes had a positive correlation between
DOC concentrations and precipitation (EL, HB),
but wet years were associated with higher abs,,4¢ in
nearly every lake (Table S1).

Both the mean rates and the interannual vari-
ability in GPP and ER differed by hydrologic setting
(Figure 4). Seepage lakes had low GPP and ER rates
and high variability; drainage lakes had moderate
to high rates but low variability; and bog lakes had
high rates as well as high variability. Specifically,
drainage lakes on average had the lowest across-
year c.v. for both ER (15 &+ 3%, mean =+ standard
deviation) and GPP (14 *+ 4%). Interannual vari-
ability in GPP was higher in seepage (27 + 7%)
and bog lakes (34 & 1%) than drainage lakes (one-
way ANOVA: F,g=4.7, p=0.04). Interannual
variability in ER was also higher in seepage lakes
(37 £ 7%) and bog lakes (41 £ 1%) compared to
drainage lakes (one-way ANOVA: F,g=7.6,
p = 0.01). The relatively low interannual variability
in drainage lake ecosystem metabolism may be due
to the shorter HRT of drainage lakes compared to
bog lakes, despite having similar WA:LA (Fig-
ure 4B). Variation in both GPP and ER was posi-
tively linearly related to HRT, though the effect was
stronger for ER (F, o = 47.6; R> = 0.84; p < 0.001)
compared to GPP (F; o = 7.9; R? = 0.47; p = 0.02).

Hydrologic setting influenced the degree to
which ER and GPP were coupled (Figure 5A). Al-
though GPP and ER were strongly correlated in all
lake types (seepage r = 0.84, drainage r = 0.92, bog
r = 0.82), GPP and NEP were not. NEP was strongly
correlated with ER across all lakes (seepage
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r = 0.89, drainage r = 0.48, bog r = 0.64); conse-
quently, lakes and years with higher ER were also
more strongly heterotrophic. Bog lakes, and espe-
cially BO and NG, tended to have high ER relative
to GPP; seepage lakes also exhibited a pattern of
divergence from the 1:1 in certain years indicating
ER outpaced GPP (Figure 5A).

The ER-GPP coupling patterns were consistent
with how metabolism of lakes responded to pre-
cipitation. ER increased in wet years in all lake
types, but GPP increased only in drainage lakes,
and only modestly (r = 0.37, p = 0.09; Figure 5B).
Consequently, seepage and bog lakes had more
negative NEP in wet years (r =-0.56, p = 0.002
and r =-0.48, p = 0.01, respectively), while drai-
nage lakes did not show a consistent association
between annual precipitation and NEP because
both ER and GPP were simultaneously stimulated.
Wet years were associated with dampened pro-
ductivity in two bog lakes (BO, NG) and one
seepage lake (BA; Figure S2).

DiscussioN

Hydrologic connectivity and landscape position are
perhaps the most important drivers of variation in
aquatic ecosystems (Soranno and others 1999,
2019; Read and others 2015). These factors struc-
ture spatial differences in water chemistry across

lake-rich regions (Kratz and others 1997; Soranno
and others 2015; Lapierre and others 2018) as well
as variable biogeochemical responses to climatic
variability (Soranno and others 1999; Rose and
others 2016; Lottig and others 2017). Building on
these established relationships, we found that
hydrologic setting, or the morphological and land-
scape features that set the biogeochemical blueprint
of a lake ecosystem, predictably structured ambient
nutrient concentrations in lakes, and in turn,
average rates of metabolism across the landscape.
Interannual variation in precipitation altered
ecosystem metabolism in ways that differed sys-
tematically depending on hydrologic setting. In-
creases in precipitation drove greater ecosystem
respiration for lakes in all hydrologic settings, but
only drainage lakes showed a subtle response of
primary production (GPP) to increased precipita-
tion. This resulted in strong responses of NEP to
precipitation for seepage and bog lakes, but not
drainage lakes. Overall, lakes with longer hydro-
logic residence time (seepage and bog lakes) were
more sensitive to variation in precipitation than
those with short hydrologic residence times (drai-
nage lakes). Considering the hydrologic setting of a
waterbody may provide context for why
heterogenous responses to a common stressor are
often observed across lakes in a landscape (O'Reilly
and others 2015; Zwart and others 2019). Below,
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we elaborate on our results, discuss potential
mechanisms underpinning these patterns, and
propose how insights from our study system may
be applied in other settings.

We found that in lake N and P responses to an-
nual precipitation varied as a function of hydrologic
setting (Figure 3B). Similar patterns of asyn-

chronous N and P dynamics have been reported in
other studies of hydrologically complex landscapes
or biologically reactive solutes (Webster and others
2000; Cardille and others 2007; Oliver and others
2017). In contrast, lake color (abss4g) was darker in
wet years in almost every lake, but DOC concen-
trations were fairly stable. This is consistent with
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previous work showing the responsiveness of DOC
quality to climatic variation (Figure 3B; Kellerman
and others 2014; Jane and others 2017). These
patterns of solute and terrestrial organic matter
variability, and the mechanisms that underlie their
temporal variability, may also explain metabolic
responses across lakes of contrasting hydrologic
settings.

We found that net heterotrophy was the norm in
all of our lakes, but the degree of heterotrophy and
the coupling between ER and GPP varied by
hydrologic setting. Ecosystem respiration was pos-
itively related to annual precipitation regardless of
hydrologic setting, likely supported by the overall
increase in terrestrial organic material delivered via
hydrological inflows (Dillon and Molot 1997;
Wilkinson and others 2013; Zarnetske and others
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2018; Williamson and others 2020). Gross primary
production, however, responded differently to
variation in precipitation and depended on hydro-
logic setting (Figure 5). Lakes draining large land-
scapes with short residence times (drainage lakes)
were the only lake types where summer GPP in-
creased with annual precipitation, likely owing to
larger nutrient loads (Brett and others 2012; Jones
and others 2018; Zwart and others 2018). The ab-
sence of a consistent GPP response to greater an-
nual precipitation in seepage and bog lakes may
reflect overall low nutrient loads for seepage lakes
(Zwart and others 2018) and light-limiting effects
of DOC in bog lakes (Kelly and others 2018). Be-
cause ER and GPP in drainage lakes increased in
tandem as precipitation increased these systems
had relatively invariable NEP through time.

There are a few different mechanisms by which
hydrologic setting contributes to differential re-
sponses of GPP to variation in annual precipitation.
Terrestrial-aquatic connectivity ultimately plays a
role in the differential delivery and availability of
nutrients in the landscape mosaic (Martin and
Soranno 2006; Fergus and others 2017), and con-
trasting flow paths of water in various hydrologic
settings result in variable yields and quality of dis-
solved and particulate nutrients (Bertolet and
others 2018; Jepsen and others 2019). For example,
in bogs and seepage lakes, precipitation was con-
sistently negatively correlated with TP but posi-
tively correlated with TN, possibly because of the
higher concentrations of organic nitrogen or
ammonium export associated with high wetland
cover (Alvarez-Cobelas and others 2008; Sponseller
and others 2018) or higher mobility of N relative to
P in flat watersheds (Goyette and others 2019).
Although N and P are often concurrently delivered
with terrestrial OM loads (Corman and others
2018), precipitation delivers colored terrestrial OM
loads that then serve to limit primary production
via light limitation where ambient DOC concen-
trations are already high (Kelly and others 2018).
Terrestrial organic matter loads in wet years can
also reduce the average light climate in the upper
mixed layer, suppressing GPP (Zwart and others
2016). Relative to ecosystem respiration, the con-
trols on temporal variability in gross primary pro-
duction are much more dependent on hydrologic
setting and warrant further investigation.

The sensitivity of metabolism to interannual
variability in precipitation can be understood after
accounting for the influence of landscape position,
WA:LA, and hydrological residence time. Resi-
dence time and WA:LA appear to be important
aspects of hydrologic setting for determining

interannual variability in ecosystem metabolism.
Seepage and bog lakes, with long HRT and rela-
tively high landscape position, were twice as vari-
able as drainage lakes that had short HRT
(Figure 4B). The longer residence times of bog
lakes likely allowed for more time to process solutes
delivered from the landscape in wet years, resulting
in greater interannual variation in metabolism, and
potential for ‘lag’ effects from previous seasons or
years. In contrast, though hydrologic loads are high
in lakes drainage lakes (high WA:LA), biogeo-
chemical processes may be time-limited because
some proportion of the nutrients and dissolved
organic matter are transported downstream before
they can be fully mineralized, assimilated, or buried
(Hanson and others 2014; Vachon and others
2020). Ultimately, while lakes with short HRT may
be highly reactive on short-time scales (Hotchkiss
and others 2018; Jones and others 2018), over
longer timescales short HRT begets a rapid return
from perturbed conditions (Jennings and others
2012; Klug and others 2012). In long HRT lakes,
the relative importance of internal processes regu-
lating biogeochemical dynamics and the probability
of biogeochemical transformation increases (Va-
chon and others 2017a, 2017b; Jones and others
2018). Consequently, lakes with longer residence
times and smaller WA:LA may be more sensitive to
variability in hydrologic and nutrient loads (Fig-
ure 5).

A Framework for Understanding Climate
Impacts on Lake Ecosystem Metabolism

We speculate that the relationship that we ob-
served between residence time and the sensitivity
of metabolism to interannual climate variability
may be generalizable across lake ecosystems (Fig-
ure 6). In short HRT lakes dominated by fluvial
processes, nutrient loads are large and instanta-
neous biogeochemical rates are high, but retention
of organic matter and nutrients is low (Brett and
Benjamin 2008; Harrison and others 2009; Finlay
and others 2013). In these short HRT lakes, we
hypothesize that interannual variability in GPP and
ER may not deviate strongly from the mean be-
cause processing of nutrients is time-limited and
not transport- limited. For instance, following a
disturbance such as a pulse of nutrients washing in
from a storm, a short HRT system should rapidly
return to its pre-disturbance state because of high
flushing rates (DeAngelis 1980). Thus, we predict
that lakes with short HRT are not as sensitive to
variation in precipitation as lakes with longer HRT,
even though interannual nutrient loads may vary
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considerably. Groundwater inputs may also play a
role in stabilizing solute concentrations and water
levels (Webster and others 1996), and in turn, may
contribute to low variability in ecosystem metabo-
lism, particularly in low-relief and formerly gla-
ciated landscapes where groundwater is an
important component of water budgets (Hanson
and others 2018).

In contrast, in intermediate HRT lakes with small
WA:LA, loads of water and matter are relatively
low resulting in low instantaneous biogeochemical
rates, but overall high retention of organic matter
and nutrients. As HRT increases, evaporation,
which does not transport matter, becomes an
important hydrologic loss; this is particularly true
in lakes lacking surface outflows. In dry seasons or

years when hydrologic inflows decrease, chemical
residence time can become further decoupled from
hydrologic residence time. In wet years, the supply
of solutes and organic matter is renewed and, rel-
ative to short HRT lakes, long HRT lakes have more
time to process what little nutrients and solutes are
delivered from the surrounding watershed. Thus,
along a gradient of increasing HRT, lake ecosystem
metabolism may become more sensitive to climate-
induced changes in hydrologic inflows (Figure 1).

Recent estimates of hydrologic residence times in
lakes suggest lakes globally vary by about five or-
ders of magnitude (Messager and others 2016), but
our lakes span only span about half the range of
global HRT estimates. In this dataset, metabolic
variability increased roughly linearly as a function

unstable
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Figure 6. A conceptual figure illustrating the hypothesized relationship between temporal variability in ecosystem
metabolism as a function of increasing hydrologic residence time (HRT). In our study variability in mean metabolic rates
(May-Aug, annually) increases as a function of increasing HRT. However, we hypothesize that along a gradient of HRT
spanning several orders of magnitude, lakes at intermediate HRT would tend to have higher variability while lakes at
extreme ends of the spectrum are relatively stable due to time-limitation (short HRT lakes) or source-limitation (long HRT)

of biogeochemical processes.
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of increasing HRT, but we hypothesize that in lakes
with extremely long residence times (several years
to decades) biogeochemical cycling is transport-
limited but time-unlimited (Figure 6). In these
voluminous lakes, with extremely long HRT (for
example, ancient rift lakes, terminal lakes) and
small WA:LA, dilution by the large volume of the
lake may diminish the effect of any pulse inputs.
Further, nutrient chemistry and water clarity likely
integrate across several years of variation in climate
and hydrologic loads. Although these systems
undoubtedly exhibit within-year variation in me-
tabolism related to lake mixing, light availability,
and other internally mediated processes (Goldman
and Jassby 1990; MacIntyre 2013), year-to-year
variability in ecosystem metabolism may be rela-
tively insensitive to short-term variability in cli-
mate.

Though we examined a group of lakes in one
small geographic region, the patterns we observed
might hold in other hydrogeomorphic settings
(Soranno and others 1999). Our reasoning is that
the hydrological processes that dictate the move-
ment of water and solutes to and through aquatic
ecosystems play a major role in controlling rates
and extents of biogeochemical transformations
everywhere (Covino 2017; Soranno and others
2019). However, we do note that it is difficult to
disentangle the stabilizing effect of groundwater
gain and short residence times in our study, and it
would be interesting to test this framework in
drainage lakes in mountainous watersheds where
groundwater comprises a small proportional of the
overall water budget. Another limitation of devel-
oping this framework from a set of lakes in a rela-
tively pristine area is the omission of other key
properties that that can influence the variability of
ecosystem metabolism aside from HRT. For exam-
ple, land use (for example, agricultural activity,
wetland loss) and hydrological disturbances (for
example, flow regime modifications) can impact
the transport capacity of a watershed, and in turn
modify the nutrient loads into lakes (Fraterrigo and
Downing 2008); this may result in higher vari-
ability in nutrient concentrations relative to what
would be predicted based on WA:LA and HRT in
less impacted regions, like the NHLD.

CONCLUSION

This current era of rapidly changing climate and
land use necessitates a framework for assessing
how lake metabolism will respond to ongoing
environmental change, both across space and
through time. In regions heavily impacted by direct

human activity, intensification of the hydrologic
cycle will likely interact with changing land use to
alter hydrologic inflows, nutrient loads, and in turn
tributary nutrient concentrations (Davis and others
2015). Incorporating information about the
hydrologic setting of a waterbody into predictive
models may help contextualize the spatial patterns
of freshwaters and the dynamic patterns of
ecosystem processes within them. Considering
water bodies along gradients of residence time, a
key property of hydrologic setting, may lead to
insights into differences in temporal variability in
metabolism. A deeper understanding of the domi-
nant drivers of lake metabolism in space and time,
and the processes that mediate that variability, will
ultimately lead to better predictions of the role of
inland waters in global biogeochemical cycles.
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