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SUMMARY

Alloying is a successful strategy for tuning the phases and properties of two-
dimensional (2D) transition metal dichalcogenides (TMDCs). To accelerate the
synthesis of TMDC alloys, we present a method for generating temperature-
composition equilibrium phase diagrams by combining first-principles total-en-
ergy calculations with thermodynamic solution models. This method is applied
to three representative 2D TMDC alloys: an isostructural alloy, MoS2(1-x)Te2x,
and two heterostructural alloys, Mo1-xWx

Te2 and WS2(1-x)Te2x. Using density-
functional theory and special quasi-random structures, we show that the mixing
enthalpy of these binary alloys can be reliably represented using a sub-regular so-
lution model fitted to the total energies of relatively few compositions. The cubic
sub-regular solution model captures 3-body effects that are important in TMDC
alloys. By comparing phase diagrams generated with this method to those calcu-
lated with previous methods, we demonstrate that this method can be used to
rapidly design phase diagrams of TMDC alloys and related 2D materials.

INTRODUCTION

Monolayer transition metal dichalcogenides (TMDCs) form a large class of two-dimensional (2D) materials

displaying a diverse array of properties, including direct band gaps (Splendiani et al., 2010), superconduc-

tivity (Saito et al., 2016), topological insulation (Qian et al., 2014), spin and valley polarization (Mak et al.,

2014; Mishra et al., 2013; Zhou et al., 2020), and charge density waves (Rossnagel, 2011; Tsen et al.,

2015). TMDCs have a stoichiometry of MX2, where M is a transition metal and X is a chalcogen (S, Se,

and Te). The combinatorics of the available transitionmetal and chalcogen choices and the variety of crystal

structures TMDCs can adapt are responsible for their diverse properties. Consequently, alloying two or

more transition metals or chalcogens has been a successful method for improving their performance in

electronics (Hu et al., 2020; Wang et al., 2020a) and optoelectronics (Klee et al., 2015; Raffone et al.,

2016; Yu et al., 2017) and as catalysts for a variety of reactions including hydrogen evolution (Gong

et al., 2016), carbon dioxide reduction (Cavin et al., 2021; Hemmat et al., 2020), and oxygen evolution

and reduction (Hemmat et al., 2020). Not only the properties but the alloy structure or phase is also sensi-

tive to composition. Common polytypes of monolayer TMDCs include the 2H phase where the transition

metal is in a trigonal prismatic coordination of the chalcogen atoms, the 1T phase where the transition

metal is in an octahedral coordination, and 1T0 phase with the metal atoms in a distorted octahedral coor-

dination. For a given composition, different polytypes can have vastly different properties. For example,

monolayer MoS2 in the 2H phase is a direct band gap semiconductor with a lack of inversion symmetry

that imparts a valley degree of freedom (Mak et al., 2014); its 1T phase is metallic, which makes it attractive

for electrocatalysis (Voiry et al., 2013); and its 1T0 phase is a topological insulator protected by inversion

symmetry (Qian et al., 2014). By alloying two TMDCs with different ground state polytypes, a process

referred to as heterostructural alloying, it is possible to stabilize an otherwise metastable polytype and

obtain new functionalities (Deng et al., 2021). This method of phase engineering through heterostructural

alloys has been used to stabilize the 2H and 1T0 phases in WSe2(1-x)Te2x (Yu et al., 2017).

For isostructural and heterostructural alloys alike, identifying regions in the temperature-composition

space where a single phase of the alloy is stable can accelerate their synthesis. This relationship is summa-

rized quantitatively through equilibrium temperature-composition phase diagrams. Isostructural alloys

typically have the same crystal structure as their end members, although there are exceptions (Zunger,
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1997). Hence, their phase diagrams are relatively straight forward and provide a miscibility temperature

above which the alloy is stable in a single phase. Such phase diagrams can be generated from thermody-

namic quantities obtained using first-principles density-functional-theory (DFT) calculations (Ferreira et al.,

1989; Wei et al., 1990b; Zunger, 1997). Isostructural alloys of monolayer TMDCs have received widespread

attention following reports of their theoretical phase diagrams. Kang et al. reported one of the first phase

diagrams of 2D chalcogen alloys of group VI transition metals having the 2H phase (Kang et al., 2013a,

2013b). A recent work reported the experimental realization of several isostructural TMDC alloys involving

group V and VI transition metals, with alloying at both the metal and chalcogen sites, using theoretically

predicted phase diagrams (Hemmat et al., 2020). In contrast to isostructural alloys, heterostructural

TMDC alloys—where the end members have different crystal structure—are starting to garner attention

only recently (Aslan et al., 2018; Li et al., 2016; Oliver et al., 2017, 2020; Rhodes et al., 2017; Wang et al.,

2020b). The phase diagrams of heterostructural alloys are comparatively nontrivial, having multiple phase

boundaries. There are only a handful of examples of phase diagrams of heterostructural 2D TMDC alloys;

many of them have been obtained using time-consuming growth experiments at different temperatures

and compositions followed by characterization (Oliver et al., 2017; Rhodes et al., 2017). Relatively few dia-

grams have been predicted theoretically, such as the report on Mo1-xWxTe2, a heterostructural alloy of 2H

MoTe2 and 1T0 WTe2, by Duerloo et al. (Duerloo and Reed, 2016).

In this article, we present an efficient framework to generate equilibrium phase diagrams of 2D TMDC al-

loys that are based on a limited number of DFT calculations. We fit the mixing enthalpy of the alloys with a

cubic sub-regular solution model that can capture the important interactions between the triplet

clusters in TMDCs. We apply this method to generate the phase diagrams of heterostructural TMDC alloys

Mo1-xWxTe2 and WS2(1-x)Te2x and the isostructural alloy MoS2(1-x)Te2x, for contrast. The phase diagram of

Mo1-xWxTe2 is found to closely match the one derived using time-consuming cluster expansion models

(Duerloo and Reed, 2016). Similarly, the phase diagram of the isostructural alloy MoS2(1-x)Te2x shows

good agreement with that generated by Kang et al. using cluster expansion models (Kang et al., 2013a,

2013b). The phase diagram of Mo1-xWxTe2 has a large region of metastability with no unstable region

and a cross-over from 2H to 1T0 ground state at x� 0.33, making it a good candidate for phase engineering.

In contrast, WS2(1-x)Te2x has a large region where the alloys are unstable and are expected to segregate and

a cross-over from 2H to 1Tʹ phase at x = 0.9. This indicates that the 1T0 phase is difficult to stabilize in WS2,

but a large concentration of Te can be added toWS2, while maintaining the semiconducting 2H phase. This

method can be rapidly applied to the large space of TMDC alloys with various polytypes and other related

2D materials such as MXenes.

RESULTS

A recent paper by Hemmat et al. used the common-tangent construction method to generate equilibrium

phase diagrams for 25 TMDC isostructural alloys with the 2H phase (Hemmat et al., 2020). In that work, chal-

cogens were restricted to S and Se because many tellurides have the 1T0 phase as their ground state. Here,

we expand the method to generate phase diagrams for heterostructural TMDC alloys. We started with an

isostructural TMDC alloy having Te, MoS2(1-x)Te2x. Although bulk MoTe2 can exist in either a distorted octa-

hedral 1T0 phase or the triangular prismatic 2H phase, monolayer MoTe2 prefers the 2H phase (Duerloo

et al., 2014; Revolinsky and Beerntsen, 1966) and so does 2D MoSe2. An equilibrium phase diagram of

MoS2(1-x)Te2x generated using the cluster expansionmethod shows that it exists in the 2H phase for all com-

positions, x (Kang et al., 2013a). We use this alloy as a benchmark to compare the phase diagram generated

using a solutionmodel fitted to the energy of disordered SQSs. Themixing enthalpy of MoS2(1-x)Te2x, calcu-

lated using SQS, is shown in Figure 1A. Because the mixing enthalpy is positive, the alloy is not miscible;

that is, entropy is required to obtain a stable alloy in a single phase.

Although the enthalpy of some alloys and solutions can be modeled as a regular solution with a quadratic

fit, the asymmetry of the enthalpy in Figure 1A clearly precludes this option. The regular solution model can

be represented mathematically by the following equation:

DHmix = Uxð1� xÞ: (Equation 1)

Assuming nearest neighbor interactions, the fitting parameter, U, represents the relative bonding strength

between generic alloyed elements A and B in A1�xBx compared with the A–A and B–B bonds. This can be

expressed as
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U = n

�

UAB �
1

2
UAA �

1

2
UBB

�

; (Equation 2)

where n is the coordination number and theU’s are bonding energy contributions to the enthalpy. See STAR

Methods section for the derivation of Equation (2). The regular solutionmodel for this system is illustrated in

Figure 1A with a dashed line, which shows a poor fit. To capture the asymmetry of the enthalpy with respect

to composition, a cubic sub-regular solution model is used. Such a model has the following general form:

DHmix = ½U1ð1� xÞ + U2x�xð1� xÞ: (Equation 3)

In this form, the cubic sub-regular solution model can be seen as an average of two regular solution models

weighted by x. A skewing of the enthalpy maximum to the right, i.e., x > 0.5, corresponds to U2>U1. Similar

to Equation (2), the fitting parameters in Equation (3), U1 and U2, have a microscopic interpretation related

to the relative cluster energies. For a triangular lattice, the fitting parameters are given by

U1 = 6

�

UAB �
1

2
UAA �

1

2
UBB + UAAB �

2

3
UAAA �

1

3
UBBB

�

(Equation 4)

and

U2 = 6

�

UAB �
1

2
UAA �

1

2
UBB + UABB �

1

3
UAAA �

2

3
UBBB

�

: (Equation 5)

See STAR Methods section for the derivation of Equations (4) and (5).

To show that fitting a sub-regular solution model to SQSs also works for heterostructural alloys, we applied

it to the TM-site and chalcogen-site alloys Mo1-xWxTe2 andWS2(1-x)Te2x, respectively. The steps for creating

equilibrium phase diagrams for heterostructural alloys follow a very similar recipe of common tangent con-

struction with the additional complication that free energy curves must be determined for both endpoint

phases. Furthermore, the appearance of the plotted mixing enthalpy takes on a qualitatively different form

because it is calculated with respect to the ground state phase of the end points. Figure 2A shows the calcu-

lated mixing enthalpy of Mo1-xWxTe2 in the 2H and 1T0 phases with cubic fits. The mixing enthalpies are

positive, indicating that the alloy is immiscible, but the curvature is positive everywhere, indicating that

a single-phase alloy is at worst metastable, i.e., it does not have any unstable region. In contrast, the mixing

enthalpy of WS2(1-x)Te2x, shown in Figure 2B, is seen to be comparatively high and has a negative curvature

(concave down). This means that stabilization of a single phase will require a higher temperature and that

there will be an unstable region where the alloy will be driven to phase segregation.

A B

Figure 1. Enthalpy of mixing ofMoS2(1�x)Te2x fitted to different solution models and atomic models justifying the

need for a sub-regular solution model

(A) Mixing enthalpy from DFT calculation of SQS’s at various compositions, shown as datapoints, with a quadratic regular

solution model fit (dashed line) and cubic sub-regular solution model fit (solid line).

(B) Visualizations of the 2H and 1T0 phases showing how 3-body clusters are essential in 2D TMDCs. Transition metals are

shown in purple, and chalcogen atoms are shown in gold. Solid arrows indicate direct interactions between two sites,

whereas dashed arrows indicate indirect interactions through a third site.
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With analytical expressions for the enthalpy of mixing for the isostructural and heterostructural alloys, we

have half of the expression for the Gibbs free energy. The other half requires an analytical expression for the

entropy of mixing. The entropy of an alloy is a sum of configurational entropy and other sources of entropy

such as from vibrations. If we assume that these other contributions extrapolate linearly from the end-mem-

ber materials, the configurational entropy is the primary contribution to DSmix(Manzoor et al., 2018).

Because configurational entropy has a simple functional form (Equation (1)), we have an expression for

the free energy. Figures 3A and 3B show the free energies of isostructural MoS2(1-x)Te2x and heterostruc-

tural Mo1-xWxTe2, respectively, at 400 K. Through the common tangent construction, the dashed lines

show the free energy of a phase-segregated alloy. In the case of MoS2(1-x)Te2x, this indicates segregation

into an S-rich 2H phase and a Te-rich 2H phase. For Mo1-xWxTe2, the dashed line indicates segregation into

anMo-rich 2H phase and aW-rich 1T0 phase. In alloys where the curvature of the free energy is negative, this

region is further divided into a metastable and an unstable region corresponding to positive and negative

curvature of the free energy, respectively. This boundary is demarked in Figure 3A with vertical dashes at

the inflection points. Because the curvature of the mixing enthalpy of Mo1-xWxTe2 is negative (Figure 2B),

there is no inflection point in the free energy and no unstable region. Repeating this analysis of the free

energy over a grid of temperature values gives boundaries dividing the different regions of stability that

define the equilibrium phase diagram. The equilibrium phase diagrams for MoS2(1-x)Te2x, Mo1-xWxTe2,

and WS2(1-x)Te2x are shown in Figure 4.

DISCUSSION

We begin our discussion by addressing the nature of the cubic subregular solution model expressed in

Equation (3) through Equation (5). Just as the terms of the form UXY correspond to the bonding energy be-

tween species X and Y, terms of the forms UXYZ correspond to a 3-body contribution to the enthalpy that is

supplementary to the three corresponding 2-body terms. Equations (4) and (5) can be seen as corrections to

the coefficient defined by Equation (2). The additional correction terms themselves take on a similar form to

Equation (2), corresponding to a difference between an alloy energy term and a weighted average of the

pure elemental terms. Therefore, a skewing of the enthalpy maximum to the right will correspond to a

greater relative energy contribution from A-B-B triplets compared with A-A-B triplets. An opposite skew

will correspond to an opposite relationship between the triplet energies.

We postulate that the requirement for a cubic fit of the enthalpy of MoS2(1-x)Te2x is a natural consequence of

the coordination of the 2H phase. Although the regular solution model is derived from 2-body energy con-

tributions, cubic terms become important when 3-body interactions cannot be ignored. Figure 1B demon-

strates why 3-body interactions are naturally important in quasibinary alloying of the 2H and 1T0 phases

compared with strictly binary alloys. The solid arrows represent an interaction between two alloyed sites.

In quasibinary TMDC alloys, either the TM site or the chalcogen site can be alloyed. In either case, the inter-

action is facilitated through an intermediate chalcogen pair or transition metal, respectively. Connected to

this intermediate is another TM or chalcogen—which we refer to as the tertiary site. The occupation of this

A B

Figure 2. Enthalpy of mixing for two heterostructural TMDC alloys with cubic sub-regular solution model fits

(A) Mo1�xWxTe2, a TM-site heterostructural alloy.

(B) WS2(1�x)Te2x, a chalcogen-site heterostructural alloy. The vertical dashed line denotes the composition where the

stable phase changes.
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tertiary site will affect the bonding properties of the intermediate site, making 2-body interactions insuffi-

cient as visualized by the dashed arrows. This argument is not restricted to TMDCs: a large class of ceramics

have cation-cation interactions mediated through an anion coordinated with three of more cations or vice

versa. Some examples include perovskites, wurtzite-structure materials, and MXenes.

In the case of 1T0 phase, there are many types of nearest neighbor 3-body clusters, but this does not change

the argument for including a cubic term in the enthalpy. In the case of MoS2(1-x)Te2x, Figure 1A shows the

mixing enthalpy peak is shifted to the right, indicating that U2>U1. From Equations (4) and (5), this asym-

metry is determined to be caused by the relatively high energy of S-Te-Te clusters compared with S-S-

Te clusters.

We now focus on the equilibrium phase diagrams shown in Figure 4. The equilibrium phase diagram for

MoS2(1-x)Te2x is shown in Figure 4A. Because the alloy is isostructural, the phase diagram is relatively

straightforward with a single stable region and a single unstable region with two metastable regions con-

nected at the critical point. The temperature at the critical point is known as the miscibility temperature,

the temperature above which the alloy is stable at all compositions. We note that the slight asymmetry of

the enthalpy in Figure 1A led to more substantial asymmetry in the phase diagram, making Te-rich alloys

more difficult to synthesize in a single phase. The predicted asymmetries in the phase diagram of some

2H TMDC alloys was experimentally verified in a previous work (Hemmat et al., 2020). This phase

diagram generated with the SQS method is nearly identical in miscibility temperature and asymmetry

to previous cluster expansion-based works where the metastable region was omitted (Kang et al.,

2013a, 2013b).

The equilibrium phase diagram of Mo1-xWxTe2 shown in Figure 4B is more complicated because of its het-

erostructural nature. One simplification is that there is no unstable region due to the positive curvature of

the mixing enthalpy (Figure 2B) for all x. The large metastable region and the near-equimolar cross-over

concentration makes this a promising material for phase engineering. These results are qualitatively similar

to a work by Duerloo and Reed using a cluster expansion method that shows a similar cross-over concen-

tration and a similar range of compositions over which the 2H and 1T0 phases are stable (Duerloo and Reed,

2016). Although Figure 2B shows a temperature-independent cross-over concentration, Duerloo and

Reed’s work has a cross-over region that converges to x = 0, indicating the stabilization of pure MoTe2
in the 1T phase. This discrepancy is because they included vibrational contributions to the free energy.

This omission increases the uncertainty of our equilibrium phase diagrams as the temperature approaches

the phase transition temperatures of the pure TMDC components. See Figure S1 in the Supplemental In-

formation for a comparison.

Lastly, the phase diagram for WS2(1-x)Te2x is shown in Figure 4C. This heterostructural alloy produces the

most complex phase diagram of the three because of its unstable region. Because the curvature of the

A B

Figure 3. Free energy of an isostructural and a heterostructural alloy at 400 K

(A) MoS2(1�x)Te2x, an isostructural alloy. Vertical black dashes indicate the boundary between the unstable and

metastable regions (inflection points).

(B) Mo1�xWxTe2 a heterostructural alloy. The colored dash lines denote the free energy of a mixed phase.
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mixing enthalpies corresponding to the two phases are different, the unstable region is defined piecewise

with an ambiguous crossover region. WS2 strongly favors the 2H phase with the DFT-calculated difference

in energy of 2H and 1T0 phase, DE(1T’ – 2H) = 542 meV/f.u. Therefore, the crossover region for the alloy is at a

very high Te content, indicating that the 1T0 phase of the alloy is difficult to realize experimentally. This

could possibly be overcome by using Se instead of S because WSe2 is less energetically opposed to the

1T0 phase with DE(1T’ – 2H) = 279 meV/f.u.. While to our knowledge this is the first generation of a hetero-

structural phase diagram for WS2(1�x)Te2x, a phase diagram for this alloy assuming only the 2H phase shows

agreement with our unstable region (Kang et al., 2013a, 2013b). Recent work has shown that the generation

of equilibrium phase diagrams can successfully lead to the discovery of new miscible 2D alloys and in guid-

ing the synthesis of immiscible 2D alloys (Hemmat et al., 2020). Furthermore, heterostructural 2D alloys

have become a promising platform for tuning properties and phase engineering. We have presented a

method for generating these phase diagrams that is standardized and only requires a few calculations

of moderately sized SQSs. We showed that this method is applicable to both isostructural and heterostruc-

tural alloys, and it produces results that agree with previous works using more computationally intensive

methods. This method of generating equilibrium phase diagrams has the potential to accelerate the ex-

panding field of 2D alloys by providing guidance for the synthesis of 2D materials, such as high-entropy

alloys of TMDCs and MXenes (Cavin et al., 2021; Nemani et al., 2021).

Limitations of the study

The accuracy of this work is limited by multiple factors. The accuracy of the predictions is affected by the

approximate nature of the exchange-correlation functionals used in DFT. We have also neglected the

vibrational and electronic contributions to entropy. The inclusion of these would likely increase entropy,

lowering the temperature of various phase boundaries. Our work therefore describes upper bounds for

the phase transition barriers. Vibrational contributions to the enthalpy have also been neglected. These

can have significant impact on free-energy differences between competing phases at high temperatures

(Duerloo and Reed, 2016).

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Generating equilibrium phase diagrams

A B C

Figure 4. Equilibrium phase diagrams for three representative TMDC alloys

(A) MoS2(1�x)Te2x, an isostructural alloy.

(B) Mo1�xWxTe2, a heterostructural alloy without an unstable region.

(C) WS2(1�x)Te2x, a heterostructural alloy with an unstable region. Vertical dashed lines in (B) and (C) correspond to the

composition where the stable phase changes.

See also Figure S1.
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B Regular solution model

B Sub-regular solution model

B Computational details
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METHOD DETAILS

Generating equilibrium phase diagrams

A standard method for generating equilibrium phase diagrams is by using semi-grand canonical ensemble

lattice Monte Carlo simulations to determine phase boundaries directly through thermodynamic integra-

tion (Walle and Asta, 2002). These Monte Carlo simulations are typically carried out through the cluster

expansion method (Sluiter et al., 1990; van de Walle et al., 2002). Cluster expansions decompose the inter-

nal energy of an alloy into a sum over cluster contributions. This method is useful if the sum converges

quickly with respect to the maximum cluster size included. By performing ab initio DFT calculations on

many relatively small supercells with varying alloy configurations, the energy of 1-, 2-, and 3-body clusters

can be fit with least squares regression. These simulations can individually be quite expensive and cumu-

latively are even more so as many are required to perform the thermodynamic integration.

A more straightforward method to generate phase diagrams is to use the common tangent construction

and metastability analysis on analytical expressions of the Gibbs free energies of all the relevant alloy

phases. Specifically, the free energy of mixing of the alloy with respect to its end members, DGmix, is

required for all intermediate compositions, x ˛ ð0; 1Þ. The Gibbs free energy is composed of two terms:

DGmix = DHmix � TDSmix; (Equation 6)

where DHmix and DSmix are the enthalpy and the entropy of mixing, respectively, and T is the temperature.

The mixing entropy, DSmix, can be approximated with the configurational entropy:
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DS = � kB½x ln x + ð1� xÞlnð1� xÞ�: (Equation 7)

Here, kB is the Boltzmann constant. Onemethod to get an analytical form forDHmix is to use a cluster expan-

sion as outlined before. Replacing the correlation functions present in a cluster expansion sum with the sta-

tistical values in a random alloy gives a polynomial expression for DHmix. The degree of the polynomial

directly corresponds to the largest cluster size included in the expansion where using up toN-element clus-

ters corresponds to aN
th degree polynomial. This procedure has been used before for constructing phase

diagrams of binary TMDC alloys (Duerloo and Reed, 2016; Kang et al., 2013a).

An alternativemethod toget an expression formixing enthalpy is to directly perform apolynomial fit— that em-

ulates a thermodynamic solution model — to calculated enthalpies at various compositions. A brute force

approach is to create large supercells with pseudorandom occupation of sites corresponding to many compo-

sition values and fitting the results to a polynomial as has been applied for bulk semiconductor alloys (Holder

et al., 2017). A more convenient method is to use special quasirandom structures (SQS’s) (Wei et al., 1990a;

Zunger et al., 1990), which are relatively small supercells having site occupations that closely mimic the distribu-

tion of clusters found in a random alloy with the same composition. More precisely, they replicate the spin-var-

iable correlation functions that serve as the basis for cluster expansions. Therefore, properties such as enthalpy

expressions that are well represented by truncated cluster expansions can be calculated fromSQS’s on the con-

dition that theSQS’sare largeenough toaccurately represent theclusterscorresponding to the truncatedexpan-

sion. This was demonstrated by Zunger et al. for mixing enthalpy and band gaps in their original paper (Zunger

et al., 1990). Becauseenthalpyexpressions canbedeterminedwitha relatively small numberofmoderately-sized

SQS’s, we chose this method. The generation of SQS’s was facilitated by a reverse monte Carlo method imple-

mented in theAlloyTheoreticAutomatedToolkit (ATAT) (vandeWalleetal., 2002).BecauseSQS’s suitablymimic

the clusters of a theoretical alloy, only one calculation is required per composition value, and because they are

significantly smaller than pseudorandomly occupied supercells required for similar accuracy, they are advanta-

geous in terms of computation time (Wei et al., 1990a; Zunger et al., 1990). These considerations make SQS’s

a powerful tool for scalable generation of equilibrium phase diagrams.

With an expression for the free energy, the composition space can be divided into different regions of sta-

bility for a fixed temperature. This procedure is repeated over a grid of temperatures to fully develop the

phase boundaries and determine the full equilibrium phase diagram. For an isostructural alloy, there can be

three regions: stable, metastable, and unstable. The stable region is the set of compositions where the sin-

gle-phase alloy is on the convex hull. Outside of this region, metastability is determined by the curvature of

the free energy, i.e., d2

dx2
DGmix. When the curvature is positive and the free energy itself is not on the convex

hull, the free energy of the alloy is lower than the average energy of two infinitesimally close compositions

on the adjacent side of the alloy. Therefore, in this region, the single-phase alloy is metastable in the sense

that it is stable to small fluctuations. However, if the curvature of the free energy is negative, infinitesimal

phase decompositions lower the free energy compared to the single-phase alloy. Therefore, the meta-

stable and unstable regions correspond to positive and negative curvatures of the free energy, respec-

tively, outside the convex hull. The binodal boundary between these regions is demarked by an inflection

point. This treatment is easily generalized to multiple structural phases by including multiple free energy

surfaces in the convex hull analysis leading to different stable regions for each morphology.

Regular solution model

Consider a crystalline material consisting of a single element A. Using the cluster expansion method, the

enthalpy of such amaterial can be expressed as a sum over effective cluster interactions (van deWalle et al.,

2002). For simplicity, we will only consider 1-body and nearest neighbor 2-body interactions. Therefore, the

enthalpy of material A is given by the following equation:

Htot
A = NAUA +NAAUAA: (Equation 8)

Here,NA andNAA are the number of A atoms and A-A bonds, respectively. UA and UAA are then the energy

contributions to the enthalpy corresponding to effective cluster interactions. This expression can be simpli-

fied further by introducing the coordination number, n :

Htot
A = NA

�

UA +

n

2
UAA

�

: (Equation 9)

Now, consider a random solid solution of elements A and B. The total enthalpy of such a system is given by

the following equation:
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Htot
AB = NAUA +NBUB +NAAUAA +NBBUBB +NABUAB: (Equation 10)

Here, most of the terms follow directly from Equation (8) with the addition of NAB and UAB, which corre-

spond to the quantity and energy of the A-B bonds, respectively. Let x be a real number between 0 and

1 that denotes the concentration of element B:

x =
NB

NA +NB

=

NB

N
: (Equation 11)

Here, we definedN as the total number of atoms, i.e. the sum of the quantities of A and B atoms. The quan-

tity that we wish to determine is the mixing enthalpy of the alloy,

DHtot
mix = Htot

AB � ð1� xÞHtot
A � xHtot

B : (Equation 12)

More specifically, we are interested in the mixing enthalpy per atom. Dividing Equation (12) by N and ex-

pressing x dependence explicitly gives

DHmixðxÞ = HABðxÞ � ð1� xÞHA � xHB: (Equation 13)

It is important to note that in the direct substitution of Equations (8) and (10) into Equation (13), the NA and

NAA in equation correspond to a pure material consisting of N atoms of species A, not ð1�xÞN atoms. All

that remains in evaluating Equation (13) is to find expressions for variables of the form NX and NXY , where

NX is the number of atoms of type X, andNXY is the number of bonds between X–Y. This can be done using

conditional probability. For a single site, this is trivial:

PðAjxÞ = 1� x (Equation 14)

and

PðBjxÞ = x: (Equation 15)

For a pair of neighboring sites, the probabilities are given by terms in a binomial expansion:

PðAAjxÞ = ð1� xÞ2; (Equation 16)

PðABjxÞ = 2xð1� xÞ; (Equation 17)

and

PðBBjxÞ = x2: (Equation 18)

From these expressions, the NX and NXY terms can be multiplying the probabilities above by the total

numbers of atoms, N, or the total number of bonds, n2N. Performing these substitutions for Equation (10)

gives the following:

Htot
AB = N

n

ð1� xÞUA + x UB +
n

2

h

ð1� xÞ2UAA + x2 UBB + 2xð1� xÞUAB

io

: (Equation 19)

Substituting Equations (19) and (9) into Equation (12) gives

DHtot
mix =

Nn

2

nh

ð1� xÞ
2
�ð1� xÞ

i

UAA +

�

x2 � x
�

UBB + 2xð1� xÞUAB

o

: (Equation 20)

Simplifying and dividing by N gives

DHmix = n

�

UAB �
1

2
UAA �

1

2
UBB

�

xð1� xÞ; (Equation 21)

the same result as Equations (1) and (2). This derivation shows that a simple, one-parameter quadratic expres-

sion for themixing enthalpy of a solid solution follows fromamodel that assumes that the internal energy can be

written as a sum of one- and two-body interactions. This model is referred to as the regular solution model.

Sub-regular solution model

The regular solution model is derived from a truncated cluster expansion model. The regular solution

model keeps only one- and two-body interactions, but hypothetically, higher order interactions can be

kept. Such models are called sub-regular solution models. Here, we derive the expression for the cubic

sub-regular solution model, but the derivation can be generalized to higher orders. Just as the regular

solution model was derived using one- and two-body interactions, we will derive the cubic sub-regular so-

lution model by also including three-body interactions.
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Analogous to Equations (8) and (10), the enthalpies of a pure material and a solid solution can be ex-

pressed, respectively, through

Htot
A = Hreg

A +NAAAUAAA (Equation 22)

and

Htot
AB = Hreg

AB +NAAAUAAA +NAABUAAB +NABBUABB +NBBBUBBB: (Equation 23)

Variables of the formNXYZ and UXYZ naturally correspond to quantities and energies of 3-body clusters. The

terms H
reg
A

and H
reg
AB

are defined by Equations (8) and (10) for brevity. Because 3-body clusters have more

degrees of freedom in their specific shape, we will heretofore assume a 2D triangular lattice rather than

a general lattice with arbitrary coordination. This is because such a lattice is relevant to the TMDC alloys

we are studying, and because the functional form of the result is independent of the choice of the lattice.

Furthermore, we will only consider the 3-body energy contributions of equilateral triangles of nearest

neighbors. With this in mind, Equation (22) can be expanded as

Htot
A = NðUA + 3UAA + 2UAAAÞ: (Equation 24)

Figure S2 shows an excerpt of a triangular lattice with colored shapes representing different n-body energy

contributions per atom. The number of red dots, green lines, and blue triangles correspond to the coeffi-

cients in Equation (24).

Just as theNX andNXY variables can be determined through conditional probabilities, so too can theNXYZ

variables. All four such variables can by expressed in the following condensed formula:

PðijkjxÞ =

�

3
MA

�

ð1� xÞMA
3 xð3�MAÞ

: (Equation 25)

Here, MA is the number of variables out of X , Y , and Z that equal A. Plugging Equation (22) through Equa-

tion (25) into Equation (12) gives

DHtot
AB = DHreg

mix + 2N
nh

ð1� xÞ
3
�ð1� xÞ

i

UAAA +

�

x3 � x
�

UBBB + 3xð1� xÞ
2
UAAB + 3x2ð1� xÞUABB

o

:

(Equation 26)

This expression can be simplified by factoring out xð1�xÞ out of the parenthetical term:

DHtot
AB = DHreg

mix + 2N½ðx� 2ÞUAAA �ðx + 1ÞUBBB + 3ð1� xÞUAAB + 3x UABB�xð1� xÞ: (Equation 27)

It is particularly instructive to group the second term as a sum of ð1�xÞ and x terms:

DHtot
AB = DHreg

mix + 2N½ð3UAAB � 2UAAA �UBBBÞð1� xÞ + ð3UABB �UAAA �UBBBÞx�xð1� xÞ: (Equation 28)

Dividing by N and substituting Equation (21) gives the familiar expression for the sub-regular solution

model expressed in Equation (3):

DHmix = ½U1ð1� xÞ + U2x�xð1� xÞ; (Equation 29)

with U1 and U2 given by Equations (4) and (5).

Computational details

Disordered 2Dalloyswere studiedusing 636 and 336 supercells of the primitive cell of 2H-phase and 1Tʹ-phase

TMDCs, respectively. Structure files can be found at a link provided in the Key resources table (Cavin, 2022). Slab

models with vacuum along the out-of-plane direction were used to simulate 2D layers. To eliminate interaction

between image2D layers, a vacuumspacingof>15 Å in theout-of-planedirectionwas used. Total energieswere

calculated using DFT as implemented in the Vienna Ab-initio Simulation Package (VASP) using the Perdew-

Burke-Ernzerhof exchange-correlation functional (Kresse and Furthmüller, 1996; Perdew et al., 1996). For the

SQS’s, geometric relaxation was conducted at only the G-point in reciprocal space allowing for in-plane relaxa-

tion of lattice parameters. A subsequent static calculation for the electronic structure was performed using a

G-centered 33331 k-points mesh generated using the Monkhorst-Pack method (Monkhorst and Pack, 1976).

PureTMDCswere studied using a k-points gridof 83831 for geometry optimization and2432431 for static cal-

culations. A kinetic energy cutoff of 450 eV was used for all the calculations.
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