
Security in Asynchronous Interactive Systems?

(Invited paper)

Ivan Geffner1[0000−0001−6900−2109] and Joseph Y. Halpern1[0000−0002−9229−1663]

Cornell University, Ithaca NY 14850, USA

Abstract. Secure function computation has been thoroughly studied
and optimized in the past decades. We extend techniques used for secure
computation to simulate arbitrary protocols involving a mediator. The
key feature of our notion of simulation is that it is bidirectional: not
only does the simulation produce only outputs that could happen in
the original protocol, but the simulation produces all such outputs. In
asynchronous systems there are also new subtleties that arise because
the scheduler can influence the output. Thus, these requirements cannot
be achieved by the standard notion of secure computation. We provide
a construction that is secure if n > 4t, where t is the number of malicious
agents, which is provably the best possible. We also show that our construction
is secure in the universal composability model and that it satisfies additional
security properties even if 3t < n ≤ 4t.

1 Introduction

In a distributed system, agents often want to be able to carry out a computation
without revealing any private information. There has been a great deal of work
showing how and to what extent this can be done. We briefly review the most
relevant work here.

Ben-Or, Goldwasser and Widgerson [3] (BGW from now on) and Chaum,
Crépeau, and Damgard [8] showed that, if n > 3t, then every function f of n
inputs can be t-securely computed by n agents in a synchronous system with
private communication channels, where “t-securely computed” means that no
coalition of at most t malicious agents can either (a) prevent the honest agents
from correctly computing the output of f given their inputs (assuming some fixed
inputs for malicious agents who do not provide inputs) or (b) learn anything
about the inputs of the honest agents (beyond what can be concluded from the
output of f). The notion of an agent “not learning anything” is formalized
by comparing what happens in the actual computation to what could have
happened had there been a trusted third party (which we here call a mediator)
who will calculate f(x1, . . . , xn) after being given the input xi by agent i,
for i = 1, . . . , n. Then, roughly speaking, the malicious agents do not learn

? Supported in part by NSF grants IIS-1703846 and IIS-0911036, ARO grant W911NF-
17-1-0592, MURI grant W911NF-19-1-0217 from the ARO, and a grant from Open
Philanthropy.

2 I. Geffner and J.Y. Halpern

anything if the distribution of outputs in the actual computation could have
also resulted in the computation with a mediator if the malicious agents had
given the appropriate input to the mediator.

Ben-Or, Canetti and Goldreich [2] (BCG from now on) proved analogous
results in the asynchronous case. Asynchrony raises new subtleties. For example,
agent i cannot tell if the fact that he has received no messages from another agent
j (which means that i cannot use j’s input in computing f) is due to the fact
that j is malicious or that its messages have not yet arrived. Roughly speaking,
when defining secure function computation in an asynchronous setting, BCG
require that for every scheduler σe and set T of malicious agents, no matter
what the agents in T do, the resulting distribution over outputs could have also
resulted in the computation with a mediator if the malicious agents had given
the appropriate input to the mediator.

BCG show that, in asynchronous systems, if n > 4t, the malicious agents
cannot prevent the honest agents from correctly computing the output of f
given their inputs, nor can the malicious agents learn anything about the inputs
of the honest agents. Ben-Or, Kelmer, and Rabin [4] (BKR from now on) then
showed if we are willing to tolerate a small probability ε > 0 that the agents do
not correctly compute f or that the malicious agents learn something, then we
can achieve this if n > 3t. BCG and BKR also prove matching lower bounds for
their results, showing that we really need to have n > 4t (resp., n > 3t).

We can view secure function computation as a one-round interaction with a
trusted mediator: each agent sends its input to the mediator, the mediator waits
until it receives enough inputs, applies f to these inputs (again, replacing missing
inputs with a default value), and sends the output back to the agents, who then
output it. We generalize BCG and BKR’s results for function computation to a
more general setting. Specifically, we want to simulate arbitrary interactions with
a mediator, not just function computation. Also, unlike previous approaches, we
want the simulation to be “bidirectional”: the set of possible output distributions
that arise with the mediator must be the same as those that arise without the
mediator, even in the presence of malicious parties. More precisely, we show that,
given a protocol profile π for n agents1 and a protocol πd for a mediator, we
can construct a protocol profile π′ such that for all sets T of fewer than n/4
malicious agents, the following properties hold:

(a) For all protocols τ ′T for the malicious agents and all schedulers σ′e in the
setting without the mediator, there exists a protocol τT for the agents in T
and a scheduler σe in the setting with the mediator such that, for all input
profiles x, the output distribution in the computation with π′, τ ′, and σ′e
with input x is the same as the output distribution with π + πd, τ , and σe
with input x.

1 In the economics literature, the term “profile” is used to denote a tuple, so, for
example, a protocol profile is a tuple of protocols, one for each agent. In this paper,
we refer to protocol profiles as just “protocols”, as is standard in the distributed
computing literature.

Security in Asynchronous Interactive Systems (Invited paper) 3

(b) For all protocols τT for the malicious agents and all schedulers σe in the
setting with the mediator, there exists a protocol τ ′T for the agents in T
and a scheduler σ′e in the setting without a mediator such that, for all input
profiles x, the output distribution in the computation with π′, τ ′, and σ′e
with input x is the same as the output distribution with π + πd, τ , and σe
with input x.

We use the notation π + πd to indicate that the agents use protocol π and the
mediator uses protocol πd (we use the subscript d to denote the mediator); we
view the mediator as just another agent here. This result implies that arbitrary
distributed protocols that work in the presence of a trusted mediator can be
compiled to protocols that work without a mediator, as long as there are less
than n/4 malicious agents. And, just as BKR, if we allow a probability ε of error,
we can get this result while tolerating up to n/3 malicious agents. BCG proved
the analogue of (a) for secure function computation, which is enough for security
purposes: if there is any bad behavior in the protocol without the mediator, this
bad behavior must already exist in the protocol with the mediator. However,
(b) also seems like a natural requirement; if a protocol satisfies this property,
then all behaviors in the protocol with the mediator also occur in the protocol
without the mediator.

Property (b) is typically not required in security papers. It plays a critical
role in our work on implementing mediators [1], but we believe it of independent
interest. Requiring only (a) may result in protocols where outcomes that may
be likely in the mediator setting do not arise at all. This is especially relevant
in asynchronous systems, since by requiring only (a) we are implicitly assuming
that the adversary has total control over the scheduler. However, it may be the
case that the scheduler acts randomly or that is even influenced by honest agents.
For instance, suppose that a group of n agents wants to check who has the fastest
internet connection. To do this, each agent pings the server and waits for the
server’s response. The server (who we are viewing as the mediator) waits until
the first ping arrives, then sends a message to each agent saying which agent’s
ping was received first. In this example, the scheduler determines the lag in
the system. If we wanted to simulate this interaction without the mediator but
requiring only property (a), even with no malicious agents, a protocol profile
in which every honest agent does nothing and outputs 1 would suffice. But,
intuitively, this implementation does not capture the behavior of the server.
Similar examples exist even in the case of function evaluation. Suppose a group
of n congressmen vote remotely (by sending a vote to a trusted third party) to
either pass or not a bill that requires support from at least 90% of them. We can
view this as a multiparty computation of a function f in which each agent has
input 0 (vote against) or 1 (vote for), and the output is either 0 (reject the bill)
or 1 (pass the bill) depending on how many agents had input 1 (agents that do
not submit input count as 0). In this case, a protocol in which every agent does
nothing and outputs 0 securely computes f while tolerating up to n/4 malicious
agents. To see this, note that regardless of the adversary, the scheduler can
delay n/4 of the players until everyone else has finished the computation. This

4 I. Geffner and J.Y. Halpern

is indistinguishable from n/4 agents deviating from the protocol and submitting
no input. However, again, this protocol does not capture the intended behavior
of the voting process. By way of contrast, a protocol that bisimulates f would
come closer to capturing the intended behavior of the voting process.

Clearly, the results of BCG and BKR are special cases of our result. However,
in general, our results do not follow from those of BCG/BKR, as is shown in
Section 3.2. Specifically, the results of BCG/BKR do not give us property (b),
since the outcome can depend on the behavior of the scheduler. For example,
consider protocols for two agents and a mediator m in which each agent sends
its input to the mediator, the mediator m sends to each agent the first message
it receives, and each agent outputs whatever they receive from the mediator. Let
σi
e be the scheduler that delivers the message from agent i first, for i = 1, 2. It

is easy to check that if the agents have inputs 0 and 1, respectively, and play
with mediator σ1

e , then they both output 0, while if they play with σ2
e , then they

both output 1. This means that, unlike secure function computation, even if all
the agents are honest, the distribution over the agents’ outputs can depend on
the scheduler’s protocol, not just the agents’ inputs.

Even though our results do not follow from those of BCG/BKR, our proofs
very much follow the lines of those of BCG/BKR. However, there are some
new subtleties that arise in our setting. In particular, as the example above
shows, when we try to implement the setting with the mediator, the agents
must somehow keep track of the scheduler’s possible behaviors. Doing this adds
nontrivial complexity to our argument. We also show that our construction
satisfies an analogue of (a) and (b) in the universal composability framework [7],
which intuitively means that if a set of agents runs a distributed protocol that
requires calls to a subroutine that can be implemented with a mediator, then
the agents can implement that subroutine using our construction instead (with
no need of a mediator), and the resulting protocol would preserve its original
security properties.

Besides the main result, we also show that our protocol without the mediator
has two additional security properties, which may be of independent interest.
Specifically, we show that the following two properties hold for coalitions of
malicious agents of size at most t < n/3.

(P1) The only way malicious agents can disrupt the computation is by preventing
honest agents from terminating; if an honest agent terminates, then its
output is correct.

(P2) If 2t+ 1 or more honest agents terminate, then all honest agents terminate.
That is, either all the honest agents terminate or a nontrivial number of
honest agents (more than n− 2t) do not terminate.

If we allow an ε probability of error, we get analogous results if we have n > 2t
rather than n > 3t. We remark that these two properties are in fact also satisfied
by BCG’s and BKR’s implementations, but they do not prove this (or even state
the properties explicitly).

Our interest in these properties stems in part from a game-theoretic variant
of the problem that is considered by Abraham et al. [1], where agents get utility

Security in Asynchronous Interactive Systems (Invited paper) 5

for various outcomes, and, in addition to honest and malicious agents, there are
rational agents, who will deviate from a protocol if (and only if) it is in their
interest to do so. We also assume that honest agents can leave “wills”, so that if
sufficiently many honest agents do not terminate, the remaining agents will be
punished. Property P2 guarantees that either all the honest agents terminate,
or sufficiently many of them do not terminate so as to guarantee that rational
agents will not try to prevent honest agents from terminating (due to the threat
of punishment). Property P1 guarantees that if all the honest agents terminate,
their output will be correct. Thus, using these results allows us to obtain results
stronger than those of this paper in the game-theoretic setting.

The focus of this paper is on upper bounds. Since our algorithms have the
same upper bounds as those of BCG and BKR, despite the results of BCG and
BKR being special cases of our results, and BCG and BKR prove lower bounds
that match their upper bonds on the number of malicious agents that can be
tolerated, we immediately get lower bounds that match our upper bounds from
the results of BCG and BKR.

2 The Model

The model used throughout this paper is that of an asynchronous network in
which every pair of agents can communicate through a private and reliable
communication channel. For most of our results, we assume that all messages sent
through any of these channels are eventually received, but they can be delayed
arbitrarily. The order in which these messages are received is determined by
the environment (also called the scheduler), which is an adversarial entity. The
scheduler also chooses the order in which the agents are scheduled. For some
of the results of this paper, we drop the condition that all messages must be
eventually delivered. We call these more general schedulers relaxed schedulers.

Whenever an agent is scheduled, it reads all the messages that it has received
since the last time it was scheduled, sends a (possibly empty) sequence of
messages, and then performs some internal actions. We assume that the scheduler
does not deliver any message or schedule other agents during an agent’s turn.
Thus, although agent i does not send all its messages simultaneously when it is
scheduled, they are sent atomically, in the sense that no other agent is scheduled
while i is scheduled, nor are any messages delivered while i is scheduled. Note
that the atomicity assumption is really a constraint on the scheduler’s protocol.

More precisely, consider the following types of events:

– sch(i): Agent i gets scheduled.
– snd(µ, j, i): Agent i sends a message µ to agent j.
– rec(µ, j, i): Message µ sent by j is received by i. The message µ must be one

sent at an earlier time to i that was not already received.
– comp(v, i): Agent i locally computes value v.
– out(s, i): Agent i outputs string s.
– done(i): i is done sending messages and performing computations (for now).

6 I. Geffner and J.Y. Halpern

For simplicity, we assume that agents can output only strings in {0, 1}∗.
Note that all countable sets can be encoded by such strings, and thus we can
freely talk about agents being able to output any element of any countable set
(for instance, elements of a finite field Fq) by assuming that they are actually
outputting an encoding of these elements. We also assume that at most one
event occurs at each time step. Let h(m) denote a global view up to time m: a
sequence that starts with an input profile x, followed by the ordered sequence
of events that have occurred up to and including time m. We assume that the
only events between events of the form sch(i) and done(i) are ones of the form
snd(µ, j, i) and comp(v, i). This captures our atomicity assumption. We do not
include explicit events that correspond to reading messages. (Nothing would
change if we included them; they would simply clutter the notation.) Message
delivery (which is assumed to be under the control of the scheduler) occurs at
times between when agents are scheduled. We can also consider the subsequence
involving agent i, namely, i’s initial state, followed by events of the form sch(i),
snd(·, ·, i), comp(·, i), rec(·, ·, i), and done(i). This subsequence is called i’s local
view . We drop the argument m if it can be deduced from context or if it is
not relevant (for instance, when we consider the local view of an agent after a
particular event).

Agent i moves only after a sch(i) event. What it does (in particular, the order
in which i sends messages) is determined by i’s protocol, which is a function of i’s
local view. The scheduler moves after an action of the form done(i) or rec(·, ·, i).
It is convenient to assume that the scheduler is also running a protocol, which is
also a function of its local view. Since the scheduler does not see the contents of
messages, we can take its view to be identical to h(m), except that comp events
and the contents of the messages in snd and rec events are removed, although
we do track the index of the messages delivered; that is, we replace events of the
form snd(µ, i, j) and rec(µ, i, j) by snd(i, j) and rec(i, j, `), where ` is the index
of the message sent by i to j in h(m). For instance, rec(i, j, 2) means that the
second message sent by i to j was delivered to j. Note that the scheduler does
see events of the form done(i); indeed, these are signals to the scheduler that
it can move, since i’s turn is over. Since we view the agents (and the mediator)
as sending messages atomically, in the sequel, we talk about an agent’s (or the
mediator’s) turn. An agent’s kth turn takes place the kth time it is scheduled.
During its turn, the agent sends a block of messages and performs some local
computation.

It is more standard in the literature to assume that agents perform at most
one action when they are scheduled. We can view this as a constraint on agents’
protocols. A single-action protocol for agent i is one where agent i sends at most
one message before performing the done(i) action. As we show in Appendix 3.6,
we could have restricted to single-action protocols with no loss of generality as
far as our results go; allowing agents to perform a sequence of actions atomically
just makes the exposition easier.

Even though it might appear that malicious agents and the scheduler act
independently, it is shown by Abraham et al. [1, Section A.1] that we can assume

Security in Asynchronous Interactive Systems (Invited paper) 7

without loss of generality that they can coordinate their actions, even when
there is no direct communication channel between them. In fact, we can assume
without loss of generality that they are all under the control of a single entity that
is aware of all their local views at all times. We call this entity the adversary.

Definition 1. An adversary is a triple (T,σT , τe), consisting of a set T of
malicious agents, the protocol τT used by the agents in T , and a protocol σe for
the scheduler. An adversary where the scheduler is relaxed is a relaxed adversary.

In this paper, we consider protocols that involve a mediator, typically denoted
d, using a protocol denoted πd. In protocols that involve a mediator, we assume
that honest agents’ protocols are always such that the honest agents communicate
only with the mediator and not with each other, as opposed to malicious agents
that can do both. As far as the scheduler is concerned, the mediator is like any
other agent, so the scheduler (and the mediator’s protocol) determine when the
mediator sends and receives messages. However, the mediator is never malicious,
and thus never deviates from its announced protocol.

We deal only with bounded protocols, where there is a bound N on the
number of messages that an honest agent sends. Of course, there is nothing to
prevent malicious agents from spamming the mediator and sending an arbitrary
number of messages. We assume that the mediator reads at most N messages
from each agent i, ignoring any further messages sent by i.

For our results involving termination, specifically, (P2), it is critical that
agents know when the mediator stops sending messages. For these results, we
restrict the honest agents and the mediator to using protocols that have the
following canonical form: Using a canonical protocol, each honest agent tags its
`th message with label ` and all honest agents are guaranteed to send at most
N messages regardless of their inputs or the random bits they use. Whenever
the mediator receives a message from an agent i, it checks its tag `; if ` > N
or if the mediator has already received a message from i with tag `, it ignores
the message. The mediator is guaranteed to eventually terminate. Whenever this
happens, it sends a special “STOP” message to all agents and halts. Whenever
an honest agent receives a “STOP” message, it terminates.

Even though canonical protocols have a bound N on the number of messages
that honest agents and the mediator can send, the mediator’s local view in a
canonical protocol can be arbitrarily long, since it can be scheduled an arbitrary
number of times. We conjecture that, in general, since the message space is
finite, the expected number of messages required to simulate the mediator is
unbounded. However, we can do better if the mediator’s protocol satisfies two
additional properties. Roughly speaking, the first property says that the mediator
can send messages only either at its first turn or in response to an agent’s
message; the second property says that the mediator ignores empty turns, that
is, turns where it does not receive or send messages. More precisely, the first
property says that whenever the mediator πd is scheduled with view hd, then if
hd 6= () (i.e., if hd is not the initial view) or if the mediator has not received any
messages in hd since the last time it was scheduled, then πd(hd) = done(d). The

8 I. Geffner and J.Y. Halpern

second property says that πd(hd) = πd(h′d), where h′d is the result of removing
consecutive (done(d), sch(d)) pairs in hd (e.g., if hd = (sch(d), snd(µ, j, d), done(d),
sch(d), done(d), rec(µ′, i, d), sch(d), done(d), sch(d)), then h′d = (sch(d),
snd(µ, j, d), done(d), rec(µ′, i, d), sch(d))). A protocol for the mediator that satisfies
these two properties is called responsive. In the full paper [?, Section 4.4], we
show that if the mediator uses a responsive protocol πd that can be represented
using a circuit with c gates, then we can simulate all protocol profiles π + πd in
such a way that the expected number of messages sent by honest agents during
the simulation is polynomial in n and N and linear in c.

3 Secure Computation in Interactive Settings

In this section, we present the main results of this paper and show how they
extend and generalize other well-known results.

3.1 The BGW/BCG notion of secure computation

Secure computation is concerned with jointly computing a function f on n
variables, where the ith input is known only to agent i. For instance, if we want
to compute the average salary of the people from the state of New York, then n
would be New York’s population, the input xi is i’s salary, and f(x1, . . . , xn) =∑n

i=1 xi∑
xi 6=0 1 . (For the denominator we count only people who are actually working.)

Ideally, a secure computation protocol that computes f would be a protocol in
which each agent i outputs f(x1, . . . , xn) and gains no information about the
inputs xj for j 6= i. In our example, this amounts to not learning other people’s
salaries.

Typically, we are interested in performing secure computation in a setting
where some of the agents might be malicious and not follow the protocol. In
particular, they might not give any information about their input or might just
pretend that they have a different input (for instance, they can lie about their
salary). What output do we want the secure computation of f to produce in this
case? To make precise what we want, we use notation introduced by BGW and
BCG.

Let x be a vector of n components; let C be a subset of [n] (where we use the
notation [n] to denote the set {1, . . . , n}, as is standard); let xC denote the vector
obtained by projecting x onto the indices of C; and if z is a vector of length
|C|, let x/(C,z) denote the vector obtained by replacing the entries of x indexed
by C with z. Given a set C of indices, a default value, which we take here to be
0, and a function f , we take fC to be the function results from applying f , but
taking the inputs of the agents not in C to be 0; that is, fC(x) = f(x/(C,0)).
Roughly speaking, if only the agents in C provide inputs, we want the output of
the secure computation to be fc(x).

What about agents who lie about their inputs? A malicious agent i who lies
about his input xi and pretends to have some other input yi is indistinguishable
from an honest agent who has yi as his actual input. We can capture this lie

Security in Asynchronous Interactive Systems (Invited paper) 9

using a function L : D|T | → D|T |, where D is the domain of the inputs and T is
the set of malicious agents. The function L encodes the inputs malicious agents
pretend to have given their actual inputs. BCG require that all the honest agent
output the same value and that the output has the form (C, fC(y)), where
y = x/(T,L(xT)). They allow C to depend on xT , since malicious agents can
influence the choice of C. They also allow the choice of C and the function L
to be randomized. Since the choice of L and C can be correlated, L and C are
assumed to take as input a common random value r ∈ R, where R denotes the
domain of random inputs. That is, C = c(xT , r) for some function c, and the
malicious agents with actual input xT pretend that their input is L(xT , r).

BCG place no requirements on the output of malicious agents, but they do
want the inputs of honest agents to remain as secret as possible. Hence, in an
ideal scenario, the outputs of malicious agents can depend only on xT , fC(y),
and possibly some randomization. Taking Oi to denote the output function of a
malicious agent i, we can now give BCG’s definitions.

Definition 2. An ideal t-adversary A is a tuple (T, c, L,O) consisting of a set
T ⊆ [n] of malicious agents with |T | ≤ t and three randomized functions c :
D|T | × R → P([n]) with |c(z, r)| ≥ n − t for all input profiles z and r, L :
D|T |×R → D|T | and O : D|T |×D×R → ({0, 1}∗)|T |. The ideal output ρ of A
given function f , input profile x, and a value r ∈ R is

ρi(x, A, r; f) =

{
(c(xT , r), fc(xT ,r)(x/(T,L(xT ,r)))) if i 6∈ T
Oi(xT , fc(xT ,r)(x/(T,L(xT ,r))), r) if i ∈ T.

Note that an ideal t-adversary is somewhat different from the adversary as
defined in Definition 1, although they are related, as we show in Section 3.2.
We use variants of A to denote both types of adversary.

Let ρ(x, A; f) denote the distribution induced over outputs by the protocol
profile ρ on input x given the ideal t-adversary A. We can now give the BCG
definition of secure computation. Let π(x, A) be the distribution of outputs when
running protocol π on input x with adversary A = (T, τT , σe).

Definition 3 (Secure computation). Let f : Dn → D be a function on n
variables and π a protocol for n agents. Protocol π t-securely computes f if, for
every adversary A = (T, τT , σe), the following properties hold:

SC1. For all input profiles x, all honest agents terminate with probability 1.
SC2. There exists an ideal t-adversary A′ = (T, c, L,O) such that, for all input

profiles x, ρ(x, A′; f) and π(x, A) are identically distributed.

Note that BCG just require that some ideal t-adversary A gives the same
distribution over the outputs of π. This captures the idea that all ways that
malicious agents can deviate are modeled by adversaries. Also note that SC1
follows from SC2 if we view non-termination as a special kind of output.

BCG prove the following result:

Theorem 1 (BCG). Given n and t such that n > 4t and a function f : Dn →
D, there exists a protocol πf that t-securely computes f .

10 I. Geffner and J.Y. Halpern

The construction of πf is sketched in [2] and [?, Section 3.2.7]; most of the
primitives used in this construction are also used in ours.

3.2 Secure computation and mediators

Even though it is not explicitly proven by BCG, their construction of πf satisfies
an additional property that we call SC3, which is essentially a converse of SC2.

SC3. For all ideal t-adversaries A = (T, c, L,O), there exists an adversary
A′ = (T, τT , σe) such that, for all input profiles x, ρ(x, A; f) and π(x, A′) are
identically distributed.

Lemma 1. Given a function f : Dn → D, protocol πf satisfies SC3.

Proof (Proof (sketch).). Given a trusted-party adversary A = {T, c, L,O} and

an input profile xT , the adversary A′ runs πf
T with input L(xT), except that if a

malicious agent i would output a tuple of the form (S, z) (note that all outputs
of honest players have this form), it outputs Oi(xT , z) instead. Meanwhile,
the scheduler delays all messages from agents not in c(xT) until all honest
players finish their part of the computation. We can show that the outputs
of A and A′ are identically distributed. Since the full proof requires the actual
implementation of πf , the details are given in [?, Section 3.3]

We next show how secure computation relates to simulating a mediator.
Consider the following protocol τ f + τfd for n agents and a mediator: Agents
send their inputs to the mediator the first time that they are scheduled. The
mediator waits until it has received a valid input from all agents in a subset
C ⊆ [n] with |C| ≥ n − t. The mediator then computes y = fC(x) and sends
each agent the pair (C, y). When the agents receive a message from the mediator,
they output that message and terminate.

Clearly τ f + τfd satisfies SC1. It is easy to see that it also satisfies SC2:
Given a set T of malicious agents, a deterministic protocol profile τT for the
malicious agents, and a deterministic scheduler σe, define L(x, r) to be whatever
the malicious agents send to the mediator with input x, let c(x) be the set
of agents from whom the mediator has received a message the first time it is
scheduled after having received a message from a least n − t agents (given σe,
τT , and input x), and let O(x) be the output function that malicious agents

use in τ f + τfd (note that they receive a single message with the output of the
computation, so their output depends only on x, τT , and σe). Clearly SC2 holds
with this choice of t-ideal adversary. Randomized functions τT and σe can be
viewed as resulting from sampling random bits r according to some distribution
and then running deterministically; the protocols c, h, and O can sample r from
the same distribution and then proceed as above with respect to the deterministic
τT (r) and σe(r).

The protocol τ f + τfd satisfies SC3 as well. Given A = (T, c, L,O), the
definition of τT and σe is straightforward: the agents in T choose a random
input r ∈ R and then each agent i ∈ T sends L(xi, r) to the mediator. The

Security in Asynchronous Interactive Systems (Invited paper) 11

scheduler σe delivers all messages from the agents in c(xT , r) first, and then
schedules the mediator. It then delivers all the other messages.

Since both τ f + τfd and πf satisfy SC2 and SC3, for all adversaries A, there
exists an adversary A′ (resp., for all adversaries A′ there exists an adversary A)

such that (τ f + τfd)(x, A) and πf (x, A′) are identically distributed.
Unfortunately, given a protocol πd for the mediator, there might not exist a

function f such that SC2 and SC3 hold, as the example given in the introduction
shows (where the mediator sends to the agents the first message it receives). Note
that, in this example, the output of the agents is not a function of their input
profile; thus, there is no function f for which SC2 and SC3 hold. Nevertheless,
we are still interested in securely computing the output of the protocol with the
mediator. That is, we are interested in getting analogues to SC2 and SC3 for
arbitrary interactive protocols. This is captured by the following definition:

Definition 4. Protocol π′ t-bisimulates π if the following two properties hold:

(a) For all adversaries A = (T, τT , σe) with |T | ≤ t, there exists an adversary
A′ = (T, τ ′T , σ

′
e) such that for all input profiles x, π(x, A) and π′(x, A′) are

identically distributed.
(b) For all adversaries A′ = (T, τ ′T , σ

′
e) with |T | ≤ t, there exists an adversary

A = (T, τT , σe) such that all input profiles x, π(x, A) and π′(x, A′) are
identically distributed.

Note that the first clause is analogous to SC2, while the second clause is
analogous to SC3. There is no clause analogous to SC1 since we allow agents
not to terminate. In any case, since we can view non-termination as a special
type of output (i.e., we can view an agent that does not terminate as outputting
⊥), so SC2 already guarantees that non-termination happens with the same
probability in π′ and π (In the setting of BGW, since all functions terminate,
with this viewpoint, SC2 implies SC1, a point already made by Canetti [6].)

The following proposition follows from Theorem 1 and Lemma 1.

Proposition 1. πf t-bisimulates τ f + τfd if n > 4t.

3.3 Beyond secure computation

Although BCG make claims for their protocol only if n > 4t, variants of some
of the properties that they are interested in continue to hold even if n < 4t. The
first of these properties is that if n > 3t, then the only way that the adversary
can affect πf is by preventing some honest agents from terminating. We can
capture this notion as follows.

Definition 5. A scheduler is relaxed if it can decide not to deliver some of
the messages. A protocol π′ (t, t′)-bisimulates π if it t-bisimulates π but the
schedulers σ′e and σe of the first and second clause of Definition 4 respectively
may be relaxed for t ≥ |T | > t′.

Proposition 2. πf (t, t′)-bisimulates τ f + τd and t ≥ t′.

12 I. Geffner and J.Y. Halpern

This means that if 3t + t′ < n, then adversaries of size between t′ and
t have the same power to affect the outcome with πf as with τ f + τd as
long as schedulers are allowed to discard messages, so that they never reach
their recipient. In particular, this means that the adversary cannot influence
the outcome in any other way than by preventing some honest players from
terminating. However, we can show that the BCG protocol has the property
that if at least 2t + 1 honest agents terminate, then all the remaining honest
agents terminate. This observation motivates the following definition:

Definition 6. A protocol π (t, k)-coterminates if, all adversaries A = (T, τT , σe)
with |T | ≤ t and all input profiles x, in all executions of π with adversary A and
input x, either all the agents not in T terminate or strictly fewer than k agents
not in T do.

Proposition 3. πf (t, 2t+ 1)-coterminates.

We do not prove Proposition 2 or 3 here, since we prove a generalization of
them below (see Theorem 2).

3.4 Simulating arbitrary protocols

The goal of this paper is to show that we can securely implement any interaction
with a mediator, and do so in a way that ensure the two properties discussed in
Section 3.3. This is summarized in the following theorem:

Theorem 2. For every protocol π+πd for n agents and a mediator, there exists
a protocol π′ for n agents such that π′

(a) (t, t′)-bisimulates π if n > 3t+ t′ and t ≥ t′, and
(b) (t, 2t+ 1)-coterminates if n > 3t and π + πd is in canonical form.

Moreover, if πd is responsive, the expected number of messages sent in an execution
of π′ is polynomial in n and N , and linear in c, where N is the expected number of
messages sent when running π+πd and c is the number of gates in an arithmetic
circuit that implements the mediator’s protocol.

The construction of π′ is sketched in Section 4 and given in full detail
in given in the full paper [?, Section 4.2] and, not surprisingly, uses many of
the techniques used by BCG. And, like BKR, if we allow an ε probability of
error we get stronger results. We define ε-t-bisimulation just like t-bisimulation
(Definition 4), except that, in both clauses, the distance between (π+πd)(x, A)
and π′(x, A′) is less than ε, where the distance d between probability measures
ν and ν′ on some finite space S is defined as d(ν, ν′) =

∑
s∈S |ν(s)− ν′(s)|. The

definition of ε-t-bisimulation and ε-(t, t′)-bisimulation are analogous. A protocol
ε-(t, k)-coterminates if it (t, k)-coterminates with probability 1− ε.

Theorem 3. For every protocol π + πd for n agents and a mediator and all
ε > 0, there exists a protocol π′ for n agents such that π′

Security in Asynchronous Interactive Systems (Invited paper) 13

(a) ε-(t, t′)-bisimulates π + πd if n > 2t+ t′ and t ≥ t′, and
(b) ε-(t, t+ 1)-coterminates if n > 2t and π + πd is in canonical form.

Moreover, if πd is responsive, π′ can be implemented in such a way that the
expected number of messages when running π′ + πd is polynomial in n and N ,
and linear in c, where N is the expected number of messages sent when running
π + πd.

3.5 Universally composable security

Both the definition of secure computation (Definition 3) and of bisimulation
(Definition 4) capture only the intended security properties in the stand-alone
model, where only a single execution of a given protocol is run. However, in
many cases, it is important that these properties are satisfied even when a
protocol is run several times in succession, or even when these executions are
performed concurrently. For this purpose, the standard approach is to prove that
the given protocol is secure in the universal composability model [7]. Kushilevitz,
Lindell and Rabin [9] showed that every protocol that is perfectly secure in
the stand-alone model and has a straight-line black-box simulator is also secure
in the UC model. Having a black-box straight-line simulator means that the
adversary is able to simulate what its view would be when running the protocol
without the mediator (resp., with the mediator), given its view in the protocol
with the mediator (resp., without the mediator), and that it is able to do so
without having to rewind, which means to go back to a previous state and
interact with the other agents in a different way. This is exactly the approach
we take when showing that the protocol presented in [?, Section 4.2] satisfies the
properties of Theorem 2 (see [?, Section 4.3] for details). Therefore, Theorem 2
holds with perfect universally composable security as well; that is, if a protocol
uses the mediator as a subroutine, and we replace the subroutine with our
implementation, then all the desired properties would still hold, even if the
protocol is ran concurrently with another protocol.

3.6 Variant models

In this section, we show that the choices made in our formal model are essentially
being made without loss of generality. We start by considering our assumption
that agents perform a sequence of actions atomically when they are scheduled.
We next show that we would get theorems equivalent to the ones that we are
claiming if we had instead assumed that agents perform just a single action when
they are scheduled. To prove this, we first need the following notion:

Definition 7. A protocol π is N -message bounded if, for all inputs, no agent
ever sends more than N messages in a single turn. A protocol is message bounded
if it is N -message bounded for some N .

Proposition 4. There exist a function H from message-bounded protocols to
single-action protocols such that for all protocols π, the following holds:

14 I. Geffner and J.Y. Halpern

(a) For all schedulers (resp., relaxed schedulers) σe there exists a scheduler
(resp., relaxed scheduler) σ′e such that, for all input profiles x, π(x, σe) and
H(π)(x, σ′e) are identically distributed, where H(π) := (H(π1), . . . ,H(πn))
and we view σe and σ′e, respectively, as the adversaries (i.e., we take T = ∅).

(b) For all schedulers (resp., relaxed schedulers) σ′e there exists a scheduler
(resp., relaxed scheduler) σe such that, for all input profiles x, π(x, σe)
and H(π)(x, σ′e) are identically distributed.

The converse of Proposition 4 is trivial, since single-action protocols are
protocols. It follows from Proposition 4 that Theorem 2 holds even if we restrict
agents to using single-action protocols (note that canonical protocols are message
bounded).

Proof. Intuitively, H(πi) is identical to πi, except that rather than sending a
sequence of messages when it is scheduled, i sends the messages one at a time.
The scheduler σ′e is then chosen to ensure that i is scheduled so that it sends
all of its messages as if they were sent atomically. In addition to keeping track
of the messages it has sent and received, i uses the variable Ui whose value is a
sequence of messages (intuitively, the ones that i would have sent at this point in
the simulation of πi that it has not yet sent), initially set to the empty sequence,
and a binary variable next , originally set to 1. When i is scheduled by σ′e, H(πi)
proceeds as follows: If next = 1, then i sets Ui to the sequence of messages that
it would send with πi given its current view. (If πi randomizes, then H(πi) does
the same randomization. If Ui is the empty sequence (so πi would not send any
messages at that point), i performs the action done(i), and outputs whatever
it does with π; otherwise, i sets next to 0, sends the first message in Ui to its
intended recipient, and removes this message from Ui. If next = 0, then if Ui

is empty, i sets next to 1, sends done(i), and outputs whatever it does with π;
otherwise, i sends the first message in Ui to its intended recipient and removes
it from Ui.

Since π is message bounded, there exists an N such that π is N -message
bounded. For part (a), given σe, we construct σ′e so that it simulates σe, except
that if σe schedules i, σ′e schedules i repeatedly until either it observes done(i)
or until i sends messages in N + 1 consecutive turns. Since π is N -message
bounded, it is clear that π(x, σe) and H(π)(x, σ′e) are identically distributed.
Note that it is necessary for π to be N -message bounded, since if the scheduler
schedules each agent i repeatedly until it stops sending a message during its
turn, an agent that keeps sending messages would be scheduled indefinitely, and
so would prevent other agents from being scheduled.

For part (b), given σ′e, we construct σe so that it simulates σe. There is
one issue that we have to deal with. Whereas with σe, an agent i can send k
messages each time it is scheduled, with σ′e, it can send only one message when
it is scheduled. The scheduler σ′e constructed from σe in part (a) scheduled i
repeatedly until it sent all the messages it did with σe. But we cannot assume
that the scheduler σ′e that we are given for part (b) does this. Thus, σe must
keep track of how many of the messages that each agent i was supposed to send

Security in Asynchronous Interactive Systems (Invited paper) 15

the last time it was scheduled by σe have been sent so far. To do this, σe uses
variables mesi, one for each agent i, initially set to 0, such that mesi keeps
track of how many of the messages that agent i sent with σe still need to be sent
by σ′e. As we observed above, given a local view h of the scheduler where the
agents use π and the scheduler uses σe, there is a corresponding local view h′

of the scheduler where the agents use π′ and the scheduler uses σ′e. If, given h′,
σ′e schedules agent i with probability αi, then with the same probability αi, σe
proceeds as follows: if mesi = 0 (which means that all the messages that i sent
the last time it was scheduled have been delivered in h′), then σe schedules i,
sees how many messages i delivers according πi, and sets mesi to this number;
if mesi 6= 0, then mesi is decremented by 1 but no agent is scheduled. Again, it
is clear that that π(x, σe) and H(π)(x, σ′e) are identically distributed.

BCG put further constraints on the scheduler. Specifically, they assume
that, except possibly for the first time that agent i is scheduled, i is scheduled
immediately after receiving a message and only then. That is, in our terminology,
BCG assume that a rec(·, ·, i) event must be followed by a sch(i) event, and all
sch(i) events except possibly the first one occur after a rec(·, ·, i) event. We call
the schedulers that satisfy this constraint BCG schedulers.

We now prove a result analogous to Proposition 4, from which it follows that
we could have obtained our results using a BCG scheduler.

Proposition 5. There exist a function H from protocols to protocols such that
for all protocols π the following holds:

(a) For all schedulers (resp., relaxed schedulers) σe there exists a BCG scheduler
(resp., relaxed BCG scheduler) σ′e such that, for all input profiles x, π(x, σe)
and H(π)(x, σ′e) are identically distributed.

(b) For all BCG schedulers (resp., relaxed schedulers) σ′e there exists a scheduler
(resp., relaxed scheduler) σe such that, for all input profiles x, π(x, σe) and
H(π)(x, σ′e) are identically distributed.

Proof. As in Proposition 4, the idea is that σ′e simulates σe, but since σe can
schedule an agent only when it delivers a message, we have each agent i send
itself special messages, denoted proceed i, to ensure that there are always enough
messages in the system. In more detail, H(πi) works as follows. When it is first
scheduled, agent i sends itself a proceed i message. Since we are considering BCG
schedulers, agent i is scheduled subsequently only when it receives a message. If
it receives a message other than proceed i, it does nothing (although the message
is added to its view). If it receives a proceed i message, then it does whatever it
would do with πi given its current view with the proceed i messages and the sch(i)
events not preceded by a proceed i message removed, and sends itself another
proceed i message.

For part (a), given σe, σ
′
e first schedules each agent once (in some arbitrary

order), to ensure that that each of them has sent a proceed i message that is
available to be delivered. Given a view h′, σ′e considers what σe would do in the
view h that results from h′ by removing the initial sch(i) event for each agent i,

16 I. Geffner and J.Y. Halpern

the last message that each agent i sends when it is scheduled if it sends a message
at all, and the receipt of these messages. If h′ is a view that results where the
agents are running H(π), then the send and receive events removed are precisely
those that involve proceed i. If σe delivers a message with some probability, then
σ′e delivers the corresponding message with the same probability; if σe schedules
an agent i with some probability, σ′e delivers the last proceed i that i sent and
schedules agent i with the same probability. If there is no proceed i message to
deliver, then σ′e does nothing, but our construction of H(πi) guarantees that if h′

is a view that results from running H(π), then there will be such a message that
can be delivered. Again, it is clear that π(x, σe) and H(π)(x, σ′e) are identically
distributed.

For part (b), given σ′e, the construction of σe is similar to that of Proposition 4.
Again, given a local view h of σe where the agents use π, there is a corresponding
view h′ of σ′e where the agents use H(π). If, given input h′, σ′e delivers a
message with some probability p and the messages is not a proceed i message,
then σe delivers the corresponding message with probability p. If the message
is a proceed i message, then σe also schedules agent i. If σ′e schedules an agent
i with probability p, and in h′ this is the first time that i is scheduled, then
σe schedules i with probability p and otherwise does nothing with probability
p. Yet again, it is straightforward to show that π(x, σe) and H(π)(x, σ′e) are
identically distributed.

4 Proof of Theorem 2

In this section we sketch the construction of a protocol π′ that satisfies Theorem 2.
We provide the full construction and the proof of correctness in the full paper
[?, Sections 4.3 and 4.5].

The construction uses a number of primitives, some of which were defined
by BCG and some of which go back much further. Among other, it uses secret-
sharing, which goes back to Shamir [10], a broadcast protocol due to Bracha [5],
and a circuit computation protocol. Recall that with secret sharing, a sender can
distribute a secret s (which is just an element of the field Fp) among n agents
in such a way that no subset of t agents can guess the value of s with better
probability than 1/p (the cardinality of Fp), but such that any subset of t + 1
agents can compute s with no probability of error. This is done by having the
sender choose a polynomial ps ∈ Fp[X] of degree t uniformly at random such
that ps(0) = s and sending each agent i i’s share of s, which is si := ps(i).
Bracha’s broadcast protocol allows a sender to broadcast a message to a group
in an asynchronous system so that, if n > 3t, all honest players will eventually
get it.

The circuit computation protocol [2] allows agents to compute their shares
of the output of a circuit f from their shares of the inputs of f without learning
anything about the shares of other players.

The construction proceeds as follows. Intuitively, agents simulate π + πd by
jointly computing the mediator’s state, which messages it receives, and which

Security in Asynchronous Interactive Systems (Invited paper) 17

messages it would send to each agent. To keep the mediator’s computation
secret, instead of computing the mediator’s state directly, agents just compute
their share of it. Each agent i sends j its share of each of the messages that i
sends in the protocol with the mediator; each agent j then uses these shares to
update the state of the mediator. Agents use the verifiable secret sharing and
circuit computation protocols provided by BCG in order to tolerate malicious
behavior when distributing the shares of their messages and when computing the
shares of the mediator’s state every time it is updated. They also use Bracha’s
consensus protocol to agree on what messages the mediator receives every time
it is scheduled and in which order it does so. The properties of all of these
primitives are given in [5], [2], and [?, Section 3.2]

While this is the outline of the protocol, there are still a number of subtleties
that have to be dealt with. For example, we must decide when each agent and
the mediator is scheduled in the simulation of π+ πd, or how agents update the
mediator’s state. All of these details are provided in the full version [?, Section
4.2].

5 Conclusion

We have shown how to simulate arbitrary protocols securely in an asynchronous
setting in a “bidirectional” way (as formalized by our notion of bisimulation).
This bidirectionality plays a key role in the application of these results in [1]; we
believe that it might turn out to be useful in other settings as well. While this
property holds for BCG’s secure computation implementation, proving that we
can simulate arbitrary protocols so that it holds seems to be nontrivial.

Our construction may not be message-efficient in the general case. However,
for responsive mediators, a small modification (see [?, Section 4.4]) allows us
to bound the expected number of messages by a function that is polynomial
in the number of agents n and the maximum number of messages N sent in
the setting with the mediator, and linear in c, the number of gates in a circuit
that implements the mediator’s protocol. It is still an open problem whether
all protocols π + πd can be implemented in a way that the expected number of
messages sent by honest agents is bounded by some function of n, N , and c.

References

1. Abraham, I., Dolev, D., Geffner, I., Halpern, J.Y.: Implementing mediators with
asynchronous cheap talk. In: Proc. 38th ACM Symposium on Principles of
Distributed Computing. pp. 501–510 (2019)

2. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC ’93: Proceedings of the 25 Annual ACM Symposium on Theory of
Computing. pp. 52–61 (1993)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proc. 20th ACM
Symposium on Theory of Computing. pp. 1–10 (1988)

18 I. Geffner and J.Y. Halpern

4. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with
optimal resilience (extended abstract). In: Proc. 13th ACM Symp. Principles of
Distributed Computing. pp. 183–192 (1994)

5. Bracha, G.: An asynchronous [(n−1)/3]-resilient consensus protocol. In: Proc. 3rd
ACM Symposium on Principles of Distributed Computing. pp. 154–162 (1984)

6. Canetti, R.: Studies in Secure Multiparty Computation and Applications. Ph.D.
thesis, Technion (1996), citeseer.nj.nec.com/canetti95studies.html

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science.
pp. 136–145 (2001)

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multi-party unconditionally secure
protocols. In: Proc. 20th ACM Symposium on Theory of Computing. pp. 11–19
(1988)

9. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. SIAM Journal on Computing 39(5), 2090–2112
(2010)

10. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

citeseer.nj.nec.com/canetti95studies.html

	Security in Asynchronous Interactive Systems (Invited paper)

