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Abstract: Noncentrosymmetric hybrid framework (HF) materials are an important system in dis-
covering new practical second-order nonlinear optical materials. We calculated the second har-
monic generation (SHG) response of a noncentrosymmetric (NCS) organic–inorganic HF compound,
CuMoO3(p2c) (p2c = pyrazine-2-carboxylate) to find that it exhibits the largest SHG response among
all known NCS HF materials with one-dimensional helical chains. Further atom response theory
analysis revealed that the metal atoms Cu and Mo contribute much more strongly than do nonmetal
atoms in determining the strength of the SHG response, which is a novel example in nonlinear optical
materials known to date.

Keywords: nonlinear optical material; noncentrosymmetric; MOF; atom response theory; DFT calculation

1. Introduction

Nonlinear optical (NLO) crystals play a vital role in modern laser technologies and
sciences due to their ability to convert the frequency of an incident laser beam through
the second harmonic generation (SHG) process [1–5]. A noncentrosymmetric (NCS) ar-
rangement of atoms is a prerequisite for the generation of non-zero second-order NLO
properties in bulk materials. The search for new NCS structures with excellent SHG prop-
erties remains a hot scientific challenge. Although there exist a number of extensively
studied and commercially available inorganic NLO crystals, there has been tremendous
interest in finding new NLO materials in other systems such as organic molecular crystals,
inorganic–organic hybrid nanocomposites, self-assembled chromophoric superlattices and
inorganic–organic hybrid framework materials (including both nanoporous metal–organic
frameworks (MOFs) and dense inorganic–organic frameworks (IOFs)) [6–10]. Hybrid
framework materials are constructed by employing modular synthetic procedures with
metal ions (i.e., Zn2+, Cd2+, Mn2+, Ag+, Cu+) or inorganic nodes (i.e., metal-oxide, metal-
fluoride, metal-chalcogenides and metal-halides) that are covalently and/or coordinately
bonded to various organic linkers. Because of the advantages over conventional inorganic
materials (e.g., structural tunability at a molecular level, chemical stability, and ease of
synthesis on a large bulk scale), NCS hybrid framework materials are expected to form a
new class of potentiality practical NLO materials [11–13].

Numerous hybrid framework materials have been reported to be SHG-active. Ac-
cording to the dimensionality of the coordination networks, they can be roughly classified
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into three groups: (a) three-dimensional (3D) networks (e.g., diamondoid, octupolar),
(b) two-dimensional (2D) grid structures, and (c) one-dimensional (1D) chains (e.g., helical
chains). Lin et al. suggested that 3D and 2D networks with a high degree of controlla-
bility and predictability are better platforms for the synthesis of NCS MOFs [6,8], and
they reported a number of MOFs with a large SHG response, which includes Cd{3-[2-
(4-pyridyl)ethenyl]benzoate}2 (powder SHG intensity I2ω

powder of 800 × α-SiO2, Fdd2) [14]
and other systems [15]. For hybrid framework materials, the molecular origin of SHG is
believed to arise from the electronic asymmetry (push–pull effect or acceptor–donor effect)
induced by the polarization of ligand electron density or the metal-to-ligand/ligand-to-
metal charge transfer [6,9,10,16]. The alignment of NLO chromophores may be necessary
for NCS hybrid framework materials to have a large SHG response. For example, Ye
et al. obtained a zinc MOF based on a 2D square grid network, in which the ligands
involve an aligned two-center acceptor–donor system, which displays a very strong SHG
response (I2ω

powder of 50 × urea and 500 × KH2PO4 (KDP), respectively) [16]. Yu et al.
encapsulated a matching ordered organic dipolar chromophore in the pores of porous
MOFs forming a highly NLO active anionic MOF (ZJU-28⊂DPASD, I2ω

powder of 18.3 × α-
SiO2) [17]. However, the NCS hybrid framework materials with 1D helical chains are not
known to have large SHG responses, although it may be related to synthetic difficulty
and unpredictability. Maggard et al. used short organic ligands to bridge polar or chiral
inorganic basic building units (i.e., MoO2F4

2−) to obtain two isomorphic SHG-active NCS
solids with helical chains [18,19], A(pyz)(H2O)2MoO2F4 (A = Zn, Cd, pyz = pyrazine,
I2ω
powder of ~0.28–1 × α-SiO2, P3221). Other examples with 1D helical chains include

Cu(pzc)2AgReO4 (pzc = pyrazinecarboxylate, I2ω
powder of ~0.5–0.7 × α-SiO2, P43212) [20],

[Zn(mpz)3]2[MoO2F4]2 (mpz = 3-methylpyrazole, I2ω
powder of ~10 × α-SiO2, Pna21) [21], and

[(S)-C5H14N2][(MoO3)3(SO4)]·H2O (I2ω
powder of ~5× α-SiO2, Pna21) [22]. The cancellation or

the absence of a net dipole moment in these structures is usually considered to be responsi-
ble for their low SHG response [19]. Finding hybrid framework materials with 1D helical
chains possessing a large SHG response remains a challenge. It should be pointed out that
the SHG phenomenon, as a second-order polarization, involves both the occupied and the
unoccupied states of a material, while the vector sum of the dipole moments of the groups
within a unit cell, as a zero-order polarization, associated with only the occupied states. The
non-zero vector sum of the dipole moments lead to a polar structure which guarantees the
presence of an NCS structure, which is a necessary condition for the occurrence of the SHG
phenomenon, but it does not influence the magnitude of the second-order NLO properties.
It is desirable to understand the SHG responses for the NCS hybrid framework compounds
at the electronic and the atomic levels.

Recently, Luo et al. [23] reported a new NCS metal-oxide/organic hybrid compound
CuMoO3(p2c) (p2c = pyrazine-2-carboxylate) with 1D helical chains. However, so far
neither theoretical nor experimental work on the linear and the nonlinear optical properties
of this compound has been reported. Based on our first-principles calculation, we found
CuMoO3(p2c) exhibits a very strong SHG response with a static effective SHG value dp

e f f
calculated to be 30.6 pm/V. This value is about 92.7 times that of KDP (~927 × α-SiO2,
3.12 × AgGaS2 (AGS)), which ranks the SHG response of CuMoO3(p2c) to be the highest
among all the reported hybrid framework materials with 1D helical chains. Besides, our
atom response theory (ART) analysis [24] shows that the SHG response of CuMoO3(p2c)
originates largely from the states of the metal ions, Cu+ and Mo6+, i.e., approximately
56% of the total SHG response. Such a large contribution from metal ions also makes
CuMoO3(p2c) a quite special example in NLO materials.

2. Materials and Methods
Computational Details

VASP calculations. The structural and the electronic properties of CuMoO3(p2c) were
calculated within the framework of density functional theory (DFT) [25,26] by using the
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Vienna ab-initio simulation package (VASP) [27–29] with the projector augmented wave
(PAW) method [30]. The generalized gradient approximation (GGA) within the Perdew–
Burke–Ernzerhof (PBE)-type exchange-correlation potentials [31] was used throughout this
work. The employed PAW–PBE pseudopotentials [32] with 11 (3d104s1), 14 (4s24p64d55s1),
6 (2s22p4), 5 (2s22p3), 4 (2s22p2) and 1 (1s1) valence electrons for Cu, Mo, O, N, C, and
H were used to describe the electron−ion interactions, respectively. The plane wave
cutoff energy for the expansion of wave functions was set at 600 eV and the tetrahedron
method with Blöchl corrections was used for integrations. The numerical integrations in
the Brillouin zones were performed by utilizing 7 × 7 × 4 Monkhorst–Pack k-point mesh,
which showed an excellent convergence of the energy differences (0.005 eV) and stress
tensors (0.001 eV/Å). The quasi-Newton algorithm as implemented in the VASP code
was used in all structural relaxations. In this work, both the cell volume and the atomic
positions were all allowed to relax to minimize the internal forces. The optimized lattice
parameters, a = 7.791 Å and c = 11.229 Å, are slightly overestimated with respect to the
experimental, which were measured at room temperature as usual with the PBE functional.
Details of the optimized structure and the agreement with the experimental values are
given in Table S1 of the Supporting Information.

In our calculations for the linear and the nonlinear optical properties, we employed
the sum over states (SOS) method [33–35] using the code we developed [24] based on the
calculated electronic structures from the VASP optical module. The SOS formalism for
second-order susceptibility was derived by Aversa and Sipe [33] and later modified by
Rashkeev et al. [34,36] and Sharma et al. [35,37]. To gain insight into the origin of SHG
response, the contributions Aτ of the individual atoms τ to a specific component, e.g., the
largest, of the total SHG response tensor, were determined by performing atom response
theory (ART) analysis [24,38] for the CuMoO3(p2c) structure. Note that, the chirality may
lead to higher-order interactions beyond the electric dipole approximation, for which one
needs to use model studies instead of the first-principles method [39].

Partial response functional (PRF) method. The contribution of a certain occupied
energy region between EB and valence band maximum (VBM), ζV(EB), to each SHG
coefficient dil = 1

2 χ
(2)
ijk , l = 1, 2, 3, 4, 5, 6 is determined by considering only those

excitations from all occupied states between EB and VBM to all the unoccupied states of
the conduction bands (CBs) and the contribution, δζV(EB), of specific occupied states of
energy EB to each dil by the excitations from that energy to all unoccupied states of the CBs.

δζV(EB) = −
dζV(EB)

dEB
(1)

Similarly, the contribution, ζC(EB), of a certain unoccupied region between the con-
duction band minimum (CBM) and EB to each dil is determined by the excitations from
all occupied states of the VBs only to all unoccupied states between CBM and EB, and
the contribution, δζC(EB), of specific unoccupied states of energy EB to each dil by the
excitations from all occupied states of the VBs only to that energy.

δζC(EB) =
dζC(EB)

dEB
(2)

Atom response theory (ART) analysis. To evaluate the individual atom contributions
to the SHG components, dil , it is computationally more convenient to express the corre-
sponding PRFs in terms of the band index IB, ζ(IB), where the band index IB runs from
1 to Ntot (i.e., the total number of band orbitals) with increasing energy, EB, from Emin to
Emax. Here, ζV(IB) and ζC(IB) are denoted as VBζ j and CBζ j, respectively, with IB replaced
by a subscript j.
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Suppose that a specific atom τ has L atomic orbitals with a coefficient VBC
→
k j
Lτ in the

valence band j at a wave vector
→
k . The total contribution VB Aτ of an atom τ makes to the

SHG coefficient from all the VB bands j is written as

VB Aτ =
Ω

(2π)3

∫
d
→
k ·∑

L,j

VBζ j

∣∣∣∣VBC
→
k j
Lτ

∣∣∣∣2 (3)

where Ω is the unit cell volume, VBζ j is the corresponding PRFs in terms of the band index
j. Similarly, the total contribution CB Aτ of an atom τ makes to the SHG coefficient from all
the CB bands j is written as

CB Aτ =
Ω

(2π)3

∫
d
→
k ·∑

L,j

CBζ j

∣∣∣∣CBC
→
k j
Lτ

∣∣∣∣2 (4)

in which we assumed that the atom has L atomic orbitals with coefficient CBC
→
k j
Lτ in the

conduction band j at a wave vector
→
k . To calculate the actual contribution of each con-

stituent atom in a unit cell to the total SHG response, one needs to consider the signs of VBζ j

and CBζ j.
The total contribution, Aτ , each individual atom makes to the SHG response from

both the VBs and the CBs (i.e., from all the bands) is given by

Aτ =

(VB Aτ + CB Aτ

)
2

(5)

where the factor of 1/2 is applied to remove the double-counting of each excitation.

3. Results and Discussion
3.1. Structure

The Cu/Mo-oxide CuMoO3(p2c) crystallizes in the NCS space group P32 (Figure 1
and Table S1). Within each unit cell, Cu and Mo atoms each have one crystallographically
unique site, whereas the O, N, C, and H atoms occupy five, two, five and three independent
crystallographic positions, respectively. All atoms are at special Wyckoff positions of 3a.
The Mo atoms are coordinated with five O atoms (O1, O3, O4, O4, O5) and one N1 atom,
forming a distorted MoO5N octahedron with Mo-O and Mo-N bond lengths around 1.92
and 2.37 Å, respectively. Neighbouring Mo-centered octahedra are connected by sharing
the O4 atom with alternating short (1.82 Å) and long (2.12 Å) Mo-O4 bond distances as
well as alternating small (∠Mo-O4-Mo = 145.64◦) and large (∠O4-Mo-O4 = 162.57◦) bond
angles forming 1D zigzag -Mo-O-Mo-O- chains along the c-axis (Figure 1a). Besides, this
zigzag chain propagates along the 32 screw axis, that is, the MoO5N octahedron could
duplicate itself by rotating 120◦ within the ab plane and gliding 2c/3 along the c axis. In
addition, the Cu atoms form a distorted CuO3N tetrahedron with the surrounding three
O atoms (O2, O3, O5) and one N2 atom with the Cu-O and Cu-N distances of ~2.03 Å
and ~1.99 Å, respectively. Each CuO3N tetrahedra is corner shared with two neighbouring
MoO5N octahedra through the O3 and O5 atoms, forming the inorganic CuMoO3 helical
chains. Further, the N1 and O1 atoms from one p2c ligand simultaneously coordinate
with the Mo atom, while the O2 and N2 atoms from two different p2c ligands connect
the Cu atoms (Figure 1b). Thus, the 3D inorganic–organic hybrid network is constructed
through the bridging p2c ligands. Note that, the Mo-O1 and the Cu-O2 distances (2.16 and
2.08 Å) connecting to the p2c ligands are slightly longer than the other Mo-O and Cu-O
bonding lengths (1.86 and 2.01 Å) within each MoO5N octahedra and CuO3N tetrahedra,
respectively. This fact reflects that the metal/ligand interaction is relatively weak compared
with the interaction within the inorganic framework.
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Figure 1. (a) Crystal structure of CuMoO3(p2c) illustrating the CuMoO3 helical chain. (b) Local
coordination environment between the p2c ligand and the inorganic framework of CuMoO3(p2c).

3.2. Electronic Structures

Our electronic calculations reveal that CuMoO3(p2c) has a small indirect bandgap
(Eg

PBE) of 0.743 eV, which is smaller than the experimentally measured (Eg
exp = 1.32 eV). In

computing optical properties, this deficiency of the DFT [26] is often corrected empirically
by employing the scissor operation [40] in which the conduction bands (CBs) are shifted
in energy to have the experimental bandgap [41,42]. The calculated density of states
(DOS) and electronic band structure (Figures 2a and S1–S4) show that the top portion of
valence bands (VBs) (−1.0 eV to EF) is dominated by the Cu-3d orbitals, while the O-2p
orbitals occupy the relatively lower energy range (−6.0 to −1.8 eV). The bottom part of
the conduction bands (CBs) (Eg-7 eV) is primarily made up of the Mo-4d, C-2p, and N-2p
states, while the antibonding states involving the 2p states of the O, C, N atoms are found
in the energy range between 7 to 25 eV.
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for the largest SHG component d11 of CuMoO3(p2c). The values are in pm/V.
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The crystal orbital Hamilton population (COHP) [43,44] analysis (Figure 2b) shows
that the frontier orbital states (−4.4 eV to EF) are described mainly by nonbonding states
made up of Cu-3d and O-2p orbitals with a small mixture of weak Cu-O/N d-p antibonding
states (Figure S2). Generally, these filled nonbonding and antibonding states near EF are
highly polarizable and hence are important for the optical properties. Besides, some O-2p
and N-2p states make weak bonding interaction with Mo-4d and Cu-3d states as well as
C-2p orbitals around −9.0 to −4.4 eV, leading to a dispersive orbitals feature. Strong Cu-O
and Mo-O s-p bonding interaction can be found at around −18 eV. The covalent character
of the C-O/N bonds is much stronger than that of the Mo-O/N and the Cu-O/N bonds
(Figure 2b).

3.3. Optical Properties

Calculations of the refractive indices (no and ne) as a function of wavelength (Figure 3)
reveal that CuMoO3(p2c) can meet the Type-I phase matching condition at λ = 1.88 µm, a
value in the IR range. Besides, the calculated birefringence value ∆n for CuMoO3(p2c) is
0.21 at 1910 nm (Figure S5). Such a large birefringence reflects a strong optical anisotropy
of CuMoO3(p2c). The value of ∆n in a uniaxial optical material is the difference between no
and ne, ∆n = |no − ne|. As no > ne in CuMoO3(p2c), it is a negative uniaxial crystal.
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Figure 3. Calculated refractive indices of the fundamental and second harmonic wavelengths
for CuMoO3(p2c). The pink point represents the meet of Type I phase-matching condition
(ne(2ω) = no(ω)) for negative uniaxial crystals.

Due to the point group of 3, the SHG tensor of CuMoO3(p2c) has 13 non-zero com-
ponents, in which 5 of them are independent, i.e., d11 = −d12 = −d25, d22 = −d21 = −d16,
d31 = d32 = d24 = d15, d14 = −d25 and d33, as presented in Table S2. As the Kleinman symme-
try, i.e., d14 = −d25 = 0, is not followed in CuMoO3(p2c), it was not enforced in calculating
the NLO properties in this work. The effective dp

e f f , an average SHG coefficient over all
possible orientations of the powder crystals, is estimated from the formula derived by
Kurtz-Perry [45] and Cyvin et al. [46] based on the calculated non-zero SHG tensors. The
static effective SHG value of CuMoO3(p2c) is calculated to be 30.6 pm/V, which is about
3.12 times that of commercial AGS (static dAGS

eff = 9.8 pm/V) and 92.7 times that of KDP
(static dKDP

eff = 0.33 pm/V). At the wavelength of 1910 nm (~0.65 eV), the dp
e f f value of

CuMoO3(p2c) is predicted to be 121.35 pm/V, i.e., ~8.20 × dAGS
eff (dAGS

eff = 14.8 pm/V at
1910 nm). We have tried to estimate the deff for large crystals using Midwinter et al.’s
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method [47] and obtained a maximum value of ~168.7 pm/V at θ = 0.0◦ and ϕ = 45.0◦

at ω = 1910 nm, which is larger than the powder dp
e f f . Using the deff and the refractive

indices, one can get a much larger figure of merit value [48] (FOM = de f f
2/(n(ω)2n(2ω)),

~2058.7 (pm/V)2 than that 150 (pm/V)2, of LiNbO3, which suggests a great potential
value of CuMoO3(p2c)—though the large crystal has not yet been obtained. We also
calculated the SHG responses for several NCS hybrid framework compounds with he-
lical chains, as presented in Table S2, which also lists the available experimental SHG
values. Clearly, CuMoO3(p2c) has the highest dp

e f f value among all reported NCS hy-
brid framework materials with helical chains. This remarkably strong SHG response is
larger than those found in the majority of hybrid framework materials reported to date.
Only a few are exceptional: [Cd(L-N3)2(H2O)2]n (I2ω

powder of 80 × urea) [49], Zn((E)-4-

pyv-3-bza)2 (I2ω
powder of 1000 ×α-SiO2) [50], and [(CN4-C6H4-C12H7N-C5H4N)2Zn]·1.5H2O

(I2ω
powder of 50 × urea) [16]. Besides, the SHG response of CuMoO3(p2c) is even larger than

several newly reported inorganic IR-NLO crystals, e.g., Li[LiCs2Cl] [Ga3S6] (I2ω
powder of

0.7 × AGS) [51], Ba2SnS5 (I2ω
powder of 1.1 × AGS) [52], Na2MSn2Se6 (M = Zn/Cd) ((I2ω

powder

of 3 and 2.2 × AGS) [53], and δ-Ga2Se3 (I2ω
powder of 2.3 × AGS) [54]. These facts indicate that

CuMoO3(p2c) is a promising IR hybrid NLO crystal material.

3.4. Atom Response Theory Analyses

We investigate the origin of the SHG responses further by employing the ART analy-
sis [24]. Shown in Figure 2c is the partial response functionals (PRFs), ζV(EB) and ζC(EB) as
well as their derivatives (Figures S6 and S7), δζV(EB) and δζC(EB), for CuMoO3(p2c). The
ζV(EB) functional increases in magnitude with decreasing EB from EF to−4.4 eV indicating
that the nonbonding Cu 3d and O 2p states are the dominating contributors to the SHG
response in the VB part. From the rising amplitude of the ζV(EB) functional, it is clear that
the contribution from the Cu 3d states (EF to −1.0 eV) is greater than that from the O 2p
states (−1.8 to −4.4 eV). This is so because the completely filled d orbitals of each Cu+ (d10)
possess more electrons than the completely filled 2p orbitals of each O2− (p6). However, in
the energy range of −4.4 to −9.0 eV where the C-O/N, Mo-O/N and Cu-O/N bonding
interaction occurs, the functional shows small variation, showing that these bonding states
contribute little to the SHG response. A dramatical change from the CB minimum to
7 eV and the steady increase at the higher energy range of the ζC(EB) functional reveal the
contribution from the unoccupied Mo-4d and C/O/N-2p states in the CB part.

The quantitative contribution of an individual atom τ, Aτ (in %), to the strongest
SHG coefficient d11 for CuMoO3(p2c) is obtained based on the PRFs. As presented in
Tables 1 and S3, the Aτ of Cu (~11.7%) is nearly 1.7 times that of Mo (~7.0%) and 7.3 times
that of O (~1.6%) and N (~1.2%). Besides, the Aτ value of C and H are negligibly small,
<0.8%. These results reflect that the metal atoms Cu and Mo serve as the NLO-active centers
at the atomic scale. Considering the number of atoms of each element in the unit cell,
the total contributions of Cu, Mo, O, N, C, and H are 35.2, 20.9, 24.1, 7.4, 11.1, and 1.4%.
Although the uneven stoichiometry effect is included, the metal atom Cu is still the leading
contributor to the SHG response, while the contributions from the Mo and O atoms are
comparable. This further reflects the important contribution from the metal atoms since the
number of O in a unit cell is five times that of Cu and Mo. The relative atom contributions
decrease in the order Cu >> Mo > O > N > C> H in the VB contributions (Table S3), and in
the order Mo >> Cu > N > C > O> H in the CB contributions (Table S3). These findings show
that the SHG of CuMoO3(p2c) is governed largely by the occupied states of Cu 3d, Mo
4p, and O 2p, and by the unoccupied states of Mo 4d, Cu 3d, and N-2p. The metal atoms
Cu and Mo contribute much more strongly than do the nonmetal atoms in determining
the strength of the SHG response in CuMoO3(p2c), which is quite special among the NLO
materials known to date.
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Table 1. Contributions of the atoms to the largest components of the SHG tensors d11 of CuMoO3(p2c).
NA refers to the number of the atom type (on the same Wyckoff site) in a unit cell; Aτ , NA Aτ , VB Aτ ,
CB Aτ refer to the contributions (in %) from a single atom, the total atoms of the same type, all VBs
for a single atom, and all CBs for a single atom, respectively. dτ denotes the actual value of the
contribution (in pm/V) to the SHG for a single atom.

Atom NA Aτ
VBAτ

CBAτ NAAτ dτ

Cu 3 11.72 10.69 1.03 35.2 3.99
Mo 3 6.97 2.85 4.12 20.9 2.38
O 15 1.6 1.14 0.46 24.1 0.55
N 6 1.23 0.51 0.72 7.4 0.42
C 15 0.74 0.27 0.47 11.1 0.25
H 9 0.15 0.05 0.1 1.4 0.05

According to the individual atomic contribution to the SHG response, the contribution
of an atomic group can be calculated by summing the contributions of the center atom
and those of its ligands. In this work, we partition the contribution of an anion (O2−

and N3−) equally to all the atomic groups it belongs to. The contribution of an atomic
group can be calculated by summing the contributions of the center atom and those of its
coordinated atoms [55]. Considering the coordination number for each O and N atom (2 and
3, respectively, Figure S8), the group CuO3N can be rewritten as CuO21/2O31/2O51/2N21/3.
Therefore, the group contribution of CuO3N to SHG response is calculated as follows,

χ
(2)
[CuO3N]

= χ
(2)
Cu + 1×

(
χ
(2)
O2

/
2

)
+ 1×

(
χ
(2)
O3

/
2

)
+ 1×

(
χ
(2)
O5

/
2

)
+ 1×

(
χ
(2)
N2

/
3

)
(6)

The group with anion coordination numbers and the total group contributions for
the largest SHG component d11 of CuMoO3(p2c) are given in Figure 4, which shows that
the metal-centered group [CuO3N] and [MoO5N] contribute much more strongly to the
SHG response than does the organic p2c ligand. That is, the total contribution of the
inorganic part is ~79.1%, which far surpasses that of the organic part (i.e., ~20.9%). Our
results reflect that the inorganic part contributes dominantly to the SHG response, while
the organic part is important in the stabilization of the crystal structure of CuMoO3(p2c). It
is worth mentioning that we did not separately calculate the hyperpolarizability tensor βijk
by cutting out the ligand or groups from the structure of the compound. Such an approach
will unavoidably lead to uncontrolled errors; thus, they are not used in our calculations.
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Figure 4. The cause for the large second harmonic generation (SHG) of the metal-oxide/organic
hybrid compound CuMoO3(p2c) is shown to be the inorganic metal-cation-centered groups [CuO3N]
and [MoO5N] rather than the organic nonmetal-cation-centered groups [C5O2N2H3].
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4. Conclusions

Although a number of NCS HF materials with 3D and 2D frameworks have been
reported with large SHG response, only low SHG intensities have been measured for
HF materials with 1D helical chains. Our first-principles calculations predict that the
recently synthesized CuMoO3(p2c) exhibits the largest SHG response among all the NCS
HF materials with 1D helical chains. Its static effective SHG response, 30.6 pm/V, is about
3.12 times greater than that of commercial AGS, and 92.7 times greater than that of KDP.
This value also exceeds those of most NCS hybrid framework materials reported so far. Our
ART analysis shows that the SHG of CuMoO3(p2c) is determined largely by the occupied
states composed of Cu 3d, Mo 4p, and O 2p, and by the unoccupied states composed of Mo
4d, Cu 3d, and N 2p. The metal atoms Cu and Mo contribute much more strongly than
do the nonmetal atoms in determining the strength of the SHG response in CuMoO3(p2c).
The latter is quite special in the NLO materials known to date. Our work based on the
quantitative calculations at the electronic and the atomic level reveals the importance of
the contribution from metal atoms and the metal-centered inorganic groups for the SHG
response of CuMoO3(p2c).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym14040824/s1, Figure S1: Calculated band structure for P32-CuMoO3(p2c). Figure S2:
HOMO (M1) and LUMO (A1) for CuMoO3(p2c). Figure S3: Calculated partial DOS for P32-
CuMoO3(p2c). Figure S4: Calculated partial DOS of O and N atoms at independent crystallographic
positions. Figure S5: Frequency-dependent refractive indices n (left) and birefringence ∆n (right)
of CuMoO3(p2c). Figure S6: (a) δζV(EB)-vs-EB plot, and (b) δζC(EB)-vs-EB plot calculated for the
SHG coefficient d11 of CuMoO3(p2c). The values of the functions are in pm/V. Figure S7: Plots of
(a) ζV(IB)-vs-IB, (b) ζC(IB)-vs-IB, (c) δζV(IB)-vs-IB and (d) δζC(IB)-vs-IB calculated for the SHG
coefficient d11 of CuMoO3(p2c). The values of the functions are in pm/V. Figure S8: Coordination
environment for each inequivalent O and N atom of CuMoO3(p2c). Table S1: The optimized crystal
structure data for P32-CuMoO3(p2c). Table S2: Calculated SHG tensors dil and dp

e f f for CuMoO3(p2c)
and several NCS HF compounds with helical chains. For the compounds with no available experi-
mental band gap (Eg), the calculated Eg based on HSE06 with mixing parameter α = 0.3 is applied.
The available experimental measured SHG responses are also presented. In this work, Kleinman
symmetry is not enforced in calculating the NLO properties. Table S3: Contributions of the individual
atoms to the SHG component d11 of CuMoO3(p2c). WA refers to the number of the same type of
atoms (on the same Wyckoff site) in a unit cell. Aτ is the contribution (in %) from a single atom τ, and
CA from all atoms of the same type. VBAτ , is the contribution (in %) the VBs, and CBAτ from the CBs.
The contributions from the s, p, and d states of the atom τ to of VBAτ and CB Aτ are also shown [56,57].
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