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Abstract. A Kakeya set S ⊂ (Z/NZ)n is a set containing a line in each direction. We show
that, whenN is any square-free integer, the size of the smallest Kakeya set in (Z/NZ)n is at
least Cn,εNn−ε for any ε – resolving a special case of a conjecture of Hickman and Wright.
Previously, such bounds were only known for the case of prime N . We also show that the
case of general N can be reduced to lower bounding the Fp rank of the incidence matrix of
points and hyperplanes over (Z/pkZ)n.
Mathematics Subject Classifications. 05B20, 05B25

1. Introduction

Given a finite abelian ring R, we consider the space of n-tuples over R, denoted Rn. In this
space we may define a line in direction b ∈ Rn \ {0} to be a subset of the form {a+ tb|t ∈ R}
where a ∈ Rn. We denote the set of directions in Rn (projective space) by PRn−1. For now
we will postpone the precise definition of PRn−1 to a later stage. A Kakeya set in Rn is a set
containing a line in every direction:

Definition 1.1 (Kakeya set). A set S ⊂ Rn is said to be a Kakeya set if given any direction
b ∈ PRn−1 there exists a point a ∈ Rn such that the line {a+ tb|t ∈ R} is contained in S.

The question of lower-bounding the size of the smallest Kakeya set over finite fields was
initially raised by Wolff [Wol99] as a possible approach for attacking the notorious Euclidean
Kakeya conjecture in Rn, and later found other applications including in theoretical computer
science (see [Dvi10] for a survey of those). Wolff’s conjecture, later known as the finite field
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Kakeya conjecture stated that, the size of the smallest Kakeya set in Fnq should be at least Cnqn
for some constant Cn depending only on the dimension. Coming from the Euclidean problem,
one typically thinks of n as fixed and q growing, however, later applications deal with other sce-
narios and require a more accurate control of the constant. Wolff’s conjecture was proved using
the polynomial method in [Dvi09] with subsequent improvements given in [SS08, DKSS13]
culminating in the following bound.

Theorem 1.2 ([DKSS13]). Let Fq denote a finite field of order q and let S ⊂ Fnq be a Kakeya
set. Then

|S| > qn

(2− 1/q)n

WhenR is not a field much less is known. The problem of lower bounding the size of Kakeya
sets for the rings Z/pkZ and Fq[x]/〈xk〉 was first proposed in [EOT10] as a step in the direction
of the Euclidean problem as these rings contain ‘scales’ in a way that does not exist over a finite
field and is reminiscent of the real numbers. While the additive combinatorics techniques that
preceded the polynomial method [Bou99, KT02] work over any abelian ring, they currently only
lead to bounds of the form |S| > |R|αn with the α < 0.6. Another, more recent, work to study
Kakeya sets (and related operators) over finite rings is [HW18] in which a connection between
bounds for Kakeya sets over the rings Z/pkZ and the Minkowski dimension of p-adic Kakeya
sets is established. For the two dimensional case, whenR = Fq[x]/〈xk〉 orR = Z/pkZ, Dummit
and Hablicsek showed a (tight) bound of |S| > |R|2/2k in [DH13a].

Similar to the Euclidean setting, Kakeya sets with Haar measure 0 can be constructed for
the ring of p-adic integers and the power series ring Fq[[x]]. The constructions can be found in
[DH13a, Fra16, Car18, HW18]. As in the Euclidean setting, we want to bound the Minkowski
dimension of Kakeya sets for these rings which is connected to the size of Kakeya sets in Z/pkZ
and Fq[x]/〈xk〉.

The Kakeya conjecture over the rings R = Z/NZ was stated in [HW18] as follows. As seen
above, for finite fields the loss of ε in the exponent is not necessary. However, as we shall see
later, for composite N we must allow it.

Conjecture 1.1 (Kakeya set conjecture over Z/NZ). For all ε > 0 and integers n there exists a
constant Cn,ε such that any Kakeya set S ⊂ (Z/NZ)n satisfies

|S| > Cn,ε ·Nn−ε.

Already when N = p1 · p2 is a product of two primes of roughly the same magnitude, the
polynomial method fails to work. One way to see this is to notice that any polynomial over
R = Z/p1p2Z has degree at most max{p1− 1, p2− 1} ≈ N1/2 in each variable. This limits the
dimension of the space of polynomials to≈ Nn/2 and prevents us from interpolating a non-zero
polynomial vanishing on S, when S is larger than that dimension (which is the first step in the
polynomial method).

Our main contribution is a proof of Conjecutre 1.1 for square-free integers N . At this point
we should say what is our definition of projective space for these rings as this will determine
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the definition of Kakeya sets. For N = p1 · · · pr a product of r distinct primes, the Chinese
remainder theorem gives us

(Z/NZ)n ∼= Fnp1 × · · · × Fnpr
under the natural isomorphism x 7→ (x mod pi)

r
i=1. For each i the projective space PFn−1

pi
is

defined to be the set of all non-zero vectors in Fnpi up to scaling. Finally, we take the projective
space to be

P(Z/NZ)n−1 = PFn−1
p1
× · · · × PFn−1

pr .

In other words, a direction in (Z/NZ)n is represented by a vector b ∈ (Z/NZ)n that is non-zero
modulo pi for all i and we identify two directions if they can be obtained from one another by
scaling with an invertible ring element.1

Theorem 1.3 (Kakeya bound for square-free N ). Let N = p1 . . . pr be a product of r distinct
primes and set R = Z/NZ. Any Kakeya Set S ⊆ Rn satisfies

|S| > Nn

r∏
i=1

(2− 1/pi)n
>
Nn

2rn
.

Since the number of factors of N satisfies r = O(logN/ log logN) (indeed the asymp-
totics of r are known [HR17]) we see that the expression in the theorem is lower bounded by
Nn−O(n/ log logN) and so it indeed proves Conjecture 1.1.

The tightness of the bound in Theorem 1.3 can be demonstrated by taking the product (via
the Chinese remainder theorem) of the best known constructions in Fnpi for each factor pi. In
[SS08] it was shown that, for any prime p, there are Kakeya sets in Fnp of size bounded above by
pn/2n−1+Cpn−1, whereC is an absolute constant. Taking the product one obtains the following.

Theorem 1.4. Let N = p1 . . . pr be a product of distinct primes and n an integer. There exist a
Kakeya Set S ⊆ (Z/NZ)n with

|S| 6
r∏
i=1

(
pni

2n−1
+ Cpn−1

i

)
,

where C > 1 is an absolute constant.

Hence, when all the prime factors pi of N are sufficiently large (also as a function of r), we
see that the main term in the construction is off by at most a factor of 2r = N o(1) from the lower
bound of Theorem 1.3. Notice that, while the upper bound is obtained from a product of Kakeya

1In both [EOT10, HW18], where the emphasis was on rings such as Z/pkZ or Fq[x]/x
k, the definition of

projective space over a ringR require the direction b to have at least one invertible coordinate. This definition leads
to the same notion of projective space as ours for the rings Z/pkZ or Fq[x]/x

k. However, in the case of Z/NZ
whereN has more than one distinct prime factors their definition is different than ours. In our definition a direction
might have all coordinates as zero-divisors. For example, in the case of composite square free N if the reductions
b mod pi have disjoint supports we get lines with directions represented by non-zero divisors in each co-ordinate.
Requiring at least one invertible coordinate leads, in the case of composite square free N , to a definition that is
basis dependent and less natural.
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sets modulo each prime factor, a general Kakeya set in (Z/NZ)n might not have this product
structure (otherwise the proof of the lower bound would be trivial).

Our proof of Theorem 1.3 also outlines a specific problem whose solution could lead to a
bound for general (non square-free) modulo N . Consider the pkn × pkn matrix Wpk,n whose
rows/columns are indexed by elements of Rn where R = Z/pkZ and whose (x, y)’th entry is 1
if 〈x, y〉 = 0 mod pk and 0 otherwise. We call Wpk,n the point-hyperplane incidence matrix of
Rn. SinceWpk,n has zero-one entries, we can view it as a matrix over any field and, in particular,
compute its rank over Fp. We show that this rank lower bounds the size of any Kakeya set.

Theorem 1.5. Given a prime p and integers k, n, every Kakeya set S in (Z/pkZ)n satisfies

|S| > rankFp(Wpk,n).

Hence, proving a lower bound of, say, p(1−ε)kn for small ε > 0 on the rank of the incidence
matrix Wpk,n would lead to new bounds for Kakeya sets in (Z/pkZ)n. Furthermore, using our
techniques, these bounds will then imply the appropriate bounds for N which is a product of
prime powers. The work of [GD68, MM68, Smi69] shows such rank bounds hold for Wp,n

when k = 1 or when R a finite field. We will use these bounds to prove a slightly weaker bound
leading up to Theorem 1.3. Currently we are able to show that the rank of Wpk,n is only larger
than ≈ pkn/2 which does not lead to any non-trivial bounds on the size of Kakeya sets. The
matrix Wpk,n, which is referred to in the literature as the incidence matrix of Hjelmslev spaces
was shown to have full rank over the rational numbers [LV14] but the rank over Fp seems to be
open. We note that our reduction is only in one direction – showing that Wpk,n has low rank
would not imply the existence of small Kakeya sets using our theorem.

1.1. Overview of the proof

Our proof consists of two main parts. The first gives a new formulation of the polynomial proof
for Kakeya sets over finite fields (in our case, primeN ). Our proof relies on the same underlying
principles of the polynomial method but uses them in a way that gives us more control. The
second part uses this modified proof for general square-free N by inducting on the number of
prime factors. We now describe each part in more detail.

Consider a Kakeya set S ⊂ Fnp . The first new idea in the proof is to replace the size of the
set S with the rank of a 0 − 1 matrix MS we call the line-matrix of S. This matrix has a row
for each direction b ∈ PFn−1

p and that row is the indicator vector 1L(b) for a line L(b) ⊂ S in
direction b. That is, each column of MS is indexed by some x ∈ Fnp and the b’th row has ones
in positions indexed by the points in L(b) and zeros everywhere else. It is not hard to show (and
proven in Lemma 2.2) that, over any field,

rank(MS) 6 |S| 6 p · rank(MS)

and so the rank is a good proxy for |S| (for the upper bound we require that S is, in some
sense, a minimal Kakeya set). We will bound the rank of MS over Fp by constructing two fixed
matrices (independent of S) which we denote for now byA andB such thatA has high rank and
A = MS · B. Since the rank of MS · B is at most the rank of MS we get that |S| > rank(A).
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We leave the description of the matrices A and B (which involves polynomials) to the technical
sections as these are not needed to explain the second part of the proof. One comment is that the
above outline is only enough to prove a slightly weaker version of Theorem 1.3 (with the “right”
exponent n but worse dependence on r). To prove the tighter bound as in the theorem we need
to work with a variant of MS in which each line L(b) has many rows associated with it, each
supported on L(b) but with different non-zero values. The construction of the fixed matrices A
and B is also different and uses the extended variant of the polynomial method using high order
derivatives (as in [DKSS13]). We present both the simplified and full proof in the technical
sections below.

With the first part in place, we can now describe the case of composite N . For simplicity,
assume N = p · q is a product of two primes and let R = Z/NZ. Notice that, by the Chinese
remainder theorem, Rn ∼= Fnp × Fnq and any line L(b) in direction b ∈ PRn−1 is a Cartesian
product of a line Lp(b) ⊂ Fnp and a line Lq(b) ⊂ Fnq . Notice that each of the lines Lp(b), Lq(b)
might depend on both the b (mod p) part and the b (mod q) part of the direction b (otherwise our
lives would be much easier as S would be a product of a Kakeya set in Fnp and a Kakeya set in
Fnq ). We construct the line matrix MS as before, working over the field Fp and treating the rows
of MS as elements in the tensor product Fpnp ⊗ Fqnp . That is, each row is a function from Rn to
Fp. From the above discussion, each row 1L(b) is the tensor product of 1Lp(b) and 1Lq(b). We now
recall the matrices A and B from the first part so that, A = MT ·B for any Kakeya set T ⊂ Fnp .
The final step of the proof is multiplying MS by the Kronecker product B ⊗ Iqn , where Iqn is
a qn × qn identity matrix and analysing the dimension of the space spanned by the rows. This
requires both the rank bound onA as well as the inductive bound on Kakeya sets over Fnq (which
imply rank bounds on the corresponding line-matrix over any field, including Fp).

To prove Theorem 1.5 we would ideally like to construct a matrixB such thatWpk,n = MS ·B
(which would prove the theorem by the above discussion). While we are not able to directly do
that, we are able to construct a complex matrixB such thatMS ·B has the same support asWpk,n

and whose non-zero entries are all complex roots of unity of order pk. We then show that the
complex rank of such a matrix is lower bounded by the Fp rank of Wpk,n.

1.2. Organization

In Section 2 we (re)prove the finite field Kakeya conjecture using the rank of the line matrix
MS . In Section 3 we show how to handle multiple prime factors by proving a weaker version of
Theorem 1.3 for the special case N = pq. In Section 4 we prove Theorem 1.3 in full generality
by adding the use of high order derivatives. In Section 5 we discuss the case of prime powers
R = Z/pkZ and prove Theorem 1.5.

2. Warm-up 1: Reproving the finite field bound

We start be defining the line-matrix MS associated with a Kakeya set S ⊂ Rn.

Definition 2.1 (Line matrix of S). The line matrix MS for a Kakeya set S in Rn is a matrix
with 0, 1 entries where the columns are indexed by points in Rn and the rows are indexed by
directions b ∈ PRn−1 and the row corresponding to b is the indicator vector 1L(b) ∈ {0, 1}|R

n|
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of a line L(b) in direction b contained in S (if there is more than one such line, we pick the first
one in some pre-determined order).

We note asMS is a matrix with 0, 1 entries we can treat it as a matrix over any field F. Given
any integer matrix M we let rankF(M) refer to the rank of the matrix M over the field F.

Lemma 2.2 (Rank-Size relation). Let S ⊆ Rn be a Kakeya set and F a field. Then

|S| > rankF(MS).

Furthermore, if S ′ is the set of non-zero columns in MS (by identifying the columns by their
indices in Rn we see that S ′ is itself also a Kakeya set in Rn) then

rankF(MS) >
|S ′|
|R|

.

Proof. The lower bound on |S| is trivial since all rows are supported on elements of S. To prove
the other direction we iteratively pick lines from S ′ as follows. We first start with a lineL1. After
picking lines L1, L2, . . . , Lt we pick a line Lt+1 which is not completely contained in the union⋃t
i=1 Li. The size of the union

⋃t
i=1 Li is at most |R|t so, since S ′ is defined to be the union of

the lines forming the rows of MS , we can continue this procedure as long as t|R| < |S ′|. This
will gives us a set of lines L1, . . . , Lr where r = d|S ′|/|R|e with the property that the line Lt+1

is not completely contained in
⋃t
i=1 Li for all t < |S ′|/|R|. The vectors 1Li

are clearly linearly
independent since they correspond to an upper triangular matrix after changing the basis using
an appropriate permutation matrix.

From now on we will focus on giving a lower bound on the rank of MS for a Kakeya set
S ⊂ Fnp with p prime. As outlined in the proof overview, we are looking to construct two
matrices A and B so that A = MS ·B for any Kakeya set S and such that A has high rank. Both
A and B will be related to the point-hyperplane incidence matrix which we now define. By a
hyperplane we mean a subset Hb ⊂ Fnp of the form Hb = {a ∈ Fnp , | 〈b, a〉 = 0}. We denote by
Hb = {a ∈ Fnp , | 〈b, a〉 6= 0} the complement of the hyperplane.

Definition 2.3 (Point-hyperplane incidence matrix). Given a prime p and a natural number nwe
define the point-hyperplane incidence matrix Wp,n to be the pn × pn matrix whose columns are
the indicator vectors of the hyperplanes 1Hb

over all b ∈ Fnp and the rows are indexed by points
in Fnp . Notice that each row/column ofWp,n (except for the one indexed by zero) is repeated p−1
times as scaling by a non-zero field element does not affect whether or not the inner product is
0.

Our proof will rely on the following simple but useful property of this matrix.

Lemma 2.4 (Action of Wp,n on lines). Let L ⊆ Fnp be a line in direction b ∈ PFn−1
p and

let 1L ∈ Fpnp be its (row) indicator vector. Then, over the field Fp, we have

1L ·Wp,n = 1Hb
.

Hence, the product only depends on the direction of the line L.
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Proof. The coordinate of 1L ·Wp,n indexed by a ∈ Fnp is the inner product of 1L and 1Ha and so
is equal to the size (mod p) of the intersection L∩Ha. For a = 0 the intersection size is |L| = p
which is zero mod p. This is also the 0 entry in 1Hb

since 0 6∈ Hb. Now suppose a 6= 0. The size
of the intersection of a line L with a non-trivial hyperplane Ha can have one of three values. If
the direction b of the line L is not inHa then |L∩Ha| = 1. If b ∈ Ha then |L∩Ha| can be either
0 or |L|which are both equal to 0 modulo p. Hence, over Fp we have (1L ·Wp,n)a = (1Hb

)a.

We will also need a bound on the rank of the matrix Wp,n. These matrices have been stud-
ied in the coding community since the 1960’s and their rank has been computed via several
methods. In particular, the following is a special case of results appearing in [GD68, MM68,
Smi69]. The proofs involve using studying the point-hyperplane incidence matrix for the pro-
jective space PFnp , identifying PFnp with the cyclic group F×pn+1/F×p , and using its representation
theory over Fp.

Theorem 2.5 (Fp-rank of Wp,n). Let Wp,n be the point-hyperplane incidence matrix of Fnp .
Then

rankFp(Wp,n) =

(
p+ n− 2

n− 1

)
+ 1.

We will conclude this section by demonstrating how the information obtained so far forWp,n

can be used to give a bound on Kakeya sets over prime order finite fields.2

Theorem 2.6. Let S ⊂ Fnp be a Kakeya set. Then

|S| >
(
p+ n− 2

n− 1

)
.

Proof. Working over the field Fp, let MS be the line matrix of S and let

A = MS ·Wp,n.

By Lemma 2.4 we have that the row of A indexed by b ∈ PFn−1
p is the indicator vector 1Hb

. Let
A′ = J −A where J is a matrix with all entries equal to one. Then, the matrix A′ has the same
rows (without repetition) as those of Wp,n and hence the same rank. Since J is rank one, we get
that

rankFp(A) > rankFp(Wp,n)− 1 =

(
p+ n− 2

n− 1

)
.

Since
|S| > rankFp(MS) > rankFp(MS ·Wp,n)

we get the claimed bound.
2One can generalize the proof using Wp,n also to fields of size pt but the resulting bounds are not as good as

the ones obtained directly from the polynomial methods.
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The relationship between the above proof and the polynomial method proof appearing in
[Dvi09] is somewhat elusive at this point and will become clearer when we prove the stronger
bound appearing in Theorem 1.3. However, the proof of this section could be taken on its own
as a ‘new’ proof of the finite field bound which does not use polynomials in any explicit way
(but, in turn, relies on the rank bound of Theorem 2.5). The bound obtained above only gives an
exponent of n− 1 instead of n. However, this can be amplified to n− ε for all ε using a standard
tensoring trick (see Lemma 3.3).

3. Warm-up 2: Product of two primes

In this section we show how the proof of the finite field case given in the previous section allows
us to work with composite (square-free) modulus. For the sake of simplicity we deal with the
case of two distinct primes as it already contains all the technical details of the general case.

First, we define the Kronecker Product of two matrices and its relation to the tensor product.
We denote [r] = {1, 2, . . . , r}.

Definition 3.1 (Kronecker Product of two matrices). Given a field F and two matrices MA

and MB of sizes n1 × m1 and n2 × m2 corresponding to linear maps A : Fn1 → Fm1 and
B : Fn2 → Fm2 respectively, we define the Kronecker product MA ⊗ MB as a matrix of size
n1n2 × m1m2 with its rows indexed by elements in [n1] × [n2] and its columns indexed by
elements in [m1]× [m2] such that

MA ⊗MB((r1, r2), (c1, c2)) = MA(r1, c1)MB(r2, c2),

where r1 ∈ [n1], r2 ∈ [n1], c1 ∈ [m1] and c2 ∈ [m2]. MA⊗MB corresponds to the matrix of the
linear map A⊗B : Fn1 ⊗ Fn2 ∼= Fn1n2 → Fm1 ⊗ Fm2 ∼= Fm1m2 .

We will need the following simple property of Kronecker products which follows from the
corresponding property of the tensor product of linear maps.

Fact 3.1 (Multiplication of Kronecker products). Given matrices A1, A2, B1 and B2 of sizes
a1 × n1, a2 × n2, n1 × b1 and n2 × b2 we have the following identity,

(A1 ⊗ A2) · (B1 ⊗B2) = (A1 ·B1)⊗ (A2 ·B2).

For the rest of this section, letN = pq be a product of distinct primes and denoteR = Z/NZ.
Recall that, via the Chinese remainder theorem, we have a natural isomorphism between R and
Fp×Fq which extends toRn ∼= Fnp×Fnq . We will work in the tensor product Fpnp ⊗Fqnp which we
will identify with the space FNn

p . If we consider v ∈ Fpnp as a function v : Fnp 7→ Fp and u ∈ Fqnp
as a function v : Fnq 7→ Fp then their tensor product v⊗u ∈ FNn

p is the function v⊗u : Rn 7→ Fp
defined by (v⊗ u)(xp, xq) = v(xp) · u(xq) where (xp, xq) ∈ Fnp ×Fnq is a general element in Rn

via the Chinese remainder theorem.
We will need the following simple lemma on the rank of certain sets of vectors inside the

tensored space.
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Lemma 3.2. Let V and U be finite dimensional vector spaces over an arbitrary field F. Let
A = {v1, v2, . . . , vn} ⊆ V be a set of linearly independent vectors and B1, B2, . . . , Bn ⊆ U be
subsets such that each Bi spans a subspace of dimension at least k. Then the space spanned by
the vectors

⋃n
i=1{vi ⊗ y|y ∈ Bi} has dimension at least nk in V ⊗ U .

Proof. Let C = {c1, . . . , cm} be some basis of U where we let m be the dimension of U . Then
vi⊗ cj where i ∈ [n] and j ∈ [m] form a linearly independent set of vectors in V ⊗U . For each
set Bi we can find a set of k linearly independent vectors B′i = {bi1, . . . , bik} all of which can be
written as a linear combination of elements in C.

We will show the set of vectors
⋃n
i=1{vi ⊗ y|y ∈ B′i} is linearly independent to prove the

lemma. Let us consider a linear combination of these vectors which equals 0,

n∑
i=1

k∑
j=1

αi,jvi ⊗ bij = 0,

where αi,j are scalars. This means,

n∑
i=1

vi ⊗

(
k∑
j=1

αi,jb
i
j

)
= 0. (3.1)

Consider the linear projection operator Pi defined on span{vi, i ∈ [n]} ⊗ U as,

Pi(vj ⊗ ck) =

{
ck if j = i
0 if j 6= i

.

Applying Pi on (3.1) gives us,
k∑
j=1

αi,jb
i
j = 0.

As bi1, . . . , bik are linearly independent we have αi,j = 0 for all i and j.

We will also need the following simple claim which allows one to amplify a bound of the
form Nn−c for some constant c to a bound of the form Nn−ε for any ε > 0.

Lemma 3.3. If S is a Kakeya set in Rn where R = Z/NZ for square-free N , then St ⊆ Rtn

which is the product of S with itself t times is also a Kakeya set in Rtn.

Proof. It is enough to consider the case t = 2. Let b ∈ PR2n−1 be some direction and, by abuse
of notation, let us think of b ∈ R2n as some representative of this direction. Write b = (b′, b′′)
where b′ is the first n coordinates of b and b′′ are the last n coordinates (each corresponding to a
different copy of S). IfN = p1 · · · pr, for each iwe let b′i = b′ mod pi and similarly for b′′. If all
b′i and b′′i are non-zero then we are in a situation where b′ and b′′ are ‘legal’ directions in PRn−1

and so there will be lines L′, L′′ in S in these directions. Therefore the product L′ × L′′ ⊆ S2

will contain a line in direction b.
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A slightly more delicate case occurs when some of the b′i or b′′i are zero. In this case, let
L′ ⊂ S be a line in some direction c′ that agrees with b′ modulo all pi for which b′i is non zero
and takeL′′, c′′ in a similar manner. We now have to check that the productL′×L′′ contains a line
in direction b = (b′, b′′). Suppose L′ = {a′+ tc′ | t ∈ R} and similarly L′′ = {a′′+ tc′′ | t ∈ R}.
Consider the line in R2n in direction b = (b′, b′′) through a = (a′, a′′). A general point on this
line looks like x(t) = (a′ + tb′, a′′ + tb′′). Now, the set L′ × L′′ contains all points of the form
y(t′, t′′) = (a′ + t′c′, a′′ + t′′c′′). We now have to check that the point x(t) as above is in this
product. Let t′ ∈ R be the same as t but with t′ = 0 mod pi for all pi such that b′i = 0 and
similarly let t′′ be the same as t but with t′′ = 0 mod pi for all pi such that b′′i = 0. We have
t′c′ = tb′ and similarly t′′c′′ = tb′′. Therefore, x(t) = y(t′, t′′) and we are done.

We are now ready to prove the main result of this section.

Theorem 3.4 (Kakeya bound in (Z/pqZ)n). Let p and q be distinct primes and let
S ⊂ (Z/pqZ)n be a Kakeya set. Then, for any ε > 0 there exists a constant Cn,ε depending
only on n and ε so that

|S| > Cn,ε · (pq)n−ε.

Proof. Let R = Z/pqZ. All our vectors and matrices will be over Fp. Given a Kakeya set
S ⊆ Rn consider the line matrix MS associated with S over the field Fp. Our goal is to lower
bound rankFp(MS). For a direction

b = (bp, bq) ∈ PFn−1
p × PFn−1

q ,

the row in MS corresponding to b will be the indicator vector 1L(b) ∈ F|R
n|

p of a line in direction
b contained in S denoted

L(b) = L(bp, bq) = Lp(bp, bq)× Lq(bp, bq)

which is itself Cartesian product of lines Lp(bp, bq) ⊆ Fnp in the direction bp and Lq(bp, bq) ⊆ Fnq
in the direction bq. Note, Lp(bp, bq) includes bq because the lines Lp(bp, c1) and Lp(bp, c2) can be
potentially different when c1 6= c2. Finally, notice that the indicator vector 1L(b) ∈ F|R

n|
p equals

the tensor product
1L(b) = 1Lp(bp,bq) ⊗ 1Lq(bp,bq).

Let Wp,n be the point-hyperplane incidence matrix defined in the previous section. Let Iqn
be the identity matrix of size qn × qn. The rows and columns in Iqn are thought to be indexed
by points in Fnq . Consider the Kronecker product Wp,n ⊗ Iqn . We will examine the product

MS · (Wp,n ⊗ Iqn).

If we look at the row in MS indexed by a direction b = (bp, bq) ∈ PFn−1
p × PFn−1

q , the corre-
sponding row in MS · (Wp,n ⊗ Iqn) is the product,

1L(b) · (Wp,n ⊗ Iqn) = (1Lp(bp,bq) ⊗ 1Lq(bp,bq)) · (Wp,n ⊗ Iqn)

= (1Lp(bp,bq) ·Wp,n)⊗ 1Lq(bp,bq) (Using Fact 3.1)
= 1Hbp

⊗ 1Lq(bp,bq), (3.2)
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where we recall Hc is the set {x|〈x, c〉 6= 0} ⊆ Fnp where c ∈ PFn−1
p and the last step in (3.2)

uses Lemma 2.4.
Denote the set of vectors

V = {1Hc
| c ∈ PFn−1

p } ⊂ Fpnp

and, for each c ∈ PFn−1
p , the set of vectors

Bc = {1Lq(c,bq) | bq ∈ PFn−1
q } ⊂ Fqnp .

From Theorem 2.5 (following the argument in Theorem 2.6) we know that the dimension the
space spanned by V is at least

(
p+n−2
n−1

)
. Next, fix some c ∈ PFn−1

p . The vectors forming Bc are
the indicators of a set of lines in every direction in Fnq . Lemma 2.2, combined with the bound
on Kakeya sets in Fnq (Theorem 1.2) imply that Bc will have rank at least qn−12−n over any field
and in particular over Fp. Hence, by Lemma 3.2 we have that the set of vectors{

1Hc
⊗ u | c ∈ PFn−1

p , u ∈ Bc

}
has rank at least (

p+ n− 2

n− 1

)
· qn−12−n.

Since these are the rows of MS after multiplying by a matrix Wp,n ⊗ Iqn we get that this is also
a lower bound on the rank of MS . By Lemma 2.2, we have that

|S| >
(
p+ n− 2

n− 1

)
· qn−12−n > Cn ·Nn−1

for some constantCn depending only on n. The bound in the theorem now follows from applying
the weaker bound on the t-fold Cartesian productSt = S×· · ·×S ⊂ Rnt (which is also a Kakeya
set by Lemma 3.3) and then use the fact that |St| = |S|t.

4. The general square-free N case

To get the bound stated in Theorem 1.3 we will generalize the proof structure of Section 2 to use
ideas from the extended polynomial method using high order multiplicities as in [DKSS13].

We begin with some definitions and basic results concerning polynomials over finite fields.
We let Fp[x1, . . . , xn]=d denote the vector space of homogeneous n-variate degree d polynomials
over Fp and Fp[x1, . . . , xn]6d denote the space of polynomials of degree at most d. We let

δn,d =

(
n+ d− 1

n− 1

)
denote the dimension of the space Fp[x1, . . . , xn]=d and

∆n,d =

(
n+ d

n

)
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the dimension of Fp[x1, . . . , xn]6d. For a tuple i ∈ Zn>0 we define the weight of i as

wt(i) =
n∑
j=1

ij.

Definition 4.1 (Hasse Derivatives). Given a polynomial f ∈ F[x1, . . . , xn] for any field F and
an i ∈ Zn>0 the ith Hasse derivative of f is the polynomial f (i) in the expansion f(x + z) =∑

j∈Zn
>0
f (j)(x)zj where x = (x1, . . . , xn), z = (z1, . . . , zn) and zj =

∏n
k=1 z

jk
k .

Definition 4.2 (Multiplicity). For a polynomial f ∈ F[x1, . . . , xn] and a point a ∈ Fn we say f
vanishes on a with multiplicity m ∈ Z, if m is the largest integer such that all Hasse derivatives
of f of weight strictly less than m vanish on a. We use mult(f, a) to refer to the multiplicity of
f at a.

Notice, mult(f, a) = 1 just means f(a) = 0. Also the number of Hasse derivatives over
F[x1, . . . , xn] with weight strictly less thanm is ∆n,m−1. One can also check that for a univariate
polynomial f(x) to vanish at a with multiplicity m, f must be divisible by (x− a)m.

We will need an extended Schwartz–Zippel bound [Sch79, Zip79] which leverages multi-
plicities. The proof can be found in [DKSS13].

Lemma 4.3 (Schwartz–Zippel with multiplicities). Let f ∈ F[x1, .., xn]6d, with F an arbitrary
field and d ∈ Z. Then for any finite subset U ⊆ F,∑

a∈Un

mult(f, a) 6 d|U |n−1.

We now define a family of linear maps sending a polynomial to a list of its evaluations (with
derivatives) over some set. These maps (or more precisely, the matrices representing them) will
replace the matrices Wp,n used in Section 2.

Definition 4.4 (Evaluation maps). For a prime p, natural numbers n andm, given a set A in Fnp ,
we let

EVALmA : Fp[x1, . . . , xn]→ F|A|∆n,m−1

refer to the linear map from Fp[x1, . . . , xn] to the evaluation of all Hasse derivatives of weight
strictly less than m over the set A. We treat the points in the co-domain F|A|∆n,m−1

p as column
vectors of length |A|∆n,m−1 indexed by tuples (x, j) ∈ A × Zn>0 with wt(j) < m. The (x, j)th
entry of EVALmA (f) for a polynomial f ∈ Fp[x1, . . . , xn] is f (j)(x). For singleton sets {x} we
omit the curly braces and write EVALmx .

We will now construct matrices Ck
L which will replace the indicators 1L(b) used as the rows

of MS in the proofs of the previous sections. Intuitively, the matrix Ck
L for some line L in

direction b corresponds to the linear map which takes as input the evaluations (up to some order
m depending on k) of a polynomial f on the line L and output the evaluation of f (up to order
k) at the point b. This is possible as long as the degree of f is not too big as a consequence of
Lemma 4.3.
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Lemma 4.5 (The decoding matrix Ck
L). Given a prime p, numbers k, n,m ∈ Z>0 where p|k

and m = 2k− k/p, and a line L ⊆ Fnp in the direction b ∈ PFn−1
p , we can construct a ∆n,k−1×

pn∆n,m−1 matrix Ck
L such that,

1. The rows in the matrix Ck
L are indexed by points i ∈ Zn>0,wt(i) < k and the columns are

indexed by tuples (x, j) ∈ Fnp × Zn>0 with wt(j) < m.

2. The only non-zero columns are the ones corresponding to tuples (x, j) with x ∈ L.

3. For a polynomial f ∈ Fp[x1, . . . , xn]=kp−1 we have,

Ck
L · EVALmFn

p
(f) = EVALkb (f).

Proof. We will need the following two claims.

Claim 4.1. For homogenous polynomials f of degree kp− 1 we have

EVALmL (f) = 0 =⇒ EVALkb (f) = 0, (4.1)

where m = 2k − k/p.

The proof can be found in Theorem 11 (in the arxiv version) and Theorem 3.2 (in the SIAM
version) of [DKSS13] and is a consequence of Lemma 4.3.

Claim 4.2. LetA be an n1×w matrix andB be an n2×w matrix both over a field F and suppose
that, for all x ∈ Fw we have,

Ax = 0 =⇒ Bx = 0.

Then there exists a matrix C of size n2 × n1 such that C · A = B.

Proof. For all x ∈ Fw, Ax = 0 =⇒ Bx = 0 means the kernel of A is a subset of the kernel of
B. This means every row of B is spanned by the row space of A. This immediately implies that
we can construct C such that CA = B.

Combining the two claims lets us construct a matrix C ′ such that

C ′ · EVALmL (f) = EVALkb (f). (4.2)

The columns in C ′ are indexed by tuples (x, j) ∈ L × Z>0 such that wt(j) < m. We add zero
columns toC ′ corresponding to tuples (x, j) ∈ (Fnp \L)×Zn>0 with wt(j) < m. This gives usCk

L.
By construction it satisfies the first two properties. The third property follows from (4.2).

In our proof, it will be convenient to work with the following extension of rank for sets of
matrices.

Definition 4.6 (crank of a set of matrices). Given a finite set T = {A1, . . . , An} of matrices
over a field F having the same number of columns we let crank(T ) be the rank of the matrix
obtained by concatenating all the elements Ai in T along their columns. In other words it is the
dimension of the subspace spanned by the vectors in the set

⋃n
i=1{r|r is a row in Ai}.
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We will use a simple lemma which follows from the definition.

Lemma 4.7 (crank bound for multiplying matrices). Given matrices A1, . . . , An of size a × b
and a matrix H of size b× c we have

crank{Ai}ni=1 > crank{Ai ·H}ni=1.

We now need an extension of Lemma 3.2 for this definition.

Lemma 4.8 (crank bound for tensor products). Given matrices A1, . . . , An of size a1 × a2 over
a field F such that crank{Ai}ni=1 > r1 and matrices Bi,j over the field F for i ∈ [n] and j ∈ [m]
of size b1 × b2 such that crank{Bi,j}mj=1 > r2 for all i ∈ [n] we have,

crank{Ai ⊗Bi,j|i ∈ [n], j ∈ [m]} > r1r2.

Proof. Let V =
⋃n
i=1{w|w is a row in Ai} and Ui =

⋃m
j=1{w|w is a row in Bi,j} for i ∈ [n]. V

has rank at least r1 and each of the Ui will have rank at least r2. Using Lemma 3.2 we see that
the set of vectors

⋃n
i=1{w1 ⊗ w2|w1 is a row in Ai, w2 ∈ Ui} will have rank at least r1r2. This

gives us the desired crank bound too.

4.1. Proof of Theorem 1.3

We are now ready to prove our main result restated here for convenience.

Theorem 1.3. Let N = p1 . . . pr for distinct primes p1, . . . , pr. Any Kakeya Set S ⊆ (Z/NZ)n

satisfies

|S| > Nn

r∏
i=1

(2− 1/pi)n
.

Proof. We will prove this using induction over r. When r = 1 the result is known via Theorem
1.2.

Let us assume the bound holds for a product of r primes. Let N = p1 . . . pr+1 for r + 1
distinct primes and R = Z/NZ. To prove a lower bound let us take a Kakeya set S in Rn. For
convenience we let N0 = p2p3 . . . pr+1 and R0 = Z/N0Z.

All our matrices and indicator vectors will be over Fp1 . By the Chinese remainder theorem
Rn is isomorphic to Fnp1 × R

n
0 . Every direction b ∈ PRn−1 is represented by a tuple (b1, b0) ∈

PFn−1
p1
× PRn−1

0 . Any line L ⊆ Rn in direction b = (b1, b0) ∈ PFn−1
p1
× PRn−1

0 is a product of
lines L1 ⊆ Fnp1 in direction b1 and L0 ⊆ Rn

0 in direction b0. The indicator vector 1L ∈ F|R
n|

p1 will
equal 1L1 ⊗ 1L0 ∈ F|F

n
p1
×Rn

0 |
p1 .

For each direction b ∈ PRn−1 we must have a line L(b) contained in S. If there are many
such lines we pick one arbitrarily. The line L(b) will be the product of lines L1(b) and L0(b) in
Fnp1 and Rn

0 respectively.
Let us fix a natural number k divisible by p1. For a direction b consider the matrix Ck

L1(b)

(given by Lemma 4.5) over the field Fp1 which will be of size ∆n,k−1 × pn1 ∆n,m−1 with

m = 2k − k/p1.
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The following claim generalizes Lemma 2.2 and allows us to lower bound |S| using a rank bound
(in this case the rank of the matrix containing all rows in all Ck

L(b)).

Claim 4.3 (crank-Size relation).

|S|
(
m+ n− 1

n

)
> crank{Ck

L1(b) ⊗ 1L0(b)}b∈PRn−1 .

Proof. The columns in Ck
L1(b) ⊗ 1L0(b) for all b, are indexed by tuples (x, j) ∈ Rn × Zn>0 with

wt(j) < m. By Lemma 4.5 we see the non-zero columns in Ck
L(b) ⊗ 1L0(b) will correspond to

tuples with x ∈ L1(b) ⊆ S. In general in all the matrices in the set {Ck
L1(b)⊗ 1L0(b)}b∈PRn−1 the

non-zero columns all correspond to points (x, j) ∈ S × Z>0 with wt(j) < m. This gives us the
required bound.

LetE be a matrix of size pn1 ∆n,m−1×δn,kp1−1 representing the linear map EVALmFn
p1

restricted
to the space Fp1 [x1, . . . , xn]=kp1−1 (with some arbitrary basis). Given a direction b1 ∈ PFn−1

p1
,

we let Db1 be the ∆n,k−1× δn,kp1−1 matrix representing the linear map EVALkb1 restricted to the
space Fp1 [x1, . . . , xn]=kp1−1. For b = (b1, b0) ∈ PFn−1

p1
× PRn−1

0 , Lemma 4.5 implies

Ck
L(b) · EVALmFn

p1
(f) = EVALkb1(f)

for any f ∈ Fp1 [x1, . . . , xn]=kp1−1. This implies

Ck
L(b) · E = Db1 .

Let INn
0

be the identity matrix of size Nn
0 ×Nn

0 . Using Lemma 4.7 we have,

crank{Ck
L1(b) ⊗ 1L0(b)}b∈PRn−1 > crank{(Ck

L1(b) ⊗ 1L0(b)) · (E ⊗ INn
0
)}b∈PRn−1

= crank{(Ck
L1(b) · E)⊗ 1L0(b)}b∈PRn−1 (By Fact 3.1)

= crank{Db1 ⊗ 1L0(b1,b0)}b=(b1,b0)∈PFn−1
p1
×PRn−1

0
. (4.3)

To lower bound crank{Db1 ⊗ 1L0(b1,b0)}(b1,b0)∈PFn−1
p1
×PRn−1

0
we will use Lemma 4.8. To that

end we want to lower bound crank{Db1}b1∈PFn−1
p1

and crank{1L0(c,b0)}b0∈PRn−1
0

for c ∈ PFn−1
p1

.

Claim 4.4. For all c ∈ PFn−1
p1

we have

crank{1L0(c,b0)}b0∈PRn−1
0

>
Nn−1

0

r+1∏
i=2

(
2− p−1

i

)n ,

Proof. For a fixed c ∈ PFn−1
p1

we see that⋃
b0∈PRn−1

0

L0(c, b0) ⊆ Rn
0
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is a Kakeya set in Rn
0 which is a union of lines in every direction.

We note crank({1L0(c,b0)}b0∈PRn−1
0

) is just the dimension of the subspace spanned by
{1L0(c,b0)}b0∈PRn−1

0
. Using Lemma 2.2 and the induction hypothesis we have,

crank({1L0(c,b0)}b0∈PRn−1
0

) >

∣∣∣⋃b0∈PRn−1
0

L0(c, b0)
∣∣∣

|R0|
>

Nn−1
0

r+1∏
i=2

(
2− p−1

i

)n . (4.4)

Claim 4.5 (crank bound for {Db1}b1∈PFn−1
p1

).

crank({Db1}b1∈PFn−1
p1

) > δn,kp1−1.

Proof. To lower bound crank({Db1}b1∈PFn−1
p1

) we will examine the matrix DPFn−1
p1

obtained by
concatenating all the matrices in crank({Db1}b1∈PFn−1

p1
) along their columns. We see that this is

precisely the matrix for the map EVALkPFn−1
p1

restricted on the input space Fp1 [x1, . . . , xn]=kp1−1.
We claim DPFn−1

p1
is injective over Fp1 [x1, . . . , xn]=kp1−1. If a polynomial

f ∈ Fp1 [x1, . . . , xn]=kp1−1 lies in the kernel of DPFn−1
p1

then that means that f and all its Hasse
derivatives of weight at most k vanish over PFn−1

p1
. As f is homogenous, all its Hasse derivatives

will be too. This means that f and all its Hasse derivatives of weight at most k vanish over all
of Fnp1 . This means f vanishes with multiplicity at least k over all of Fnp1 . By Lemma 4.3 we see
that f must be identically zero. Hence, we have the desired injectivity.

As Fp1 [x1, . . . , xn]=kp1−1 has dimension δn,kp1−1 we see that DPFn−1
p1

must be of rank at least
δn,kp1−1. This also gives us the desired crank bound.

Using Lemma 4.8 and equation (4.3) with the bounds from Claim 4.4 and Claim 4.5 we have,

crank{Ck
L1(b) ⊗ 1L0(b)}b∈PRn−1 > crank{Db1 ⊗ 1L0(b1,b0)}(b1,b0)∈PFn−1

p1
×PRn−1

0

>
Nn−1

0

r+1∏
i=2

(
2− p−1

i

)n · δn,kp1−1.

Using Lemma 4.3 we have,

|S|
(

2k − k/p1 + n− 1

n

)
>

Nn−1
0

r+1∏
i=2

(2− 1/pi)n

(
kp1 + n− 2

n− 1

)
. (4.5)

To get the right bound we assume k is a perfect square and apply (4.5) on the set S
√
k which

is the product of S with itself
√
k times. It is going to be a Kakeya set in Rn

√
k by Lemma 3.3.



combinatorial theory 1 (2021), #4 17

Applying the bound for S
√
k we have,

|S|
√
k

(
2k − k/p1 +

√
kn− 1√

kn

)
>

N
√
kn−1

0

r+1∏
i=2

(2− 1/pi)
√
kn

(
kp1 +

√
kn− 2√

kn− 1

)
.

Rearranging the terms we have

|S|
√
k >

N ′
√
kn−1

r+1∏
i=2

(2− 1/pi)
√
kn

√kn−2∏
i=0

kp1 + i

2k − k/p1 + 1 + i

 √
kn

2k − k/p1 +
√
kn− 1

.

Taking
√
kth root on both sides and letting k grow to infinity in the set of numbers which are

square multiples of p1 gives the desired result.

5. Kakeya Sets over Z/pkZ

In this section we prove Theorem 1.5. Recall that Wpk,n is the pkn × pkn point-hyperplane
incidence matrix defined in the introduction. We want to show the size of any Kakeya set S ⊂
(Z/pkZ)n is lower bounded by the Fp rank of Wpk,n.

We start with a lemma that generalizes the following simple observation. Suppose we have
a matrix M with entries in the set {0, 1,−1} and let M̂ be the same matrix with all −1 entries
replaced with 1s. It is easy to see that

rankC(M) > rankF2(M̂)

since, if some sub-determinant in M̂ is not zero over F2 then the corresponding determinant in
M cannot be zero over the complex numbers. This trivial claim has the following less trivial
generalization involving roots of unity of any prime power order.

Lemma 5.1. Let γ be a complex primitive pkth root of unity for prime p and natural number k.
LetM be a matrix whose entries belong to the set {0, 1, γ, . . . , γpk−1}. Let M̂ be a matrix of the
same dimensions of M and with entries

M̂ij =

{
0 if Mi,j = 0
1 otherwise

Then we have,
rankC(M) > rankFp(M̂).

.

Proof. Let Q(x) be a matrix obtained from M by replacing γ with a formal variable x so that
Q(γ) = M and Q(1) = M̂ . Let f(x) be the determinant of some sub matrix of Q(x). If
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the corresponding sub-determinant of M is zero then we have f(γ) = 0. As f has integer
coefficients it must be divisible by the minimal polynomial of γ which is

m(x) =
xp

k − 1

xpk−1 − 1
= 1 + xp

k−1

+ x2pk−1

+ · · ·+ x(p−1)pk−1

.

Hence f(1) = 0 modulo p and so the coresponding sub-determinant is zero also in M̂ when
computed over Fp. This proves the lemma since a non-zero r × r determinant in M̂ over Fp
implies the same non-zero determinant in M (over C).

We are now ready to prove Theroem 1.5, stated here again for convenience.

Theorem 1.5. Given a prime p and numbers k, n, every Kakeya set S in (Z/pkZ)n satisfies,

|S| > rankFp(Wpk,n).

Proof. Let R = Z/pkZ. Given a Kakeya set S in Rn consider the line-matrix MS given by
Definition 2.1. Let γ be a primitive pkth root of unity in C and let F be the pkn × pkn matrix
whose rows and columns are indexed by Rn and whose entry in position (i, j) ∈ Rn ×Rn is

Fi,j = γ〈i,j〉

(F is the complex Discrete Fourier Transform matrix for the group Rn).
We consider the product MS · F over C. Given a direction b ∈ PRn−1 and a point x(b)

consider a line
L(b) = {x(b) + tb|t ∈ R}

in that direction contained in S. When we multiply the row 1L(b) of MS with F , the j’th coordi-
nate, for j ∈ Rn, is given by

(1L(b) · F )j =
∑
t∈R

γ〈x(b)+tb,j〉 =

{
0 if 〈b, j〉 6= 0 mod pk

pkγ〈x(b),j〉 otherwise .

A lower bound on the rank of MS · F over C will give a lower bound on the rank of MS which,
using Lemma 2.2, will give us a lower bound on |S|. Applying Lemma 5.1 we have that the rank
of M = p−k(MS · F ) over C is lower bounded by the rank of M̂ over Fp where the entry in
position (b, j) ∈ Rn ×Rn of M̂ is

M̂(b,j) =

{
0 if 〈b, j〉 6= 0 mod pk

1 otherwise .

This completes the proof since the matrix M̂ has the same rows as the matrix Wpk,n (recall that
we defined Wpk,n to have repeated rows corresponding to different scaling of the same vector).
This completes the proof.

This reduces the question of lower bounding the size of Kakeya sets in (Z/pkZ)n to the
estimation of the rank of a concrete matrix, independent of the set S. In the next section we
show that the matrix Wpk,n contains an identity matrix of size roughly pkn/2.
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5.1. Rank of Wpk,n via Matching Vector families

Definition 5.2 (Matching Vectors). A matching vector (MV) family over (Z/NZ)n is a pair
(U, V ) such that U = (u1, . . . , um) and V = (v1, . . . , vm) with each ui and each vj belonging
to the set (Z/NZ)n and such that 〈ui, vj〉 = 0 mod N iff i = j.

The following simple observation relates the size of an MV family with the rank of the point-
hyperplane incidence matrix.

Lemma 5.3. If there exists a matching vector family of size m over (Z/pkZ)n then, for any field
F, we have

rankF(Wpk,n) > m.

Proof. The sub-matrix corresponding to the rows labeled by U and the columns labelled by V
in Wpk,n is the identity matrix (after reordering).

Constructions of large MV families have found surprising application in combinatorics and
theoretical computer science. In particular, constructions of MV families for small composite
N (even for N = 6) and growing n given by Grolmusz [Gro00] have found a surprisingly large
number of applications. For our purposes, when N is a large prime power, we will use a less
known construction originally given in [DGY11] and improved by [YGK12].

Theorem 5.4 ([YGK12]). For every integer n and any sufficiently large N , there exist MV fam-
ilies over (Z/NZ)n of size at least, (

N

n− 2

)(n−2)/2

.

Combining this theorem (with N = pk) with Lemma 5.3 and Theorem 1.5 gives us the a
lower bound for Kakeya sets in (Z/pkZ)n of the order of pkn/2 which is worse than the best known
bounds. Using larger MV families to lower bound the rank of Wpk,n cannot lead to significantly
stronger bounds as it is shown in [DH13b] that those cannot be larger thanNn/2+O(1) for anyN .
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