

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

1 Modeling Temperature, Frequency, and Strain Effects on the 2 Linear Electro-Optic Coefficients of Ferroelectric Oxides

3 Yang Liu^{1,*}, Guodong Ren^{2,*}, Tengfei Cao³, Rohan Mishra^{3,2,a)}, and Jayakanth
4 Ravichandran^{1,4,b)}

5 AFFILIATIONS

6 ¹Mork Family Department of Chemical Engineering and Material Science, University of Southern California,
7 Los Angeles, CA 90089

8 ²Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri 63130

9 ³Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis,
10 Missouri 63130.

11 ⁴Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA
90089

12 ^{a)}rmishra@wustl.edu

13 ^{b)}j.ravichandran@usc.edu

14 *These authors contributed equally.

15 Abstract

16 An electro-optic modulator offers the function of modulating the propagation of light in a material
17 with electric field and enables seamless connection between electronics-based computing and
18 photonics-based communication. The search for materials with large electro-optic coefficients and
19 low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices.
20 We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric
21 materials by combining first-principles density-functional theory calculations with Landau-
22 Devonshire phenomenological modeling. We apply the method to study the electro-optic constants,
23 also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO₃, LiNbO₃, and
24 LiTaO₃. We present their temperature-, frequency- and strain-dependent electro-optic tensors
25 calculated using our method. The predicted electro-optic constants agree with the experimental
26 results, where available, and provide benchmarks for experimental verification.
27
28

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

29 **Introduction**

30 *AMO₃*-type ferroelectric oxides offer strong coupling between electrical, thermal, and optical
31 properties, and enable novel applications that leverage the coupled phenomena. They are currently
32 used in nonvolatile memories, actuators, transducers, and electro-optic (EO) devices, owing to
33 their excellent dielectric, piezoelectric and pyroelectric properties, and optical response.^{1–4} For
34 optical applications, ferroelectric oxide perovskites exhibit large EO coefficients with low optical
35 loss, and are the materials of choice for low-power electro-optic devices. Since the 1970s, EO
36 modulators based on LiNbO₃ have been used widely in fiber-optic systems due to its good linear
37 EO or Pockels effect (r_{33} : 32 pm/V) and high transparency over a large range of wavelength.⁵
38 Thin film deposition of EO oxides, characterization of their optical response,⁶ and fabrication of
39 optical devices have undergone significant refinement since the 1990s.^{7–10} In line with this
40 development, there is a growing interest in achieving epitaxially grown ferroelectric thin films
41 integrated on silicon-based chips for optical waveguide modulators.^{11–16}

42
43 Among different ferroelectric oxides, BaTiO₃, LiNbO₃, and LiTaO₃ have been investigated
44 intensively for on-chip EO applications due to their sizable linear EO effect (tetragonal BaTiO₃
45 on Si r_{42} : 105 pm/V, r_{eff} : 148 pm/V¹⁷ and LiNbO₃ on Si r_{33} : 17.6 pm/V¹⁸). However,
46 modeling methods for the EO response of these ferroelectric materials as a function of temperature,
47 frequency, strain and electric dipole orderings has not been well-established.^{19–23} In fact, EO
48 effects are shown to be sensitive to the microstructure, and an accurate assessment of this intrinsic
49 property requires single crystals or high-quality thin films, which are not easily accessible or
50 prepared. Therefore, theoretical prediction of the nonlinear optical properties of crystalline
51 materials along with the effect of various experimental conditions, such as strain and temperature,
52 can help to establish performance limits for subsequent experimental verification. In the past
53 decade, sustained efforts on theoretical investigations of nonlinear optical phenomena in oxide
54 perovskites have resulted in accurate methods for predicting these properties. DiDomenico and
55 Wemple revealed the importance of oxygen octahedra in perovskites on their optical
56 properties.^{24,25} Ghosez and co-workers calculated the optical susceptibilities, Raman efficiencies,
57 and electro-optic tensors based on density functional perturbation theory.^{26–29} More recently,
58 Hamze *et al.*, Qiu *et al.*, and Paillard *et al.* studied the effect of strain on the electro-optic tensor.^{19–}
59^{23,30} Furthermore, with the ability to prepare atomically precise heterostructures and superlattices,

PLEASE CITE THIS ARTICLE AS: DOI: 10.1063/5.00032072

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

60 it is of both scientific and practical importance to understand the mechanism of the EO effect in
61 these complex systems and predict the EO coefficients reliably.^{31,32} While first-principles
62 calculation methods used in previous studies are effective in predicting the EO effect for single
63 crystals, modeling EO effects in superlattices and multilayers presents a formidable challenge. The
64 periodicity of the superlattices and multilayers, which span few nm to few 10s of nm, and breadth
65 of phase space in terms of materials and periodicities needed to model EO effects and identify high
66 efficiency structures make first-principles methods computationally expensive and impractical.
67

68 Phenomenological models, such as those based on Landau-Devonshire theory³³ enable fast,
69 accurate, and highly scalable calculations of the functional properties of complex structures. It is
70 important to note that Landau-Devonshire model uses input from experimental results or first-
71 principles calculations to fit the coefficients used in the model. Hence, the accuracy of Landau-
72 Devonshire expansion coefficients in subsequent estimation of functional properties is determined
73 by these inputs. For a multicomponent system, such as superlattices and multilayers, one can
74 simulate their physical properties by summing up the thermodynamic free energies of each
75 component as a function of strain, electric fields, and their gradients.^{34,35} This approach has been
76 extensively applied for the simulation of dielectric and piezoelectric responses of ferroelectric
77 materials and multilayer heterostructures.³⁶⁻³⁸
78

79 The objective of this study is to establish a semi-empirical model to simulate the EO behavior of
80 perovskite ferroelectrics. This model uses the phenomenological Landau-Devonshire model with
81 parameters obtained from first-principles calculations to improve the scalability of EO calculations
82 for complex structures without compromising on speed and accuracy. We show that this model
83 can be applied to prototypical ferroelectric oxides such as LiNbO₃, LiTaO₃, and BaTiO₃. We
84 obtained the free-energy landscape associated with the transition between ferroelectric and
85 paraelectric phases using density-functional theory (DFT) calculations. We extracted Landau-
86 Devonshire coefficients using a polynomial fitting to the energy landscape and calculated the EO
87 coefficients at room temperature for these three prototypical ferroelectric oxides. We find that our
88 model can predict EO coefficients that have good agreement with experimental results, wherever
89 available. Using this model, we have calculated the temperature-dependence of the EO coefficients
90 for LiNbO₃ and BaTiO₃ and find them to be within 30% of experimental results for most cases.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

91 Moreover, the strain effect on the EO coefficient is discussed in the range of -5 to 5% misfit strain
92 for BaTiO₃. Our model is able to capture the ferroelectric to paraelectric phase transition, which is
93 associated with a divergence of the EO tensor.

94

95 **Methods**

96 **Density-Functional Theory Calculations**

97 The landscapes of free energy for the different *AMO₃* oxides were computed using DFT as
98 implemented in Vienna Ab-initio Simulation Package (VASP).³⁹ We used projector augmented-
99 wave (PAW) potentials.⁴⁰ In general, the accuracy in the estimation of ferroelectric properties is
100 sensitive to the adopted exchange-correlation functionals such as the local density approximation
101 (LDA),⁴¹ and the semi-local generalized gradient approximation (GGA) in the standard from of
102 Perdew-Burke-Ernzerhof (PBE)⁴². GGA is known to suffer from the so-called super-tetragonality
103 error, which significantly overestimates the structural distortion in conventional perovskite
104 ferroelectrics⁴³. For the most-studied oxide ferroelectrics, BaTiO₃ and PbTiO₃, the lattice
105 distortion, spontaneous polarization, and lattice dynamics predicted by LDA functional agree well
106 with the experimental results.⁴⁴ Therefore, we chose LDA to describe the electronic exchange-
107 correlation interactions. We have considered three paradigmatic *AMO₃* oxides, BaTiO₃ (*P4mm*,
108 *Amm2*, *R3m*), LiNbO₃ (*R3c*), and LiTaO₃ (*R3c*), for determining structural transition and
109 ferroelectric polarization. A cutoff energy of 700 eV was used to determine the number of
110 planewave basis sets in the calculations. We used Γ -centered $10 \times 10 \times 10$ *k*-points mesh for
111 sampling the Brillouin zone of BaTiO₃ and $10 \times 10 \times 4$ *k*-points mesh for LiNbO₃ and LiTaO₃. The
112 crystal structures were fully optimized until residual forces were less than 10^{-3} eV/Å. The
113 spontaneous polarization induced by the polar soft-phonon modes was calculated based on the
114 modern theory of polarization⁴⁵, which is a sum over the contribution from the ionic and electronic
115 charges. Symmetry and distortion-mode analyses were conducted using programs from the Bilbao
116 crystallographic server.⁴⁶ The intermediate images corresponding to soft-phonon distortion were
117 interpolated using the ISOTROPY software suite.⁴⁷

118

119 **Density-Functional Perturbation Theory Calculations**

120 We also calculated the EO tensor of the ground-state *R3m* phase of BaTiO₃ purely from first-
121 principles as a comparison to that obtained using the Landau-Devonshire model. The theoretical
122 framework developed by Veithen *et al.*²⁶⁻²⁹ for the computation of EO response under a static or
123 low-frequency electric field perturbation has been implemented in the ABINIT software
124 package.^{48,49} Teter extended norm-conserving pseudopotentials¹⁹⁻²³ for BaTiO₃ system were used
125 for these calculations and the exchange-correlation interactions were described within LDA.⁵⁰ We
126 used $12 \times 12 \times 12$ *k*-points mesh and 55 Hartree cutoff energy for all the calculations. To study the
127 effect of strain on EO response, we adopted the same strategy described by Fredrickson *et al.*²¹
128 Varying epitaxial strains between -2 to +2 % with the negative values denoting compressive strain
129 were applied to *a* and *b* lattice constants. The optimal *c* lattice constant for a given epitaxial strain
130 was calculated using the elastic constants of tetragonal BaTiO₃ ($C_{11} = 222$ GPa, $C_{12} = 108$ GPa,
131 $C_{13} = 111$ GPa, $C_{33} = 151$ GPa).⁵¹ The ionic positions in the strained lattices were optimized until
132 the forces were less than 1×10^{-5} eV/A.

133
134 **Landau-Devonshire Model**

135 Landau phenomenological theory is widely used to describe phase transitions and temperature
136 dependence of physical properties of ferroelectrics.⁵² Here, we use Helmholtz free energy to
137 describe the thermodynamics due to the convenience in choosing the internal variables:
138 polarization (*P*) and strain (*S*) as independent variables, whereas the electric field (*E*) and the stress
139 are external applied variables. The free energy and free energy density in this article refer to
140 Helmholtz free energy and Helmholtz free energy density, unless noted otherwise. The Helmholtz
141 free energy density (f_0) of a ferroelectric system under no external field can be written as an
142 expansion of the order parameter - the polarization (*P*), as:⁵³

$$f_0 = a_1(P_1^2 + P_2^2 + P_3^2) + a_{11}(P_1^4 + P_2^4 + P_3^4) + a_{12}(P_1^2 P_2^2 + P_1^2 P_3^2 + P_2^2 P_3^2) + \\ a_{111}(P_1^6 + P_2^6 + P_3^6) + a_{112}(P_1^4(P_2^2 + P_3^2) + P_2^4(P_1^2 + P_3^2) + P_3^4(P_1^2 + P_2^2)) + \\ a_{123}P_1^2 P_2^2 P_3^2, \quad (1)$$

143 where the subscripts 1,2,3 refer to [100], [010], and [001] directions in the crystal, a_i , a_{ij} , a_{ijk} are
144 the phenomenological Landau-Devonshire coefficients, and P_i is the polarization along direction
145 *i*. The temperature dependence of ferroelectricity is governed by the coefficient a_1 and it is defined
146 as

$$a_1 = (T - T_0)/2\epsilon_0 C. \quad (2)$$

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

147 The other coefficients are all assumed to be temperature independent. Here T_0 and C are the Curie-
148 Weiss temperature and constant above which the system transitions to a paraelectric state, and ϵ_0
149 is the dielectric constant of free space, respectively. We set T_0 to be 388 K in the entire simulation
150 for BaTiO_3 and 1480 K and 950 K for LiNbO_3 and LiTaO_3 , which were observed from
151 experiments.^{5,54-56} Classical Landau theory ignores the temperature effect on the higher-order
152 coefficients in the expansion. Nevertheless, it is shown that the higher order terms are actually
153 temperature dependent.⁵⁷ We include temperature effects in our calculations, and for simplicity,
154 we only consider the temperature dependent a_1 in this work. The effect of temperature-dependent
155 high-order terms, such as a_{11} , on EO responses will be the target of future work.

156

157 **Model Fitting and Parameters**

158 The ferroelectric transition from a centrosymmetric reference can be expressed as the result of
159 ionic displacements along a specific direction with charge separation leading to a net electrical
160 dipole moment.⁵⁸ By interpolating the ionic displacements from a centrosymmetric structure to a
161 polar phase, the energy as a function of ionic displacements can be mapped using DFT calculations.
162 As has been shown recently by Paoletta and Demkov¹⁹, phonons causing the ionic displacements
163 will in turn alter the electronic energy of the system, and this is the origin of electron-phonon
164 interactions under the adiabatic approximation. That is to say, our DFT calculations for free energy
165 landscape of each distortion mode also reflects the electron-phonon interactions. For the
166 subsequent Landau-Devonshire fittings, we have converted the ionic displacements into
167 spontaneous polarization based on the modern theory of polarization.⁵⁹ The landscape of the
168 change in free energy density (J/m^3) for the three ferroelectric phase transitions from paraelectric
169 BaTiO_3 ($P4/mmm$) as a function of the electric polarization are shown in Figure 1. By fitting the
170 Landau-Devonshire expansion to the change in energy density with polarization, quadratic and
171 higher-order coefficients of the polynomial can be derived for ferroelectric transition along [001],
172 [011], and [111] direction for tetragonal ($P4mm$), orthorhombic ($Amm2$), and rhombohedral ($R3m$)
173 structures, respectively. The free energy density with respect to the polarization $P_{001} = P_3$,
174 $P_{011} = \sqrt{P_2^2 + P_3^2}$, and $P_{111} = \sqrt{P_1^2 + P_2^2 + P_3^2}$ can be described by the following equations,
175 respectively:⁶⁰

$$176 \quad f_{001} = a_1 P_{001}^2 + a_{11} P_{001}^4 + a_{111} P_{001}^6, \quad (3.a)$$

$$177 \quad f_{011} = a_1 P_{011}^2 + a_{11}^o P_{011}^4 + a_{111}^o P_{011}^6, \quad (3.b)$$

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

178
$$f_{111} = a_1 P_{111}^2 + a_{11}^R P_{111}^4 + a_{111}^R P_{111}^6, \quad (3.c)$$

179 where the superscripts O and R indicate the orthorhombic and rhombohedral phase for BaTiO₃,
180 $a_{11}^O = \frac{1}{2}a_{11} + \frac{1}{4}a_{12}$, $a_{111}^O = \frac{1}{4}(a_{111} + a_{112})$, $a_{11}^R = \frac{1}{3}(a_{11} + a_{12})$, and $a_{111}^R = \frac{1}{27}(3a_{111} + 6a_{112} + a_{123})$. We used the “Curve Fitting Toolbox” in MATLAB to fit the free energy density
181 curves obtained from DFT calculations. We fitted the energy density landscape of tetragonal
182 BaTiO₃ with the eqn. (3.a) to obtain the a_1 , a_{11} , and a_{111} . To get the a_{12} and a_{112} , the
183 orthorhombic energy density is fitted to the eqn. (3.b). a_{123} is derived by fitting the energy density
184 of rhombohedral phase using the eqn. (3.c) using all the other parameters obtained from the
185 previous steps. Then all the parameters are manually tuned to minimize the coefficients of
186 determination (R^2) of three equations (3, a-c) by slightly changing only one parameter at a time
187 while fixing all remaining parameters. Thus, the whole sets of the Landau-Devonshire coefficients
188 can be derived.

190
191 For the case of LiNbO₃ and LiTaO₃, we applied the same procedure as BaTiO₃ but simplified it to
192 [001] direction since we are only interested in the most intense EO tensor component -- r_{33} .⁶¹
193 Therefore, we calculated the free energy density curve for R3c LiNbO₃ and LiTaO₃ as a function
194 of polarization along [001] direction. The Landau-Devonshire coefficients a_1 and a_{11} were
195 obtained by fitting the energy density curve to the eqn. (3.a).

196
197 Then, we applied the strain and electrostrictive energy terms to the Landau-Devonshire model to
198 investigate the strain-induced phase changes in BaTiO₃. The free energy density f of the thin film
199 as a function of polarization and misfit strain $S_m = (a_s - a_f)/a_s$,³⁶ where a_s is the substrate
200 lattice parameter and a_f is the lattice constant of the film in its bulk form, is given by:⁶²

$$f = a_1^*(P_1^2 + P_2^2) + a_3^*P_3^2 + a_{11}^*(P_1^4 + P_2^4) + a_{33}^*P_3^4 + a_{12}^*P_1^2P_2^2 + a_{13}^*(P_1^2P_2^2 + P_2^2P_3^2) + a_{111}^*(P_1^6 + P_2^6 + P_3^6) + a_{112}^*(P_1^4(P_2^2 + P_3^2) + P_2^4(P_1^2 + P_3^2) + P_3^4(P_1^2 + P_2^2)) + a_{123}^*P_1^2P_2^2P_3^2 + \frac{S_m^2}{s_{11} + s_{12}}, \quad (4)$$

where

$$a_1^* = a_1 - \frac{Q_{11} + Q_{12}}{s_{11} + s_{12}} S_m, \quad (4.a)$$

$$a_3^* = a_1 - \frac{2Q_{12}}{s_{11} + s_{12}} S_m, \quad (4.b)$$

$$a_{11}^* = a_{11} + \frac{1}{2} \frac{(Q_{11}^2 + Q_{12}^2)s_{11} - 2Q_{11}Q_{12}s_{12}}{s_{11}^2 - s_{12}^2}, \quad (4.c)$$

$$a_{33}^* = a_{11} - \frac{Q_{12}^2}{s_{11} + s_{12}}, \quad (4.d)$$

$$a_{12}^* = a_{12} - \frac{(Q_{11}^2 + Q_{12}^2)s_{12} - 2Q_{11}Q_{12}s_{11}}{s_{11}^2 - s_{12}^2} + \frac{Q_{44}^2}{2s_{44}}, \quad (4.e)$$

$$a_{13}^* = a_{12} + \frac{Q_{12}(Q_{11} + Q_{12})}{s_{11} + s_{12}}, \quad (4.f)$$

Table 1. Elastic compliance (s_{ij}) and electrostrictive coefficients (Q_{ij}) of BaTiO₃ taken from Ref. 63.

$s_{11}(10^{-12} \text{ m}^2/\text{N})$	8.33
$s_{12}(10^{-12} \text{ m}^2/\text{N})$	-2.68
$s_{44}(10^{-12} \text{ m}^2/\text{N})$	9.24
$Q_{11} (\text{m}^4/\text{c}^2)$	0.10
$Q_{12} (\text{m}^4/\text{c}^2)$	-0.034
$Q_{44} (\text{m}^4/\text{c}^2)$	0.029

201
202
203
204
205
206
207
208
209
210
211
212
213
214

The variation of the free energy density under external electric field is written as:

$$\Delta f = f_0 - E_1 P_1 - E_2 P_2 - E_3 P_3, \quad (5)$$

where E_1 , E_2 , and E_3 is the applied electric field along x , y , and z principal crystallographic directions, respectively. The equilibrium configuration is determined by finding the minima of Δf , where we shall have $\frac{\partial \Delta f}{\partial P} = 0$. Then, the electric field E as a function of polarization can be determined by:

$$E_1 = \frac{\partial f_0}{\partial P_1}, \quad (6.a)$$

$$E_2 = \frac{\partial f_0}{\partial P_2}, \quad (6.b)$$

$$E_3 = \frac{\partial f_0}{\partial P_3}. \quad (6.c)$$

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

215 In this article, every time an external electric field is applied, we solve eqns. (6.a-c) to deduce the
 216 field-induced polarizations. Then the obtained polarizations are applied to solve the corresponding
 217 eqns. (8-9) in the following paragraphs. In this way, it will always maintain the thermodynamic
 218 equilibrium: $\frac{\partial \Delta f}{\partial P} = 0$.

219

220 The dielectric tensor ε_{ij} can be defined in terms of the first-order derivative of polarization with
 221 respect to the external electric field. Here, we summarize the derived dielectric constants for
 222 tetragonal ($P_1 = P_2 = 0, P_3 \neq 0$) and orthorhombic (orthorhombic, $P_1 = P_2 \neq 0, P_3 = 0$) BaTiO₃
 223 phases in the box I and II. We don't include the low-temperature rhombohedral phase since the
 224 rhombohedral phase is not accessible in the experiments though strain engineering at room
 225 temperature.

$$\varepsilon_{11} = \varepsilon_{22} = \frac{1}{2a_1^* + 2a_{13}^*P_3^2 + 2a_{112}P_3^4},$$

$$\varepsilon_{33} = \frac{1}{2a_3^* + 12a_{33}^*P_3^2 + 30a_{111}P_3^4}.$$

226 Box I. Expression of spontaneous polarization and dielectric constants for tetragonal BaTiO₃.

227

$$X_{11} = 2a_1^* + 12a_{12}^*P_1^2 + 2a_{12}^*P_2^2 + 30a_{111}P_1^4 + a_{112}(12P_1^2P_2^2 + 2P_2^4),$$

$$X_{22} = 2a_1^* + 12a_{12}^*P_2^2 + 2a_{12}^*P_1^2 + 30a_{111}P_2^4 + a_{112}(12P_1^2P_2^2 + 2P_1^4),$$

$$X_{12} = 4a_{12}^*P_1P_2 + 8a_{112}(P_1^3P_2 + P_1P_2^3),$$

$$X_{33} = 2a_3^* + 2a_{13}^*(P_1^2 + P_2^2) + 8a_{112}(P_1^3P_2 + P_1P_2^3),$$

$$\varepsilon_{11} = \frac{X_{22}}{X_{11}X_{22} - X_{12}^2}, \quad \varepsilon_{22} = \frac{X_{11}}{X_{11}X_{22} - X_{12}^2}, \quad \varepsilon_{33} = \frac{1}{X_{33}}.$$

228 Box II. Expression of spontaneous polarization and dielectric constants for orthorhombic
 229 BaTiO₃.

230

231 The propagation of light in a crystal is determined by the refractive index n_{ij} . The relation between
 232 the dielectric constant and the refractive index is $n_{ij}^2 = \varepsilon_{ij}/\varepsilon_0$. The linear EO tensor r_{ijk} describes
 233 the change of refractive index of a crystal in response to the applied electric field. Therefore, we
 234 write the linear EO tensor r_{ijk} as first-order dependence of the inverse of refractive index square
 235 when a static or low-frequency modulating electric field E_k is applied:

236 $\Delta(n_{ij}^{-2}) = r_{ijk}E_k$ (7)

237 The index ijk refers to the ij component of the refractive index and the dielectric tensor, for an
 238 applied electric field along the k direction.^{20,28,64} For the following paragraphs, we denote the index
 239 ij with Voigt notations, i.e. $11 \rightarrow 1, 22 \rightarrow 2, 33 \rightarrow 3, 23 \rightarrow 4, 13 \rightarrow 5$, and $12 \rightarrow 6$.

240

241 The electro-optic effect is the response of materials in the presence of two different fields namely
 242 the applied DC electric field, and the AC electromagnetic electric field of the light. The vibration
 243 of ionic dipoles can be slow (\sim 100s of GHz to several 10s of THz) in responding to the periodic
 244 change of the electric field vector of the light beam (infrared to UV), whose frequency is of the
 245 order of \sim several tens to hundreds of THz (\sim 193 THz for 1550 nm light). Microscopically, there
 246 are three contributions to the EO tensor: the electronic contribution from polarized valence
 247 electrons, the ionic contribution from the displacement of the ions, and the piezoelectric
 248 contribution from the distortion of the unit cell through the converse piezoelectric effect. [19-25]
 249 At moderately high modulating frequencies (\sim 100s of GHz to several 10s of THz) that are low
 250 compared to the optical phonon modes, ionic contributions to the EO tensor dominate for the
 251 perovskite titanates.^{22,28} At such frequencies, strain relaxations can be avoided. Thus, we focus on
 252 the so-called ionic or lattice contribution to the EO response in this work. The electronic
 253 contributions from unclamped ions are included in our calculation, which originates from the
 254 displacement of the charge centers due to electron-phonon interactions.

255

256 From eqn. (6), we have the electric field as a function of polarization, and equations in the box I
 257 and II give the dielectric constant as a function of polarization by substituting them into eqn. (7).
 258 Thus, given all the Landau-Devonshire coefficients obtained using polynomial fitting, the EO
 259 coefficients can be obtained. Here, we consider the case of tetragonal and orthorhombic phases of
 260 BaTiO₃, as examples. The EO tensors in the ferroelectric tetragonal *P4mm* phase of BaTiO₃ have
 261 three independent elements (Voigt notations), r_{13} , r_{33} , and r_{42} .⁶⁴

262 $r_{13} = \frac{\varepsilon_0(4a_{12}^*P_3 + 8a_{112}P_3^3)}{2a_1^* + 12a_{11}^*P_3^2 + 30a_{111}P_3^4},$ (8.a)

263 $r_{33} = \frac{\varepsilon_0(24a_{11}^*P_3 + 120a_{111}P_3^3)}{2a_1^* + 12a_{11}^*P_3^2 + 30a_{111}P_3^4},$ (8.b)

264 $r_{42} = \varepsilon_0\left(\frac{8a_{123}P_3}{4a_{12}^* + 4a_{123}P_3^2} + \frac{4a_{13}^*P_3 + 8a_{112}P_3^3}{2a_1^* + 2a_{13}^*P_3^2 + 2a_{112}P_3^4} + \frac{4a_{13}^* + 24a_{112}P_3^2}{4a_{13}^*P_3 + 8a_{112}P_3^3}\right).$ (8.c)

265 For the derivation details, please see the appendix A.
 266 The orthorhombic phase of BaTiO₃ is not a thermodynamically stable phase at room temperature.
 267 However, it could be stabilized under tensile strain, such as epitaxially grown orthorhombic
 268 BaTiO₃ films on MgO.⁷ The EO tensors of orthorhombic BaTiO₃ are

$$269 \quad r_{13} = \frac{\varepsilon_0(24a_{11}^*P_1 + 120a_{111}P_1^3 + 24a_{112}P_1P_2^2 + 4a_{12}^*P_2 + 24a_{112}P_2P_1^2 + 8a_{112}P_2^3)}{(2a_3^* + 2a_{13}^*(P_1^2 + P_2^2) + 2a_{112}(P_1^4 + P_2^4) + 2a_{123}(P_1^2P_2^2)} \quad (9.a)$$

$$270 \quad r_{33} = \frac{\varepsilon_0(4a_{13}^*(P_1 + P_2) + 8a_{112}(P_1^3 + P_2^3))}{(2a_3^* + 2a_{13}^*(P_1^2 + P_2^2) + 2a_{112}(P_1^4 + P_2^4) + 2a_{123}P_1^2P_2^2)} \quad (9.b)$$

$$271 \quad r_{42} = \varepsilon_0 \left(\frac{4a_{13}^*P_1 + 8a_{112}P_1^3}{2a_1^* + 12a_{11}^*P_1^2 + 2a_{12}^*P_2^2 + 30a_{111}P_1^4 + 12a_{112}P_1^2P_2^2 + 2a_{112}P_2^4} + \frac{4a_{13}^*P_2 + 8a_{112}P_2^3}{4a_{12}^*P_1P_2 + 8a_{112}P_1^3P_2 + 8a_{112}P_1P_2^3} \right). \quad (9.c)$$

272
 273 It is worth noting that the a_1 coefficient is temperature-dependent, as shown in eqn. (2). Hence,
 274 the temperature-dependent EO responses could also be obtained using this method.

275
 276 For LiNbO₃ and LiTaO₃, the EO coefficient r_{33} is

$$277 \quad r_{33} = \frac{\varepsilon_0 24a_{11}P_3}{2a_1 + 12a_{11}P_3^2} \quad (10)$$

278
 279 To investigate the frequency dispersion of the coefficients, we also applied the time-dependent
 280 Ginzburg-Landau (TDGL) equation^{6,33}:

$$281 \quad \frac{\partial P_i(t)}{\partial t} = -L \frac{\partial F(P_i)}{\partial P_i} \quad (11)$$

282 where L is the kinetic coefficient (proportional to the dipole motion velocity) and t is time. We
 283 adopted the $L = 6000$ [A²s/(Jm)] from the study of Liu et. al for tetragonal BaTiO₃.⁶⁵ The energy
 284 function F is Δf in equation (5) except the fact that the applied electric field is static but here,
 285 dynamic electric field is used as a triangle wave function:

$$286 \quad E(t) = E_0 \sin^{-1}[\sin(f\pi t)] \quad (12)$$

287 where E_0 is the amplitude of the electric field and f the frequency.

288
 289 It is not easy to solve TDGL explicitly, as we have done for the static calculations. Therefore, we
 290 performed the calculations using finite element method to obtain the EO coefficients from 10 Hz
 291 to 100 THz. In this work, we provide an example of the frequency dependent r_{33} for the tetragonal
 292 BaTiO₃.

293

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

294 In summary, we have extracted the Landau-Devonshire coefficients from the free-energy
 295 landscape calculated using first-principles DFT using equations (2.a-c). We have simulated the
 296 dependence of polarization on the applied electric field using equations (6.a-c) and calculated the
 297 dielectric constant using the relations shown in Box I and II. The electric field and dielectric
 298 constant as a function of polarization are then plugged into equation (7) to obtain the electro-optic
 299 tensors. In this case, we give two solutions for tetragonal and orthorhombic BaTiO_3 in equations
 300 (8.a-c) and (9.a-c), respectively.

301 **Results and Discussion**

302 We have used the LDA functional to calculate the Helmholtz free energy density as a function of
 303 the polarization for LiNbO_3 , LiTaO_3 , and BaTiO_3 . In the case of BaTiO_3 , the high-temperature
 304 phase has a centrosymmetric cubic structure. However, as the temperature decreases, a sequence
 305 of phase transitions are observed experimentally as follows: cubic $\xrightarrow{388K}$ tetragonal $\xrightarrow{273K}$
 306 orthorhombic $\xrightarrow{183K}$ rhombohedral.⁵⁴ These three ferroelectric phase transitions result in a change
 307 in the direction of the spontaneous polarization from the [001] axis (tetragonal, $P_1 = P_2 = 0, P_3 \neq$

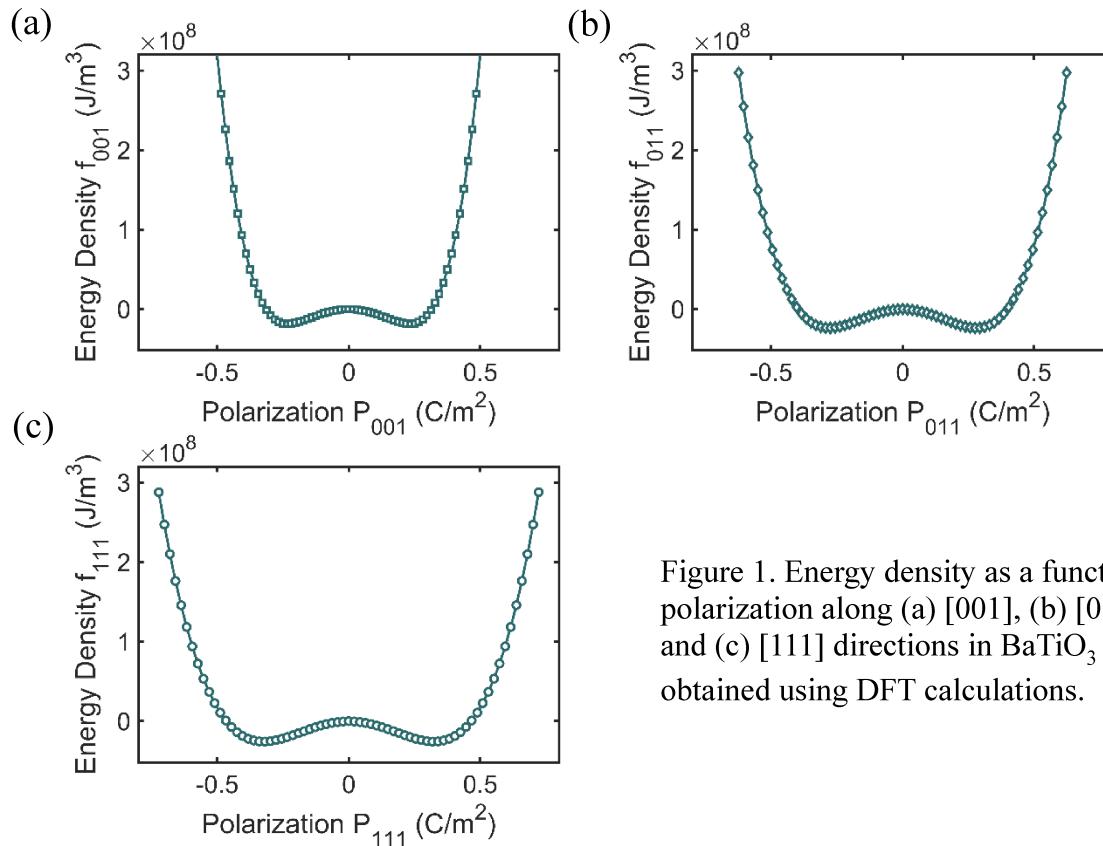


Figure 1. Energy density as a function of polarization along (a) [001], (b) [011], and (c) [111] directions in BaTiO_3 obtained using DFT calculations.

308 0), to the [110] axes (orthorhombic, $P_1 = P_2 \neq 0, P_3 = 0$), and to the [111] axes (rhombohedral, 309 $P_1 = P_2 = P_3 \neq 0$) as the temperature decreases. In Figure 1, the energy density changes for the 310 phase transition from the cubic structure directly to tetragonal, orthorhombic, and rhombohedral 311 phase of BaTiO₃ are shown. The spontaneous polarization is corresponding to the polarization 312 value, where the energy reaches the minima at the bottom of the double-well. The calculated 313 spontaneous polarization values for tetragonal, orthorhombic, and rhombohedral BaTiO₃ are 0.24 314 C/m², 0.27 C/m², and 0.32 C/m², respectively.

315

316 In the case of LiNbO₃ and LiTaO₃, both undergo a transition from a high temperature 317 rhombohedral paraelectric $R\bar{3}c$ phase to a low temperature ferroelectric $R3c$ phase at 1480 K and 318 950 K, respectively.^{5,55,56} At room-temperature, the spontaneous polarization points along the *c*- 319 axis direction ($P_1 = P_2 = 0, P_3 \neq 0$) for the ferroelectric rhombohedral phase of LiNbO₃ and 320 LiTaO₃. We have compared the change in Helmholtz free energy density with respect to the 321 polarization along [001] direction for BaTiO₃, LiNbO₃ and LiTaO₃, as shown in Figure 2. The 322 double-well depth here is a quantitative indicator of the energetic stability of the ferroelectric phase 323 with respect to the paraelectric phase. Tetragonal BaTiO₃ yields a shallow double-well indicating 324 a relatively easier transition from the ferroelectric to paraelectric phase.

325

326

Table 2. Extracted Landau-Devonshire coefficients from the DFT calculated free energy curves.

Landau-Devonshire	BaTiO ₃		LiNbO ₃		LiTaO ₃	
	Coefficient	This work	Ref. ⁶⁶	This work	Ref. ⁶⁶	This work
a_1 (Nm ² /C ²)	-6.07×10^8	-4.74×10^7	-1.20×10^9	-6.28×10^8	-1.54×10^9	-1.006×10^9
a_{11} (Nm ⁶ /C ⁴)	4.32×10^9	-2.10×10^8	9.03×10^8	1.26×10^9	2.21×10^9	9.01×10^8
a_{12} (Nm ⁶ /C ⁴)	6.29×10^9	7.97×10^8				
a_{111} (Nm ¹⁰ /C ⁶)	1.29×10^{10}	1.29×10^9				
a_{112} (Nm ¹⁰ /C ⁶)	-1.44×10^{10}	-1.95×10^9				
a_{123} (Nm ¹⁰ /C ⁶)	-1.67×10^{10}	-2.50×10^9				

327

328

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

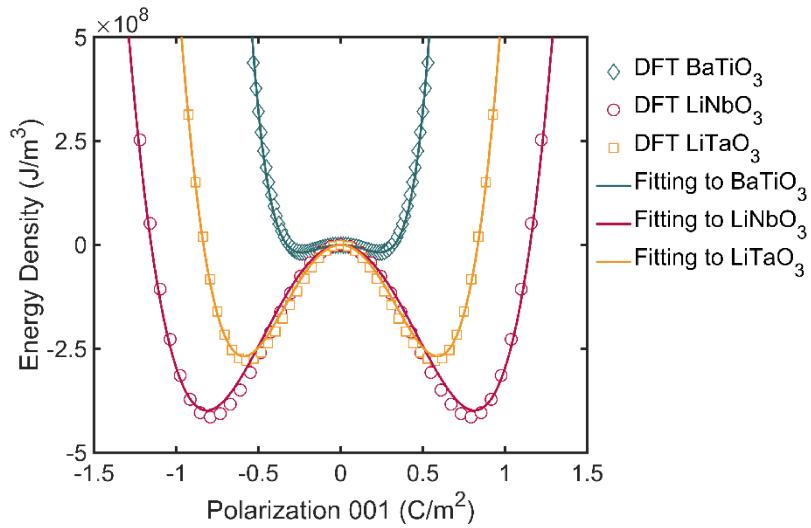


Figure 2. Dependence of free energy density on the polarization along the [001] crystallographic direction in LiNbO_3 , LiTaO_3 , and BaTiO_3 . The solid lines indicated polynomial fitting to the polarization dependent energy curves for LiNbO_3 , LiTaO_3 , and BaTiO_3 along the [001] axis.

The Landau-Devonshire coefficients are extracted by fitting the double-well energy curves obtained from the first-principles calculations to a polynomial expression (eqn. (1)). Under rigid symmetry framework, the 6th order series expansions are commonly accepted as the basic free energy format describing the ferroelectric phase transitions in BaTiO_3 .⁶⁰ A polynomial with higher-order expansion terms will yield better accuracy but the large number of fitting parameters can also lead to overfitting. Moreover, the higher-order terms require additional information at high polarization region and their physical meaning still remains unclear.⁶⁷ Hence, we performed the polynomial fitting to the free energy density curves of BaTiO_3 up to 6th order expansions to ensure that the critical aspects of the electro-optic phenomena can be sufficiently described without overfitting. We fit the polynomial of eqns. (3.a), (3.b), and (3.c) to free energy density curves of the three ferroelectric phases: tetragonal, orthorhombic, and rhombohedral, respectively, by simultaneously and manually adjusting the fitting parameters to find the smallest R^2 (coefficient of determination). The R^2 values are 0.998, 0.999, and 0.996 for tetragonal, orthorhombic, and rhombohedral phase of BaTiO_3 , respectively. Order parameter just below the Curie temperature has rich information for all the polynomial coefficients, including double P-E loops,⁶⁸ while the

344 free energy curve for a system much below the phase transition temperature is a simple double
 345 well without much information about higher order polynomials to the expansion coefficients,
 346 which is the case for LiNbO_3 and LiTaO_3 .^{5,56} The fourth-order polynomial can already provide a
 347 good fit to the first-principles data, where R^2 is already 0.999. Hence, the higher-order terms were
 348 omitted for LiNbO_3 and LiTaO_3 . The Landau-Devonshire coefficients extracted for the noted
 349 materials are presented in Table 2. The coefficients from Long-Qing Chen⁶⁶ are listed in the table
 350 as well for comparison.

351

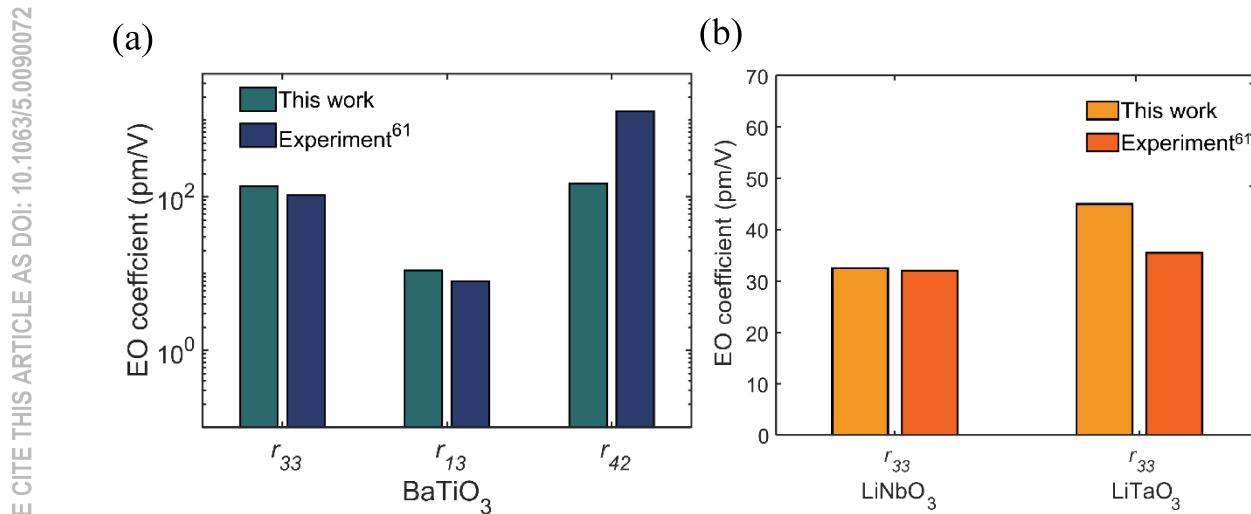


Figure 3. Theoretical and experimental (Ref. 61) electro-optic coefficients of (a) tetragonal BaTiO_3 , (b) LiNbO_3 and LiTaO_3 .

352 We now apply the previously fitted parameters to calculate the electro-optic coefficients using
 353 equations (8.a-c). Figure 3 shows the comparison between the calculated values using the model
 354 and experimental results.⁶¹ Overall, our method predicts the sign of the EO constants correctly and
 355 the values of the EO coefficients are in good agreement with the experimental values. The
 356 calculated r_{33} for LiNbO_3 is in close agreement (deviation is $\sim 1.8\%$) with the experimentally
 357 reported results.⁶¹ The calculated values of r_{33} are $\sim 30\%$ larger than the experimental value of
 358 tetragonal BaTiO_3 and LiTaO_3 . Our theoretical r_{13} value of BaTiO_3 also matches well with the
 359 experimental ones.⁶¹ However, the calculated r_{42} is 88% lower than the experimentally reported
 360 value.⁶¹ The deviation from experimental values could be due to extrinsic factors such as
 361 stoichiometry and structural quality of the samples and domain structures. Furthermore, DFT

362 calculations using the LDA functional underestimate the polar distortion from paraelectric phases,
363 which results in relatively shallow double-well depths.⁴⁴ Therefore, the accuracy of Landau-
364 Devonshire fitting parameters could be further improved by applying more reliable exchange-
365 correlation functionals, such as the recently developed strongly constrained and appropriately
366 normed (SCAN) meta-GGA functional, which has been shown to systematically improve over
367 LDA for structural properties and ferroelectric transitions of diversely bonded materials.⁶⁹ These
368 advances will be part of future work.

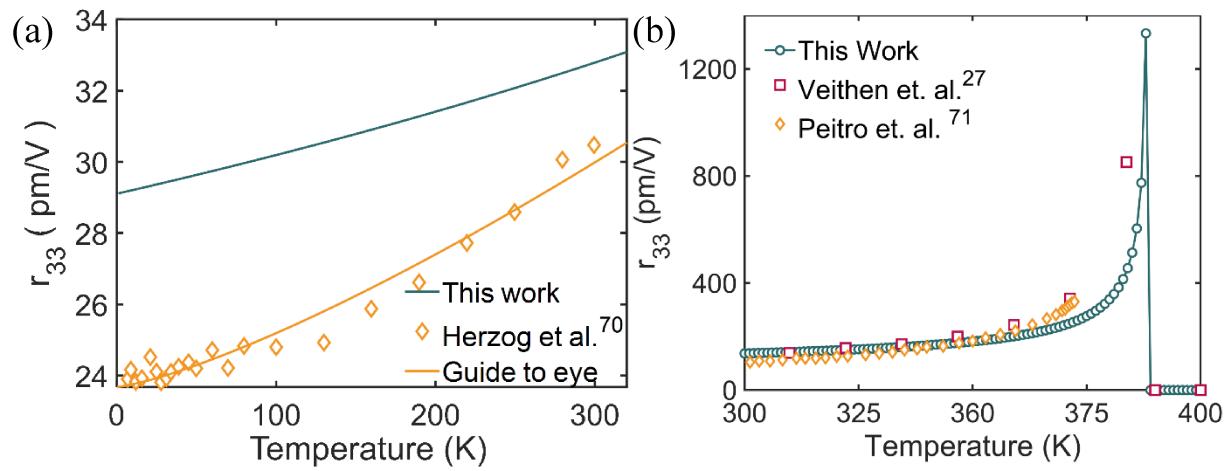


Figure 4. Temperature dependence of electro-optic coefficients in (a) LiNbO_3 and (b) BaTiO_3 .

369
370 The temperature dependence of the EO coefficients is another way to examine the accuracy of the
371 model. We compare the calculated results with the experimental values for the LiNbO_3 in Figure
372 4 (a).⁷⁰ The model captures the experimentally observed increase in r_{33} ; however, it consistently
373 over-estimates the value with a larger deviation on decreasing the temperature. As temperature
374 approaches 0 K, the deviation is < 20%, and, as the temperature reaches room temperature, the
375 deviation narrows down to < 10%. To the best of our knowledge, the experimental results of
376 temperature dependency of r_{33} for LiTaO_3 and BaTiO_3 have not been reported in the literature, and
377 hence, we could not make this comparison for these two compounds. Nevertheless, we compare
378 our results (noted as green hollow circles with a trendline) with the two available first-principles
379 results from Veithen *et al.*²⁷ and Pietro *et al.*⁷¹ for tetragonal BaTiO_3 , as depicted with red and
380 yellow markers in Figure 3 (b), respectively. The electro-optic coefficient r_{33} increases with
381 temperature below the Curie temperature and shows a divergent trend close to the Curie

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

382 temperature, as the spontaneous polarization abruptly drops to zero at and above the Curie
383 temperature.

384

385 It is worth reemphasizing that in our model, we assume a_1 as the only temperature-dependent term
386 and hence, the temperature dependence of EO response is essentially attributed to it. The
387 contribution of other terms to EO coefficients in equation (8.a) and (9.a), such as $a_{11}P_3^2$, are
388 typically much smaller than a_1 . Hence, we resorted to this simplification. Any corrections to this
389 simplification will be explored in the future depending on the availability of the experimental
390 results. EO coefficients tend to be extremely large as the temperature approaches the Curie
391 temperature, T_0 . By definition, a_1 , given in eqn. (2), converges to 0 as the temperature reaches T_0 .
392 This hints that small a_1 is desirable to achieve a large EO coefficient. *To obtain a small a_1 , the*
393 *energy barrier for switching the polarization from one energy well to the other has to be low. It*
394 *indicates that the origin of this electro-optic enhancement is attributed to the ease of the*
395 *ferroelectric switching as manifested in the free energy landscape.* From Figure 2 and Table 1,
396 BaTiO₃ has the shallowest energy well and the smallest absolute value of a_1 , which leads to the
397 largest r_{33} among the three ferroelectric oxides. This also explains why the EO coefficients of
398 relaxor ferroelectric oxide alloys are high, for which the corresponding ferroelectric switching
399 energy barrier is relatively low.³¹

PLEASE USE THIS ARTICLE ADDRESSE: 10.1063/5.000072

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

400

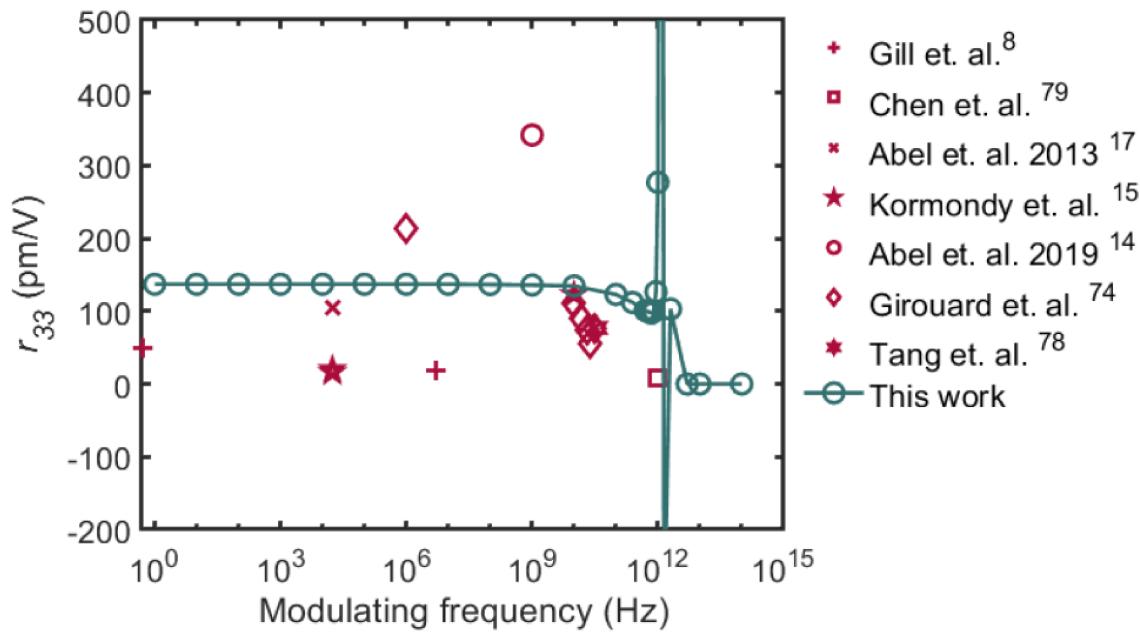


Figure 5. The dependence of the electro-optic coefficient r_{33} of tetragonal BaTiO₃ on the frequency of a modulating electric field ranging from 1Hz to 100 THz. The simulation result of this work is shown as solid line with open circle markers in green and experimental results from different references are represented by corresponding markers in red.

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

THIS ARTICLE AS DOI: 10.1063/5.0090072

The frequency dispersion of r_{33} is shown in Figure 5. By choosing the value of kinetic coefficient (proportional to the dipole motion velocity) as 6000 [A²s/(Jm)], the absolute value of r_{33} remains constant for frequencies up to several GHz, and then starts to decrease gradually to nearly zero at 5 THz. It is worth noting that the model predicts significant ionic contributions at frequencies up to 100 GHz, which is necessary for high-speed optical communication applications. We also note experimental results from the literature for comparison. The highest operating electric field frequency reported in the literature is 10 to 50 GHz demonstrated by Girouard *et al.*^{72,73} They report 107 pm/V effective EO coefficient at 30 GHz, which is consistent with our result. Large r_{33} data as high as 342 ± 93 pm/V at high frequency (1 GHz) has been reported by Abel *et al.* in 2019.¹⁴ EO coefficients measured on high quality single crystal thin film samples vary from 20-200 pm/V with an average of \sim 100 pm/V across DC to GHz frequencies.^{8,15,17,74-77} There are no experimental reports for electric field modulation in the THz to the best of our knowledge, but Chen *et al.* have reported a coefficient of 8.27 pm/V from theoretical calculations.^[79] Further, we observe a diverging behavior near 1 THz, which corresponds to the lowest resonance frequency of the dipole-dipole interaction in BaTiO₃.⁶⁵ Thus, the dipole motion is slower compared to electrical field

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

416 modulations at THz frequencies. This has been demonstrated in LiNbO_3 ,⁷⁹ where the dielectric
417 constants and the birefringence drops dramatically at $\sim 1\text{-}10$ THz due to the resonance of the
418 phonon modes corresponding to the excitation field frequencies. The large EO coefficients of
419 BaTiO_3 in the frequency range of 10 MHz to 1 THz would make it a good candidate for use in EO
420 modulation devices in this frequency range.

421

422 Figure 6 shows the EO tensor as a function of strain with misfit strains ranging from -5% to 5%
423 along the in-plane a and b axes for BaTiO_3 , which was obtained using eqns. 8(a-c) and 9(a-c). The
424 thermodynamically stable phases are obtained by minimizing the total free energy F under a given
425 misfit strain. The calculation was performed by setting the temperature in the free energy
426 expansion coefficient, a_1 , as room temperature. We obtained two stable single-phase states. The
427 stable strain condition for tetragonal phase is denoted as T with yellow shade ($P_1 = P_2 = 0, P_3 \neq$
428 0) below $\sim 1\%$ compressive strain, and for orthorhombic phase, it is denoted as O with blue shade
429 ($P_1 = P_2 \neq 0, P_3 = 0$) above $\sim 1.9\%$ tensile strain. For the phase region between the T and O phase,
430 it contains a two-phase mixture (T+O). At zero strain state, we obtain almost identical values of
431 electro-optical tensors as bulk values summarized in Figure 4. The small deviation comes from
432 that the electrostrictive energy term is not included in the previous calculations. The strain-induced
433 polarization variations under compression and tensile strain generate a large contribution to the
434 relevant EO constants. We predict a surprisingly high value, up to thousands of pm/V, for r_{42}
435 coefficient of BaTiO_3 under $\sim -1.3\%$ compressive strain and $r_{33} \approx 800$ pm/V under 1.8% tensile
436 strain, which is 1 – 2 orders of magnitude larger than $r_{33} = 32$ pm/V for LiNbO_3 .⁶¹ In this specific
437 case, at the transition region between T and T-O, the sign change of a_1^* leads to a large value of
438 the r_{42} coefficient; similarly, r_{33} is large at the T-O and O phase boundary due to the vanishingly
439 small a_3^* values. Similar EO coefficient enhancement has been demonstrated as a function of
440 temperature near a ferroelectric phase transition due to the divergence of the dielectric
441 constant.^{24,71} The polarization rotation at the phase boundary is easier to achieve than in a single
442 phase region, as the corresponding switching barrier is small. This could also explain why
443 ferroelectrics at the phase boundary usually have large dielectric, piezoelectric, and electro-optic
444 responses.⁸⁰⁻⁸²

445

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072

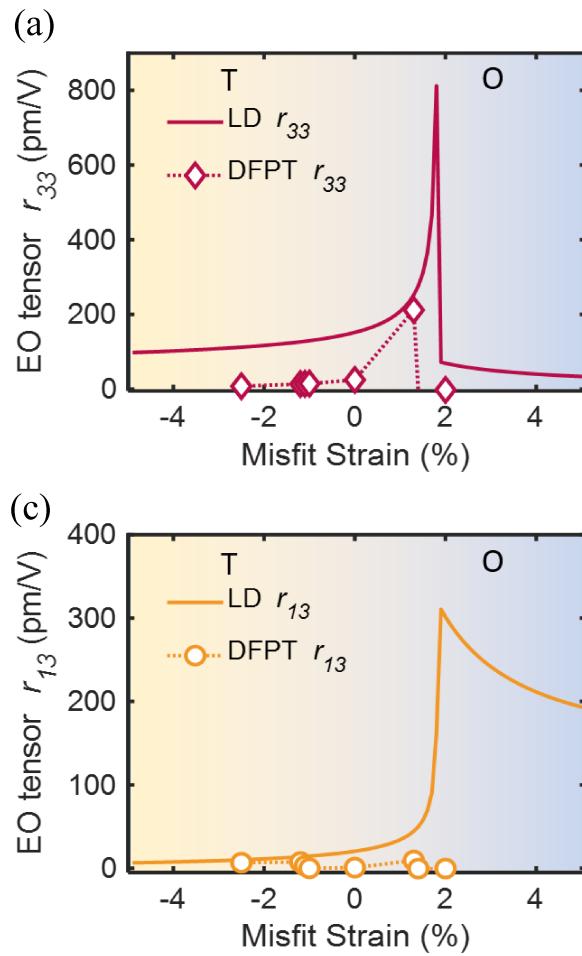
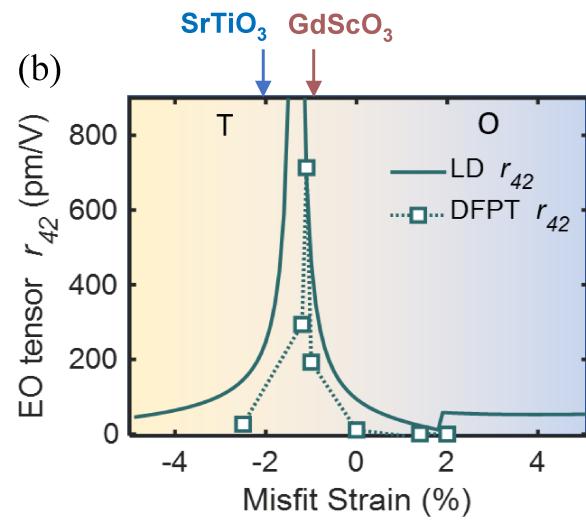


Figure 6. Evolution of EO coefficients (a) r_{33} , (b) r_{42} , (c) r_{13} with misfit strain for BaTiO_3 . The EO coefficients calculated from LD and DFPT are indicated with solid lines and dotted lines with marker. The blue region and yellow region, respectively, represent orthorhombic (O) and tetragonal (T) phase. The misfit strain imposed on coherently strained BaTiO_3 films grown on SrTiO_3 and GdScO_3 substrates are marked to identify the potentially achievable EO coefficients in strained thin films.

446 We have compared the change in EO response of BaTiO_3 under strain using our model, with those
 447 obtained using computationally intensive first-principles calculations as discussed in the Methods
 448 section. We obtain qualitatively similar results, as depicted in Figure 6. The first-principles DFPT
 449 results also indicate the divergence of r_{33} and r_{42} at $\sim 1.3\%$ and -1.0% strain, respectively. This
 450 clearly demonstrates that our model could qualitatively describe the physics of EO response under
 451 epitaxial strain conditions, although the absolute values should be taken with a grain of salt. One
 452 thing to note is that the first-principles DFPT calculations were performed for a strained $R3m$ phase
 453 of BaTiO_3 rather than the room-temperature $P4mm$ phase. The latter has soft phonon modes, which
 454 restricts the calculation of the EO coefficients, as has been noted in the literature.^{21,28} Therefore,
 455 the absolute values from these calculations only provides a qualitative description of the EO
 456 response of BaTiO_3 under strain at room temperature.²¹ We give the potential substrates in Figure

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

457 5 that one could use to achieve misfit compressive strain close to 1% to obtain large EO
458 coefficients in coherently strained thin films of BaTiO₃ using the established strain engineering
459 approach. The realization of low loss thin films in these limits remains a challenge, where intrinsic
460 and extrinsic defects may play an important role. Other factors, such as the formation and
461 distribution of ferroelectric domains at low fields, any inhomogeneity in application of electric
462 fields will also influence dielectric losses. Overcoming these issues are critical to enable high EO
463 coefficient materials and devices for future photonic technologies.
464

465 **Conclusion**

466 A methodology to predict the EO coefficients in ferroelectric oxides as a function of strain,
467 modulation frequency, and temperature is demonstrated here. This method enables highly scalable
468 calculation of EO coefficients by combining computationally expensive, but accurate, first-
469 principles calculations with scalable phenomenological Landau-Devonshire theory. We applied
470 our approach to three representative ferroelectric oxides, namely, LiNbO₃, LiTaO₃, and BaTiO₃.
471 The calculated EO coefficients are in good agreement with the experimental results. And the
472 relevance of specific model parameters for EO effect are discussed. In the light of the previous
473 discussion of temperature and strain effects on the EO responses, we conclude that small a_1 (a_1^* for
474 strained case) and shallow energy barrier are favorable for high- r EO materials. One way to reduce
475 a_1 is fabrication of ferroelectric/dielectric (FE/DE) heterostructures. As we introduced earlier,
476 Helmholtz free energy is simply the sum of all the energy components in Landau-Devonshire
477 theory. The total a_1 is the sum of a_1 of the ferroelectric and dielectric phases weighted according
478 to their respective volume fractions. a_1 is negative for ferroelectrics and positive for dielectrics.
479 By engineering the volume fraction of each component, one can achieve small a_1 coefficients with
480 high EO response. Another aspect of EO performance enhancement in ferroelectrics or multilayer
481 heterostructures is compositional engineering of the phase boundary involving the ferroelectric-
482 paraelectric phases or two different ferroelectric phases such as the O- and T-phases in a mixed-
483 phase BaTiO₃ film. Low switching energy at phase boundary makes the polarization switching
484 (between up and down) and/or polarization rotation (between two ferroelectric states) easier and
485 hence, can generate the enhanced EO responses.⁸³ Our method can be extended to simulate the EO
486 response of FE/DE heterostructures or film having phase boundary, once the complete set of the

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

487 bulk, elastic, electrostrictive and gradient energy terms are available either from first-principles
 488 calculations or from experiments. We expect that this method will pave a way to discover new
 489 materials with high electro-optic performance.

490

491 **Appendix A**

492 The EO tensors, r_{13} , r_{33} , and r_{42} , are defined in equation (7). Here we provide detail derivations
 493 to them. From equation (6.b-c), we have E_2 and E_3 as

$$E_2 = \frac{\partial f}{\partial P_2} = 2a_1^*P_2 + 4a_{11}^*P_2^3 + 2a_{12}^*P_1^2P_2 + 2a_{13}^*P_2P_3^2 + 6a_{111}P_2^5 + a_{112}(2P_2(P_3^4 + P_1^4) + 4P_2^3(P_1^2 + P_3^2)) + 2a_{123}P_1^2P_2P_3^2 \quad (A1.a)$$

$$E_3 = \frac{\partial f}{\partial P_3} = 2a_3^*P_3 + 4a_{33}^*P_3^3 + 2a_{13}^*P_3(P_1^2 + P_2^2) + 6a_{111}P_3^5 + a_{112}(2P_3(P_1^4 + P_2^4) + 4P_3^3(P_1^2 + P_2^2)) + 2a_{123}P_1^2P_2^2P_3 \quad (A1.b)$$

494 For the left hand side of the equation (7), we have:

$$\frac{1}{n_1^2} = \varepsilon_0 \frac{\partial^2 f}{\partial P_1^2} = \varepsilon_0(2a_1^* + 12a_{11}^*P_1^2 + 2a_{12}^*P_2^2 + 2a_{13}^*P_3^2 + 30a_{111}P_1^4 + a_{112}(12P_1^2(P_2^2 + P_3^2) + 2(P_2^4 + P_3^4)) + 2a_{123}P_2^2P_3^2) \quad (A2.a)$$

$$\frac{1}{n_3^2} = \varepsilon_0 \frac{\partial^2 f}{\partial P_3^2} = \varepsilon_0(2a_3^* + 12a_{33}^*P_3^2 + 2a_{13}^*(P_1^2 + P_2^2) + 30a_{111}P_3^4 + a_{112}(12P_3^2(P_1^2 + P_2^2) + 2(P_1^4 + P_2^4)) + 2a_{123}P_1^2P_2^2) \quad (A2.b)$$

$$\frac{1}{n_4^2} = \varepsilon_0 \frac{\partial^2 f}{\partial P_2 \partial P_3} = \varepsilon_0(4a_{13}^*P_2P_3 + a_{112}(8P_2^3P_3 + 8P_2P_3^3) + 4a_{123}P_1^2P_2P_3) \quad (A2.c)$$

495 Then substituting the eqns. (A1) and eqns. (A2) to eqn.(7) we obtain:

$$r_{11} = \frac{\partial \left(\frac{1}{n_1^2} \right)}{\partial E_3} = \frac{\varepsilon_0(4a_{12}^*P_3 + 8a_{112}P_3^3)}{2a_1^* + 12a_{11}^*P_3^2 + 30a_{111}P_3^4} \quad (A3.a)$$

$$r_{33} = \frac{\partial \left(\frac{1}{n_1^2} \right)}{\partial E_3} = \frac{\varepsilon_0(24a_{11}^*P_3 + 120a_{111}P_3^3)}{2a_1^* + 12a_{11}^*P_3^2 + 30a_{111}P_3^4} \quad (A3.b)$$

$$r_{42} = \frac{\partial \left(\frac{1}{n_4^2} \right)}{\partial E_2} = \varepsilon_0 \left(\frac{8a_{123}P_3}{4a_{12}^* + 4a_{123}P_3^2} + \frac{4a_{13}^*P_3 + 8a_{112}P_3^3}{2a_1^* + 2a_{13}^*P_3^2 + 2a_{112}P_3^4} \right. \\ \left. + \frac{4a_{13}^* + 24a_{112}P_3^2}{4a_{13}^*P_3 + 8a_{112}P_3^3} \right) \quad (A3.c)$$

496 We use the same procedure to derive the equations (9.a-c) except the fact that the P_1 and P_2 are
497 non-zero term in the orthorhombic phase.
498

499 **Acknowledgements**

500 This work was partially supported by the Army Research Office under award no. W911NF-21-1-
501 0327. The work at USC was also supported in part by ARO under award No. W911NF-19-1-0137,
502 the National Science Foundation (NSF) through award DMR-2122071, and the Air Force Office
503 of Scientific Research under contract FA9550-16-1-0335. Y. L. and J. R. acknowledge the Center
504 for Advanced Research Computing (CARC) at the University of Southern California for providing
505 computing resources that have contributed to the research results reported within this publication.
506 URL: <https://carc.usc.edu>. The work at Washington University was also supported in part by NSF
507 through awards DMR-1806147, DMR-2122070 and DMR-1931610. This work used the
508 computational resources of the Extreme Science and Engineering Discovery Environment
509 (XSEDE), which is supported by NSF grant ACI-1548562. The authors gratefully acknowledge
510 Mr. Wente Li and Prof. Alex Demkov of UT Austin for feedback on the manuscript.

511

512 **Data Availability**

513 The data that support the findings of this study are available from the corresponding author upon
514 reasonable request.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

515 References

516 ¹ P.K. Panda, *J. Mater. Sci.* **44**, 5049 (2009).

517 ² Z. Sun, Z. Wang, Y. Tian, G. Wang, W. Wang, M. Yang, X. Wang, F. Zhang, and Y. Pu, *Adv.*
518 *Electron. Mater.* **6**, 1 (2020).

519 ³ J. Hao, W. Li, J. Zhai, and H. Chen, *Mater. Sci. Eng. R Reports* **135**, 1 (2019).

520 ⁴ A.S. Bhalla, R. Guo, and R. Roy, *Mater. Res. Innov.* **4**, 3 (2000).

521 ⁵ R. Weis and T. Gaylord, *Appl. Phys. A Mater. Sci. Process.* **37**, 191 (1985).

522 ⁶ D.G. Schlom, L.Q. Chen, X. Pan, A. Schmehl, and M.A. Zurbuchen, *J. Am. Ceram. Soc.* **91**,
523 2429 (2008).

524 ⁷ D.H. Kim and H.S. Kwok, *Appl. Phys. Lett.* **67**, 1803 (1995).

525 ⁸ D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, *Appl. Phys. Lett.* **71**, 1783
526 (1997).

527 ⁹ G. Yi, Z. Wu, and M. Sayer, *J. Appl. Phys.* **64**, 2717 (1988).

528 ¹⁰ D.H. Reitze, E. Haton, R. Ramesh, S. Etemad, D.E. Leaird, T. Sands, Z. Karim, and A.R.
529 Tanguay, *Appl. Phys. Lett.* **63**, 596 (1993).

530 ¹¹ R.A. McKee, F.J. Walker, and M.F. Chisholm, *Phys. Rev. Lett.* **81**, 3014 (1998).

531 ¹² S.R. Bakaul, C.R. Serrao, O. Lee, Z. Lu, A. Yadav, C. Carraro, R. Maboudian, R. Ramesh, and
532 S. Salahuddin, *Adv. Mater.* **29**, 1605699 (2017).

533 ¹³ S.H. Baek and C.B. Eom, *Acta Mater.* **61**, 2734 (2013).

534 ¹⁴ S. Abel, F. Eltes, J.E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa,
535 A.M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A.A.
536 Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, *Nat. Mater.* **18**, 42 (2019).

537 ¹⁵ K.J. Kormondy, Y. Popoff, M. Sousa, F. Eltes, D. Caimi, M.D. Rossell, M. Fiebig, P.
538 Hoffmann, C. Marchiori, M. Reinke, M. Trassin, A.A. Demkov, J. Fompeyrine, and S. Abel,
539 *Nanotechnology* **28**, 075706 (2017).

540 ¹⁶ C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer,
541 and M. Lončar, *Nature* **562**, 101 (2018).

542 ¹⁷ S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M.D. Rossell, R. Erni, D. Caimi, M. Sousa, A.
543 Chelnokov, B.J. Offrein, J. Fompeyrine, S. Abel, T. Sto, D. Caimi, M. Sousa, A. Chelnokov, B.J.
544 Offrein, and J. Fompeyrine, *Nat. Commun.* **4**, 1671 (2013).

545 ¹⁸ H. Akazawa and M. Shimada, *Mater. Sci. Eng. B* **120**, 50 (2005).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

546 ¹⁹ T. Paoletta and A.A. Demkov, Phys. Rev. B **103**, 14303 (2021).

547 ²⁰ A.K. Hamze, M. Reynaud, J. Geler-Kremer, and A.A. Demkov, Npj Comput. Mater. **6**, (2020).

548 ²¹ K.D. Fredrickson, V.V. Vogler-Neuling, K.J. Kormondy, D. Caimi, F. Eltes, M. Sousa, J.

549 Fompeyrine, S. Abel, and A.A. Demkov, Phys. Rev. B **98**, 1 (2018).

550 ²² A.K. Hamze and A.A. Demkov, Phys. Rev. Mater. **2**, 1 (2018).

551 ²³ C. Paillard, S. Prokhorenko, and L. Bellaiche, Npj Comput. Mater. **5**, 1 (2019).

552 ²⁴ M. DiDomenico and S.H. Wemple, J. Appl. Phys. **40**, 720 (1969).

553 ²⁵ S.H. Wemple and M. DiDomenico, J. Appl. Phys. **40**, 735 (1969).

554 ²⁶ M. Veithen and P. Ghosez, Phys. Rev. B **65**, 214302 (2002).

555 ²⁷ M. Veithen and P. Ghosez, Phys. Rev. B **71**, 132101 (2005).

556 ²⁸ M. Veithen, X. Gonze, and P. Ghosez, Phys. Rev. Lett. **93**, 187401 (2004).

557 ²⁹ M. Veithen, X. Gonze, and P. Ghosez, Phys. Rev. B **71**, 125107 (2005).

558 ³⁰ J.H. Qiu, J.N. Ding, N.Y. Yuan, X.Q. Wang, and Y. Zhou, Solid State Commun. **151**, 1344
559 (2011).

560 ³¹ Y. Lu and R.J. Knize, J. Phys. D. Appl. Phys. **37**, 2432 (2004).

561 ³² J. Hiltunen, D. Seneviratne, R. Sun, M. Stolfi, H.L. Tuller, J. Lappalainen, and V. Lantto,
562 Appl. Phys. Lett. **89**, 242904 (2006).

563 ³³ P. Chandra and P.B. Littlewood, in *Phys. Ferroelectr.* (Springer Berlin Heidelberg, Berlin,
564 Heidelberg, 2007), pp. 69–116.

565 ³⁴ K.G. Lim, K.H. Chew, L.H. Ong, and M. Iwata, Solid State Phenom. **232**, 169 (2015).

566 ³⁵ K.H. Chew, Solid State Phenom. **189**, 145 (2012).

567 ³⁶ L.-Q. Chen, J. Am. Ceram. Soc. **91**, 1835 (2008).

568 ³⁷ A.I. Khan, K. Chatterjee, J.P. Duarte, Z. Lu, A. Sachid, S. Khandelwal, R. Ramesh, C. Hu, and
569 S. Salahuddin, IEEE Electron Device Lett. **37**, 111 (2016).

570 ³⁸ P. Marton, I. Rychetsky, and J. Hlinka, Phys. Rev. B - Condens. Matter Mater. Phys. **81**,
571 (2010).

572 ³⁹ G. Kresse and J. Furthmüller, Phys. Rev. B **54**, 11169 (1996).

573 ⁴⁰ D. Joubert, Phys. Rev. B - Condens. Matter Mater. Phys. **59**, 1758 (1999).

574 ⁴¹ R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. **61**, 689 (1989).

575 ⁴² J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

576 ⁴³ D.I. Bilc, R. Orlando, R. Shaltaf, G.M. Rignanese, J. Íñiguez, and P. Ghosez, Phys. Rev. B -
577 Condens. Matter Mater. Phys. **77**, 1 (2008).

578 ⁴⁴ Y. Zhang, J. Sun, J.P. Perdew, and X. Wu, Phys. Rev. B **96**, 35143 (2017).

579 ⁴⁵ R.D. King-Smith and D. Vanderbilt, Phys. Rev. B **47**, 1651 (1993).

580 ⁴⁶ A.K. M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasçi, G. de la Flor, "Crystallography
581 Online Bilbao Crystallogr. Server" Bulg. Chem. Commun. **43**, 183 (2011).

582 ⁴⁷ B.J.C. H. T. Stokes, D. M. Hatch, ISOTROPY Softw. Suite (n.d.).

583 ⁴⁸ X. Gonze, Zeitschrift Für Krist. - Cryst. Mater. **220**, 558 (2005).

584 ⁴⁹ X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D.
585 Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S.
586 Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
587 M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M.
588 Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger, Comput. Phys. Commun. **180**, 2582
589 (2009).

590 ⁵⁰ N. Troullier and J.L. Martins, Phys. Rev. B **43**, 8861 (1991).

591 ⁵¹ M. Zgonik, P. Bernasconi, M. Duelli, R. Schlessler, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu,
592 and X. Wu, Phys. Rev. B **50**, 5941 (1994).

593 ⁵² F. Jona and G. Shirane, *Ferroelectric Crystals* (Wiley Online Library, 1962).

594 ⁵³ Karin M. Rabe ; Charleshn ; Jean-Marc Triscone, *Physics of Ferroelectrics: Topics in Applied
595 Physics* (2007).

596 ⁵⁴ G.A. Samara, Ferroelectrics **2**, 277 (1971).

597 ⁵⁵ R.C. Miller and A. Savage, Appl. Phys. Lett. **9**, 169 (1966).

598 ⁵⁶ J.L. Serving and F. Gervais, Ferroelectrics **25**, 609 (1980).

599 ⁵⁷ Y.L. Wang, A.K. Tagantsev, D. Damjanovic, N. Setter, V.K. Yarmarkin, and A.I. Sokolov,
600 Phys. Rev. B - Condens. Matter Mater. Phys. **73**, 1 (2006).

601 ⁵⁸ R.E. Cohen, Nature **358**, 136 (1992).

602 ⁵⁹ R. Resta and D. Vanderbilt, in *Phys. Ferroelectr. Top. Appl. Phys.* (Springer Berlin
603 Heidelberg, Berlin, Heidelberg, 2007), pp. 31–68.

604 ⁶⁰ X. Lu, H. Li, and W. Cao, J. Appl. Phys. **114**, (2013).

605 ⁶¹ M.J. Weber, *Handbook of Optical Materials* (CRC press, 2002).

606 ⁶² N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett. **80**, 1988 (1998).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

607 ⁶³ V.B. Shirokov, Y.I. Yuzyuk, B. Dkhil, and V. V. Lemanov, Phys. Rev. B - Condens. Matter
608 Mater. Phys. **75**, 1 (2007).

609 ⁶⁴ R.W. Boyd, *Nonlinear Optics, Third Edition*, 3rd ed. (Academic Press, Inc., USA, 2008).

610 ⁶⁵ J. Liu, H. Wen, W. Chen, and Y. Zheng, Phys. Rev. B **103**, 1 (2021).

611 ⁶⁶ L.-Q. Chen, in *Phys. Ferroelectr. Top. Appl. Phys.* (2007), pp. 363–370.

612 ⁶⁷ J.A. Gonzalo and J.M. Rivera, Ferroelectrics **2**, 31 (1971).

613 ⁶⁸ W.J. Merz, Phys. Rev. **91**, 513 (1953).

614 ⁶⁹ J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U.
615 Waghmare, X. Wu, M.L. Klein, and J.P. Perdew, Nat. Chem. **8**, 831 (2016).

616 ⁷⁰ C. Herzog, G. Poberaj, and P. Günter, Opt. Commun. **281**, 793 (2008).

617 ⁷¹ P. Bernasconi, M. Zgonik, and P. Gunter, J. Appl. Phys. **78**, 2651 (1995).

618 ⁷² P. Girouard, P. Chen, Y.K. Jeong, Z. Liu, S.T. Ho, and B.W. Wessels, IEEE J. Quantum
619 Electron. **53**, (2017).

620 ⁷³ P. Girouard, P. Chen, Y.K. Jeong, Z. Liu, S.T. Ho, and B.W. Wessels, Opt. InfoBase Conf.
621 Pap. **2016**, 10 (2016).

622 ⁷⁴ C. Xiong, W.H.P. Pernice, J.H. Ngai, J.W. Reiner, D. Kumah, F.J. Walker, C.H. Ahn, and
623 H.X. Tang, Nano Lett. **14**, 1419 (2014).

624 ⁷⁵ W. Guo, A.B. Posadas, and A.A. Demkov, J. Vac. Sci. Technol. A **39**, 030804 (2021).

625 ⁷⁶ D.P. Kumah, J.H. Ngai, and L. Kornblum, Adv. Funct. Mater. **30**, 1 (2020).

626 ⁷⁷ P. Tang, D.J. Towner, T. Hamano, A.L. Meier, and B.W. Wessels, Opt. Express **12**, 5962
627 (2004).

628 ⁷⁸ L. Chen, Y. Zhang, Q. Guo, D.W. Zhang, X.L. Zhong, X.W. Wang, Z.H. Lv, C. Meng, Y.D.
629 Huang, Y.L. Ge, and J.M. Yuan, IRMMW-THz 2015 - 40th Int. Conf. Infrared, Millimeter,
630 Terahertz Waves **112903**, 0 (2015).

631 ⁷⁹ C. Cochard, T. Spielmann, N. Bahlawane, A. Halpin, and T. Granzow, J. Phys. D: Appl. Phys.
632 **50**, (2017).

633 ⁸⁰ A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, and E. Quandt, J. Appl. Phys. **109**, 3 (2011).

634 ⁸¹ D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, and X. Ren, J. Appl. Phys. **109**, 054110 (2011).

635 ⁸² A.D. Dupuy, Y. Kodera, and J.E. Garay, Adv. Mater. **28**, 7970 (2016).

636 ⁸³ G. Keiser, in *Wiley Encycl. Telecommun.* (John Wiley & Sons, Inc., Hoboken, NJ, USA,
637 2003).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

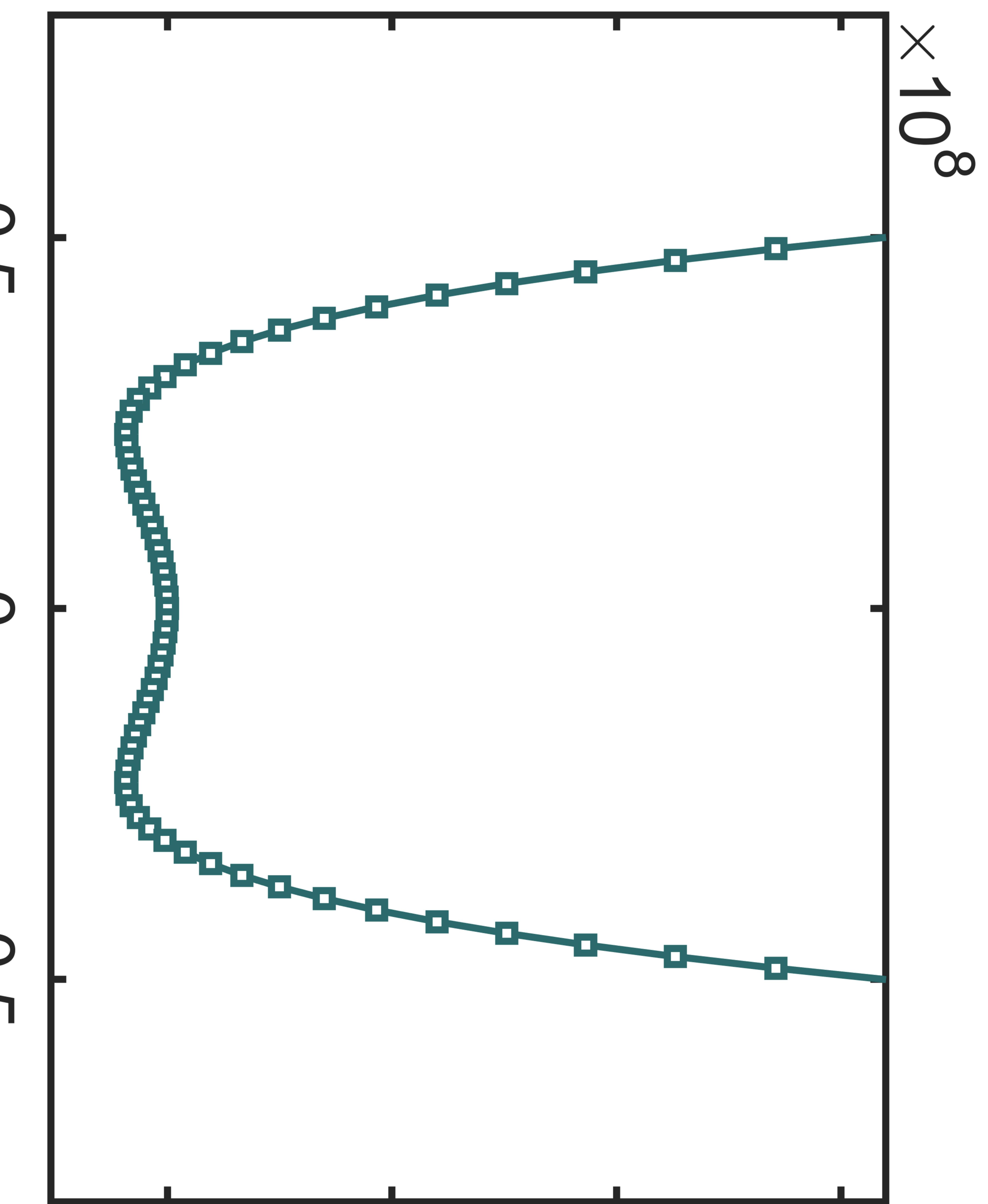
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072

638

Energy Density f_{001} (J/m³)

0 → 2 3

Polarization P_{001} (C/m²)



Energy Density f_{011} (J/m^3)

0

1

2

3

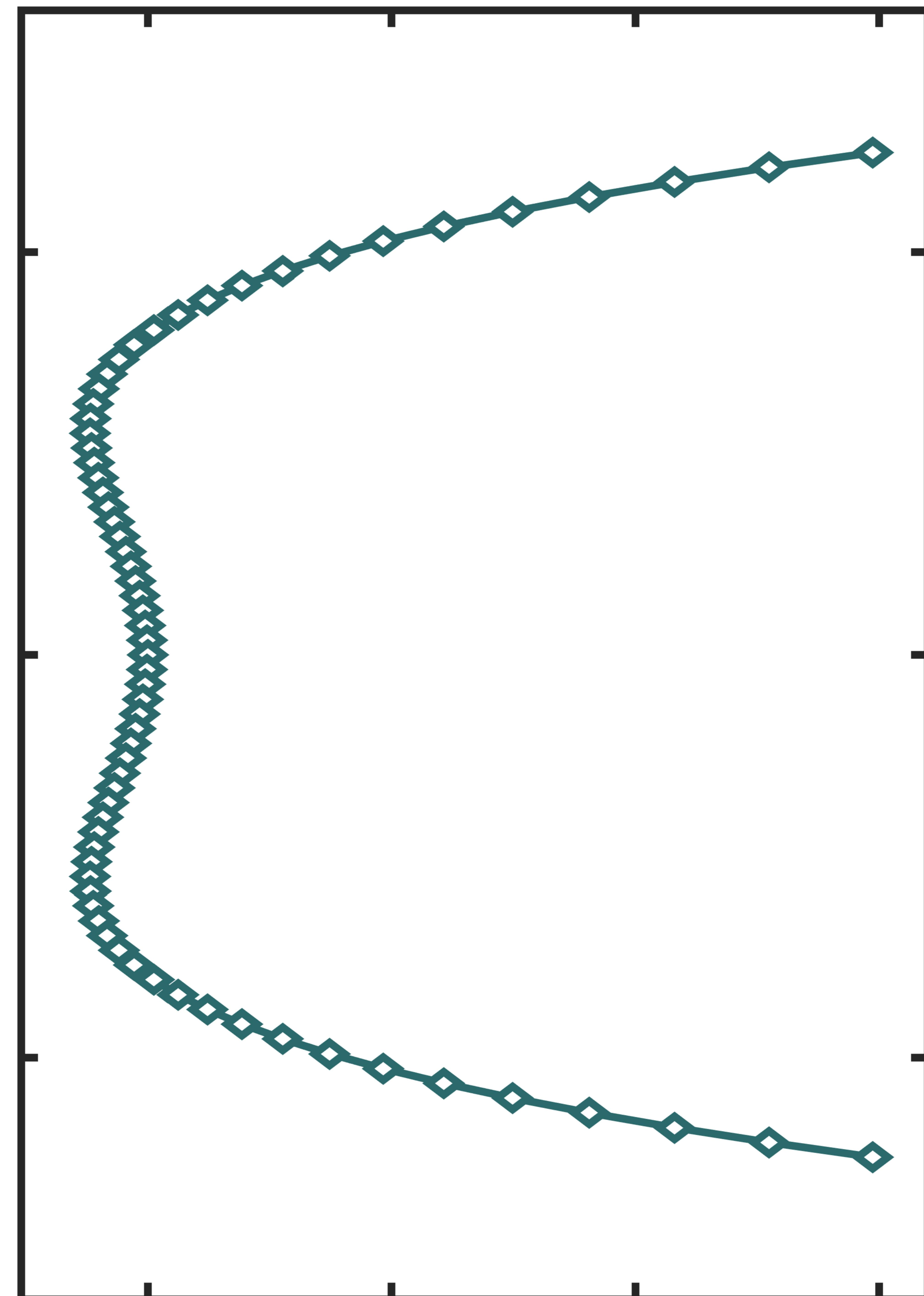
Polarization P_{011} (C/m^2)

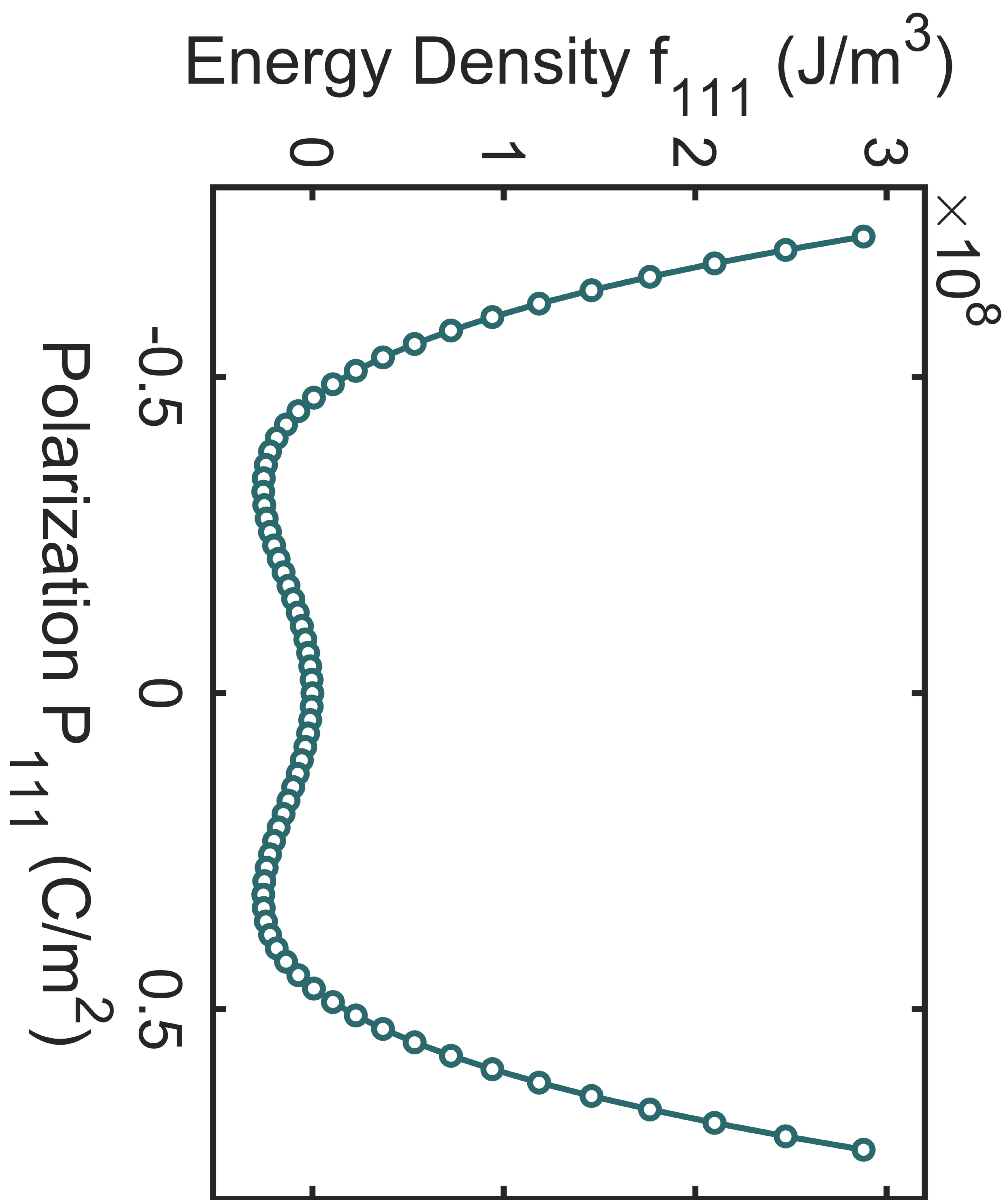
-0.5

0

0.5

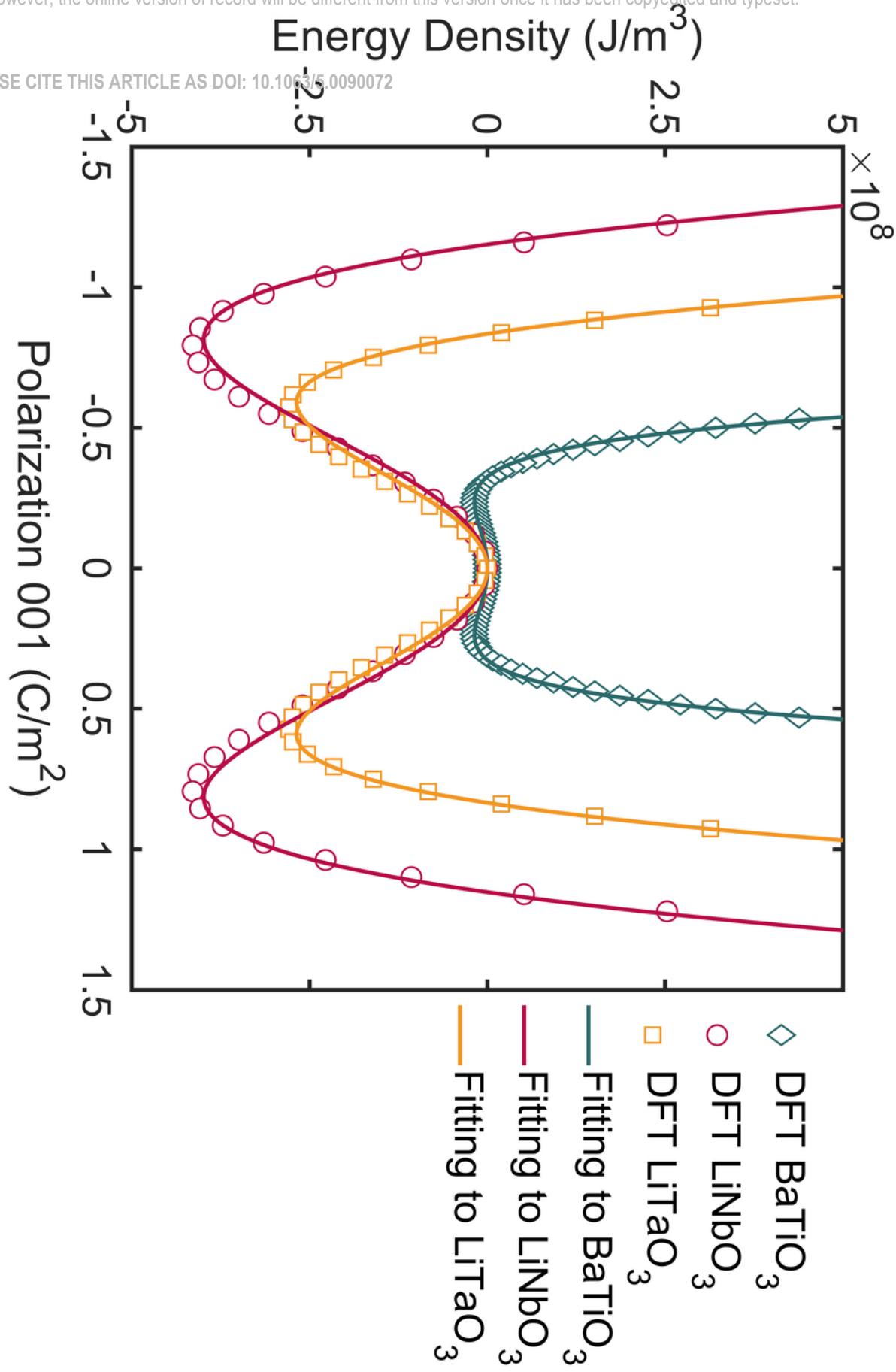
$\times 10^8$





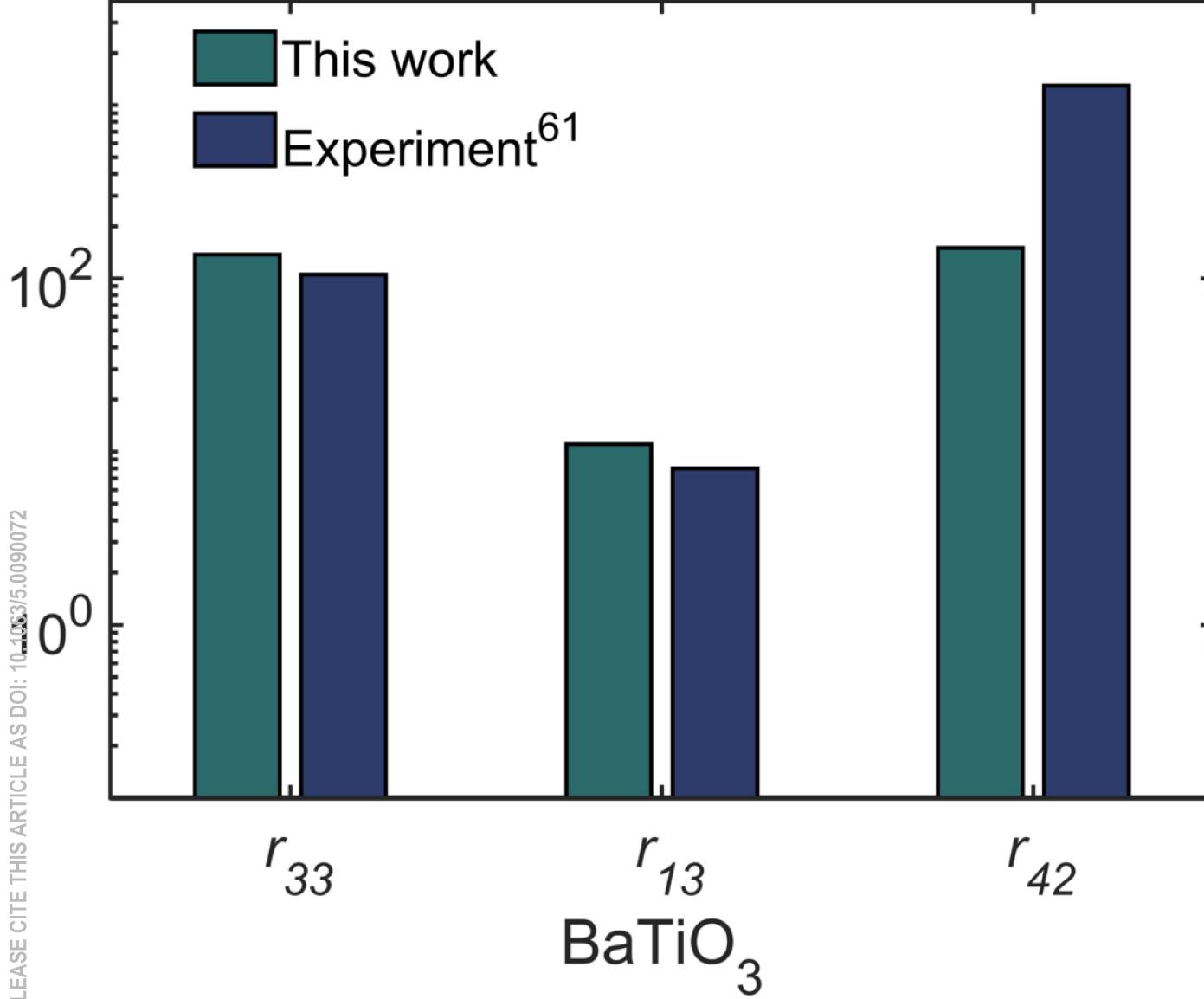
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072



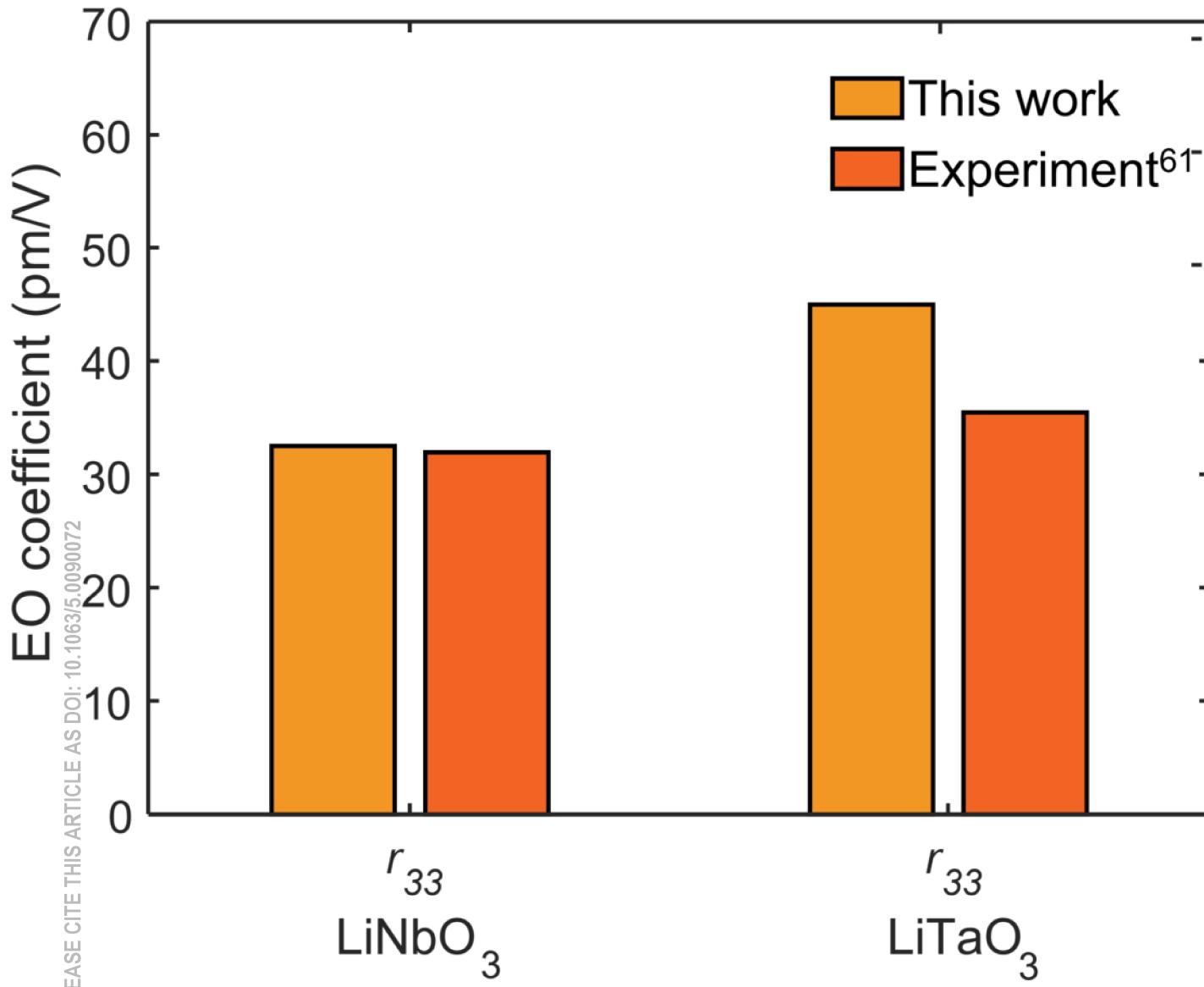
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072

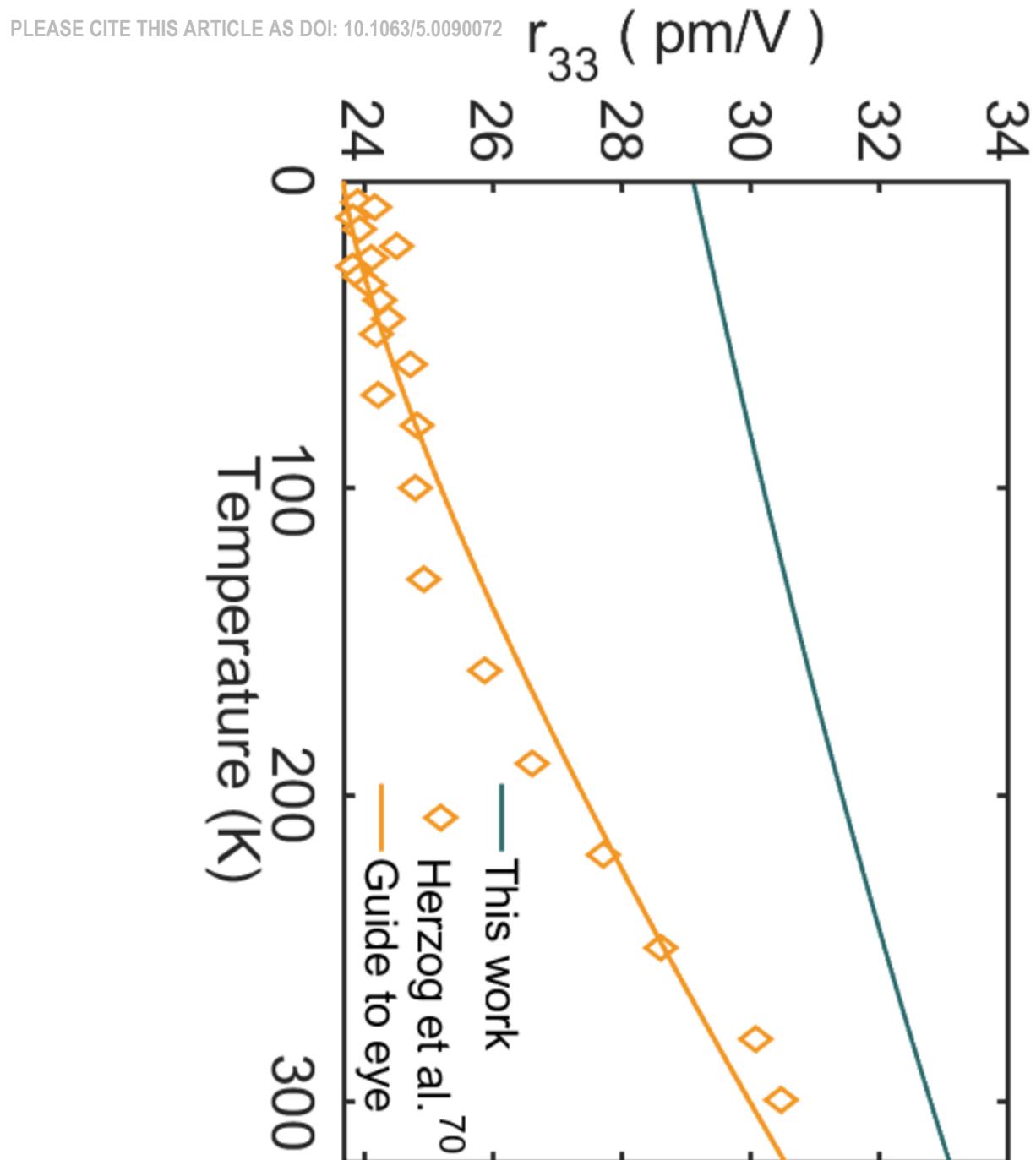


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072



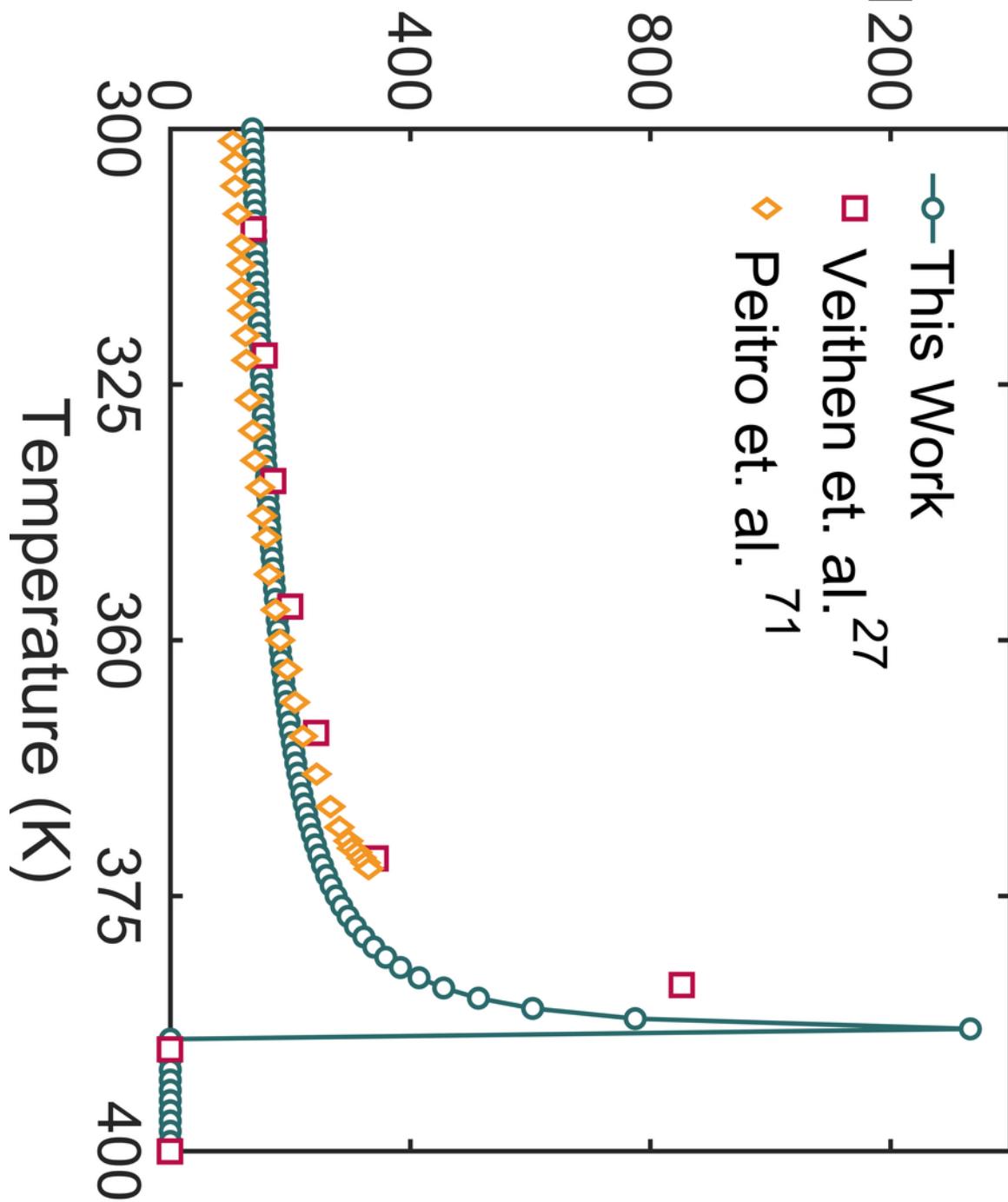
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.



This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

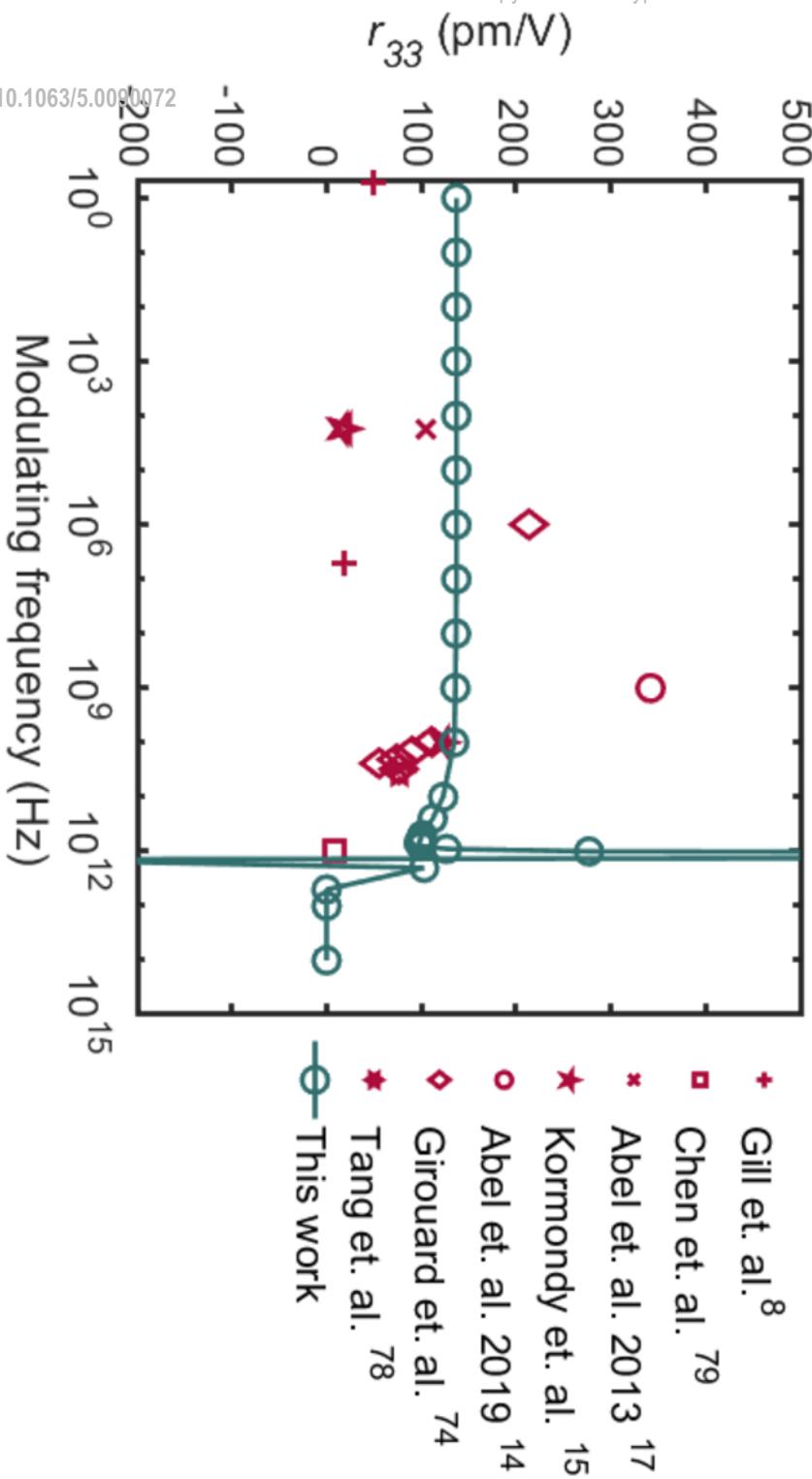
r_{33} (pm/V)

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072



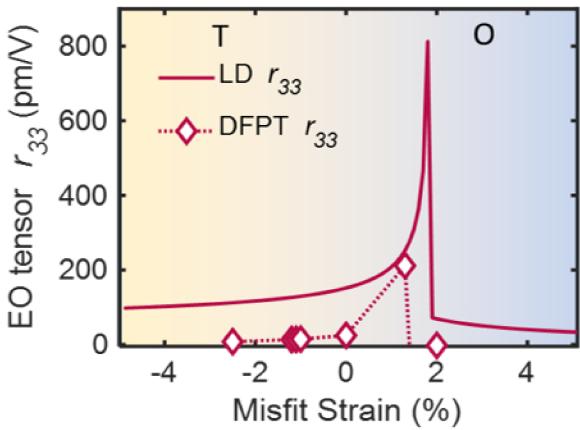
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072



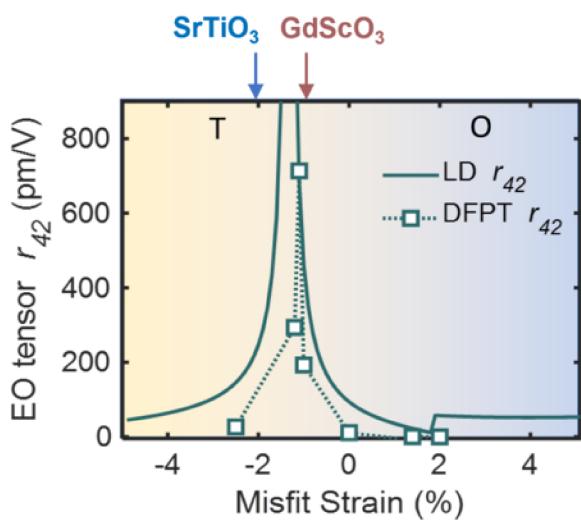
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072



This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072



This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0090072

