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Modeling analysis of the growth of a cubic crystal
in a finite space

Fuqian Yang

The applications of semiconductor nanocrystals in optoelectronics are based on the unique

characteristic of quantum confinement. There is great interest to tailor the performance of

optoelectronic nanodevices and systems through the control of the sizes of nanocrystals. In this work,

we develop a general mathematical formulation for the growth of a crystal/particle in a liquid solution,

which takes account of the combinational effect of diffusion-limited growth and reaction-limited

growth, and formulate the growth equations for the size of a cubic crystal grown under three different

scenarios – isothermal and isochoric conditions, isothermal growth with the evaporation and/or extrac-

tion of the solvent and isochoric growth with continuous change in temperature. For the growth of a

cubic crystal under isothermal and isochoric conditions, there are three growth stages – linear growth,

nonlinear growth and plateau, and the growth rate in the stage of linear growth and the final size of the

cubic crystal are dependent on the degree of supersaturation. For the growth of multi-crystals with a

Gaussian distribution of crystal sizes, the change of the monomer concentration in a liquid solution is

dependent on the change rates of average size and the standard deviation of the crystal sizes.

Introduction

Inorganic and hybrid halide perovskites have exhibited great
potential for applications in optoelectronics and energy
conversion due to their unique properties, including size-
dependent bandgap, large optical absorption and facile synthe-
sis process.1–11 For example, a power conversion efficiency of
B29% for perovskite-based solar cells, which is better than the
efficiency of polysilicon-based solar cells, was recently reported
by Al-Ashouri et al.,12 and an external quantum efficiency of
more than 20%, which is comparable to that of commercial
organic LEDs, was also reported.4,5,13

The performance of perovskite-based optoelectronic devices
and solar cells is dependent on the quality of perovskite
crystals, and the optoelectronic devices and solar cells made
from perovskite single crystals exhibit much better perfor-
mance than those made from perovskite polycrystals. There is
a great need to produce perovskite single crystals of large sizes.
Currently, there are few solution-based techniques available to
produce halide perovskites of large sizes, including the inverse-
temperature method,14,15 the temperature-cooling method,16

the antisolvent evaporation method17 and the extraction of
solvent method.18 In the heart of these techniques is either
the increase of the monomer concentration or the decrease of
solubility to increase the degree of supersaturation. Note that

the inverse-temperature method is based on the decrease of
solubility with increasing temperature, i.e., increasing tempera-
ture can immediately make the liquid solution supersaturated,
and the antisolvent method is based on the immediate for-
mation of nuclei when the precursor solution is mixed with an
antisolvent, as reported by Zhang et al.19 and is used extensively
in the synthesis of halide perovskite nanocrystals.

There are two processes likely controlling the growth of crystals
in a solution – one is diffusion, and the other is surface
reaction.20–23 Currently, most studies have been based on an infinite
system without considering the change in the solubility and the
effect of crystal size.20–22 Recently, Yang23 analysed the growth of a
spherical crystal controlled by diffusion in a finite space without the
contribution of surface reaction. The numerical results revealed that
there are two growth stages – the crystal size is a linearly increasing
function of the growth time in the first growth stage and a power
function of the growth time in the second growth stage. Following
the method given by Sung et al.20 in the discussion of the effect of
crystal size/mass on the growth behavior, Liu et al.24 obtained a
relationship between the time derivative of the crystal mass and the
ramp rate of temperature, and Yao et al.18 obtained a relationship
between the time derivative of the crystal mass and the change rate
of the liquid solution. However, both relationships are questionable,
and the authors did not provide any explicit formulation for the
temporal evolution of the monomer concentration during the
crystal growth.

Realizing the important applications of halide perovskites in
optoelectronics and the need to grow halide perovskites of large
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sizes, we follow the approach given by Sung et al.20 to analyze
the growth of a single crystal in a solution without solving the
diffusion problem. In contrast to the study by Sung et al.,20 we
develop a general formulation, which takes into account the
effects of the loss of solvent and the change of solubility.

Mathematic formulation

Let us consider the growth of a crystal in a liquid solution, as
shown in Fig. 1. At the outset of growth (t = 0) at temperature T0,
the concentration of monomers (solute atoms/molecules) is C0

in the unit of mole per unit volume, the volume of the space
consisting of the liquid solution and the crystal is V0, and the
mass of the crystal is M0. At time t and temperature T, the
concentration of monomers is C in the unit of mole per unit
volume, the volume of the space consisting of the liquid
solution and the crystal is V, and the mass of the crystal is M.

The mass conservation gives

C0 V0 �
M0

r

� �
¼
ð

�V

CdV þM �M0

rO
(1)

where r and O are the density and molar volume of the crystal,
respectively, M0/r is the volume of the crystal at the outset of
growth, and

�
V represents the space occupied by the liquid

solution. In general, one needs to have the spatial distribution
of the monomer concentration in the calculation of the integral
in eqn (1).

For simplification, we use the assumption by Sung et al.20 in
the study of the growth of yttrium oxalate in a supersaturated
solution that the monomer concentration is uniformly distrib-
uted and is only dependent on time and temperature. There-
fore, eqn (1) is simplified as follows:

C0 V0 �
M0

r

� �
¼ C V �M

r

� �
þM �M0

rO
(2)

Taking the derivative of eqn (2) with respect to the growth time,
we obtain

V �M

r

� �
dC

dt
þ C

dV

dt
þ 1� OC

rO
dM

dt
¼ 0 (3)

It is evident that the growth of the crystal is dependent on the
temporal evolution of the monomer concentration and the
volume of the system.

As discussed above, there are two processes controlling the
growth of the crystal – one is diffusion, and the other is surface
reaction. For the monomer diffusion in the liquid solution, we
have the molar flux of monomers in the liquid solution onto

the crystal as

j � njsurface ¼ �D
C � Ci

d
(4)

where j is the molar flux of the monomers in the liquid
solution, n is the outward unit normal of the crystal surface,
D is the diffusivity of the monomers in the liquid solution, Ci is
the monomer concentration on the surface of the crystal, and d
is the thickness of the diffusion layer near the crystal surface.
Assuming the first-order surface reaction and using the mass
conservation for the monomers, we have

j�n|surface = �k(Ci � Cs) (5)

with k as the reaction rate for the surface reaction and Cs as the
solubility of the crystal at temperature T. Note that Sung et al.20

assumed a power-law dependence of the surface reaction on the
concentration difference (Ci � Cs). Such a situation can occur
only for a significant difference between Ci and Cs and/or under
external influence. Here, we focus only on the first-order sur-
face reaction.

Substituting eqn (5) in eqn (4) yields

Ci ¼
DC þ kdCs

Dþ kd
(6)

which gives

j � njsurface ¼ �kD C � Csð Þ
Dþ kd

(7)

Thus, the increase rate of the crystal volume can be
calculated as

dVc

dt
¼ O

ð
S

�j � njsurface
� �

dS ¼ kDO C � Csð ÞS
Dþ kd

(8)

with Vc and S as the crystal volume and the surface area of the
crystal at a growth time t. From eqn (8), we obtain the increase
rate of the crystal mass and the monomer concentration as

dM

dt
¼ r

dVc

dt
¼ kDrO C � Csð ÞS

Dþ kd

and

C ¼ Dþ kd
kDrO

1

S

dM

dt
þ Cs

(9)

Substituting the second equation in eqn (9) in eqn (3), we
obtain the differential equation for the growth rate of the
crystal mass as

V �M

r

� �
Dþ kd
kDrO

d

dt

1

S

dM

dt

� �
þ dCs

dt

� �
þ Dþ kd

kDrO
1

S

dM

dt
þ Cs

� �
dV

dt

þ 1

rO
1�Dþ kd

kDr
1

S

dM

dt
� OCs

� �
dM

dt
¼ 0

(10)

Let us assume that the geometrical shape of the crystal
during the growth remains unchanged, i.e. there is a similarity
of the geometry of the crystal at any two different growth times.
Such an assumption has been implicitly used in most studies of

Fig. 1 Growth of a cubic crystal of a in width in a liquid solution. The
thickness of diffusion layer is d.
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crystal growth. Thus, the change of M (the mass change of the
crystal) is proportional to the surface area of the crystal and the
change in the characteristic dimension of the crystal. There-
fore, eqn (10) provides the base to analyze the temporal evolu-
tion of the crystal, which takes into account the changes in
solubility and the system volume for the growth of crystals
including halide perovskites via the inverse-temperature
method,14,15 the temperature-cooling method,16 the antisolvent
evaporation method17 and the extraction of solvent method,18

when the change rates of the system volume and solubility
are known.

For the cubic structure of crystals such as halide perovskites,
we consider the growth of a cubic crystal in the following
analysis.

Temporal evolution of a cubic crystal

For a cubic crystal of width a, the volume and surface area of
the crystal are a3 and 6a2, respectively. This gives Vc/S = a/6.
Eqn (2) is simplified as follows:

C0 V0 � a0
3

� �
¼ C V � a3

� �
þ a3 � a0

3

O
(11)

Three different cases are discussed below. Analytical formula-
tion of the temporal evolution of the crystal width is derived
only for case 1 – the crystal growth in a liquid system of
constant volume at a constant temperature. The other two
cases need the information of the evaporation rate or the
extraction rate of solvent for case 2 and the change rate of
temperature and the temperature dependence of solubility for
case 3. Numerical calculation is needed to find the temporal
evolution of the crystal width for both the case 2 and case 3.

Case 1: isothermal growth in a liquid system of constant
volume. For isothermal growth of a cubic crystal in a liquid
system of constant volume, evaporation and extraction of the
solvent do not occur during the crystal growth. We have dCs/dt = 0
and dV/dt = 0 (V = V0). The second equation in eqn (9) gives

C ¼ Dþ kd
2kDO

da

dt
þ Cs (12)

Substituting eqn (12) in eqn (11) with V = V0 yields

C0 V0 � a0
3

� �
¼ Dþ kd

2kDO
da

dt
þ Cs

� �
V0 � a3
� �

þ a3 � a0
3

O
(13)

which can be re-written as

Dþ kd
2kDO

da

dt
¼ 1

O
� Cs

� �
� 1

O
� C0

� �
V0 � a0

3

V0 � a3
(14)

Note that eqn (14) can be obtained from eqn (10). Using the
initial conditions of a|t=0 = a0, we obtain the solution of

eqn (14) as

2kD

Dþ kd
1� OCsð Þt

¼ a� a0 þ
1� OC0ð Þ V0 � a0

3
� �

ffiffiffi
3

p
1� OCsð Þ

� ~V�2=3 � tan�11þ 2a~V�1=3ffiffiffi
3

p
 

� tan�1 1þ 2a0 ~V
�1=3ffiffiffi

3
p þ

ffiffiffi
3

p

6
ln

~V � a3
� �
~V � a03
� � � ~V1=3 � a0

� �3
~V1=3 � a
� �3

!

(15)

Here, the parameter Ṽ is calculated as

~V ¼ V0 �
1� OC0ð Þ V0 � a0

3
� �

1� OCs
(16)

It needs to be pointed out that the volume of the liquid
solution at the outset of growth is likely different from the
combination of the volume of the liquid solution and the
volumetric change of the cubic crystal at time t, because
the space occupied by a monomer in the liquid solution is
not simply equal to that in the crystal due to the difference in
the interaction with adjacent materials.25 Therefore, the system
is generally unable to maintain a constant volume. The con-
tribution of the volumetric change of the cubic crystal to the
change of the system volume can be approximated to be a
linear function of the volumetric change of the cubic crystal to a
first order of approximation, which can be incorporated in
eqn (10). However, the contribution of the volumetric change of
the cubic crystal to the change of the system volume is generally
negligible in most cases and it is reasonable to assume that the
system volume remains unchanged under isolated conditions.

Let us consider the growth of a CsPbBr3 crystal of cubic
phase in water. The molar mass and density of a CsPbBr3 crystal
of cubic phase are 579.8175 g mol�1 26 and 4.42 g cm�3.27 The
lattice constant of a CsPbBr3 crystal of cubic phase is 0.6017 nm,27

and the solubility of a CsPbBr3 crystal of cubic phase in water is
0.047 g mL�1 at 23 1C.28 Using the molar mass and density of a
CsPbBr3 crystal of cubic phase, we obtain the molar volume of
the CsPbBr3 crystal of cubic phase as 131.18 mL mol�1 and the
solubility of the CsPbBr3 crystal of cubic phase in water as 8.11 �
10�5 mol mL�1.

Define t = (D + kd)a0/2kD(1 � OCs). Fig. 2 depicts the
temporal evolution of the sizes of CsPbBr3 crystals of cubic
phase for V0

1/3/a0 = 20 and different degrees of supersaturation.
It is interesting to note that there are three stages for the growth
of the cubic crystals – the sizes of the cubic crystals increase
linearly with the growth time in the first stage, increase non-
linearly with the growth time in the second stage and reach
plateau in the third stage. The linear stage is consistent with
the observations by Varghese and Rao29 for the growth of Pt
nanocrystals and Jung et al.30 for the growth of gold spiky
nanoparticles in a liquid cell and the analysis by Yang23 for
diffusion-limited growth of a nanoparticle in a finite space. The
second stage is associated with the competition between the
diffusion-limited growth and the reaction-limited growth due
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to the decrease in the degree of supersaturation. The third stage
corresponds to the depletion of the monomers in the solution,
which hinders the further growth of the cubic crystals.

For the purpose of qualitative comparison, the experimental
results for the growth of Pt nanocrystals in a liquid solution
with chloroplatinic acid and sodium citrate from the study of
Varghese and Rao29 are included in Fig. 2. It is evident that
there are two stages for the growth of Pt nanocrystals with an
initially linear stage followed by a nonlinear stage, qualitatively
in accord with the trend revealed by the numerical results in
Fig. 2. The similar trend suggests that one can use the model to
determine the diffusivity and the reaction rate for growth under
isothermal and isochoric conditions.

Fig. 3 shows the temporal evolution of the sizes of cubic
crystals for C0/Cs = 25 and different ratios of V0

1/3/a0. It is
interesting to note that there exists an overlap region for the
linear growth stage for the growth of cubic crystals in the
systems with C0/Cs = 25 for different ratios of V0

1/3/a0. Such a

result suggests that the growth rate of d(a/a0)/d(t/t) in the linear
growth stage is only dependent on the degree of supersatura-
tion and independent of the system size. Note that both the
period for the linear growth stage and the crystal size in the
third stage increase with the increase of the ratio of V0

1/3/a0,
revealing the effects of the amount of monomers on the growth
and size of cubic crystals.

Fig. 4 shows the variation of the growth rate of cubic crystals
in the linear growth stage with the initial concentration of
monomers (C0 = nCs with n being unitless) for V0

1/3/a0 = 20. The
growth rate increases linearly with the increase of the initial
concentration of monomers (nCs), indicating the importance of
the degree of supersaturation in controlling the initial growth
of cubic crystals.

Case 2: isothermal growth in a liquid system with evapora-
tion and/or extraction of solvent. For the isothermal growth of a
cubic crystal in a liquid system with evaporation and/or extrac-
tion of solvent,17,18 we have dCs/dt = 0. Let a(t) be the decreasing
rate of the volume of the liquid system, which is associated with
the rate of the evaporation and/or extraction of solvent. The
volume of the system at a growth time t becomes

V ¼ V0 �
ðt
0

aðtÞdt (17)

Substituting eqn (17) in eqn (11), we have

C0 V0 � a0
3

� �
¼ Dþ kd

2kDO
da

dt
þ Cs

� �
V0 �

ðt
0

aðtÞdt� a3
� �

þ a3 � a0
3

O
(18)

It is evident that the rate of the evaporation and/or extraction of
solvent plays an important role in the temporal evolution of the
crystal in a liquid solution in a finite space. Eqn (18) is a
nonlinear differential equation, which can be only solved
numerically if a(t) is known.

Fig. 2 Temporal evolution of the sizes of cubic crystals for different
degrees of supersaturation (V0

1/3/a0 = 20). The embedded figure shows
the experimental results for the growth of Pt nanocrystals from the study
of Varghese and Rao.29

Fig. 3 Temporal evolution of the sizes of cubic crystals for C0/Cs = 25 and
different ratios of V0

1/3/a0.

Fig. 4 Dependence of the growth rate of cubic crystals in the linear
growth stage on the initial concentration of monomers (C0 = nCs with n
being unitless) for V0

1/3/a0 = 20.
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From eqn (18), the growth rate of the size of the cubic crystal
can be expressed as

da

dt
¼ 2kDO

Dþ kd
C0 V0 � a0

3
� �

� a3 � a0
3

O

� �	

� V0 �
ðt
0

aðtÞdt� a3
� ��1

� Cs

) (19)

It is evident that the higher the rate of the evaporation and/or
extraction of solvent, the higher the growth rate of the size of
the cubic crystal for the same size of the cubic crystal. That is to
say, increasing the rate of the evaporation and/or extraction of
solvent leads to fast growth of the cubic crystal, which is due to
the increase of the supersaturation degree. It should be noted
that the increase of the supersaturation degree also can
increase the probability to form more nuclei during the growth,
which can reduce the concentration of monomers and lead to
the formation and growth of multiple crystals. An optimized
rate of the evaporation and/or extraction of solvent needs to be
determined to limit the formation of more nuclei during the
growth in order to grow crystals of large sizes.

Under a constant rate of the evaporation and/or extraction of
solvent, one can numerically integrate eqn (19). The numerical
results can then be compared with experimental results, and
the diffusivity and the reaction rate can be numerically deter-
mined for the growth of the cubic crystal.

Case 3: isochoric growth in a liquid system with the change
in temperature. For isochoric growth of a cubic crystal in a
liquid system with the change in temperature,14–16 dV/dt = 0.
According to the theory of thermodynamics, the solubility of
monomers in a liquid solution is dependent on temperature.
Let us assume that temperature is uniformly distributed in the
liquid solution during the temperature change and the
thermal-induced convection is negligible.

Using eqn (10), we have

V0 � a3
� � Dþ kd

2kDO
d2a

dt2
þ dCs

dt

� �

þ 3a2

O
1�Dþ kd

2kD

da

dt
� OCs

� �
da

dt
¼ 0

(20)

For Cs being a sole function of temperature T, we have

dCs

dt
¼ dCs

dT
� dT
dt

(21)

Substituting eqn (21) in eqn (20) yields

V0 � a3
� � Dþ kd

2kDO
d2a

dt2
þ dCs

dT
� dT
dt

� �

þ 3a2

O
1�Dþ kd

2kD

da

dt
� OCs

� �
da

dt
¼ 0

(22)

which is the differential equation for the analysis of the
temporal evolution of the cubic crystal during the isochoric
growth via the inverse-temperature method14,15 or the
temperature-cooling method.16 Note that dCs/dT in eqn (22)

is a function of time, which depends on the change rate of
temperature.

It should be noted that both the diffusivity, D, and reaction
rate, k, are dependent on temperature as

D = D0e
�Qd/RgT and k = k0e

�Qr/RgT (23)

which suggest that the influx to the cubic crystal is dependent
on temperature. Here, D0 and k0 are two pre-factors, Qd and Qr

represent the activation energies for the diffusion and surface
reaction, respectively, and Rg is the gas constant. Substituting
eqn (23) in eqn (22) yields

V0 � a3
� � 1

2O
eQr=RgT

k0
þ deQd=RgT

D0

 !
d2a

dt2
þ dCs

dT
� dT
dt

" #

þ 3a2

O
1� 1

2

eQr=RgT

k0
þ deQd=RgT

D0

 !
da

dt
� OCs

" #
da

dt
¼ 0

(24)

The nonlinearity of eqn (24) indicates that the numerical
method is needed to find the temporal evolution of the crystal
size if the temporal variation of temperature is known.

Comparing eqn (24) with eqn (18) and (14), we note that the
growth behavior for the isochoric growth of a cubic crystal with
the change in temperature follows a second-order nonlinear
differential equation instead of a first order nonlinear differ-
ential equation for isothermal growth. Such a difference sug-
gests that the isochoric growth of a cubic crystal with the
change in temperature is much more complex than the iso-
thermal growth of the cubic crystal and it is much more
difficult to control the growth of crystals. It is suggested that
a combination of isothermal growth with multi-step changes of
the growth temperature can be used in the growth of crystals
instead of the continuous change in the growth temperature
used in the inverse-temperature method for the growth of
crystals.

Discussion

The above analysis has been limited to the growth of a single
crystal in a liquid system. Generally, there are a significant
number of crystals present in a liquid system during the crystal
growth, i.e. the growth is a multi-crystal problem. For simulta-
neous growth of multiple crystals present in a liquid system of
constant volume, eqn (2) is modified as follows:

C0 V0 �
1

r

Xn
i¼1

Mi0

 !
¼ C V0 �

1

r

Xn
i¼1

Mi

 !

þ 1

rO

Xn
i¼1

Mi �Mi0ð Þ
 !

(25)

withMi0 as the initial mass of the i-th crystal andMi as the mass
of the i-th crystal at a growth time t. Taking derivative with

PCCP Paper



9416 |  Phys. Chem. Chem. Phys., 2022, 24, 9411–9417 This journal is © the Owner Societies 2022

respect to the growth time t for both sides of eqn (25), we have

V0 �
1

r

Xn
i¼1

Mi

 !
dC

dt
þ 1� OC

rO

Xn
i¼1

dMi

dt
¼ 0 (26)

According to the photoluminescence (PL) spectrum of semi-
conductor nanocrystals,31 the PL intensity as a function of the
emission wavelength approximately follows a Gaussian distri-
bution function. It is known that the PL intensity is propor-
tional to the concentration of nanocrystals and the reciprocal of
the emission wavelength is a linear function of the reciprocal of
the square of the nanocrystal size if the contribution of electro-
static interaction to the change of bandgap is negligible. There-
fore, we can assume that the size distribution of cubic crystals
can be approximately described by a Gaussian distribution as
follows:

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e
� x�x0ð Þ2

2s2 (27)

with x0 as the mean size of the cubic crystals and s as the
standard deviation. Therefore,

Xn
i¼1

Mi ¼ r
Xn
i¼1

Vi ¼ r
Xn
i¼1

xi
3 � rffiffiffiffiffiffiffiffiffiffi

2ps2
p

ð1
0

x3e
� x�x0ð Þ2

2s2 dx

� rffiffiffiffiffiffiffiffiffiffi
2ps2

p
ð1
�1

x3e
� x�x0ð Þ2

2s2 dx ¼ rffiffiffiffiffiffiffiffiffiffi
2ps2

p x0
3 þ 3s2x0

� � (28)

Substituting eqn (28) in eqn (26) yields

V0 �
1ffiffiffiffiffiffiffiffiffiffi
2ps2

p x0
3 þ 3s2x0

� �� �
dC

dt

þ 3ffiffiffiffiffiffiffiffiffiffi
2ps2

p 1� CO
O

x0
2 þ s2

� �dx0
dt

þ 2sx0
ds
dt

� �
¼ 0

(29)

from which we note that the monomer concentration in a
liquid solution during the growth of multiple crystals is depen-
dent on the change rates of the average size and the standard
deviation of the crystal sizes. The change rate of the average size
of the multiple crystals, which is likely associated with the
Ostwald ripening process, is dependent on the change rates of
the standard deviation and the monomer concentration.

Generally, it is very difficult to measure the diffusivity and
the reaction rate involved in the growth of crystals in a liquid
solution. The model presented in this work establishes the
correlation between the growth rate of the size of cubic crystals
in a liquid solution in a finite space and the growth conditions,
which can be used to evaluate the temporal evolution of the
crystal size. Comparing the numerical results from the model-
ing analysis with the experimental results for the crystal growth
under given conditions, one can determine the dominant rate
process controlling the growth of crystals and the important
rate parameters of diffusivity and reaction rate.

Conclusions

Understanding the growth behavior of nanoparticles and nano-
crystals in liquid solutions is of practical importance in

controlling the sizes of nanoparticles and nanocrystals for engineer-
ing applications. Following the approach given by Sung et al.,20 we
have developed a general formulation for the growth of a crystal/
particle in a liquid solution. This formulation takes account of the
combinational effect of the diffusion-limited growth and the
reaction-limited growth and incorporates the effects of the volu-
metric change of the liquid system and the change of the solubility
of the crystal/particle in the liquid solution.

We have considered three special growth scenarios for the
growth of a cubic crystal – Case 1: without the change in the
volume of the liquid system under isothermal condition;
Case 2: with the change in the volume of the liquid system
under isothermal condition; and Case 3: without the change in
the volume of the liquid system and with temperature change.
Closed-form solution for the temporal evolution of the size of a
cubic crystal is obtained for Case 1. The numerical results
reveal that there are three growth stages – linear growth, non-
linear growth and plateau for the growth under the Case 1. The
degree of supersaturation controls the initial growth and the
final size of the cubic crystal.

The growth behavior for the isochoric growth of a cubic
crystal with the change in temperature is much more complex
than the isothermal growth of a cubic crystal, and it is much
more difficult to control the growth of crystals. A combination
of isothermal growth with multi-step changes of the growth
temperature is preferred in the growth of crystals instead of the
continuous change in the growth temperature used in the
inverse-temperature method for the growth of crystals.

For the growth of multiple crystals of different sizes in a
liquid system without the changes in the volume of the liquid
system and the solubility of the crystals/particles in the liquid
solution, we have developed a mathematical formulation of the
change of the monomer concentration under the assumption
that the size distribution of the multiple crystals follows a
Gaussian distribution function. The formulation reveals that
the change rate of the average size of the multiple crystals,
which is likely associated with the Ostwald ripening process, is
dependent on the change rates of the standard deviation and
the monomer concentration.
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