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Abstract

An electro-optic modulator offers the function of modulating the propagation of light in a material
with electric field and enables seamless connection between electronics-based computing and
photonics-based communication. The search for materials with large electro-optic coefficients and
low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices.
We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric
materials by combining first-principles density-functional theory calculations with Landau-
Devonshire phenomenological modeling. We apply the method to study the electro-optic constants,
also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO3, LiNbOs3, and
LiTaOs. We present their temperature-, frequency- and strain-dependent electro-optic tensors
calculated using our method. The predicted electro-optic constants agree with the experimental
results, where available, and provide benchmarks for experimental verification.
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Introduction

AMOs-type ferroelectric oxides offer strong coupling between electrical, thermal, and optical
properties, and enable novel applications that leverage the coupled phenomena. They are currently
used in nonvolatile memories, actuators, transducers, and electro-optic (EO) devices, owing to
their excellent dielectric, piezoelectric and pyroelectric properties, and optical response.'™ For
optical applications, ferroelectric oxide perovskites exhibit large EO coefficients with low optical
loss, and are the materials of choice for low-power electro-optic devices. Since the 1970s, EO
modulators based on LiNbO3 have been used widely in fiber-optic systems due to its good linear
EO or Pockels effect (r33: 32 pm/V) and high transparency over a large range of wavelength.’
Thin film deposition of EO oxides, characterization of their optical response,® and fabrication of
optical devices have undergone significant refinement since the 1990s.”7!° In line with this
development, there is a growing interest in achieving epitaxially grown ferroelectric thin films

integrated on silicon-based chips for optical waveguide modulators.!!-1¢

Among different ferroelectric oxides, BaTiOs, LiNbO3, and LiTaOs have been investigated
intensively for on-chip EO applications due to their sizable linear EO effect (tetragonal BaTiO3
on Si 745:105pm/V, 7,¢r:148 pm/V 7 and LiNbO3 on Si r33: 17.6 pm/V '¥). However,
modeling methods for the EO response of these ferroelectric materials as a function of temperature,
frequency, strain and electric dipole orderings has not been well-established.'®?* In fact, EO
effects are shown to be sensitive to the microstructure, and an accurate assessment of this intrinsic
property requires single crystals or high-quality thin films, which are not easily accessible or
prepared. Therefore, theoretical prediction of the nonlinear optical properties of crystalline
materials along with the effect of various experimental conditions, such as strain and temperature,
can help to establish performance limits for subsequent experimental verification. In the past
decade, sustained efforts on theoretical investigations of nonlinear optical phenomena in oxide
perovskites have resulted in accurate methods for predicting these properties. DiDomenico and
Wemple revealed the importance of oxygen octahedra in perovskites on their optical
properties.?*?> Ghosez and co-workers calculated the optical susceptibilities, Raman efficiencies,
and electro-optic tensors based on density functional perturbation theory.?*° More recently,
Hamze et al., Qiu et al., and Paillard et al. studied the effect of strain on the electro-optic tensor.'”~

23,30 Furthermore, with the ability to prepare atomically precise heterostructures and superlattices,
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it is of both scientific and practical importance to understand the mechanism of the EO effect in
these complex systems and predict the EO coefficients reliably.’!*> While first-principles
calculation methods used in previous studies are effective in predicting the EO effect for single
crystals, modeling EO effects in superlattices and multilayers presents a formidable challenge. The
periodicity of the superlattices and multilayers, which span few nm to few 10s of nm, and breadth
of phase space in terms of materials and periodicities needed to model EO effects and identify high

efficiency structures make first-principles methods computationally expensive and impractical.

Phenomenological models, such as those based on Landau-Devonshire theory®® enable fast,
accurate, and highly scalable calculations of the functional properties of complex structures. It is
important to note that Landau-Devonshire model uses input from experimental results or first-
principles calculations to fit the coefficients used in the model. Hence, the accuracy of Landau-
Devonshire expansion coefficients in subsequent estimation of functional properties is determined
by these inputs. For a multicomponent system, such as superlattices and multilayers, one can
simulate their physical properties by summing up the thermodynamic free energies of each
component as a function of strain, electric fields, and their gradients.’*3> This approach has been
extensively applied for the simulation of dielectric and piezoelectric responses of ferroelectric

materials and multilayer heterostructures.*¢-8

The objective of this study is to establish a semi-empirical model to simulate the EO behavior of
perovskite ferroelectrics. This model uses the phenomenological Landau-Devonshire model with
parameters obtained from first-principles calculations to improve the scalability of EO calculations
for complex structures without compromising on speed and accuracy. We show that this model
can be applied to prototypical ferroelectric oxides such as LiNbO3, LiTaOs3, and BaTiOs. We
obtained the free-energy landscape associated with the transition between ferroelectric and
paraelectric phases using density-functional theory (DFT) calculations. We extracted Landau-
Devonshire coefficients using a polynomial fitting to the energy landscape and calculated the EO
coefficients at room temperature for these three prototypical ferroelectric oxides. We find that our
model can predict EO coefficients that have good agreement with experimental results, wherever
available. Using this model, we have calculated the temperature-dependence of the EO coefficients

for LiNbO3 and BaTiOs and find them to be within 30% of experimental results for most cases.
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Moreover, the strain effect on the EO coefficient is discussed in the range of -5 to 5% misfit strain
for BaTiO3. Our model is able to capture the ferroelectric to paraelectric phase transition, which is

associated with a divergence of the EO tensor.

Methods

Density-Functional Theory Calculations

The landscapes of free energy for the different AMO3 oxides were computed using DFT as
implemented in Vienna Ab-initio Simulation Package (VASP).3* We used projector augmented-
wave (PAW) potentials.*’ In general, the accuracy in the estimation of ferroelectric properties is
sensitive to the adopted exchange-correlation functionals such as the local density approximation
(LDA), *' and the semi-local generalized gradient approximation (GGA) in the standard from of
Perdew-Burke-Ernzerhof (PBE)*>. GGA is known to suffer from the so-called super-tetragonality
error, which significantly overestimates the structural distortion in conventional perovskite
ferroelectrics**. For the most-studied oxide ferroelectrics, BaTiOs and PbTiOs, the lattice
distortion, spontaneous polarization, and lattice dynamics predicted by LDA functional agree well
with the experimental results.** Therefore, we chose LDA to describe the electronic exchange-
correlation interactions. We have considered three paradigmatic AMO3 oxides, BaTiO3 (P4mm,
Amm?2, R3m), LINbOs3 (R3c), and LiTaOs (R3c), for determining structural transition and
ferroelectric polarization. A cutoff energy of 700 eV was used to determine the number of
planewave basis sets in the calculations. We used I'-centered 10x10x10 k-points mesh for
sampling the Brillouin zone of BaTiO3 and 10%10x4 k-points mesh for LiNbO3 and LiTaOs. The
crystal structures were fully optimized until residual forces were less than 107 eV/A. The
spontaneous polarization induced by the polar soft-phonon modes was calculated based on the
modern theory of polarization®, which is a sum over the contribution from the ionic and electronic
charges. Symmetry and distortion-mode analyses were conducted using programs from the Bilbao
crystallographic server.*® The intermediate images corresponding to soft-phonon distortion were

interpolated using the ISOTROPY software suite.*’

Density-Functional Perturbation Theory Calculations
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We also calculated the EO tensor of the ground-state R3m phase of BaTiOs purely from first-
principles as a comparison to that obtained using the Landau-Devonshire model. The theoretical
framework developed by Veithen et al.>%° for the computation of EO response under a static or
low-frequency electric field perturbation has been implemented in the ABINIT software
package.*®* Teter extended norm-conserving pseudopotentials'®* for BaTiOs system were used
for these calculations and the exchange-correlation interactions were described within LDA.%° We
used 12x12x12 k-points mesh and 55 Hartree cutoff energy for all the calculations. To study the
effect of strain on EO response, we adopted the same strategy described by Fredrickson et al.?!
Varying epitaxial strains between —2 to +2 % with the negative values denoting compressive strain
were applied to a and b lattice constants. The optimal ¢ lattice constant for a given epitaxial strain
was calculated using the elastic constants of tetragonal BaTiO3 (Ci1 = 222 GPa, Ci2= 108 GPa,

Ci13=111 GPa, C33= 151 GPa).’!' The ionic positions in the strained lattices were optimized until

the forces were less than 1x107° eV/A.

Landau-Devonshire Model
Landau phenomenological theory is widely used to describe phase transitions and temperature
dependence of physical properties of ferroelectrics.> Here, we use Helmholtz free energy to
describe the thermodynamics due to the convenience in choosing the internal variables:
polarization (P) and strain (S) as independent variables, whereas the electric field (£) and the stress
are external applied variables. The free energy and free energy density in this article refer to
Helmholtz free energy and Helmholtz free energy density, unless noted otherwise. The Helmholtz
free energy density (fo) of a ferroelectric system under no external field can be written as an
expansion of the order parameter - the polarization (P), as:>

fo=ai(Pf + P§ + P§) + a1 (P} + P} + P§) + a,(P{P; + P{P§ + P{P§) +

a111(PY + P3 + P9) + a2 (P (P§ + P§) + Py (Pf + P§) + P3(Pf + P7)) +
a123P P P5 (1)

where the subscripts /,2,3 refer to [100], [010], and [001] directions in the crystal, a;, a;;, a;jy are
the phenomenological Landau-Devonshire coefficients, and P; is the polarization along direction
i. The temperature dependence of ferroelectricity is governed by the coefficient a; and it is defined

as

a; = (T —To)/2&C. (2)
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The other coefficients are all assumed to be temperature independent. Here T, and C are the Curie-
Weiss temperature and constant above which the system transitions to a paraelectric state, and &,
is the dielectric constant of free space, respectively. We set T, to be 388 K in the entire simulation
for BaTiOs and 1480 K and 950 K for LiNbO3 and LiTaOs, which were observed from
experiments.”>*> Classical Landau theory ignores the temperature effect on the higher-order
coefficients in the expansion. Nevertheless, it is shown that the higher order terms are actually
temperature dependent.>’” We include temperature effects in our calculations, and for simplicity,
we only consider the temperature dependent a, in this work. The effect of temperature-dependent

high-order terms, such as a,;, on EO responses will be the target of future work.

Model Fitting and Parameters

The ferroelectric transition from a centrosymmetric reference can be expressed as the result of
ionic displacements along a specific direction with charge separation leading to a net electrical
dipole moment.*® By interpolating the ionic displacements from a centrosymmetric structure to a
polar phase, the energy as a function of ionic displacements can be mapped using DFT calculations.
As has been shown recently by Paoletta and Demkov!®, phonons causing the ionic displacements
will in turn alter the electronic energy of the system, and this is the origin of electron-phonon
interactions under the adiabatic approximation. That is to say, our DFT calculations for free energy
landscape of each distortion mode also reflects the electron-phonon interactions. For the
subsequent Landau-Devonshire fittings, we have converted the ionic displacements into
spontaneous polarization based on the modern theory of polarization.”® The landscape of the
change in free energy density (J/m?) for the three ferroelectric phase transitions from paraelectric
BaTiOs (P4/mmm) as a function of the electric polarization are shown in Figure 1. By fitting the
Landau-Devonshire expansion to the change in energy density with polarization, quadratic and
higher-order coefficients of the polynomial can be derived for ferroelectric transition along [001],
[011], and [111] direction for tetragonal (P4mm), orthorhombic (4mm?2), and rhombohedral (R3m)

structures, respectively. The free energy density with respect to the polarization Pyg; = Ps,

Py11 =+/PF + PZ, and Py = /P? + P? + P can be described by the following equations,
respectively:®°
foor = a1PGor + a11Pgo1 + @111 P01, (3.a)

for1 = a1 Péyq + a1 Py + af11 P, (3.b)
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fiir = a1 Py + afy Piyy + afi Py, (3.c)
where the superscripts O and R indicate the orthorhombic and rhombohedral phase for BaTiOs3,
af, = %an + ia12 , @iy = i(a111 +ag; ), afy = é(an +a;), and afy; = %(3%11 +
6a,1, + a;23). We used the “Curve Fitting Toolbox” in MATLAB to fit the free energy density
curves obtained from DFT calculations. We fitted the energy density landscape of tetragonal
BaTiOs with the eqn. (3.a) to obtain the a,, a;;, and a;;;. To get the a;, and a,;,, the
orthorhombic energy density is fitted to the eqn. (3.b). a;,3 is derived by fitting the energy density
of thombohedral phase using the eqn. (3.c) using all the other parameters obtained from the
previous steps. Then all the parameters are manually tuned to minimize the coefficients of
determination (R?) of three equations (3, a-c) by slightly changing only one parameter at a time
while fixing all remaining parameters. Thus, the whole sets of the Landau-Devonshire coefficients

can be derived.

For the case of LiNbO3 and LiTaOs3, we applied the same procedure as BaTiO3 but simplified it to
[001] direction since we are only interested in the most intense EO tensor component -- 733.%!
Therefore, we calculated the free energy density curve for R3¢ LiNbO3 and LiTaOs as a function
of polarization along [001] direction. The Landau-Devonshire coefficients a; and a;; were

obtained by fitting the energy density curve to the eqn. (3.a).

Then, we applied the strain and electrostrictive energy terms to the Landau-Devonshire model to
investigate the strain-induced phase changes in BaTiOs. The free energy density f of the thin film
as a function of polarization and misfit strain S,, = (a5 — ay) /ag,>® where ag is the substrate
lattice parameter and ay is the lattice constant of the film in its bulk form, is given by:%?
f=ai(Pf +P§)+asPi +aj (P + Py) + as3P + aj, PEP; + aj;(PPPS +
PZP) + a111 (PP + P7 + P) + a11, (P (P + PY) + P (P} + P3) +

SZ
P$(P 4 P$)) + a123 P P3P + —2

b
S11+512

4)
* +

where a; =a; — %Sm, (4.a)
* _ 2012

s = a; = — " — Smo (4.b)
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1 (QF1+Q%2)511-2Q11Q12512

* —

11 = a1y + 2 s$1-s%, ’ (4.0)
x __ofh 4.d
433 = Qu1 S11+512” ( ’ )

2 2 2

o (Q%1+0%2)512—2011Q12511 Qi4
A1 = A1 — 7 o2 +-— (4.¢)

S117512 2S44

Q12(Q11+Q12)
ajz = Ay + ————= .

13 12 S11+S12 ) (4 f)

where Q;; are the electrostriction coefficients and s;; are the elastic compliances. The @;; and s;;

values in Table 1 for BaTiOs are taken from Ref. 63.%

Table 1. Elastic compliance (s;) and
electrostrictive coefficients (Qjj) of
BaTiOs taken from Ref. 63.

s1(102 m*N) 8.33
s12(102 m?/N)  -2.68
s44(102 m*N)  9.24
O11 (m*/c?) 0.10
O12 (m*/c?) -0.034
Qa4 (m?*/c?) 0.029

The variation of the free energy density under external electric field is written as:
Af = fo — E1Py — E; P, — E3P3, (5)
where E;, E>2, and E3 is the applied electric field along x, y, and z principal crystallographic

directions, respectively. The equilibrium configuration is determined by finding the minima of Af,

where we shall have aai: = 0. Then, the electric field £ as a function of polarization can be
determined by:
E, = % (6.2)
E, = ;’%‘; (6.b)
Ey = Z—g (6.¢)
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In this article, every time an external electric field is applied, we solve eqns. (6.a-c) to deduce the
field-induced polarizations. Then the obtained polarizations are applied to solve the corresponding

eqns. (8-9) in the following paragraphs. In this way, it will always maintain the thermodynamic
o0

equilibrium: o = 0.

The dielectric tensor ;; can be defined in terms of the first-order derivative of polarization with

respect to the external electric field. Here, we summarize the derived dielectric constants for

tetragonal (P; = P, = 0, P; # 0) and orthorhombic (orthorhombic, P; = P, # 0, P; = 0) BaTiO3

phases in the box I and II. We don’t include the low-temperature rhombohedral phase since the

rhombohedral phase is not accessible in the experiments though strain engineering at room

temperature.
&1 = & = :
117 %22 ™ 24 +2a5,P2+2a,1,PY
o = 1
33 7 2a3+12a%,P2+30a,1, P

Box I. Expression of spontaneous polarization and dielectric constants for tetragonal BaTiOs.

X11 = 2a; + 12a5,P¢ + 2ai,P; + 30a,1, Py + a,1,(12P2P% + 2P3),
Xyp = 2a; + 12a5,PZ + 2ai,P{ + 304,11 P + a,1,(12P2PZ + 2P}),
X1 = 4a;,P1P, + 8a11,(PY P, + P P3),

X33 = 2a3 + 2ai3(P{ + P7) + 8ay1,(PY P, + P P3),

X22 X11
2 €22
X11X22—X7>

&1 = =T 5 523 =5
X11X22—-X2)’ X33

Box II. Expression of spontaneous polarization and dielectric constants for orthorhombic

BaTiOs.

The propagation of light in a crystal is determined by the refractive index n;;. The relation between
the dielectric constant and the refractive index is nizj = &;j/&o. The linear EO tensor 7;;; describes

the change of refractive index of a crystal in response to the applied electric field. Therefore, we

write the linear EO tensor 7y as first-order dependence of the inverse of refractive index square

when a static or low-frequency modulating electric field E), is applied:
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A(ni?) = rijiEyx (7)
The index ijk refers to the ij component of the refractive index and the dielectric tensor, for an
applied electric field along the k direction.?%2%6* For the following paragraphs, we denote the index

ij with Voigt notations, i.e. 11 - 1,22 - 2,33 - 3,23 - 4,13 - 5,and 12 — 6.

The electro-optic effect is the response of materials in the presence of two different fields namely
the applied DC electric field, and the AC electromagnetic electric field of the light. The vibration
of ionic dipoles can be slow (~100s of GHz to several 10s of THz) in responding to the periodic
change of the electric field vector of the light beam (infrared to UV), whose frequency is of the
order of ~several tens to hundreds of THz (~193 THz for 1550 nm light). Microscopically, there
are three contributions to the EO tensor: the electronic contribution from polarized valence
electrons, the ionic contribution from the displacement of the ions, and the piezoelectric
contribution from the distortion of the unit cell through the converse piezoelectric effect. [19-25]
At moderately high modulating frequencies (~100s of GHz to several 10s of THz) that are low
compared to the optical phonon modes, ionic contributions to the EO tensor dominate for the
perovskite titanates.?>?® At such frequencies, strain relaxations can be avoided. Thus, we focus on
the so-called ionic or lattice contribution to the EO response in this work. The electronic
contributions from unclamped ions are included in our calculation, which originates from the

displacement of the charge centers due to electron-phonon interactions.

From eqn. (6), we have the electric field as a function of polarization, and equations in the box I
and II give the dielectric constant as a function of polarization by substituting them into eqn. (7).
Thus, given all the Landau-Devonshire coefficients obtained using polynomial fitting, the EO
coefficients can be obtained. Here, we consider the case of tetragonal and orthorhombic phases of
BaTi0s3, as examples. The EO tensors in the ferroelectric tetragonal P4mm phase of BaTiOs3 have

three independent elements (Voigt notations), 713 , 733, and 73,.%

£9(4aj,P3+80a,12P3)

T3 = (8.2)

2a}+12a},P?+30a,,1P3’

go(24a},P3+120a411P3)
T'33 = (8b)

2a}+12a%,P?+30a111P5’

8a123P3 4a;3P3+8a112P§, 4a;3+24a112P§
4aj,+4a123P2  2a5+2aj3P2+2a11,PF  4ai3P3+8ag1,P37

(8.c)

Taz = &
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For the derivation details, please see the appendix A.
The orthorhombic phase of BaTiOs3 is not a thermodynamically stable phase at room temperature.
However, it could be stabilized under tensile strain, such as epitaxially grown orthorhombic

BaTiOs films on MgO.” The EO tensors of orthorhombic BaTiO3 are

£0(24a% 1Py +120a,11 P53 +240,1,P1 P3+4a},P,+24a11,P, PP +8a412P3)

3 = ) (9.a)

(2ay+2a33(PE+P2)+2a11,(PE+PH)+2a123(PEPZ))

— £0(4a33(P1+P;)+8a112(Pf +P3))
(2a§+2a;3 (P12+P22)+2a112(Pf+P§)+2a123P12P22),

(9.b)

T33

( 4a;3P1+8a112P13 4a’{3P2+8a112P23 ) (9 C)
0%2at+12a%,P2+2a},P? +30a,11Pf+12a11,P2P3+2a,1,P% = 4a’,P1P,+8a11,P3Py+8a11,P P37 ’

Ty =
It is worth noting that the a; coefficient is temperature-dependent, as shown in eqn. (2). Hence,

the temperature-dependent EO responses could also be obtained using this method.

For LiNbO3 and LiTaOs3, the EO coefficient 1353 is

_ 8024—a11P3
2a,+12a4,P%’

(10)

T33

To investigate the frequency dispersion of the coefficients, we also applied the time-dependent
Ginzburg-Landau (TDGL) equation®33:

OPi(t) _ _, OF(P)
at aP; )

where L is the kinetic coefficient (proportional to the dipole motion velocity) and # is time. We
adopted the L = 6000 [A%s/(Jm)] from the study of Liu et. al for tetragonal BaTiO3.%° The energy
function F is Af in equation (5) except the fact that the applied electric field is static but here,
dynamic electric field is used as a triangle wave function:

E(t) = Ey sin™1[sin(fmt)] (12)
where Eo is the amplitude of the electric field and fthe frequency.

It is not easy to solve TDGL explicitly, as we have done for the static calculations. Therefore, we
performed the calculations using finite element method to obtain the EO coefficients from 10 Hz
to 100 THz. In this work, we provide an example of the frequency dependent 33 for the tetragonal

BaTiOs.
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In summary, we have extracted the Landau-Devonshire coefficients from the free-energy
landscape calculated using first-principles DFT using equations (2.a-c). We have simulated the
dependence of polarization on the applied electric field using equations (6.a-c) and calculated the
dielectric constant using the relations shown in Box I and II. The electric field and dielectric
constant as a function of polarization are then plugged into equation (7) to obtain the electro-optic
tensors. In this case, we give two solutions for tetragonal and orthorhombic BaTiOs3 in equations

(8.a-c) and (9.a-c), respectively.

Results and Discussion

We have used the LDA functional to calculate the Helmholtz free energy density as a function of
the polarization for LiNbOs, LiTaOs, and BaTiOs. In the case of BaTiOs, the high-temperature

phase has a centrosymmetric cubic structure. However, as the temperature decreases, a sequence

388K 273K
of phase transitions are observed experimentally as follows: cubic — tetragonal —

1.54

183K
orthorhombic — rhombohedral.”* These three ferroelectric phase transitions result in a change

in the direction of the spontaneous polarization from the [001] axis (tetragonal, P, = P, = 0,P; #

(2) — x10% ' (b) — x10°

e 3f 1 e 3f

3 3

q_é 2t ..._g 2t

2z 2

2 2

o 1 o 1T

(] ()]

& &

6 0 B :U_J O L

[y c

-0.5 0 0.5 -0.5 0 0.5
© Polarization P, (C/m?) Polarization P, (C/m?)
><‘IO8
3 L

Figure 1. Energy density as a function of
polarization along (a) [001], (b) [011],
and (c) [111] directions in BaTiO,

obtained using DFT calculations.

Energy Density f111 (J/m3)

-0.5 0 0.5
Polarization P, (C/m2)

Page 12 of 28



AIP

Publishing

308
309
310
311
312
313
314
315
316
337
3i8
339
320
321
322
333
374
325
326

327
328

0), to the [110] axes (orthorhombic, P; = P, # 0, P; = 0), and to the [111] axes (thombohedral,
P, = P, = P; # 0) as the temperature decreases. In Figure 1, the energy density changes for the
phase transition from the cubic structure directly to tetragonal, orthorhombic, and rhombohedral
phase of BaTiOs3 are shown. The spontaneous polarization is corresponding to the polarization
value, where the energy reaches the minima at the bottom of the double-well. The calculated

spontaneous polarization values for tetragonal, orthorhombic, and rhombohedral BaTiO3 are 0.24

C/m?,0.27 C/m?, and 0.32 C/m?, respectively.

In the case of LiNbOs and LiTaOs, both undergo a transition from a high temperature
rhombohedral paraelectric R3¢ phase to a low temperature ferroelectric R3¢ phase at 1480 K and
950 K, respectively.’>>>® At room-temperature, the spontaneous polarization points along the c-
axis direction (P; = P, = 0, P; # 0) for the ferroelectric rhombohedral phase of LiNbOs3; and
LiTaOs3. We have compared the change in Helmholtz free energy density with respect to the
polarization along [001] direction for BaTiO3, LiNbO3 and LiTaOs, as shown in Figure 2. The
double-well depth here is a quantitative indicator of the energetic stability of the ferroelectric phase
with respect to the paraelectric phase. Tetragonal BaTiOs yields a shallow double-well indicating

a relatively easier transition from the ferroelectric to paraelectric phase.

Table 2. Extracted Landau-Devonshire coefficients from the DFT calculated free energy curves.

Landau-Devonshire BaTiOs LiNbO3 LiTaO3
Coefficient This work  Ref.®®  This work  Ref.®  This work  Ref. %
a; (Nm*/C?) 6.07%10° -4.74x107 -1.20x10° -6.28x10° -1.54x10° -1.006x10°
a;; (Nm°/C*) 4323107 -2.10x10° 9.03x10%  1.26x10° 2.21x10° 9.01x10°
@, (Nm®/C*) 6.29x10"  7.97x10}
ay11 (Nm'%/C") 129%10"  1.29x10°
a2 (Nm'®/C%)  144x10" -1.95%10°
123 (Nm'®/C%)  167x10" -2.50x10°
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Figure 2. Dependence of free energy
density on the polarization along the [001]
crystallographic direction in LiNbO;,

LiTaO,, and BaTiO,. The solid lines

indicated polynomial fitting to the
polarization dependent energy curves for
LiNbO;, LiTaO,, and BaTiO, along the

[001] axis.
The Landau-Devonshire coefficients are extracted by fitting the double-well energy curves

obtained from the first-principles calculations to a polynomial expression (eqn. (1)). Under rigid
symmetry framework, the 6™ order series expansions are commonly accepted as the basic free
energy format describing the ferroelectric phase transitions in BaTiO3.%° A polynomial with
higher-order expansion terms will yield better accuracy but the large number of fitting parameters
can also lead to overfitting. Moreover, the higher-order terms require additional information at
high polarization region and their physical meaning still remains unclear.®’” Hence, we performed
the polynomial fitting to the free energy density curves of BaTiOs up to 6 order expansions to
ensure that the critical aspects of the electro-optic phenomena can be sufficiently described without
overfitting. We fit the polynomial of eqns. (3.a), (3.b), and (3.c) to free energy density curves of
the three ferroelectric phases: tetragonal, orthorhombic, and rhombohedral, respectively, by
simultaneously and manually adjusting the fitting parameters to find the smallest R? (coefficient
of determination). The R? values are 0.998, 0.999, and 0.996 for tetragonal, orthorhombic, and
rhombohedral phase of BaTiOs, respectively. Order parameter just below the Curie temperature

has rich information for all the polynomial coefficients, including double P-E loops,®® while the
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free energy curve for a system much below the phase transition temperature is a simple double
well without much information about higher order polynomials to the expansion coefficients,
which is the case for LiNbO3 and LiTa03°¢ The fourth-order polynomial can already provide a
good fit to the first-principles data, where R? is already 0.999. Hence, the higher-order terms were
omitted for LiNbOs3 and LiTaOs. The Landau-Devonshire coefficients extracted for the noted
materials are presented in Table 2. The coefficients from Long-Qing Chen®® are listed in the table

as well for comparison.

(b)

~
oo
N

~
o

-ThiS work 60 DThiS work
> B xperiment® S [ Experiments™
£ ) £ 50
=10 2
.E _5 40
o ©
% & 30
o (@]

(8] © 20}
Q3 10%¢ 2
101
r r r 0
33 13 42 I3 Is3
BaTiO3 LiNbO LiTaO,

Figure 3. Theoretical and experimental (Ref. 61) electro-optic coefficients of (a)
tetragonal BaTiO,, (b) LINbO, and LiTaO,.

We now apply the previously fitted parameters to calculate the electro-optic coefficients using
equations (8.a-c). Figure 3 shows the comparison between the calculated values using the model
and experimental results.®! Overall, our method predicts the sign of the EO constants correctly and
the values of the EO coefficients are in good agreement with the experimental values. The
calculated 55 for LiNbO3 is in close agreement (deviation is ~ 1.8%) with the experimentally
reported results.%! The calculated values of 733 are ~30% larger than the experimental value of
tetragonal BaTiO3 and LiTaOs. Our theoretical 15 value of BaTiOs also matches well with the
experimental ones.®! However, the calculated 7, is 88% lower than the experimentally reported
value.®! The deviation from experimental values could be due to extrinsic factors such as

stoichiometry and structural quality of the samples and domain structures. Furthermore, DFT
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calculations using the LDA functional underestimate the polar distortion from paraelectric phases,
which results in relatively shallow double-well depths.** Therefore, the accuracy of Landau-
Devonshire fitting parameters could be further improved by applying more reliable exchange-
correlation functionals, such as the recently developed strongly constrained and appropriately
normed (SCAN) meta-GGA functional, which has been shown to systematically improve over
LDA for structural properties and ferroelectric transitions of diversely bonded materials.®” These

advances will be part of future work.

34 - . - - . —
(a) (b) -o-This Work
32t O Veithen et. al.
- g Peitro et. al. /'
I 1>
E 30 T 800} o
Q R
~ 28 i ™
[4p] (sp]
Lm . = L
26+ ——This work | 400 @
Herzog et al.” SR W
24 Kl , -Guide to eye | " i ‘ ‘ ‘
0 100 200 300 300 325 360 375 400
Temperature (K) Temperature (K)

Figure 4. Temperature dependence of electro-optic coefficients in (a) LiNbO, and (b) BaTiO;

The temperature dependence of the EO coefficients is another way to examine the accuracy of the
model. We compare the calculated results with the experimental values for the LiNbO3 in Figure
4 (a).”° The model captures the experimentally observed increase in 733; however, it consistently
over-estimates the value with a larger deviation on decreasing the temperature. As temperature
approaches 0 K, the deviation is < 20%, and, as the temperature reaches room temperature, the
deviation narrows down to < 10%. To the best of our knowledge, the experimental results of
temperature dependency of 733 for LiTaO3; and BaTiOs have not been reported in the literature, and
hence, we could not make this comparison for these two compounds. Nevertheless, we compare

our results (noted as green hollow circles with a trendline) with the two available first-principles

1.27 1.71

results from Veithen et al.”" and Pietro ef al.”* for tetragonal BaTiOs, as depicted with red and
yellow markers in Figure 3 (b), respectively. The electro-optic coefficient 135 increases with

temperature below the Curie temperature and shows a divergent trend close to the Curie
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temperature, as the spontaneous polarization abruptly drops to zero at and above the Curie

temperature.

It is worth reemphasizing that in our model, we assume a, as the only temperature-dependent term
and hence, the temperature dependence of EO response is essentially attributed to it. The
contribution of other terms to EO coefficients in equation (8.a) and (9.a), such as a,,PZ, are
typically much smaller than a,. Hence, we resorted to this simplification. Any corrections to this
simplification will be explored in the future depending on the availability of the experimental
results. EO coefficients tend to be extremely large as the temperature approaches the Curie
temperature, 7o0. By definition, a,, given in eqn. (2), converges to 0 as the temperature reaches Tj,.
This hints that small a, is desirable to achieve a large EO coefficient. To obtain a small a4, the
energy barrier for switching the polarization from one energy well to the other has to be low. It
indicates that the origin of this electro-optic enhancement is attributed to the ease of the
ferroelectric switching as manifested in the free energy landscape. From Figure 2 and Table 1,
BaTiOs3 has the shallowest energy well and the smallest absolute value of a,, which leads to the
largest 33 among the three ferroelectric oxides. This also explains why the EO coefficients of
relaxor ferroelectric oxide alloys are high, for which the corresponding ferroelectric switching

energy barrier is relatively low.’!
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Figure 5. The dependence of the electro-optic coefficient 733 of tetragonal BaTiOs on the
frequency of a modulating electric field ranging from 1Hz to 100 THz. The simulation result

of this work is shown as solid line with open circle markers in green and experimental results
from different references are represented by corresponding markers in red.

The frequency dispersion of 733 is shown in Figure 5. By choosing the value of kinetic coefficient
(proportional to the dipole motion velocity) as 6000 [A%s/(Jm)], the absolute value of 733 remains
constant for frequencies up to several GHz, and then starts to decrease gradually to nearly zero at
5 THz. It is worth noting that the model predicts significant ionic contributions at frequencies up
to 100 GHz, which is necessary for high-speed optical communication applications. We also note
experimental results from the literature for comparison. The highest operating electric field
frequency reported in the literature is 10 to 50 GHz demonstrated by Girouard et al.”>”* They
report 107 pm/V effective EO coefficient at 30 GHz, which is consistent with our result. Large 733
data as high as 342493 pm/V at high frequency (1 GHz) has been reported by Abel et al. in 2019.1*
EO coefficients measured on high quality single crystal thin film samples vary from 20-200 pm/V
with an average of ~100 pm/V across DC to GHz frequencies.®!>!7-7+77 There are no experimental
reports for electric field modulation in the THz to the best of our knowledge, but Chen et al. have
reported a coefficient of 8.27 pm/V from theoretical calculations.[79] Further, we observe a
diverging behavior near 1 THz, which corresponds to the lowest resonance frequency of the dipole-

dipole interaction in BaTiO3.% Thus, the dipole motion is slower compared to electrical field
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modulations at THz frequencies. This has been demonstrated in LiNbO3,”® where the dielectric
constants and the birefringence drops dramatically at ~1-10 THz due to the resonance of the
phonon modes corresponding to the excitation field frequencies. The large EO coefficients of
BaTiOs in the frequency range of 10 MHz to 1 THz would make it a good candidate for use in EO

modulation devices in this frequency range.

Figure 6 shows the EO tensor as a function of strain with misfit strains ranging from -5% to 5%
along the in-plane a and b axes for BaTi0O3, which was obtained using eqns. 8(a-c) and 9(a-c). The
thermodynamically stable phases are obtained by minimizing the total free energy F under a given
misfit strain. The calculation was performed by setting the temperature in the free energy
expansion coefficient, a;, as room temperature. We obtained two stable single-phase states. The
stable strain condition for tetragonal phase is denoted as T with yellow shade (P, = P, = 0,P; #
0) below -1% compressive strain, and for orthorhombic phase, it is denoted as O with blue shade
(P, = P, # 0, P; = 0) above ~1.9% tensile strain. For the phase region between the T and O phase,
it contains a two-phase mixture (T+O). At zero strain state, we obtain almost identical values of
electro-optical tensors as bulk values summarized in Figure 4. The small deviation comes from
that the electrostrictive energy term is not included in the previous calculations. The strain-induced
polarization variations under compression and tensile strain generate a large contribution to the
relevant EO constants. We predict a surprisingly high value, up to thousands of pm/V, for 1y,
coefficient of BaTiO3 under ~ —1.3% compressive strain and 733 = 800 pm/V under 1.8% tensile
strain, which is 1 — 2 orders of magnitude larger than 733 = 32 pm/V for LiNbO3.°! In this specific
case, at the transition region between T and T-O, the sign change of aj leads to a large value of
the ry, coefficient; similarly, 33 is large at the T-O and O phase boundary due to the vanishingly
small a; values. Similar EO coefficient enhancement has been demonstrated as a function of
temperature near a ferroelectric phase transition due to the divergence of the dielectric
constant.?*”! The polarization rotation at the phase boundary is easier to achieve than in a single
phase region, as the corresponding switching barrier is small. This could also explain why
ferroelectrics at the phase boundary usually have large dielectric, piezoelectric, and electro-optic

I'eSpOl’ISGS.go_82
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We have compared the change in EO response of BaTiO3 under strain using our model, with those
obtained using computationally intensive first-principles calculations as discussed in the Methods
section. We obtain qualitatively similar results, as depicted in Figure 6. The first-principles DFPT
results also indicate the divergence of 733 and r42 at ~1.3% and —1.0% strain, respectively. This
clearly demonstrates that our model could qualitatively describe the physics of EO response under
epitaxial strain conditions, although the absolute values should be taken with a grain of salt. One
thing to note is that the first-principles DFPT calculations were performed for a strained R3m phase
of BaTiO; rather than the room-temperature P4mm phase. The latter has soft phonon modes, which
restricts the calculation of the EO coefficients, as has been noted in the literature.?!?® Therefore,
the absolute values from these calculations only provides a qualitative description of the EO

response of BaTiOs3 under strain at room temperature.”! We give the potential substrates in Figure
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5 that one could use to achieve misfit compressive strain close to 1% to obtain large EO
coefficients in coherently strained thin films of BaTiO3 using the established strain engineering
approach. The realization of low loss thin films in these limits remains a challenge, where intrinsic
and extrinsic defects may play an important role. Other factors, such as the formation and
distribution of ferroelectric domains at low fields, any inhomogeneity in application of electric
fields will also influence dielectric losses. Overcoming these issues are critical to enable high EO

coefficient materials and devices for future photonic technologies.

Conclusion

A methodology to predict the EO coefficients in ferroelectric oxides as a function of strain,
modulation frequency, and temperature is demonstrated here. This method enables highly scalable
calculation of EO coefficients by combining computationally expensive, but accurate, first-
principles calculations with scalable phenomenological Landau-Devonshire theory. We applied
our approach to three representative ferroelectric oxides, namely, LiNbO3, LiTaOs, and BaTiOs.
The calculated EO coefficients are in good agreement with the experimental results. And the
relevance of specific model parameters for EO effect are discussed. In the light of the previous
discussion of temperature and strain effects on the EO responses, we conclude that small a; (aj for
strained case) and shallow energy barrier are favorable for high-r EO materials. One way to reduce
a, is fabrication of ferroelectric/dielectric (FE/DE) heterostructures. As we introduced earlier,
Helmholtz free energy is simply the sum of all the energy components in Landau-Devonshire
theory. The total a, is the sum of a; of the ferroelectric and dielectric phases weighted according
to their respective volume fractions. a, is negative for ferroelectrics and positive for dielectrics.
By engineering the volume fraction of each component, one can achieve small a; coefficients with
high EO response. Another aspect of EO performance enhancement in ferroelectrics or multilayer
heterostructures is compositional engineering of the phase boundary involving the ferroelectric-
paraelectric phases or two different ferroelectric phases such as the O- and T-phases in a mixed-
phase BaTiOs film. Low switching energy at phase boundary makes the polarization switching
(between up and down) and/or polarization rotation (between two ferroelectric states) easier and
hence, can generate the enhanced EO responses.®* Our method can be extended to simulate the EO

response of FE/DE heterostructures or film having phase boundary, once the complete set of the
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487  bulk, elastic, electrostrictive and gradient energy terms are available either from first-principles
488  calculations or from experiments. We expect that this method will pave a way to discover new
489  materials with high electro-optic performance.

490

491  Appendix A

492  The EO tensors, 113,733, and 1,,, are defined in equation (7). Here we provide detail derivations

493  to them. From equation (6.b-c), we have E>and E as

0
Ez = a_gz = ZG.;PZ + 4a;{1P23 + 2a;2P12P2 + 2a;3P2P32 + 6a111P25 (Al.a)
+ ay1 (2P, (P} + PY) + 4PF(P? + P3)) + 20153 P7P, P}
af Alb
E3 = 5 = 2a§P3 + 4‘a§3Pg + 2a;3P3(P% + P%) + 6a111P§ ( )
3

+agq, (2103 (P1 + P3) + 4P3(P% + P%)) + 2a,,3P{P5P;
454  For the left hand side of the equation (7), we have:
1 o*f (A2.a)

— = 0= = &(2a; + 12a}, P + 2ai,P5 + 2aj3P5 + 30a,;, P
ny o0P1
+ a1, (12P5(P5 + P5) + 2(P5 + P3)) + 2ay,3P5P3)
1 *f (A2.b)
5 = €0y = £0(2a3 + 12a%;P% + 2ai5(P? + P%) + 30a,1, P4 + a;1,(12P3(P% + P3)
3 3

+ 2(PT + P3)) + 2a;23P1P3)
1 0% f

. (A2.c)
~ “0%p,ap,

2 = £0(4a73P,Ps + a11,(8P3P; + 8P,P3) + 4a,,3PL P, Ps)
4

495  Then substituting the eqns. (A1) and eqns. (A2) to eqn.(7) we obtain:
5 (i) (A3.2)
S A _ go(4ai,P; +8ay1,P3)

YUT9E, T 2a +12ai,P? + 30a,,, P}

P (l) (A3.b)
n? go(24aj,P; + 120a,,,P3)

0E;  2a; +12a;,P? + 30a,., P}

33 =
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5 ( 1 ) (A3.c)

- n_ﬁ ¢ 8a;23P; 4aj;P; + 8511121333
27 BE, 4al, +4a,3PF  2a% + 2aj3PE + 2a,1, P

4aj; + 24a,,,PF
4a;,P; + 8a,, P

We use the same procedure to derive the equations (9.a-c) except the fact that the P; and P: are

non-zero term in the orthorhombic phase.
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