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1 | INTRODUCTION
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Abstract

Gradient Forest (GF) is a machine learning algorithm designed to analyze spatial pat-
terns of biodiversity as a function of environmental gradients. An offset measure
between the GF-predicted environmental association of adapted alleles and a new
environment (GF Offset) is increasingly being used to predict the loss of environ-
mentally adapted alleles under rapid environmental change, but remains mostly un-
tested for this purpose. Here, we explore the robustness of GF Offset to assumption
violations, and its relationship to measures of fitness, using SLiM simulations with
explicit genome architecture and a spatial metapopulation. We evaluate measures
of GF Offset in: (1) a neutral model with no environmental adaptation; (2) a mono-
genic “population genetic” model with a single environmentally adapted locus; and
(3) a polygenic “quantitative genetic” model with two adaptive traits, each adapting
to a different environment. We found GF Offset to be broadly correlated with fitness
offsets under both single locus and polygenic architectures. However, neutral demog-
raphy, genomic architecture, and the nature of the adaptive environment can all con-
found relationships between GF Offset and fitness. GF Offset is a promising tool, but
it is important to understand its limitations and underlying assumptions, especially

when used in the context of predicting maladaptation.

KEYWORDS
biodiversity, climate change, gradient forest, landscape genetics, local adaptation, population
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candidates to increase the overall population fitness. Similarly, res-

There is an urgent societal need to better predict how specific gen-
otypes perform in different environments. For example, in order
for assisted gene flow to contribute to robust populations of har-
vested forests (Aitken & Bemmels, 2016) or key fish habitat reef
systems (Matz et al., 2020), transplanted genotypes must be good

toration of degraded ecosystems depends heavily on the identifica-
tion of optimally adapted source populations if restoration efforts
are to be successful (Houde et al., 2015). Likewise, climate change
is a growing threat to biodiversity (Nunez et al., 2019; Urban et al.,
2016) and there is a need to address environmental impacts on vul-

nerable populations. Most efforts to assess climate change impacts
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use species-level distribution models (Aitken et al., 2008; Ellis et al.,
2012; Pacifici et al., 2015), but genomic data are increasingly being
incorporated to provide population-level assessments (Hoban et al.,
2016; Rellstab et al., 2015; Waldvogel, Feldmeyer, et al., 2020). For
all these applications, predictive models can provide a powerful
means to inform conservation (Bland et al., 2015; Freer et al., 2018;
Razgour et al., 2018).

One particular machine learning algorithm that has increasingly
been used to quantify and predict changes in the composition of
biodiversity is Gradient Forest (GF) (Bay et al., 2018; Capblancq
et al., 2020; Fitzpatrick & Keller, 2015; Layton et al., 2021; Ruegg
et al., 2018). GF was conceived to characterize changes in com-
munity composition (Ellis et al., 2012), but more recently GF has
been used to identify environmental drivers of allele frequency
variation, as well as to forecast the degree of potential maladap-
tation of locally adapted populations under new environments
(Fitzpatrick & Keller, 2015). While GF is growing in use as a predic-
tive tool to identify potential environmentally driven disruptions
to locally adapted populations (Capblancq et al., 2020), questions
of proper application remain (Bay et al., 2018; Fitzpatrick et al.,
2018; Hoffmann et al., 2021; Rellstab et al., 2021). Notably, neither
its application to demographically representative genetic datasets
nor its ability to predict the fitness of a genotype when translo-
cated to a new environment has been thoroughly evaluated using
“truth-known” simulations (i.e., analysis validation, sensu Lotterhos
et al, 2018).

Gradient Forest differs from genotype-environment associa-
tion (GEA) analyses (Hoban et al., 2016; Rellstab et al., 2015), which
emphasize the identification of environmentally associated alleles,

TABLE 1 Terminology

Terms Description

typically using linear univariate approaches (Waldvogel, Schreiber,
etal., 2020). GF is a nonparametric multivariate approach that fits an
ensemble of regression trees using Random Forest (Breiman, 2001)
and then constructs cumulative importance turnover functions (see
Table 1 for definitions) from these models by determining how well
partitions distributed at numerous “split values” along each gradi-
ent explain changes in allele frequencies on either side of a split.
These cumulative importance curves are generated for each fitted
response (e.g., a single-nucleotide polymorphism (SNP), or a single
species) and each environmental predictor, which are weighed and
combined to produce an aggregate cumulative importance curve for
the genome (or a community of species) along each significant pre-
dictor. The steepness of a SNP-level cumulative importance curve
should indicate the rate of change in the allele frequency across the
environmental gradient, but this remains untested.

In addition to providing inference regarding the nature of allele
frequency change along spatial environmental gradients, GF has
been proposed as a method to predict the frequency change in locally
beneficial alleles needed to maintain current levels of adaptation fol-
lowing a change in environment (Capblancq et al., 2020; Fitzpatrick
& Keller, 2015). In essence, GF’s turnover functions provide a means
to transform (i.e., rescale) environmental predictors from their origi-
nal units (e.g., °C, mm) into common units of cumulative importance.
The transformed predictors can then be used to calculate expected
genetic differences as the Euclidean distance between populations
in time and/or space (Gougherty et al., 2021), a distance referred to
as “genetic offset” by Fitzpatrick and Keller (2015) and as “genomic
vulnerability” by Bay et al. (2018) and Ruegg et al. (2018). We refer
to this distance as “GF Offset” to emphasize its estimation from GF

Causal environment

CG Fitnessm’n

Cumulative importance

Fitness offset

FST causal

F

ST genome

GF offset

Local adaptation

Machine learning algorithm

Relative fitness in common garden

Turnover

Climate change vulnerability

Environmental variable that determines the optimal phenotype

Common Garden (CG) Fitness averaged across all individuals from an m source location in an n transplant
(common garden) location

The cumulative sum of “split values” from the fitted GF model
The difference in fitness experienced by moving an organism from its home environment to a foreign one.

Genetic differentiation between the source population and transplant (common garden) population at loci
with alleles that have causal effects on the phenotype

Genetic differentiation between the source population and transplant (common garden) population across
the genome

The Euclidean distance between the cumulative importance output by Gradient Forests at one
multivariate environment and another multivariate environment

The difference between the fitness of populations in sympatry and allopatry

An algorithm that builds a model based on a subsample of the data in order to make predictions for an
expanded dataset

The relative probability that an individual with a given genotype would be a parent to offspring in the next
generation in the common garden environment, given the causal alleles it possesses and the functions
relating alleles to phenotype and phenotype to fitness

A change in allele frequency or cumulative importance across an environmental gradient

The extent to which an organism is susceptible to or unable to cope with climate change and includes the
magnitude and rate of exposure to climate change, sensitivity to that exposure, and the ability to cope
with climate-related changes through adaptive capacity. See Foden et al. (2019)
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and we suggest the term “genomic vulnerability” should be avoided
given that (1) it does not fit established definitions of climate change
vulnerability (Foden et al., 2019) and (2) it is not clear to what extent
GF Offset represents vulnerability, however, defined.

Several questions regarding the use of GF Offset as a metric
of maladaptation (e.g., assuming increased GF Offset corresponds
to increased fitness offset) remain unanswered, including how it is
affected by neutral demography. For example, changes in allele
frequencies could reflect simple genetic drift rather than adaptive
signals (Borrell et al., 2020; Fitzpatrick et al., 2018; Hoban et al.,
2016; Rellstab et al., 2015). Smaller populations will tend to ex-
hibit greater signatures of drift than larger populations (Buri, 1956;
Helgason et al., 2003; Wright, 1929) and potentially greater allele
frequency turnover in regions with smaller population sizes, and
less turnover in regions with large population sizes. If these gradi-
ents in population structure are aligned with environmental gradi-
ents, and neutral loci are not properly eliminated by genome scan
procedures prior to offset estimation, then they will be reflected
in the fitted cumulative importance curves from GF (i.e., steeper
slopes where allele frequency turnover is high, and flatter slopes
where turnover is low) and therefore could artificially inflate pre-
dicted GF Offsets.

In addition, a complexity inherent to interpretations of GF Offset
in the context of forecasting maladaptation is that it is a multivariate
distance of allele frequencies from a presumed optimum, meaning
that regardless of the direction of change (increase or decrease) in
allele frequencies across a gradient, GF Offset will always be pos-
itive. The underlying assumption being that a population already
occupies its adaptive optimum when sampled, and therefore any
subsequent change in allele frequency composition will reduce its
fitness. However, because fitness could decrease or increase in re-
sponse to environmental change, it is unclear how GF Offset actually
relates to fitness, especially when considering such complications as
multiple adaptive gradients, nonlinear gradients, or neutral demo-
graphic processes.

To evaluate GF Offset as a potential measure of fitness offset,

we asked the following questions:

(Q1) Variation in population size (N). What effect do neutral pro-
cesses, operating on a cline in population size across an environ-
mental gradient, have on GF Offset when only neutral loci are
considered? We tested the hypothesis that a decrease in popu-
lation size would result in an increased GF Offset at neutral loci
due to increased genetic drift operating in small populations.
(Q2) Relationship between GF Offset and fitness offset. Given equal
deme sizes in a metapopulation, how well does GF Offset pre-
dict changes in fitness when populations experience an immedi-
ate environmental change (i.e., with no associated evolutionary
change)? We tested the prediction that GF Offset is inversely
related to fitness by conducting in silico common garden experi-
ments under monogenic and polygenic architectures.

(Q3) GF Offset versus other measures of offset. Given equal deme
sizes in a metapopulation, how does GF Offset perform relative

T, \\\ Y-

to environmental distance or F,? We tested the hypothesis that

GF Offset outperforms both environmental distance and genetic

distance because GF appropriately weights and scales the envi-

ronmental gradients to reflect their genetic importance.

We tested the performance of GF Offset and other offset mea-
sures in their ability to predict fitness of genotypes when trans-
planted to common gardens (avoiding the confounding longer-term
dynamics of dispersal and gene flow) across the species range in
silico. Using SLiM (Haller & Messer, 2019), we simulated different
genome architectures that underlie a phenotype, and different re-
lationships between the phenotypic optimum and a single environ-
mental variable. We then evaluated GF Offset under three scenarios:
(1) a neutral model with clinal population size across the environ-
ment; (2) a monogenic “population genetic” model with adaptation
to a single environment; and (3) a polygenic “quantitative genetic”
model with two environmentally adaptive traits, each responding to
a different environmental gradient. Overall, we find that GF Offset
was strongly correlated with fitness offset, but that multiple factors

can confound relationships between offset of fitness.

2 | MATERIALS & METHODS

2.1 | Thought experiments

To elucidate what drives the shape of the cumulative importance
function, we created five allele frequency patterns across a gra-
dient representing an environmental variable and analyzed them
in GF: (1) different sampling schemes of a steep allele frequency
cline along one or multiple environmental variables, (2) different
slopes of allele frequency clines along an environmental variable,
(3) different nonmonotonic relationships between allele frequency
and an environmental variable, (4) a comparison of linear and non-
monotonic allele frequency relationships with an environmental
variable, and (5) a comparison of a linear allele frequency relation-
ship with an environmental variable and the same relationship with
noise added by sampling from a normal distribution with O mean

and variance of 0.1.

2.2 | Demography for Q1,Q2, & Q3

We generated simulations using SLiM v3.4. Ten-thousand individu-
als (N) were split across a metapopulation consisting of 100 demes
arranged in a 10x10 connectivity matrix (Figure S1). Each deme
(vay) was assigned at least one environmental value that could vary
over generational time (Ej,t’ where j is a deme and t is the genera-
tion). When two environmental variables were considered, they
are referred to as Environment 1 and Environment 2 (Elj,t & EZH).
Symmetric migration was simulated between adjacent demes at a
per-generation migration rate (m), and each deme contained equal
proportions of males and females, with bi-parental mating producing
the subsequent generation.
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Ten genomic linkage groups each containing 50K sites were
simulated in each individual, for a total of 500K sites per haploid
copy of the diploid genome. The neutral mutation rate (u) was 107
(a metapopulation-scaled mutation rate N, * 2 of 0.001), and a base
recombination rate (r) of 107> (N;*r=0.1) was used to approximate
a distance of 50 cM per linkage group. The population-scaled muta-
tion and recombination rates were chosen to approximate the res-
olution that would be observed from sampling SNPs from a larger
genome, that is, allowing SNPs 50K bases away to be unlinked,
while allowing for signatures of linkage to arise within each link-
age group (Lotterhos, 2019). All simulation parameters are listed
in Table 2.

Simulations were output as tree sequence files (Haller et al.,
2019; Haller & Messer, 2019) following a burn-in period and a period
of stable environmental values (the length of these periods is ex-
plained below). The software packages msprime and pyslim were
used to prepend a simulation of neutrally coalesced ancestry onto
the SLiM-generated file to guarantee every site was fully coalesced
(referred to as “recapitation”), and neutral variants were then over-
laid on that recapitated file (Haller et al., 2019). We used vcftools
to filter for minor allele frequencies above 0.01, which is on the
lower range of MAF filtering criteria in adaptation genomics studies
(Byrne et al., 2013; Danecek et al., 2011; Linck & Battey, 2019) but
ensures that in our multilocus simulations we included more causal
loci in our analyses. Of the 10,000 individuals simulated, 10 individ-
uals from each deme (for a total of 1000 individuals) were randomly

selected for downstream analysis.

2.3 | Q1: Variation in population size (N)

To test the hypothesis that GF Offset at neutral loci could be influ-
enced by variation in genetic drift, we simulated a linear environ-
mental gradient with values from -1 to 1, in three neutral scenarios:
equal deme size (N,); increasing N,; and decreasing N (Figure 1).
In the equal N, scenario, each deme contained 100 individuals. In

order to maintain a consistent N; for the increasing and decreasing

deme size scenarios, the sum of N, within each row of the metap-
opulation grid was made to equal 1000 individuals (e.g., increasing
N, scenario D, ,,,: 10, 10, 50, 50, 95, 95, 145, 145, 200, and 200;
the decreasing N, scenario was the opposite). Each scenario was
replicated 10 times.

GF analysis, implemented in R (R Core Team, 2021) in the “gra-
dientForest” package (Ellis et al., 2012), was performed using fil-
tered (MAF > 0.01) allele frequencies and environmental values
sampled as described above. We measured the GF Offset of each
deme based on an adjacent environmental shift. We tested the
null hypothesis of no relationship between N, and the GF Offset
with Pearson's correlation coefficient in R. If GF Offset is not af-
fected by genetic drift, then this correlation will equal 0. However,
if higher drift at one end of an environmental cline results in more
allele frequency turnover (and higher GF offsets for those pop-
ulations), then the correlation between N, and GF Offset will be
negative.

2.4 | Q2 and QS3: Evaluation of offset measures in a
locally adapted population

Our goal was to use this next set of simulations to assess the pre-
dictive potential of GF Offset for a metapopulation under spa-
tially heterogeneous selection with a straightforward demography
(equal deme population size and stepping-stone migration). These
simulations evolved a simple two-dimensional isolation-by-distance
population structure. We evaluated the relationship between GF
Offset and mean deme fitness, after individuals from that deme
were transplanted into another environment in the simulation,
for both monogenic and polygenic scenarios. We evaluated offset
measures under two genetic architectures: a single-locus popula-
tion genetic model, and a multilocus two-trait quantitative genetic
model. In both models, a migration rate of m = 0.2 was chosen,
which allowed potentially adapted variants to quickly “encounter”
their niche and allowed local adaptation to quickly arise across the

metapopulation.

TABLE 2 Model parameters

Parameter Value Description

N 10,000 Total population size of the metapopulation

n 100 Individual deme size

m 0.05/0.2 Per-generation migration rate (single locus/multilocus)

u 1% 107 Neutral mutation rate

r 1% 107 Recombination rate

d 0.45 Fitness slope parameter (single-locus model)

HQTN 2.5%107° QTN mutation rate (multilocus models)

OQTN 0.1 Variation in QTN effect sizes (multilocus models)

o 4.0 Strength of stabilizing selection for first 1000 generations
(multilocus models)

oy 1.25/4.0 Strength of stabilizing selection after 2000 generations

(multilocus cases 1,2,3/multilocus case 4 for second trait)



LARUSON ET AL.

Increasing N

GF Cumulative Importance

Decreasing N

o
o

Environment

(=

T, \\\ Y-

(b)
Increasing N
200
3 150 r=-0.477
O p-value = 2e-06
g 100 Offset
o) between
O 50
1-2
T - : - T 2-3
Model 0.00 0.01 0.02 0.03 0.04 3.4
Increasing N D . N 45
All equal ecreasin
Decreasing N g 5-6
200 6-7
B 7-8
g 150 v;L;O;B::’ 28 &9
5 P 9-10
(0]
100
€
[0
(@)
50

0.00 0.01 0.02 0.03 0.04
GF Offset

FIGURE 1 Results of neutral simulations, where no selective pressure is imposed by the underlying environmental clines. (a) The
relationship between GF cumulative importance and environment across increasing, decreasing, and equal deme sizes across the
environmental gradient. GF Offset increased comparatively more when deme sizes were small. (b). A strong negative linear Pearson's
correlation between the GF Offset and deme size in 10 replicates, regardless of the direction of the population gradient. Numbers 1 through
10 in the legend represent the columns in the metapopulation matrix (see Figure S1)

We measured the mean local adaptation in each simulation as the
difference between mean sympatric fitness (wg) and mean allopat-
ric fitness (w,) (Blanquart et al., 2013). Mean sympatric fitness was
quantified as the average value along the diagonal of the common
garden fitness matrix, while mean allopatric fitness was quantified as
the average of all of the off-diagonal values. In order to reduce com-
putation load, we explored best-case scenarios for GF (e.g., where
there is strong environmentally driven local adaptation) that gave
high degree of local adaptation, such that the average deme fitness
in sympatry was approximately 15%-25% greater than in allopatry
(Kawecki & Ebert, 2004).

241 | Single-locus single-environment population
genetic simulations

In our “population genetic” model of environmental adaptation,
a single allele had a linear relationship with fitness across an envi-
ronmental cline. To avoid a scenario where maladapted individuals
persist at the range edge, we modeled individual fitness for each
genotype as a function of the environment, with the ancestral allele
(a) considered to be antagonistically pleiotropic (sensu Savolainen
et al., 2013) to the emerging derived allele (A). See Appendix S1 for
more details.

2.4.2 | Multilocus two-trait two-environment
quantitative genetic model

In our “quantitative genetic” two-trait, two-environment model of
environmental adaptation, QTNs were allowed to arise at a rate of
Hqry = H/4 =25 % 107 (Table 2) across 9 of the 10 linkage groups
in the genome, with the final linkage group maintained as a neutral
genomic reference. We assumed a quantitative genetic model where
alleles contributed additively to two distinct phenotypes for each
individual i in deme j (Pl,ii and P2,ii) with no dominance. When an an-
cestral allele mutated, the bivariate effect size of the derived allele
was drawn from a multivariate normal distribution with a standard
deviation of o4y = 0.1 (without covariance) for both traits, which
gives flexibility for mutations to evolve with effects on one or both
traits (i.e., pleiotropy). For each deme, the phenotypic optimum sim-
ply equaled the environmental value.

The relative fitness of individual i in demej (w;j) was based on how
far their PM. and PM phenotypes fell from the bivariate optimum in
that patch (@1]t and ®2jt) using a multivariate normal distribution with
standard deviation ¢, to represent the strength of stabilizing selec-
tion in each deme:

-1 (Pi,rem 2+ Po,j=024 \2
2 o o

w; =e
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All relative fitness values were normalized by w,_,

where Pi= 0.
We ran a cumulative burn-in period of 3000 generations, consisting of a
1000 generation homogeneous initial burn-in, followed by a 1000 gen-
eration transition burn-in (see Appendix S1).

Four cases were considered within the multilocus model
(Figure 2). Except as noted, the post-burn-in optima ranged from -1
to 1 for both environments, and the strength of selection equaled
1.25. Case 1 simulated simple linear clines, in which genetic distance
is linearly related to environmental distance. Two orthogonal envi-
ronmental clines were simulated: environment 1 varying left to right,
and environment 2 varying bottom to top (Figure 2 Case 1). Case
2 simulated a situation in which geographic distance does not relate

Phenotypic Optima Gradient Phenotype correlation
with environment

Case 1

linearly to environmental distance. Here, we simulated two non-
monotonic environments, with the two orthogonal environments
increasing from one edge to the middle of the metapopulation, and
then decreasing again to the opposite edge. The four corners of the
landscape thus had the same environment, but were geographically
distant (Figure 2 Case 2). In Case 3, we sought to understand the
effect of the slope of the environmental gradient on GF Offset. Case
3 was set up identically to Case 1 except that the optima for environ-
ment 2 were narrowed, ranging from -0.25 to 0.25. This was done
to produce a narrower phenotypic range in one environment (which
should evolve weaker clines in allele frequency), versus another,
without changing the strength of selection (Figure 2 Case 3). In Case

Mean evolved
phenotype

05

00

-0.5

Case 2

0.5

Case 3

Case 4

Env 1

Env 2

Time Env

FIGURE 2 Visualization of the four multilocus case studies. Rows summarize the four key features of each case: the clines of the two
phenotypic optima shown as color gradients, with the strength of stabilizing selection listed below each gradient (left column). Strong
stabilizing selection (o, value of 1.25) was used for all environments in all cases, except for Case 4, Environment 2, where stabilizing
selection was weak (o, value of 4.0). The correlation of each evolved phenotype to its respective environment over time is shown in the
middle column; and the mean value of each evolved phenotype at the end of the simulation plotted against its local environment is shown
in the far right column. Case 1 demonstrates a “simple” two equal linear environmental gradient scenario, with equally strong selection for
each environment. Case 2 has two equal nonlinear environmental gradients, with equally strong selection. Case 3 has two unequal linear
gradients, with equal selection. Case 4 has two equal linear gradients, with unequal selection between the two environments
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4, we sought to determine whether the strength of stabilizing selec-
tion affects GF Offset. Case 4 was set up identically to Case 1 except
that environment 2 had weaker stabilizing selection, ¢, = 4 for 6,
to produce less overall local adaptation, and more additive genetic
variation, for trait 2 than produced by Case 1 (Figure 2 Case 4). Each
case was replicated 10 times.

2.5 | Evaluation of offset metrics

In order to represent the relative fitness effects of an instantane-
ous environmental change, we implemented a reciprocal transplant
fitness assessment in our single- and multilocus simulations. The
mean relative fitness of individuals from a home location i (nyy) in
a transplant “common garden” location j (Dx,’y,) was calculated for
each deme across all contemporary environments in the simulation,
resulting in a 100 x 100 matrix of pairwise relative fitness compari-
sons. For each common garden j, we could then assess how well an
offset measure between i and j predicted the relative fitness of indi-
viduals from i when transplanted to j. We refer to this relative fitness
measure as CG Fitness (common garden fitness).

For each common garden, the performance of each offset mea-
sure was evaluated as the correlation between the offset measure
and CG fitness, with a higher correlation inferring that the given off-
set measure was better able to predict the relative fitness of a gen-
otype when transplanted to the common garden environment. To
capture limitations affecting most empirical studies, we used a sub-
set of demes in the reciprocal transplant that was used to calculate
the correlation for each common garden (32 demes, Figure S1). From
this, it became apparent that the relationship between GF Offset
and CG Fitness could depend on the common garden location, so we
present the average evaluation performance for common gardens

located in the range edge (“Edge”) and range core (“Core”) separately.

2.51 | Offset metrics

In order to assess the performance of GF Offset in predicting CG
Fitness relative to other distance metrics, we also calculated offset
measures based on pairwise (i) F¢; or (i) environmental distance.

(i) Fgr offset. F¢; offset for a set of individuals from a deme was
based on the pairwise F; between the source deme and trans-
plant deme. Pairwise Weir-Cockerham F; values were calculated
for every combination of demes at the end of each simulation after
filtering loci for MAF > 0.01: one set of such values using all loci
(F<t Genome)» @nother set using only the QTN loci (Fqr ¢, yea)-

(ii) Environmental offset. Environmental offset for a set of in-
dividuals from a deme was based on the pairwise environmental
distance between the source location and the transplant location.
Environmental distances were calculated using both n-dimensional
Euclidean (Cauchy, 1882) and Mahalanobis (M, Mahalanobis, 1930)
distances between all pairwise demes. We also evaluated the ef-

fect of adding noncausal environmental variables into the offset

T, \\\ Y-

calculations by simulating an additional 12 environmental gradients.
Two of these gradients were correlated with the two causal gra-
dients, derived by adding random draws from a univariate normal
(0 =0, 0 =1.3, to allow for a Pearson's correlation between 0.4 and
0.5). The other 10 gradients were drawn from a multivariate normal
distribution using a covariance matrix generated by sampling the cor-
relation among variables from a uniform distribution (clusterGenera-
tion package v1.3.4), which gave them a correlation structure similar

to that observed in climate data. Distances were calculated using all

environmental variables (“total environmental distance,” My, Ep oy

14 variables), and using just the causal environments (“causal envi-
. » .

ronmental distance,” Mp_..cor Ep-causar tWO variables).

(iii) GF offset. GF outputs an individual cumulative importance
curve for each locus considered to have an environmental asso-
ciation and a weighted aggregate function across all such loci, for
each important environmental variable. GF Offset is defined as the
Euclidean distance between two locations A and B in the rescaled
environmental space obtained by applying the fitted GF model to
the environmental predictors. Note that the rescaling and calcula-
tion of GF Offset can be performed using the individual cumulative
importance curves (if the goal is to calculate the offset for a single
locus, e.g., Keller et al. (2018)), but most applications to date have
used the aggregate cumulative importance curves and therefore cal-
culated a multilocus offset:

GF Offset =1/ Y, (Cly—Clg)?

where Cl,; is the multivariate cumulative importance calculated at point
A for environment j, and Cl; is the same variable calculated at point B. To
evaluate the influence of different sets of SNPs or environments used
for the calculation, after filtering (MAF > 0.01) we calculated GF Offset
based on (i) all loci and all environments (“GF Offset genome, all env.”),
(ii) all loci and causal environments (“GF Offset genome, causal env.”), (iii)
QTN loci and all environments (“GF Offset causal, all env.”), and (iv) QTN

loci and causal environments (“GF Offset causal, causal env.”).

3 | RESULTS

3.1 | Thought experiments

To explore the behavior of GF, we created different relationships be-
tween genetic variation and an environmental cline and used these to
evaluate the relationships between the rate of allele frequency turnover
and total amount of cumulative importance, as well as the shape of the
cumulative importance curve. In our study, GF produced similar nonlin-
ear cumulative importance curves for linear clines, in which the rate of
turnover was highest near the middle of the cline and low elsewhere,
regardless of the slope between allele frequency and the environment

(Figure 3, “steep,” “reverse,” and “shallow” clines). Nonmonotonic allele
frequency patterns also produced a nonlinear cumulative importance
curve, the shape of which matched the rate of turnover in allele fre-

quencies, namely for values of the environment where there is rapid
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turnover in allele frequencies, the slope of the curve is high, and in con-
trast, where there is no allele frequency turnover in the nonmonotonic
case, there is also no increase in the cumulative importance (Figure 3,
“non-monotonic”). Note how in the “non-monotonic case” the allele
frequencies are the same at the environmental extremes (-1 and 1),
but a deme would be predicted to have a nonzero GF Offset for an
environmental shift from -1 to 1 for that locus. See Appendix S2 for
results from a more comprehensive set of thought experiments, which
illustrate how the number of sampled populations and random error

influence cumulative importance curves (and thus GF Offset).

3.2 | Q1:Variation in population size (N)

When deme sizes across the environment were uniform, the cu-
mulative importance increased linearly in all replicates (Figure 1a).
In contrast, when deme sizes increased or decreased along the

environmental gradient, the rate of increase in the cumulative im-
portance was steeper at smaller deme sizes and less steep at larger
deme sizes (Figure 1). In all replicates, regardless of whether deme
sizes increased or decreased along the environmental gradient, GF
Offset was negatively correlated with deme size (Figure 1b).

3.3 | Q2:Relationship between GF Offset and
fitness offset

3.3.1 | Single-locus case

When asingle locus of large effect drives environmental adaptation, GF
readily identified the environmental gradient driving the clinal pattern
(Figure S2). The correlation between GF Offset and CG Fitness was

negatively correlated in common gardens at the edges of the range.
While the range center also showed a significant negative correlation,
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the variation in relative fitness was much reduced compared to the

edge demes, despite a similar range of offset values (Figure S3).

3.3.2 | Multilocus cases

All simulated cases produced high degrees of local adaptation (Figure
S4), with Case 3 having the lowest (0.169 - on average relative fitness
in sympatry was 16.9% higher than in allopatry) and Case 1 having
the highest (0.288). Across all cases, both traits evolved high correla-
tions between phenotype and environment (Figure 2). On average,
approximately 1600 QTN loci evolved in these simulations, indicating
that the genetic architecture of the traits was highly polygenic. After
MAF filtering, a little over 100 loci remained, but those retained loci
typically explained 50%-60% of the total additive genetic variance
for each trait (additive genetic variance for locus i on a trait j was ap-
proximated as oc;ij,.(l-p,.), where a; was the effect of locus i on trait j,
and p; was the frequency of locus i in the metapopulation postsam-
pling), indicating that a large number of QTNs were rare alleles that
individually contributed little to the total additive genetic variance.

We evaluated if GF could identify the causal environments when
all the simulated environments were input. In the cases with two
linear causal environmental clines (Cases 1, 3, & 4), GF was able
to identify the causal environment driving adaptation (Figure S5).
However, when two nonlinear causal environments were simulated
(Case 2), they were not ranked as most important when all alleles
were considered (see Figure S5).

Gradient Forest Offset had a consistent negative correlation
with CG Fitness across all replicates for all four multilocus cases, in
both Core and Edge demes, with similar performance regardless of
whether all loci or only causal loci were used (orange bars, Figure 4).
While GF Offset did not perform as well as the causal environmen-
tal distance (dark green bars, Figure 4), it consistently outperformed
overall environmental distance (light green bars, Figure 4), F

ST Genome’

and F¢r c,usa (light blue bars, Figure 4) as a predictor of CG Fitness.

3.4 | Q83:GF Offset versus other measures of offset
3.4.1 | Environmental distance as a predictor of
relative fitness across multilocus cases

Between the two environmental distance measures, M, performed
justas well as E in all cases except Case 3, where the internal stand-
ardization of each environment by its variance caused the second

environmental variable with lower variance to bias M.

3.4.2 | Genetic distance as a predictor of relative
fitness across multilocus cases

Measures of F, and Fgr ¢,..2 8€Nerally were among the poor-

ST Genome
est predictors of CG Fitness across all cases, but did perform slightly

better than overall environmental distance. Offset predictions by

T, \\\ Y-

both measures of F.; were more impacted by deme location (core vs.
edge) than any other method. While F¢; ., .., Was generally a better
predictor of CG Fitness overall for the Edge demes, F.

ST Genome per-

formed similarly in the Core demes.

4 | DISCUSSION

Potential applications for GF Offset range from small-scale conser-
vation efforts in genetic rescue (Houde et al., 2015), assisted migra-
tion for agricultural and forestry for increased production (Aitken &
Bemmels, 2016), and predicting and/or forecasting the potential for
maladaptation under climate change (Capblancq et al., 2020). The
work present here provides some initial simulation testing concern-
ing the application of GF Offset.

Whether the intent is to predict how a population will perform
when moved to another location or when faced with environmental
changes in its current location, GF Offset is useful only to the extent
that it approximates associated reductions in fitness (or maladaptation).
Across all simulated cases with selection, GF Offset performed well at
predicting CG Fitness, regardless of whether or not nonadapted loci
and noncausal environments were included in the analysis. However, it
isimportant to note that we used GF offset to predict relative fitness in
our simulations, as absolute fitness was not simulated. GF Offset was
representative of changes in relative fitness under both the simulated
single-locus and polygenic architectures, lending support to the key
assumption of a negative relationship between GF Offset and fitness
that underlies the use of GF for predicting maladaptation. When all
environmental variables were considered (causal and noncausal), GF
Offset, which is based on weighting of environmental gradients given
the strength of their association with adaptive variation, outperformed
predictions of changes in relative fitness from the unweighted distance
metrics. However, when environmental drivers of adaptation were
known and only those gradients were included in the offset calcula-
tion, environmental distance performed as well as, or better, than GF
Offset. Note that the demography in those simulations was simple in
the sense of equal deme sizes and migration rates. We also found that
neutral demography can confound GF Offset, and that GF Offset can
be sensitive to sampling schemes. Additional research is needed to in-
form how to account for population structure and apply appropriate
filtration thresholds prior to calculations of offset measures, especially
if they are to be applied to real-world applications.

4.1 | Interpretation and comparisons of CG Fitness
correlations

The strength of the relationship between causal environmental
distance and CG Fitness underscores the need to identify envi-
ronmental drivers of local adaptation when attempting to pre-
dict fitness under changing environments. While one study has
found a positive relationship between the strength of genotype-
environment associations and environments that predict common
garden fitness (Mahony et al., 2020), a strength of GF is its ability
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FIGURE 4 Spearman's correlation between Common Garden (CG) Fitness and different measures of offset (GF Offset = browns,
Environmental distances = greens, F¢; = blues), for common gardens at the edge of the landscape (left column) and common gardens in the
center (core) of the landscape (right column). Euclidean environmental distance = ED, Mahalanobis environmental distance = MD. Each row
represents an individual case of the multilocus simulation: first row shows Case 1, where both causal environments were linear orthogonals;
second row Case 2, where both causal environments were nonlinear orthogonal “mountain peaks”; third row Case 3, where the optimal
phenotypic range for trait 2 was narrower than for trait 1; and fourth row Case 4, where the strength of selection on trait 2 was weaker than

on trait 1

to identify linear selective environments from multiple candidate
environmental variables. However, GF did not rank selective envi-
ronments as most important in all cases; see Figure S5. GF Offset
consistently was a better predictor of CG Fitness than Fq, regard-
less of whether F¢; was calculated using only adapted loci or not.
This has significant implications for the use of F¢; as a decision
metric for prioritizing conservation efforts, which other evalua-
tions have also shown has limitations (Xuereb et al., 2020). In ad-
dition, we observed that offset metrics based on whole-genome
data performed similarly to data filtered for only the known causal
alleles, for both GF offset and F¢. A large number of rare causal
alleles were removed from the dataset by the 0.01 MAF filtra-
tion threshold, which might explain why offset metrics based on
known causal alleles were not a better predictor of relative fitness

offset than those based on whole-genome data, where linked loci
could have contributed a stronger overall signal. It should also be
noted that the magnitude of GF Offset cannot be compared across
different studies, as there is no currently accepted approach to
standardize the measure (e.g., to account for differences in the
number of variables used in the analysis, see range of offset values
in supplemental results in Appendix S1).

4.2 | Conceptual concerns with GF offset

Although GF Offset is increasingly used to predict maladaptation,
we do not fully understand its performance in natural systems. The
underlying assumptions in predictive applications of GF Offset, as
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with most other approaches to fitness inference, are that a popu-
lation already occupies its adaptive optimum when sampled, and
therefore changes in allele frequency composition (regardless of
direction) result in decreases in fitness. Furthermore, GF Offset
assumes that the molecular signatures of local adaptation when
multiple demes occupy the same environment at different sites
are the same. These assumptions are likely met when there is high
stability of both the adaptive landscape and the genomic archi-
tecture maintaining fitness. On the other hand, these assump-
tions are likely to be violated with shifts in the adaptive landscape
potentially driven by fluctuations in climate and ecology (Arnold
et al.,, 2001), and under transient, highly redundant genomic ar-
chitectures (Laruson et al., 2020). With the single locus of large
effect simulation showing the strongest relationship between GF
Offset and CG Fitness (Figure S3), and the nonlinear environment
simulation (Case 2) the weakest, GF Offset is clearly impacted by
both genomic architecture and the environmental landscape of
the metapopulation. Also, for linear allele frequency clines, the
steepness of the cline did not influence the (nonlinear) cumulative
importance curve. Although when the cline was nonmonotonic,
the cumulative importance curve better matched the pattern of
turnover. Therefore, at least for linear clines, the interpretation
of the steepness of the cumulative importance curve as a meas-
ure of the rate of allele frequency change may not be appropriate.
Rather, the cumulative importance curves reflect how much of the
variation in allele frequencies is explained by the environmental
gradient, regardless of the absolute difference in allele frequen-

cies along the gradient.

4.3 | Caveats and best practices
The sensitivity of GF Offset to deme size requires special con-
sideration when studying populations that do not maintain a uni-
form distribution across their range, especially for populations of
conservation concern (Borrell et al., 2020; Rellstab et al., 2015).
Empirical studies have found negative associations between GF
Offset and population size (Bay et al., 2018; Ruegg et al., 2018),
but our results show that these associations can arise due to neu-
tral genetic drift and not signals of selection as assumed. At small
(large) deme sizes, there is more (less) genetic drift, which leads
to greater (less) allele frequency turnover at that end of the en-
vironmental gradient, and therefore more (less) rapid increases
in cumulative importance and larger (smaller) GF Offset. Thus,
empirical studies that find a correlation between population size
and offset values should not be considered examples of validation
for offset measures. Additionally, datasets where deme size and
environments (with high importance in GF) are correlated would
be most susceptible to this phenomenon, and investigators should
report these relationships.

These results highlight that empirical observed negative rela-
tionships between GF Offset and population size cannot be as-
sumed to indicate a selection-driven response, and underscores

T, \\| Y-

the need to account for population structure during genome
scans for selection prior to fitting GF. Because our results illus-
trate that genetic drift can confound measures of GF Offset, it is
likely that more complex demographic processes, such as popula-
tion size fluctuations, variable gene flow, admixture, or secondary
contact, will also confound GF Offset, as they have been shown
to confound genome scans (e.g., Harris et al., 2018; Lotterhos &
Whitlock, 2014; Luu et al., 2017). Note that in our neutral simula-
tion case, it is not clear how many of these neutral loci would have
been eliminated by implementing a genome scan for selection
prior to offset calculation, as has been advocated for previously
(Capblancq et al., 2020). The effects of increased demographic
complexity in conjunction with adaptive processes on GF Offset
have not been fully explored here, and is an important direction
for future research. Since other metrics of genetic offset have
been found to be associated with population size (Borrell et al.,
2020), the potential effect of genetic drift on various other off-
set measures should also be more fully evaluated. To this end,
recent studies have explored correcting allele frequencies for
population structure based on the population covariance matrix
(Berg & Coop, 2014) prior to analysis with GF for outlier detection
(Fitzpatrick et al., 2021).

In our simulations, the degree of negative correlation between
GF Offset and relative fitness depends on sampling scheme, genetic
architecture, the genotype-phenotype-fitness map, and the pattern
of environmental variation on the landscape. The thought experi-
ments showed that GF can be sensitive to sampling schemes and has
higher performance when populations are densely sampled along
environmental gradients. This raises questions about how sampling
schemes might bias environmental predictor importance values
and requires further study. Sampling considerations are further im-
pacted by the way GF trains itself on approximately two-thirds of
the input number of populations, albeit repeatedly, so GF’s ability to
confidently predict the training data can be impacted when only a
few populations are analyzed.

4.4 | Opportunities for future development

A key limitation of our simulation to highlight is that all fitness val-
ues were calculated as relative fitness, whereas most conservation
minded applications of GF will be concerned with absolute fitness
(i.e., population size may be shrinking with increasing genotype-
environment mismatches). This distinction between absolute and
relative fitness is critical when using models to inform conservation
management decisions, since changes in allele frequencies (due to
genetic drift or differences in relative fitness) do not necessarily im-
pact demography as absolute fitness does. In fact, allele frequency
changes can only ever reflect relative fitness (Brady et al., 2019). For
example, a novel genotype might be increasing in a deme because
it has higher relative fitness than another genotype, but both the
demes could still be declining in size because both genotypes have
low absolute fitness. Therefore, the rationale that allele frequency
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changes would be useful in making fitness predictions under climate
change needs closer examination, and is an important area for future
research.

To assess the predictive potential of GF Offset, our simula-
tions focused on a select few “idealized” scenarios (i.e., high local
adaptation, all relevant causal environmental measures included,
and fitness assessment across all common gardens at a fixed time
point), with corresponding data which are unlikely to be reflected
in empirical work. All calculations using causal alleles were not
dependent on those alleles being identified as outliers - it was
simply assumed that they were known. In reality, even though
many causal alleles showed relatively elevated Fq; values (Figure
S6), most would be unlikely to be identified through any outlier
cut-off approach. However, even when we employed the nonideal
practice of including all loci, with no attempt at filtering for alleles
under selection, GF Offset remained highly correlated with our
measure of CG Fitness. Future studies should simulate less ideal
scenarios including more complex demographies, non-Wright-
Fisher dynamics (with variable deme sizes), and errors in genotyp-

ing or outlier detection.

5 | CONCLUSIONS

While most emergent complexities involved in applying GF Offset
to realistic scenarios are still poorly understood, there is still
promise in the application of this method to identifying key en-
vironmental drivers of local adaptation and for estimating fitness
declines in response to rapid environmental change. This may be
especially applicable to translocation assessments of at-risk spe-
cies or cultivars, and genetic rescue efforts. Key considerations
of demography, genomic architecture, and the nature of environ-
mental gradients have been highlighted here, as in earlier work
(Capblancg et al., 2020; Fitzpatrick et al., 2021; Gougherty et al.,
2021), as factors that can have significant effects on measures of
GF Offset. All future inferences drawn from the potential negative
relationship between GF Offset and fitness must take care to ad-
dress these features of the study system explicitly, and acknowl-
edge the limitations of all inferences if any of these factors are not

well understood.
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