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Abstract. Traumatic brain injury (TBI) is a massive public health
problem worldwide. Accurate and fast automatic brain hematoma seg-
mentation is important for TBI diagnosis, treatment and outcome pre-
diction. In this study, we developed a fully automated system to detect
and segment hematoma regions in head Computed Tomography (CT)
images of patients with acute TBI. We first over-segmented brain images
into superpixels and then extracted statistical and textural features to
capture characteristics of superpixels. To overcome the shortage of anno-
tated data, an uncertainty-based active learning strategy was designed
to adaptively and iteratively select the most informative unlabeled data
to be annotated for training a Support Vector Machine classifier (SVM).
Finally, the coarse segmentation from the SVM classifier was incorpo-
rated into an active contour model to improve the accuracy of the seg-
mentation. From our experiments, the proposed active learning strategy
can achieve a comparable result with 5 times fewer labeled data com-
pared with regular machine learning. Our proposed automatic hematoma
segmentation system achieved an average Dice coefficient of 0.60 on our
dataset, where patients are from multiple health centers and at mul-
tiple levels of injury. Our results show that the proposed method can
effectively overcome the challenge of limited and highly varied dataset.

Keywords: Medical image segmentation · Medical image processing ·
Traumatic brain injury · Active learning · Active contour model

1 Introduction

Traumatic brain injury (TBI) is a major cause of death and disability worldwide,
especially in children and young adults. Accurate and fast detection and diag-
nosis of brain damage in the early stage of injury is important for prompt and
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proper management of TBI patients [1]. To detect the presence and extent of
brain hematoma, Computed tomography (CT) is the imaging modality of choice
during the first 48 h after injury [1] due to its speed, low-cost, and availability.
Previous studies have shown that brain hematoma detection and volume calcu-
lation are important for TBI diagnosis [1], mortality and morbidity prediction
[2,3], and surgical management [4].

To facilitate TBI patient management, an automatic hematoma segmentation
system can provide accurate and quantitative evaluations of brain hematoma. It
can decrease medical costs and provide guidance for proper medical treatment
[4]. Many segmentation methods have been proposed. A semi-automated method
based on a region growing algorithm was proposed for brain hematoma [5] that
requires seed points fixed by the user. A level set algorithm was developed [6]
where candidate hematoma voxels were identified by an adaptive threshold. An
algorithm combining Gaussian Mixture Model (GMM) and Expectation Maxi-
mization was proposed to find hematoma component [7]. Most of the previous
studies rely on either manual initialization or the distribution of intensity values
in brain tissues to segment hematoma regions. However, hematoma intensity
varies across imaging protocols and patient conditions, and other anatomical
structures such as straight sinus exhibit a similar intensity. Moreover, these tech-
niques ignore textural differences between brain tissues and structures.

In this study, to better segment hematoma, we proposed a fully-automatic
hematoma segmentation framework that extracts texture features and integrates
a supervised model with an active contour model. One challenge here is although
there are plenty of medical images available, annotating these images is very
time-consuming. To overcome the shortage of labeled images, an active learning
strategy is presented. It started with training an initial support vector machine
(SVM) model using one annotated image and then queried the most informative
superpixels whose labels may lead to the greatest improvement to the model.
After active learning, the superpixel-based classification resulted in a coarse
hematoma segmentation. The coarse segmentation was incorporated into an
active contour model to generate the final fine segmentation.

Our contributions here are two-fold. First, we proposed an active learning
algorithm for image segmentation. Our experiments show that the active learning
strategy can effectively select the most informative samples whose labels result
in a significantly higher performance improvement compared with random selec-
tion. From our results, active learning can help overcome the shortage of anno-
tated data, which is a common problem in medicine. Secondly, we proposed a
hematoma segmentation framework and achieved a mean Dice coefficient of 0.60
on a challenging dataset. The dataset consists of CT scans from patients with
various health conditions and using different imaging protocol, where hematoma
regions are of various shapes, types and occur at different locations.

2 Methodology

As shown in Fig. 1, we first adjusted contrast within the CT images and per-
formed skull removal to extract the soft tissues for further analysis. The brain
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regions were then over-segmented into superpixels. For each superpixel si, sta-
tistical and textural features were extracted to generate a feature vector vi. The
label of each superpixel is denoted by yi, with yi = 1 when si belongs to a
hematoma region (i.e. the majority of pixels in si belong to a hematoma region)
and yi = 0 otherwise. An SVM classifier was trained to predict superpixel class
and generate a coarse segmentation map. Finally, the coarse segmentation was
used as a segmentation prior for an active contour model to refine the segmen-
tation boundary.

Fig. 1. A diagram of the proposed framework

2.1 Pre-processing

Let us define an image of size H × W as I : Ω → R, where Ω = {1, 2, . . . ,H} ×
{1, 2, . . . ,W}. In the first pre-processing step, a linear transformation

IHU = Iraw × slope + intercept (1)

was performed to convert the gray values stored in Digital Imaging and Com-
munication in Medicine (DICOM) format to Hounsfield units (HU), where Iraw

is the image with gray values stored in DICOM format, and IHU is the trans-
formed image in HU. slope and intercept are parameters retrieved from the
DICOM header file.

Next, contrast adjustment was performed by extracting and scaling the pre-
defined range of HU into 8-bit grayscale, as shown in (2).

Iadj(x) =

⎧
⎨

⎩

0 IHU (x) < wc − ww
2

(IHU (x) − (wc − ww
2 )) × 255

ww wc − ww
2 ≤ IHU (x) ≤ wc + ww

2
255 IHU (x) > wc + ww

2
(2)

where Iadj(x) is the intensity after contrast adjustment at location x ∈ Ω, and
ww and wc are the window width and the window center obtained from the
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(a) (b) (c)

Fig. 2. An illustration of the proposed data preparation (Color figure online). (a)
The image after the contrast adjustment. (b) The image after the skull stripping.
(c) Superpixel generation.

DICOM header file, respectively. To highlight the appearance and structure of
soft tissue while avoiding information loss in pathological tissues, a window width
of 80 HU and window center of 80 HU was used in this study.

After the contrast adjustment, a skull stripping method described in [8] was
followed to extract brain tissues. For each CT slice, a rectangular contour was
initialized around the center of the head. Then, the distance regularized level set
evolution algorithm [9] was used to evolve the initialized contour to fit the border
of the brain region enclosed by the skull. An example of contrast adjustment
and skull stripping is shown in Fig. 2(a)–(b). The image after skull stripping is
denoted as Ib.

2.2 Superpixel Generation

After pre-processing, we used the simple linear iterative clustering (SLIC) algo-
rithm [10] to over-segment Ib into superpixels. The SLIC algorithm generates a
group of coherent pixel collections based on color and spatial proximity (shown
in Fig. 2(c)). There are many advantages of using superpixels. First, instead of
processing every image pixel, using superpixels where similar pixels are clustered
can reduce computation cost efficiently. Secondly, superpixels divide the entire
image into meaningful image patches. Features extracted from superpixels can
better characterize regional information. Considering that superpixels adhere to
edges within an image (as exhibited in Fig. 2(c)), image segmentation can be per-
formed via superpixel classification. In this work, we performed feature extrac-
tion on superpixels and classify those superpixels as belonging to hematoma
regions or not. Based on these classification results, a coarse hematoma segmen-
tation can be generated. In this study, Ib was over-segmented into approximately
5000 superpixels (each superpixel includes approximately 30 pixels).
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2.3 Feature Extraction

A total of 63 features were extracted to describe the characteristics of superpixels.

Intensity Statistics. The mean, variance, skewness, and kurtosis of intensities
in each superpixel were calculated. The mean value measures the average inten-
sity level while the variance measures heterogeneity. The skewness and kurtosis
describe the asymmetry and the tailedness, respectively. As different ranges of
Hounsfield units correspond to different anatomical structures, these intensity
statistics can help to describe superpixels.

Gabor Filters. A Gabor filter is a linear filter used for edge detection and
textural analysis. The real component of a Gabor filter (assumed to be centered
at zero) can be written as

g(x, y;λ, θ, ψ, σ, γ) = exp
(

− x′2 + γ2y′2

2σ2

)

cos
(

2π
x′

λ
+ ψ

)

, (3)

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ,

where (x, y) is the location of the Gabor filter. λ and ψ represent the wavelength
and phase offset of the sinusoidal wave, respectively. θ and σ represent the ori-
entation and standard deviation of the Gaussian envelope, respectively, while γ
is the spatial aspect ratio.

In this study, we used a bank of Gabor filters introduced in [11]. 2-D Gabor
filters oriented at 0, 30, 60, 90, 120, and 150◦ with wavelengths of 2

√
2, 4

√
2, 8

√
2,

and 16
√

2 were used to calculate the response map at γ = 0.5, ψ = 0 and
σ = 0.5λ. The mean and variance of Gabor responses at each superpixel were
calculated as Gabor features as well as the dominant spatial frequency and its
orientation.

Saliency. Saliency can be constructed as visual attention. In this study, a low-
level approach was employed to determine the saliency of a superpixel by com-
puting the average Euclidean distance of its mean intensity with 50 other super-
pixels that were randomly selected from the same image. Different from other
extracted features, the saliency value contains global information at the slice
level. From our observation, CT slices located close to the top of the head have
a higher intensity value due to the partial volume effect. The saliency measure-
ment can suppress the effect from this slice-level intensity shift. Also, it can help
reduce the variability in intensity for the same tissue across different cases.

Gray-Level Co-Occurrence Matrix. A 16 × 16 patch around the center
of each superpixel was taken to calculate the gray-level co-occurrence matrix
(GLCM), which gives the joint probability distribution of gray-level pairs of
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neighboring pixels. Let Ωp = {1, 2, . . . , Nlevel} × {1, 2, . . . , Nlevel}, where Nlevel

is the number of levels that gray intensities were quantized into. In this study,
Nlevel = 8. Second-order statistics of the GLCM were used as features, specifi-
cally contrast, energy, and homogeneity, which are calculated as

contrast =
∫

Ωp

|i − j|2p(i, j)di dj, (4)

energy =
∫

Ωp

p(i, j)2di dj, (5)

homogeneity =
∫

Ωp

p(i, j)
1 + |i − j|di dj, (6)

where p(i, j) is the value of GLCM at location (i, j).

Wavelet Packet Transformation. A two-level discrete Haar wavelet packet
transformation [12] was applied to a 16 × 16 patch around the center of each
superpixel. The image patch was decomposed into 8 bands, with each band
containing information of different frequencies. The energy of coefficients in each
band was computed and the percentages of energy corresponding to the details
were used as regional features to characterize each superpixel.

2.4 Active Learning

Active learning is a method [13] to train a supervised classifier with the small-
est annotated training dataset possible. As shown in Algorithm 1, the proposed
active learning strategy started with training an initial SVM model using the ini-
tial training dataset, which consists of superpixels from only one labeled CT scan.
After that, the initial model was used to classify superpixels from the pool dataset,
which contains CT scans from 49 patients. Based on the predicted possibilities, we
calculated the conditional Shannon entropy of each superpixel as

HΘ(si) = −
∑

ŷ∈{0,1}
pΘ(yi = ŷ|vi) log(pΘ(yi = ŷ|vi)), (7)

where Θ denotes the trained SVM model. vi and yi are the feature vector and
label of si, respectively. pΘ(yi = ŷ|v) denotes the predicted probability that si

belongs to the corresponding class.
HΘ(si) is used as an uncertainty measurement for si. A high HΘ(si) indi-

cates that the trained model is uncertain about which class si belongs to. This
may occur if si is under-represented in the current training dataset. Thus super-
pixels with high uncertainty values are the most informative samples to update
the model. In our work, superpixels were ranked based on their uncertainty
measurements in descending order and the top Nal superpixels were selected
to be annotated and added into the training dataset. Next, an updated SVM
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model was trained and the uncertainty measurements of the superpixels in the
pool dataset were re-calculated. After the final SVM classifier was trained, coarse
hematoma segmentation maps were generated by classifying superpixels in brain
images.

Algorithm 1. Active Learning Strategy
Input: Labeled training dataset Dl, unlabeled pool dataset Dp, the number of

iterations Niter, the number of samples selected for query at each iteration Nal

Output: SVM classifier Θ∗

1: Train an initial SVM model Θ0 on Dt

2: for k = 1, k++, while k <= Niter do
3: Use the trained SVM classifier Θk−1 to measure the uncertainty of superpixels

in Dp.

4: Select Nal most informative samples {v(k)
1 , v

(k)
2 , ..., v

(k)
Nal

} from Dp.

5: Update Dp: Dp = Dp - {v(k)
1 , v

(k)
2 , ..., v

(k)
Nal

}
6: Query the physician for labels {l(k)1 , l

(k)
2 , ..., l

(k)
Nal

} of the selected samples

7: Update Dt: Dt = Dt

⋃{(v(k)
1 , l

(k)
1 ), (v

(k)
2 , l

(k)
2 ), ..., (v

(k)
Nal

, l
(k)
Nal

)}
8: Train an SVM model Θk on the updated Dt.
9: end for

10: Return Θ∗ = ΘNiter

2.5 Active Contour Model

A region-based active contour model [14] was extended by incorporating coarse
hematoma segmentation to improve the segmentation performance. In an active
contour model, a dynamic contour evolves iteratively by minimizing the energy
function. In this work, the energy function is defined as a combination of a
region-based term, a prior shape term, and a regularization term. The shape
term was added to give a penalty when the evolving contour at the tth iteration
deviates from the prior shape.

Let φ : Ω → R, Ω = {1, 2, . . . ,H} × {1, 2, . . . ,W} be the level function of
an Euclidean signed distance function. The contour is represented by C = {x ∈
Ω|φ(x) = 0}, where points inside the contour have φ(x) > 0 and points outside
the contour have φ(x) < 0. Given an image Ib, let CSV M denote the predicted
hematoma contour from the SVM classifier, with φSV M the corresponding level
set function. φSV M is used both as an initial contour φ(0) for curve evolution
and a prior shape for shape constraints. The energy function can be written as

E(φ) = Eregion(φ) + α1Eshape(φ) + α2Ereg(φ), (8)

Eregion(φ) =
∫

Ω

|Ib(x) − c1|2H(φ(x))dx +
∫

Ω

|Ib(x) − c2|2(1 − H(φ(x)))dx,

(9)
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Eshape(φ) =
∫

Ω

(φ(x) − φSV M (x))2dx, (10)

where H(·) is the Heaviside function. ∇(·) is the gradient operation. Ereg fol-
lows the formula proposed in [9], whose role is to maintain the signed distance
property |∇φ(x)| = 1 within the vicinity of the zero level set. c1 and c2 in (9)
are the average of Ib inside and outside C, respectively. They are calculated as

c1(φ) =

∫

Ω
Ib(x)H(φ(x))dx
∫

Ω
H(φ(x))dx

(11)

and

c2(φ) =

∫

Ω
Ib(x)(1 − H(φ(x)))dx
∫

Ω
(1 − H(φ(x)))dx

. (12)

The final contour can be obtained by using the gradient descent algorithm
to minimize the energy function over φ:

φ� = argmin
φ

E(φ). (13)

The active contour model proposed in this study was used to smooth the
boundary of coarse hematoma segmentation.

2.6 Evaluation Metrics

To evaluate the performance of a trained SVM model on superpixel-based clas-
sification, the precision, recall, and accuracy were calculated, as well as the Dice
coefficient between the coarse segmentation and manual segmentation. After the
active contour algorithm, the final fine segmentation was evaluated by calcu-
lating pixel-based precision, recall, accuracy, and Dice coefficient between the
final segmentation and manual segmentation. All measures were patient-wise
and averaged over patients in the test set.

3 Experimental Results and Discussion

3.1 Dataset

Our dataset consists of 35 head CT scans from the Progesterone for Traumatic
brain injury: Experimental Clinical Treatment (ProTECT) study [15] and 27
brain CT scans from University of Michigan Health System. The brain scans
are from patients who experienced a moderate to severe head injury and were
enrolled in an emergency department within 4 h of their injury. In total, 2433
axial CT images from 62 patients who suffered from acute TBI were used in
this study, with image slice thickness ranging from 3.0 to 5.0 mm. To validation
our proposed hematoma segmentation framework and active learning strategy,
13 cases were annotated as the test set by an experienced medical expert, who
examined 2D cross-sectional slices and then manually drew the boundary around
hematoma regions. We used the remaining 49 cases as the training set, wherein
each experiment of active learning one slice was randomly selected and annotated
as the initial training set while all others were used as the pool set.
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Fig. 3. Comparison of active learning with Nal = 5, 10, 20 and random selection. The
Dice coefficients of random selection with different numbers of added superpixels are
averaged over 50 experiments. 95% confidence intervals are also given.

3.2 Active Learning

An initial SVM model was trained on the initial training set using a linear
kernel. We then used the active learning strategy to select the most informative
superpixels, which were then annotated, gradually improving the performance
of the model. Several experiments were performed to explore the performance
of classifiers with the same initial training set while varying Nal. From Fig. 3,
the curves tend to plateau after 1000 newly labeled superpixels are added with
active learning, and the effect of Nal on the final performance is not significant. In
contrast to active learning strategy, an SVM classifier was trained as a baseline on
the initial training set and a fixed number of randomly selected superpixels from
the pool set (shown as ‘Random Selection’ in Fig. 3). 50 independent experiments
were performed and the results were averaged to represent the performance of
using random selection. From Fig. 3, with the same number of added superpixels,
the performance of the SVM model trained using the active learning strategy is
significantly higher than the baseline. After adding over 1000 additional samples,
the model trained with active learning achieved an average Dice coefficient of
0.55 over 13 patients.

To further examine the robustness of active learning algorithm over differ-
ent initial datasets, we repeated the above active learning algorithm and random
selection method for 20 times, respectively. For each time, one slice was randomly
selected and annotated as the initial training set while other slices in the training
set were used as the pool set. Each SVM classifier using active learning were trained



394 H. Yao et al.

Table 1. Comparison of the active learning strategy and random selection method
using 20 different initial training sets. n is the number of additional superpixels added
to the initial training set. The mean and standard derivation (stddev) of evaluation
measurements over 20 experiments are given in the format of mean (stddev).

Dice Precision Recall Accuracy

Active Learning (n = 1000) 0.55 (0.01) 0.59 (0.02) 0.60 (0.02) 0.97 (0.01)

Random Selection (n = 1000) 0.47 (0.02) 0.45 (0.02) 0.61 (0.03) 0.94 (0.01)

Random Selection (n = 5000) 0.54 (0.01) 0.57 (0.02) 0.60 (0.02) 0.96 (0.01)

Brain CT scan after
contrast adjustment

Manual 
Annotation

Coarse 
Segmentation

Fine 
Segmentation

Fig. 4. Segmentation results. Each row gives an example of the segmentation compared
with the manual segmentation. The segmented or annotated hematoma regions are
shown in red (Color figure online).

on the initial training set and 1000 additional samples selected with Nal = 5. The
comparison of performance metrics between active learning and random selection
is shown in Table 1. Our final SVM models from active learning have comparable
performance with random selection models trained on the same initial training
sets added with five times more annotated superpixels. The standard derivations
of measures over experiments are very small.

3.3 Segmentation

After constructing the coarse hematoma segmentation for each slice via a trained
SVM classifier, the proposed active contour model was performed to refine the
boundary. An additional 10 CT slices in the pool set were annotated to tune
the parameters for active contour. Finally, we used α1 = 2, α2 = 0.5, ε = 0.05
and the step size μ = 0.2. From Fig. 4, the coarse segmentation has an accu-
rate hematoma localization while the boundary is rough, which may be due to
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Table 2. Segmentation performance comparison. The patient-wise mean and stan-
dard derivation (stddev) of evaluation measurements are given in the format of mean
(stddev).

Dice Precision Recall Accuracy

Coarse segmentation 0.55 (0.21) 0.62 (0.23) 0.59 (0.18) 0.97 (0.03)

Fine segmentation 0.60 (0.19) 0.63 (0.23) 0.67 (0.16) 0.98 (0.03)

GMM [7] 0.46 (0.22) 0.45 (0.23) 0.60 (0.18) 0.94 (0.06)

superpixel sampling. The active contour model can help smooth the boundary
and improve segmentation accuracy. From Table 2, the proposed active contour
model greatly improved the segmentation performance. Additionally, our method
significantly outperformed a previous method named GMM [7].

4 Conclusion

Automatic and accurate hematoma segmentation is important for TBI patient
management. In this study, a combination of active learning and an active con-
tour model was proposed for hematoma segmentation in acute cases. In super-
vised SVM training, statistical and textural features were extracted to charac-
terize superpixels over-segmented from brain images. With the proposed active
learning strategy, an SVM classifier was trained on a very small amount of anno-
tated data. After that, the coarse segmentation from the SVM classifier was
incorporated into the active contour model to generate fine hematoma segmen-
tation. The overall segmentation method achieved a mean dice of 0.60 in a highly
heterogeneous dataset. Our experiments show that an active learning strategy
can effectively select the most informative data points from a highly imbalanced
and varied data pool. From our results, active learning is potential to overcome
the shortage of annotated data in medicine.

For future work, we will continue working on the active learning strategy. In
our current framework, during the active learning, the selected superpixels will
be highlighted in the brain images and presented to clinicians for annotation.
Considering annotating 1000 superpixels is still not an easy task, further infor-
mativeness measurements will be designed to find the most informative image
patches or CT slices to reduce the labor required in the annotation phase of
active learning.

Acknowledgment. The work is supported by National Science Foundation under
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