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Abstract

In many scientific areas, data with mixed quantitative and qualitative (QQ) responses are commonly encountered with
a large number of predictors. By exploring the association between QQ responses, existing approaches often consider
a joint model of QQ responses given the predictor variables. However, the dependency among predictive variables also
provides useful information for fitting QQ responses. Hence in this work, we propose a novel generative approach to
jointly model the QQ responses by incorporating the dependency information of predictors. The proposed method is
computationally efficient and provides accurate parameter estimation under a penalized likelihood framework. More-
over, because of the generative approach framework, the asymptotically theoretical results of the proposed method
are established under some regularity conditions. The performance of the proposed method is examined through
simulations and real case studies in material science and genetics.

Key words: Classification, Discriminant analysis, Graphical lasso, Regression, Regularization.
2020 MSC: Primary 62H30, Secondary 62H12

1. Introduction

In supervised learning, analyzing data with heterogeneous types of responses has been an important topic with
broad applications. Most often, such heterogeneous data involve both quantitative and qualitative (QQ) responses. For
example, Klein et al. [25] described a human health study examining the risk factors of adverse birth outcomes, which
contains a qualitative response “presence/absence of low birth weight” and a quantitative response “gestational age”.
In material science, the properties of a material are often characterized by QQ measures. For example, in the case
study of Section 4.3 on Heusler compounds, two metrics, the “mixing enthalpy” (quantitative) and the “global stability
based on hull energy” (qualitative) are used to determine the thermodynamic stability of a full Heusler compound.
In this paper, we develop a generative approach for joint modeling of two mixed responses: one is a continuous
quantitative response and the other is a multi-class qualitative response.

In the literature, it has been recognized that modeling each response separately would overlook the relationship
between the responses, hence possibly leading to inaccurate estimation and prediction. In contrast, joint modeling
considers and utilizes the information on the association of different responses, enhancing the model interpretation
and performance especially in high-dimensional cases [1, 2, 13, 21, 22, 31]. A major difficulty, however, in the joint
modeling of such responses is the lack of a natural multivariate distribution. To overcome the difficulty and explore
the association between QQ responses, many researches have contributed to this area including early ones such as
[14, 16, 18] and recent ones such as [13, 24–26, 34]. Based on the different methodologies, the existing works can be
generally grouped into two categories.

The first group of methods considers a factorization of the joint distribution into the product of a marginal and a
conditional distribution. Naturally, two possible types of models can be applied, depending on whether the conditional
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variable is the quantitative or the qualitative response. Note that using which response as the conditional variable leads
to different model parameterizations, and consequently has different challenges in parameter estimation and model
prediction. In some applications, data are suitable to use the quantitative response as the conditional variable, as in
[13] and [21]. In their case study, the data are collected from the lapping stage of the wafer manufacturing process and
their primary goal is to build a prediction model for the quantitative response measuring the total thickness variation
of the wafer. On the other hand, some applications require the focus to be on the qualitative response. For example,
in Kang et al. [23], the quantitative response data are the weights of infants and the qualitative response is whether
the birth of an infant is preterm. The latter is a more crucial statistic to the public health expert in their team. But it is
more challenging to directly use the qualitative response as the conditional variable, thus Kang et al. [23] introduced
latent variable to facilitate such modeling. There have been many other works using the factorization approach.
Fitzmaurice and Laird [16] analyzed data from developmental toxicity studies by introducing a conditional regression
model of quantitative response conditioned on the qualitative response, and employing the logistic model for the
qualitative response. Lin et al. [31] developed a conditional mixed-effects model to analyze clustered data containing
QQ responses. Craiu and Sabeti [11] suggested a Bayesian conditional copula model to fit bivariate data with mixed
outcomes. These methods are suitable for data with a small number of predictor variables. To handle the high-
dimensional data with large number of predictors, Deng and Jin [13] proposed a conditional model that encourages
model sparsity through a penalized and constrained likelihood function. However, the corresponding inferences and
asymptotic properties of their method cannot be explored due to the complicated constrained likelihood estimation.
Kang et al. [21] introduced a Bayesian estimation for the conditional model of Deng and Jin [13] to obtain proper
inferences on the model parameters. Nevertheless, their model is not designated for studying the asymptotic properties
of the proposed estimator. More related works can be found in [8, 19], among others.

The second group of methods considers a continuous latent variable for the qualitative response, and then assumes
a multivariate normal distribution for the latent variable and the quantitative response. For example, Gueorguieva
and Agresti [18] studied a probit model for binary response with a latent variable and developed a Monte Carlo
expectation-conditional maximization algorithm for parameter estimation. Kürüm et al. [26] used a normal latent
variable for characterizing the binary response and suggested a two-stage estimation procedure for analysis of ecolog-
ical momentary assessment data collected in a smoking cessation study. Klein et al. [25] introduced the idea of latent
variable into the framework of copula regressions, constructing a latent continuous representation of binary regression
models. However, the use of latent variables often involves considerable computation in the parameter estimation.
It also makes the investigation of theoretical properties difficult. Moreover, most of these works focus on the binary
qualitative response and their model assumptions may not be easily extended to the multi-class qualitative response
cases.

Although various methods have been developed in the literature for joint modeling of QQ responses, they mostly
focus on a regression model conditioned on the predictor variables without fully utilizing the dependency information
between predictors. Furthermore, to our best knowledge, few works established theoretical results for the QQ re-
sponses, since it is a very challenging task under the framework of either conditional models or models characterized
by latent variables. In our work, we propose a novel method to jointly model the QQ responses based on the generative
approach. The proposed generative model considers the joint distribution of the high-dimensional predictor variables,
the quantitative response, and the multi-class qualitative response. It is a very unique and different perspective from
the existing literature, which enables us to establish the theoretical results for both QQ responses. In addition, the
proposed method can easily accommodate multi-class qualitative response and multivariate quantitative responses
with attractive theoretical properties. For short, we call the proposed method GAQQ, a Generative Approach for QQ
responses.

The key contributions of this work are summarized as follows. First, based on the generative model framework,
we are able to establish the asymptotic properties of the proposed estimators with respect to both the classification
accuracy for the qualitative response and the prediction accuracy for the quantitative response under some regularity
conditions. Such conditions are commonly used in the regularized estimation framework [42, 49]. The classification
of the qualitative response enjoys the asymptotic optimality of the resulting linear discriminate classification rule. The
mean squared error (MSE) of prediction for the quantitative response is as good as the optimal prediction under the
Bayes risk. Second, an efficient procedure for parameter estimation is developed via the regularized log-likelihood
function of the joint distribution of predictor variables and QQ responses. Specifically, we impose regularization on
both the mean differences and the inverse covariance matrix from the joint distribution to achieve sparsity for high-
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dimensional predictor variables. Third, the use of the generative approach leads to an effective prediction procedure by
inferring the conditional distribution of QQ responses conditioned on the predictor variables. That is, the quantitative
response is predicted through the property of conditional multivariate normal distribution, and the linear discriminant
analysis (LDA) is employed for classification of the qualitative response. Fourth, the proposed generative model
enables the QQ responses to be mutually learned from each other to improve the predictions on both QQ variables,
which is different from existing methods in which the prediction of only one type of QQ responses can be benefited
from the information of the other type.

The remainder of this paper is organized as follows. Section 2 details the proposed method. The main theoretical
results and numerical studies are presented in Sections 3 and 4, respectively. Section 5 concludes this work with some
discussion.

2. The proposed methodology

In this section, we lay out the proposed GAQQ model in terms of both estimation and prediction procedures.
Section 2.1 focuses on modeling the QQ data with binary qualitative response, and Section 2.2 extends the GAQQ
model to deal with the qualitative response with multiple classes.

2.1. The GAQQ model for two-class qualitative response
Suppose the variables of interest are denoted by (X, y,Z) where X = (X1, . . . , Xp−1)⊤ is a (p − 1) dimensional

vector of predictor variables, y is a quantitative response variable and Z ∈ {1, 2} is a qualitative response variable.
From a generative modeling perspective, we consider the data generation mechanism as p(X, y,Z) = p(X, y|Z)p(Z),
indicating that data are from two classes G1 and G2 under (X, y)|Z, where p(·) represents a probability density function
throughout the paper. Assume that W = (X⊤, y)⊤ follows multivariate normal distributions with different means for
two classes, but sharing the same covariance matrix as follows

G1 : W|Z = 1 ∼ N(µ1,Σ), G2 : W|Z = 2 ∼ N(µ2,Σ). (1)

Suppose that the observed data w1, . . . ,wn1 ,wn1+1, . . . ,wn1+n2 are independent with the first n1 observations from G1
and the rest n2 observations from G2, where wi = (x⊤i , yi)⊤, i ∈ {1, . . . , n1+n2}. Let n = n1+n2, then the log-likelihood
function of data can be written as

n ln |C| −
2∑︂

k=1

∑︂
i∈Gk

(wi − µk)⊤C(wi − µk), (2)

up to some constant, where C = Σ−1 is the inverse covariance matrix. The parameters µ1,µ2 and C can be estimated
by maximizing the log-likelihood function of (2).

For high-dimensional data when p ≥ n, the regularization is often needed to ensure the proper estimation of
inverse covariance matrix C and mean difference µ1 − µ2. We thus propose to penalize C = (ci j)1≤i, j≤p and µ1 − µ2
simultaneously, resulting in the following optimization

min
(µ1,µ2,C)

−n ln |C| +
2∑︂

k=1

∑︂
i∈Gk

(wi − µk)⊤C(wi − µk) + λ1||C||1 +
1
2
λ2|µ1 − µ2|1, (3)

where ||C||1 =
∑︁

i≠ j |ci j|, and |α|1 =
∑︁

i |αi| with αi being the ith entry of vector α. Here λ1 ≥ 0 and λ2 ≥ 0 are two
tuning parameters. By applying such regularization, the proposed model can encourage the sparse structures in C and
µ1 − µ2 at the same time. Note that similar spirits of regularizing both C and µ1 − µ2 are used in several works on the
LDA [7, 42].

To estimate the parameters, we develop an iterative procedure to solve the sub-optimization problems with respect
to C and µ1−µ2 respectively. Define δ2 = (µ1−µ2)/2 as well as γ = (µ1+µ2)/2, then accordingly we have µ1 = δ2+γ
and µ2 = γ − δ2. As a result, the optimization problem (3) is re-written as

min
(δ2,γ,C)

− n ln |C| +
∑︂
i∈G1

(wi − δ2 − γ)⊤C(wi − δ2 − γ) +
∑︂
i∈G2

(wi + δ2 − γ)⊤C(wi + δ2 − γ) + λ1||C||1 + λ2|δ2|1. (4)
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It is thus easy to obtain the maximum likelihood estimate of γ from (4) as

γ̂ = w̄ +
n2 − n1

n
δ2, (5)

where w̄ = (
∑︁n

i=1 wi)/n is the overall mean of data. Subsequently, plugging γ̂ back into (4) yields

(δ̂2, Ĉ) = arg min
δ2,C
− n ln |C| +

∑︂
i∈G1

(wi −
2n2

n
δ2 − w̄)⊤C(wi −

2n2

n
δ2 − w̄)

+
∑︂
i∈G2

(wi +
2n1

n
δ2 − w̄)⊤C(wi +

2n1

n
δ2 − w̄) + λ1||C||1 + λ2|δ2|1. (6)

In this manner, solving the optimization problem (3) is equivalent to solving the optimization (6). Next, we show that
(6) can be decomposed as a graphical lasso model (Glasso) [47] in terms of C and a Lasso regression [43] in terms of
δ2 with the other parameter fixed, such that these two parameters can be estimated iteratively. To be more precise, for
a given value of δ2, the minimization problem (6) with respect to C is

min
C
−n ln |C| + tr(CS) + λ1||C||1, (7)

where S =
∑︁

i∈G1
(wi − 2n2δ2/n − w̄)(wi − 2n2δ2/n − w̄)⊤ +

∑︁
i∈G2

(wi + 2n1δ2/n − w̄)(wi + 2n1δ2/n − w̄)⊤. It has the
same form as the Glasso, which has been extensively studied in the literature [17, 27, 32, 39, 47]. On the other hand,
when the inverse covariance matrix C is fixed, the minimization problem (6) regarding δ2 becomes

min
δ2

∑︂
i∈G1

(wi −
2n2

n
δ2 − w̄)⊤C(wi −

2n2

n
δ2 − w̄) +

∑︂
i∈G2

(wi +
2n1

n
δ2 − w̄)⊤C(wi +

2n1

n
δ2 − w̄) + λ2|δ2|1, (8)

which is equivalent to
min
δ2

(ỹ − C1/2δ2)⊤(ỹ − C1/2δ2) + λ2|δ2|1, (9)

where ỹ = C1/2(n2
∑︁

i∈G1
wi − n1

∑︁
i∈G2

wi)/(2n1n2). A detailed derivation of (9) from (8) is provided in the Appendix.
We solve the minimization problem (9) by the Lasso technique. Consequently, solving the complicated optimization
problem (6) is decomposed to the simple tasks of iteratively solving a Glasso estimate for C and a Lasso estimate
for δ2 until both of them are converged. We summarize the above estimation procedure for the proposed model in
Algorithm 1.

Algorithm 1 (Estimation Procedure)
Step 0: Set an initial value of δ2.
Step 1: Given δ2 = δ̂2,t, solve C in (7) by the Glasso technique.
Step 2: Given C = Ĉt, solve δ2 in (9) by the Lasso technique.
Step 3: Repeat Step 1 and 2 till both Ĉt and δ̂2,t converge.

Here Ĉt and δ̂2,t represent the estimates of C and δ2 in the tth iteration. The convergence criteria are ||Ĉt− Ĉt−1||
2
F <

τ1 and ||δ̂2,t − δ̂2,t−1||
2
2 < τ2, where τ1 and τ2 are two pre-selected small quantities, || · ||F stands for the Frobenius norm,

and ∥α∥22 =
∑︁

i α
2
i with αi being the ith entry of vector α. We set the initial value of δ2 as (w̄1 − w̄2)/2, where w̄k is

the sample mean for the kth class, k ∈ {1, 2}. With value of δ̂2, the estimate γ̂ is calculated by (5), and then we have
µ̂1 = δ̂2 + γ̂ and µ̂2 = γ̂ − δ̂2. Therefore, Algorithm 1 provides the estimates of three parameters µ1, µ2 and C in (3).

Note that there are two tuning parameters λ1 and λ2 in the optimization problem (6). To choose their optimal
values, we minimize a modified Bayesian information criterion (BIC) proposed by Wang et al. [44] as

BIC(λ1, λ2) = −n ln |Ĉ| + tr(ĈS) + {v(δ̂2) + v(Ĉ) + 1} ln(n), (10)

where v(δ̂2) and v(Ĉ) stand for the number of nonzero entries in the estimates δ̂2 and Ĉ, respectively. This criterion
enjoys consistency properties and has been commonly used in the literature [35, 46].
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The standard errors for δ̂2 can be obtained as it is estimated from penalized likelihood function. Several works
have established the asymptotic properties of the maximum penalized likelihood estimates under some regularity
conditions and provided the formula of estimated standard errors, see [10, 15, 29]. Let L = (ỹ − C1/2δ2)⊤(ỹ − C1/2δ2)
and

∇L(δ̂2) =
∂L
∂δ2
|δ2=δ̂2

, ∇2L(δ̂2) =
∂2L
∂δ2∂δ⊤2

|δ2=δ̂2
, Σλ2 (δ̂2) = diag

⎧⎪⎪⎨⎪⎪⎩λ2sign(δ̂21)

|δ̂21|
, . . . ,

λ2sign(δ̂2p)

|δ̂2p|

⎫⎪⎪⎬⎪⎪⎭ ,
where δ̂2 j represents the jth entry of δ̂2. Denote by δ̂2,1 the nonzero components of δ̂2, then based on the conven-
tional technique in the likelihood setting, one can employ the sandwich formula to estimate the covariance of δ̂2,1
as ˆ︃cov(δ̂2,1) = {∇2L(δ̂2,1) + nΣλ2 (δ̂2,1)}−1ˆ︃cov{∇L(δ̂2,1)}{∇2L(δ̂2,1) + nΣλ2 (δ̂2,1)}−1, where ˆ︃cov{∇L(δ̂2,1)} is the sample
covariance of ∇L(δ̂2,1). Such estimated standard errors can be used for subsequent statistical inferences.

Next, we demonstrate how to conduct model prediction by the proposed method. For convenience, write

µ1 =

[︄
µ1X

µ1y

]︄
, µ2 =

[︄
µ2X

µ2y

]︄
, C =

[︄
CX CXy

C⊤Xy c2
y

]︄
, Σ =

[︄
ΣX ΣXy

Σ⊤Xy σ2
y

]︄
,

where µ1X and µ2X are p − 1 dimensional vectors representing the means of variable X for two classes, and ΣX is the
(p − 1) × (p − 1) covariance matrix of X. Then one can partition their estimates correspondingly as

µ̂1 =

[︄
µ̂1X
µ̂1y

]︄
, µ̂2 =

[︄
µ̂2X
µ̂2y

]︄
, Ĉ =

[︄
ĈX ĈXy

Ĉ⊤Xy ĉ2
y

]︄
, Σ̂ =

[︄
Σ̂X Σ̂Xy

Σ̂
⊤

Xy σ̂2
y

]︄
.

From model assumption (1) as well as the property of multivariate normal distribution, the prediction for the quanti-
tative response y from a new observation x is

ŷ =

⎧⎪⎪⎨⎪⎪⎩ µ̂1y + Σ̂
⊤

XyΣ̂
−1
X (x − µ̂1X), if Ẑ = 1

µ̂2y + Σ̂
⊤

XyΣ̂
−1
X (x − µ̂2X), if Ẑ = 2.

(11)

Note that Σ̂
⊤

XyΣ̂
−1
X = −Ĉ⊤Xy/ĉ

2
y where ĉ2

y is a scalar, implying that the sparsity of ĈXy will lead to a sparse model for the
prediction of y.

On the other hand, denote by π1 and π2 the prior probability of w belonging to classes G1 and G2, respectively. The
prediction for the qualitative response Z by the proposed model is naturally based on the estimated LDA classification
rule as

ln
Pr(G1|W = (x⊤, ŷ)⊤)
Pr(G2|W = (x⊤, ŷ)⊤)

= ln
π̂1

π̂2
−

1
2

(µ̂1 + µ̂2)⊤Ĉ(µ̂1 − µ̂2) + (x⊤, ŷ)Ĉ(µ̂1 − µ̂2), (12)

where Pr stands for probability, and the estimates π̂1 and π̂2 are the empirical proportions of data from each class.
From (11) and (12), however, we note that the prediction of one response variable depends on the information of
the other. To address this issue, we propose to calculate two candidate values of y for a new observation x by (11)
for two different classes, denoted by ŷ1 and ŷ2. Then the conditional probability densities p(W = (x⊤, ŷ1)⊤|G1) and
p(W = (x⊤, ŷ2)⊤|G2) can be estimated via the density functions of N(µ̂1, Σ̂) and N(µ̂2, Σ̂). Denote such two values
as p̂1 and p̂2. The prediction of y at this new observation is then obtained as ŷk corresponding to the larger value of
π̂k p̂k, k ∈ {1, 2}. To express it clearly, we describe the above steps of the model prediction in Algorithm 2 for a new
observation x.

Algorithm 2 (Prediction Procedure)
Step 1: For k ∈ {1, 2}, ŷk = µ̂ky+Σ̂

⊤

XyΣ̂
−1
X (x− µ̂kX), and consequently obtain the probability densities p̂k by plugging

(x⊤, ŷk)⊤ into the density functions of N(µ̂k, Σ̂).
Step 2a: If π̂1 p̂1 > π̂2 p̂2, let ŷ = ŷ1; otherwise let ŷ = ŷ2.
Step 2b: Apply the LDA classification rule (12) to predict Z by w = (x⊤, ŷ)⊤.

It is seen that in Algorithm 2, we obtain the prediction of y first, and then predict Z with the value of ŷ. One would
argue that it is not a unique way of making predictions on QQ responses, as we may also predict Z first and then
variable y. The following Proposition 1 provides an interesting insight into this issue.
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Proposition 1. For the prediction of Z by the proposed model, the class label k obtained from Step 2b of Algorithm 2
maximizes π̂k p̂k.

We first state Lemma 1, which is used to prove Proposition 1.

Lemma 1. Suppose a random vector (a⊤, b⊤)⊤ ∼ N(µ∗,Σ∗), where a and b are multivariate variables. For a given
value of a, then b = µb + Σ

⊤
abΣ

−1
a (a − µa) maximizes exp{−(1/2)[(a⊤, b⊤) − µ⊤∗ ]Σ−1

∗ [(a⊤, b⊤)⊤ − µ∗]}, where µ∗ =[︄
µa

µb

]︄
and Σ∗ =

[︄
Σa Σab

Σ⊤ab Σb

]︄
.

Proof: Let C denote a generic constant thereafter in the paper for convenience. We need to search for b to minimize

{(a⊤, b⊤) − µ⊤}Ω{(a⊤, b⊤)⊤ − µ}, where Ω = Σ−1
∗ =

[︄
Ωa Ωab

Ω⊤ab Ωb

]︄
. That is, we minimize

L(b) = (a⊤, b⊤)Ω(a⊤, b⊤)⊤ − 2µ⊤Ω(a⊤, b⊤)⊤ = (a⊤, b⊤)
[︄
Ωa Ωab

Ω⊤ab Ωb

]︄ [︄
a
b

]︄
− 2(µ⊤a ,µ

⊤
b )

[︄
Ωa Ωab

Ω⊤ab Ωb

]︄ [︄
a
b

]︄
= 2a⊤Ωabb + b⊤Ωbb − 2(µ⊤aΩab + µ

⊤
bΩb)b +C.

Taking derivative of L(b) and setting to zero yields

∂L(b)
∂b

= 2Ω⊤aba + 2Ωbb − 2(Ω⊤abµa +Ωbµb) = 0

b = µb −Ω
−1
b Ω

⊤
ab(a − µa).

This, together with a property of block matrix that Ω⊤ab = −ΩbΣ
⊤
abΣ

−1
a , completes the proof.

For a new observation x, let y1 = µ1y + Σ
⊤
XyΣ

−1
X (x − µ1X) and y2 = µ2y + Σ

⊤
XyΣ

−1
X (x − µ2X). Denote by p1 =

p(W = (x⊤, y1)⊤|G1) and p2 = p(W = (x⊤, y2)⊤|G2). Now we prove Proposition 1.

Proof of Proposition 1: Without loss of generality, we suppose π1 p1 > π2 p2, then we show below that the LDA
classification rule would assign (x⊤, y1)⊤ to G1. In order to achieve this, we only need to prove

p2 ≥ p3 = p(W = (x⊤, y3)⊤|G2) (13)

for any value of y3. That is, we need to prove W = (x⊤, y2)⊤ will maximize the density function of N(µ2,Σ), which is
the conclusion of Lemma 1. As a result, π1 p1 = π1 p(W = (x⊤, y1)⊤|G1) > π2 p2 ≥ π2 p(W = (x⊤, y1)⊤|G2) by taking
y3 = y1 in (13). Hence,

p(x ∈ G1|W = (x⊤, y1)⊤) =
π1 p1

p(W = (x⊤, y1)⊤)
>
π2 p(W = (x⊤, y1)⊤|x ∈ G2)

p(W = (x⊤, y1)⊤)
= p(x ∈ G2|W = (x⊤, y1)⊤),

implying that the LDA assigns (x⊤, y1)⊤ to G1. Here we also use πi to represent p(x ∈ Gi) to express the probability
of this observation belonging to class Gi, i ∈ {1, 2}.

Proposition 1 implies that we can predict the response variable Z by simply comparing values of π̂k p̂k instead of
employing LDA. Therefore, the order of which response variable to be predicted first is not a concern. Actually, the
Step 2a and Step 2b are equivalent to the following Step 2 as

Step 2: If π̂1 p̂1 > π̂2 p̂2, let ŷ = ŷ1 and Ẑ = 1; otherwise let ŷ = ŷ2 and Ẑ = 2.

2.2. The GAQQ model for multi-class qualitative response

We now extend the GAQQ model to handle the QQ data with multi-class qualitative response, i.e., the qualitative
variable Z ∈ {1, . . . ,K}. In such cases, the GAQQ method is expressed as

Gk : W|Z = k ∼ N(µk,Σ), k ∈ {1, . . . ,K}.
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Based on a baseline class G1, we regularize on the differences between means through µk − µ1 for k ∈ {2, . . . ,K}. The
objective function is thus formulated as

min
(µ1,...,µK ,C)

−n ln |C| +
K∑︂

k=1

∑︂
i∈Gk

(wi − µk)⊤C(wi − µk) + λ1||C||1 + λ2

K∑︂
k=2

|µk − µ1|1. (14)

The subsequent derivation follows similar steps as that described in Section 2.1. Let Kδk = µk − µ1 and Kγ =∑︁K
k=1 µk, then we have µk = γ −

∑︁K
g=2 δg + Kδk, k ∈ {1, . . . ,K}. As a result, the optimization problem (14) can be

re-written as

min
(δ2,...,δK ,γ,C)

−n ln |C| +
K∑︂

k=1

∑︂
i∈Gk

(wi − γ +
K∑︂

g=2

δg − Kδk)⊤C(wi − γ +
K∑︂

g=2

δg − Kδk) + λ1||C||1 + λ2

K∑︂
k=2

|δk |1. (15)

Let nk represent the number of observations belonging to class Gk. The maximum likelihood estimator of γ from (15)
is γ̂ = w̄ +

∑︁K
g=2 δg − (K/n)

∑︁K
g=2 ngδg. Consequently, the optimization problem (15) becomes

min
(δ2,...,δK ,C)

−n ln |C| +
K∑︂

k=1

∑︂
i∈Gk

(wi − w̄ +
K
n

K∑︂
g=2

ngδg − Kδk)⊤C(wi − w̄ +
K
n

K∑︂
g=2

ngδg − Kδk) + λ1||C||1 + λ2

K∑︂
k=2

|δk |1.

(16)

Let S̃ =
∑︁K

k=1
∑︁

i∈Gk
{wi − w̄ + (K/n)

∑︁K
g=2 ngδg − Kδk}{wi − w̄ + (K/n)

∑︁K
g=2 ngδg − Kδk}

⊤, then the formula (16) can be
decomposed as one Glasso problem

min
C
−n ln |C| + tr(CS̃) + λ1||C||1, (17)

and

min
(δ2,...,δK )

K∑︂
k=1

∑︂
i∈Gk

(wi − w̄ +
K
n

K∑︂
g=2

ngδg − Kδk)⊤C(wi − w̄ +
K
n

K∑︂
g=2

ngδg − Kδk) + λ2

K∑︂
k=2

|δk |1. (18)

The optimization (18) is equivalent to the following K − 1 Lasso regressions separately

min
δk

(ỹ − C1/2δk)⊤(ỹ − C1/2δk) + λ2|δk |1, k ∈ {2, . . . ,K}, (19)

where ỹ = C1/2{(n − nk)
∑︁

i∈Gk
wi − nk

∑︁
i∉Gk

wi + Knk
∑︁K

g=2,g≠k ngδg}/(Knnk). The detailed derivation from (18) to (19)
is provided in the Appendix. Therefore, the parameters δk and C can be solved iteratively until convergence following
the spirit of Algorithm 1. The optimal values of tuning parameters are chosen by the modified BIC extended for the
multi-class problem as

BIC(λ1, λ2) = −n ln |Ĉ| + tr(ĈS̃) + {v(δ̂) + v(Ĉ) + K − 1} ln(n), (20)

where v(δ̂) represents the number of nonzero entries in all the estimates δ̂k. The estimated covariances for each δ̂k can
be obtain by following the similar techniques for estimating the covariance of δ̂2 in two-class setting in Section 2.1.

For a new observation x, the quantitative response y is predicted, similarly as in Algorithm 2, to be ŷk = µ̂ky +

Σ̂
⊤

XyΣ̂
−1
X (x − µ̂kX), where k maximizes π̂k p̂k with p̂k = p(W = (x⊤, ŷk)⊤|Gk), computed by plugging (x⊤, ŷk)⊤ into the

density functions of N(µ̂k, Σ̂). The class label is estimated as Ẑ = arg maxk π̂k p̂k, or equivalently by the LDA rule as

Ẑ = arg max
k

ln
π̂k

π̂1
+ K{(x⊤, ŷk)⊤ −

µ̂1 + µ̂k

2
}⊤Ĉδ̂k.

3. Theoretical properties

In this section, we study the theoretical properties of the proposed GAQQ model. The asymptotic optimality of
the classification rule is investigated via Theorems 1 - 3 in Section 3.1. The asymptotic consistency properties of the
prediction of y are established in Theorem 4 in Section 3.2.
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3.1. Asymptotic optimality of the classification rule
For the proposed classification rule, we first derived the theoretical results for the multi-class problem and then

provide a thorough discussion of the two-class case. We use the same definition of asymptotic optimality for a
classification rule as defined in Shao et al. [42]. Denote by RBayes and RPROP(T ) the Bayes error and the conditional
misclassification rate of the proposed rule, where T denotes the training samples. The asymptotic optimality for a
classification rule is defined as follows.

Definition 1. Let T be a classification rule with conditional misclassification rate RT (T ), given the training samples
T .
(i) T is asymptotically optimal if RT (T )/RBayes

P
→ 1.

(ii) T is asymptotically sub-optimal if RT (T ) − RBayes
P
→ 0.

Note that if limn→∞ RBayes > 0, then the asymptotically sub-optimality is the same as the asymptotically optimality.
To facilitate the construction of theoretical results, we need to introduce some notation and make assumptions on the
true model. Define the true values of µk, Σ, C and δk as µ0

k , Σ0, C0 and δ0
k = (µ0

k − µ
0
1)/K = ((δ0

kX)⊤, δ0ky)⊤, where
δ0

kX is a (p − 1) dimensional vector representing the true mean difference of variable X between classes G1 and Gk.

Denote the true inverse covariance matrix of variable X by C0
X . Also define ∆k =

√︂
(δ0

kX)⊤C0
Xδ

0
kX and ∆ = max{∆k}

K
k=1.

Denote Sδk = { j; (δ0
k) j ≠ 0}, which is the set containing location indices of the nonzero entries in δ0

k . Let s̃k be the
cardinalities of set Sδk . Define sk = s̃k if δ0ky = 0; otherwise sk = s̃k − 1. That is, sk is the number of nonzero entries
of δ0

kX . Additionally, we use the same sparsity measure S h;p = maxi≤p
∑︁p

j=1 |σ
0
i j|

h on Σ0 = (σ0
i j)1≤i, j≤p as in Bickel and

Levina [3], where 0 ≤ h < 1 and 00 is defined to be 0. Hence firstly, S 0;p equals the maximum of the numbers of
nonzero entries in each row of the matrix Σ0. In this case, a smaller value of S 0;p compared with p implies a sparse
structure in matrix Σ0. Secondly, if S h;p is smaller than p for 0 < h < 1, it indicates that many entries of matrix Σ0 are
very small. Moreover, we assume the following regularity conditions:

C1: There exists a constant θ such that 0 < θ−1 < λmin(C0) ≤ λmax(C0) < θ < ∞, where λmin(C0) and λmax(C0) are
the minimum and maximum eigenvalues of matrix C0;

C2: λ1 = O(
√︁

ln p/n), λ2 = O(
√︁

ln p/n);
C3: Restricted eigenvalue condition: for some constant φk > 0, assume C0 satisfies ∥(C0)1/2δ0

k∥
2
2 ≥ nφk∥δ

0
k∥

2
2 for

all subsets J ⊆ {1, . . . , p} such that the cardinality of J equals s̃k, and |(δ0
k)Jc |1 ≤ 3|(δ0

k)J |1. Here (δ0
k)J = ((δ0

k) j · I{ j ∈
J})1≤ j≤p, and Jc represents the complement set of J;

C4: Irrepresentable condition: without loss of generality, write δ0
k = ((δ0

k)⊤Sδ , (δ
0
k)⊤Sc

δ
)⊤, and correspondingly let

C0 =

[︄
Ψ11 Ψ12
Ψ21 Ψ22

]︄
, where Ψ11 is an s̃k × s̃k matrix. Then there exists a positive constant vector ζ such that

|Ψ21Ψ
−1
11 sign((δ0

k)⊤Sδ )| ≤ 1 − ζ, where 1 is a p − s̃k dimensional unit vector, and the inequality holds element-wise;
C5: There exist 0 ≤ c1 < c2 ≤ 1 and M > 0, such that n(1−c2)/2 min1≤i≤s̃k |(δ

0
k)i| ≥ M, s̃k = O(nc1 ). λ2 =

o(n(c2−c1+1)/2), p = o(λ2
2/n);

C6: There exists a constant c3 > 0 such that (δ0
kX − δ

0
ℓX)⊤C0

X(δ0
kX − δ

0
ℓX) > c3 > 0, k ≠ ℓ;

C7: There exists a constant c4 such that c−1
4 ≤ Kπk ≤ c4, k ∈ {1, . . . ,K}.

By Conditions C1 and C2, Rothman et al. [40] and Lam and Fan [27] derived the convergence rate of Glasso
estimate. We thus have

∥ĈX − C0
X∥ = Op(dn), (21)

where dn = S h;p(ln p/n)(1−h)/2, and ∥A∥ is the matrix spectral norm defined as the squared root of the maximum
eigenvalue of matrix A⊤A. The Conditions C2 and C3 are used in Bühlmann and Van De Geer [5] to study the
theoretical property of Lasso estimate, and we have

∥δ̂kX − δ
0
kX∥2 = Op(b(n)

k ), (22)

where b(n)
k =

√︂
s̃k ln p/(nφ2

k). Under Conditions C4 and C5, Zhao and Yu [49] showed that the Lasso estimate is model
selection consistency. Condition C6 requires that all the classes should be separated from each other. Also note that
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Condition C6 is equivalent to that ∆k is bounded away from 0. The Condition C7 guarantees a balanced sample size
for each class, which is commonly used in the literature to bound the term ln(πk/π1) in the LDA rule for establishing
the properties of classification rules. Based on the above results, we present the following theories on the consistency
of the classification rule by the proposed method.

Theorem 1. Assume that Conditions C1 - C7 hold, and

ξn;k = max{dn,
b(n)

k

∆k
,

√︁
skS h;p
√

n∆k
for any k} → 0.

Then the proposed rule for the multi-class problem is asymptotically sub-optimal if either one of the following two
conditions are satisfied
(i) ∆ = max{∆k}

K
k=1 is bounded;

(ii) if ∆→ ∞, then there exists a constant α ∈ (0, 1/2) such that ∆2ξ1−2α
n;k → 0.

Before the proof of Theorem 1, we need Proposition 2 and Lemmas 2 - 4.

Proposition 2. For an observation x, recall that y1 = µ1y + Σ
⊤
XyΣ

−1
X (x − µ1X), y2 = µ2y + Σ

⊤
XyΣ

−1
X (x − µ2X), p1 =

p(W = (x⊤, y1)⊤|G1) and p2 = p(W = (x⊤, y2)⊤|G2). Then p(x ∈ G1|X = x) > p(x ∈ G2|X = x) is equivalent to
π1 p1 > π2 p2.

Proof: Since p(x ∈ G1|X = x) > p(x ∈ G2|X = x), we have

π1 p(X = x|x ∈ G1) > π2 p(X = x|x ∈ G2),

π1 exp{−
1
2

(x − µ1X)⊤Σ−1
X (x − µ1X)} > π2 exp{−

1
2

(x − µ2X)⊤Σ−1
X (x − µ2X)},

ln π1 −
1
2

(x − µ1X)⊤Σ−1
X (x − µ1X) > ln π2 −

1
2

(x − µ2X)⊤Σ−1
X (x − µ2X). (23)

On the other hand, π1 p1 > π2 p2 yields

ln π1 −
1
2

{︄(︄
x
y1

)︄
−

(︄
µ1X

µ1y

)︄}︄⊤ [︄
ΣX ΣXy

Σ⊤Xy σ2
y

]︄−1 {︄(︄
x
y1

)︄
−

(︄
µ1X

µ1y

)︄}︄
> ln π2 −

1
2

{︄(︄
x
y2

)︄
−

(︄
µ2X

µ2y

)︄}︄⊤ [︄
ΣX ΣXy

Σ⊤Xy σ2
y

]︄−1 {︄(︄
x
y2

)︄
−

(︄
µ2X

µ2y

)︄}︄
. (24)

Now we prove (23) and (24) are equivalent. Since[︄
ΣX ΣXy

Σ⊤Xy σ2
y

]︄−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ Σ
−1
X +

Σ−1
X ΣXyΣ

⊤
XyΣ

−1
X

σ2
y−Σ

⊤
XyΣ

−1
X ΣXy

−
Σ−1

X ΣXy

σ2
y−Σ

⊤
XyΣ

−1
X ΣXy

−
Σ⊤XyΣ

−1
X

σ2
y−Σ

⊤
XyΣ

−1
X ΣXy

1
σ2

y−Σ
⊤
XyΣ

−1
X ΣXy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ Σ

−1
X +

Σ−1
X ΣXyΣ

⊤
XyΣ

−1
X

Var(y|X)
−
Σ−1

X ΣXy

Var(y|X)

−
Σ⊤XyΣ

−1
X

Var(y|X)
1

Var(y|X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
the left side of (24) equals

ln π1 −
1
2

[︂
(x − µ1X)⊤, y1 − µ1y

]︂⊤ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ Σ
−1
X +

Σ−1
X ΣXyΣ

⊤
XyΣ

−1
X

Var(y|X)
−
Σ−1

X ΣXy

Var(y|X)

−
Σ⊤XyΣ

−1
X

Var(y|X)
1

Var(y|X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[︄

x − µ1X

y1 − µ1y

]︄

= ln π1 −
1
2
{(x − µ1X)⊤Σ−1

X (x − µ1X) + (x − µ1X)⊤
Σ−1

X ΣXyΣ
⊤
XyΣ

−1
X

Var(y|X)
(x − µ1X)

−
y1 − µ1y

Var(y|X)
Σ⊤XyΣ

−1
X (x − µ1X) +

(y1 − µ1y)2

Var(y|X)
− (x − µ1X)⊤

Σ−1
X ΣXy

Var(y|X)
(y1 − µ1y)}

= ln π1 −
1
2

(x − µ1X)⊤Σ−1
X (x − µ1X),

where the last equality applies y1 − µ1y = Σ
⊤
XyΣ

−1
X (x − µ1X). Similarly, the right side of (24) equals ln π2 − (x −

µ2X)⊤Σ−1
X (x − µ2X)/2. This completes the proof.
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The inequality p(x ∈ G1|X = x) > p(x ∈ G2|X = x) in Proposition 2 indicates that the LDA rule assigns x to
G1. Therefore, Proposition 2 implies that Step 2b of Algorithm 2 is equivalent to applying the LDA classification rule
directly on x instead of w = (x⊤, ŷ)⊤. This fact enables us to give theoretical proof of Theorem 1 for the consistency
properties of the proposed classification rule based on variable X rather than W = (X⊤, y)⊤.

Lemma 2. For any k ∈ {2, . . . ,K}, we have

(δ̂
⊤

kXĈX − (δ0
kX)⊤C0

X)Σ0
X(ĈX δ̂kX − C0

Xδ
0
kX) = ∆2

k

⎡⎢⎢⎢⎢⎢⎣Op(
b(n)

k

∆k
) + Op(dn)

⎤⎥⎥⎥⎥⎥⎦
for the multi-class problem.

Proof: Decompose

(ĈX δ̂kX − C0
Xδ

0
kX)⊤Σ0

X(ĈX δ̂kX − C0
Xδ

0
kX) = δ̂

⊤

kXĈXΣ
0
XĈX δ̂kX − 2δ̂

⊤

kXĈXδ
0
kX + (δ0

kX)⊤C0
Xδ

0
kX . (25)

On one hand, by the result (21) we have

δ̂
⊤

kXĈXΣ
0
XĈX δ̂kX = δ̂

⊤

kXĈX δ̂kX[1 + Op(dn)] = δ̂
⊤

kXC0
X δ̂kX[1 + Op(dn)].

Since E[(δ0
kX)⊤C0

X(δ̂kX − δ
0
kX)]2 ≤ ∆2

k E[(δ̂kX − δ
0
kX)⊤C0

X(δ̂kX − δ
0
kX)] and by (22), we obtain

δ̂
⊤

kXC0
X δ̂kX = (δ0

kX)⊤C0
Xδ

0
kX + 2(δ0

kX)⊤C0
X(δ̂kX − δ

0
kX) + (δ̂kX − δ

0
kX)⊤C0

X(δ̂kX − δ
0
kX)

= ∆2
k + Op(b(n)

k ∆k) + Op((b(n)
k )2) = ∆2

k[1 + Op(
b(n)

k

∆k
)].

As a result,

δ̂
⊤

kXĈX δ̂kX = δ̂
⊤

kXC0
X δ̂kX[1 + Op(dn)] = ∆2

k[1 + Op(
b(n)

k

∆k
) + Op(dn)]. (26)

On the other hand, since ∥δ0
kX∥

2
2 = O(∆2

k), we have

(δ0
kX)⊤ĈXδ

0
kX = (δ0

kX)⊤(ĈX − C0
X)δ0

kX + (δ0
kX)⊤C0

Xδ
0
kX = Op(∆2

kdn) + ∆2
k = ∆

2
k[1 + Op(dn)]. (27)

Consequently,

δ̂
⊤

kXĈXδ
0
kX = ∆k

√︂
1 + Op(dn) ∆k

√︄
1 + Op(

b(n)
k

∆k
) + Op(dn) = ∆2

k

√︄
1 + Op(

b(n)
k

∆k
) + Op(dn). (28)

Combing (25), (26) and (28) yields

(δ̂
⊤

kXĈX − (δ0
kX)⊤C0

X)Σ0
X(ĈX δ̂kX − C0

Xδ
0
kX) =∆2

k[1 + Op(
b(n)

k

∆k
) + Op(dn)] − 2∆2

k

√︄
1 + Op(

b(n)
k

∆k
) + Op(dn) + ∆2

k

=∆2
k

⎡⎢⎢⎢⎢⎢⎣Op(
b(n)

k

∆k
) + Op(dn)

⎤⎥⎥⎥⎥⎥⎦ ,
where the last equality uses the Taylor expansion of

√
1 + x = 1 + x/2 + o(x).

Write µ0
k = ((µ0

kX)⊤, µ0
ky)⊤, where µ0

kX is the true mean value of variable X for class Gk. Correspondingly, write
µ̂k = (µ̂⊤kX , µ̂ky)⊤. Let an ≍ bn represent that two sequences an and bn are the same order. Now we state Lemma 3.

Lemma 3. Let q(n)
k be the number of nonzero entries of δ̂kX . For k ∈ {2, . . . ,K}, we have

δ̂
⊤

kXĈX(µ̂1X − µ
0
1X) ≍ δ̂

⊤

kXĈX(µ̂kX − µ
0
kX) = Op(

√︄
q(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX − Op(

√︄
S h;pq(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX .
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Proof: Without loss of generality, we assume that δ̂kX = (δ̂
⊤

k,1, 0⊤)⊤, where δ̂
⊤

k,1 is a q(n)
k -dimensional vector containing

all the nonzero entries of δ̂kX . Note that limn→∞ q(n)
k = sk. Conformally, we write

Σ0
X =

[︄
Σ0

11 Σ0
12

(Σ0
12)⊤ Σ0

22

]︄
, Σ̂X =

[︄
Σ̂11 Σ̂12

(Σ̂12)⊤ Σ̂22

]︄
, C0

X =

[︄
C0

11 C0
12

(C0
12)⊤ C0

22

]︄
, ĈX =

[︄
Ĉ11 Ĉ12

(Ĉ12)⊤ Ĉ22

]︄
,

where Σ0
11, Σ̂11,C0

11 and Ĉ11 are q(n)
k × q(n)

k matrices. Let µ̂1X − µ
0
1X = (η⊤1 , η

⊤
2 )⊤ with η1 a q(n)

k -dimensional vector.
Hence,

δ̂
⊤

kXĈX(µ̂1X − µ
0
1X) = δ̂

⊤

k,1Ĉ11η1 + δ̂
⊤

k,1Ĉ12η2 = δ̂
⊤

k,1Ĉ11η1 − δ̂
⊤

k,1Σ̂
−1
11 Σ̂12Ĉ22η2.

On one hand,

(δ̂
⊤

k,1Ĉ11η1)2 ≤ (δ̂
⊤

k,1Ĉ11δ̂k,1)(η⊤1 Ĉ11η1) = (δ̂
⊤

kXĈX δ̂kX)(η⊤1 Ĉ11η1) = Op(
q(n)

k

n
)(δ̂
⊤

kXĈX δ̂kX).

On the other hand,

(δ̂
⊤

k,1Σ̂
−1
11 Σ̂12Ĉ22η2)2 ≤ (δ̂

⊤

k,1Σ̂
−1
11 δ̂k,1)(η⊤2 Ĉ22Σ̂

⊤

12Σ̂
−1
11 Σ̂12Ĉ22η2) ≤ (δ̂

⊤

k,1Ĉ11δ̂k,1)(η⊤2 Ĉ22Σ̂
⊤

12Σ̂
−1
11 Σ̂12Ĉ22η2)

= (δ̂
⊤

kXĈX δ̂kX)(η⊤2 Ĉ22Σ̂
⊤

12Σ̂
−1
11 Σ̂12Ĉ22η2) = (δ̂

⊤

kXĈX δ̂kX)(η⊤2 C0
22(Σ0

12)⊤(Σ0
11)−1Σ0

12C0
22η2[1 + Op(dn)])

= (δ̂
⊤

kXĈX δ̂kX)(ωn[1 + Op(dn)]),

where the forth equation is obtained from (21), and ωn = (η⊤2 C0
22(Σ0

12)⊤(Σ0
11)−1Σ0

12C0
22η2. Hence, we have

δ̂
⊤

kXĈX(µ̂1X − µ
0
1X) = Op(

√︄
q(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX −

√︂
δ̂
⊤

kXĈX δ̂kX

√︂
ωn[1 + Op(dn)].

Under Condition C1,

E(ωn) ≤ θE(η⊤2 C0
22(Σ0

12)⊤Σ0
12C0

22η2) =
θ

n
tr[Σ0

12C0
22Σ

0
22C0

22(Σ0
12)⊤] ≤

θ4

n
tr[Σ0

12(Σ0
12)⊤].

Recall that Σ0 = (σ0
i j)1≤i, j≤p, then

E(ωn) ≤
θ4

n

q(n)
k∑︂

i=1

p∑︂
j=q(n)

k +1

(σ0
i j)

2 ≤
θ4

n
q(n)

k max
i

p∑︂
j=q(n)

k +1

(σ0
i j)

2 ≤
θ6−h

n
q(n)

k max
j≤p

p∑︂
i=1

|σ0
i j|

h = O(
S h;pq(n)

k

n
).

Consequently,

δ̂
⊤

kXĈX(µ̂1X − µ
0
1X) = Op(

√︄
q(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX − Op(

√︄
S h;pq(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX .

Similarly, we have

δ̂
⊤

kXĈX(µ̂kX − µ
0
kX) = Op(

√︄
q(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX − Op(

√︄
S h;pq(n)

k

n
)
√︂
δ̂
⊤

kXĈX δ̂kX .

Lemma 4. For t ∈ {1, . . . ,K} and k ∈ {2, . . . ,K}, we have

(µ0
tX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) − (

µ̂1X + µ̂kX

2
)⊤ĈX δ̂kX + (

µ0
1X + µ

0
kX

2
)⊤C0

Xδ
0
kX

=∆2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Op(
b(n)

k

∆k
) + Op(dn) + Op(

√︂
S h;pq(n)

k
√

n∆k
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + 1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX)

for the multi-class problem.
11



Proof: It is not difficult to derive

(µ0
tX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) − (

µ̂1X + µ̂kX

2
)⊤ĈX δ̂kX + (

µ0
1X + µ

0
kX

2
)⊤C0

Xδ
0
kX

=(µ0
tX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) −

1
2
{(µ̂1X + µ̂kX) − (µ0

1X + µ
0
kX)}⊤ĈX δ̂kX −

1
2

(µ0
1X + µ

0
kX)⊤(ĈX δ̂kX − C0

Xδ
0
kX)

={
(µ0

tX − µ
0
1X) + (µ0

tX − µ
0
kX)

2
}⊤(ĈX δ̂kX − C0

Xδ
0
kX) −

1
2
{(µ̂1X − µ

0
1X) + (µ̂kX − µ

0
kX)}⊤ĈX δ̂kX

=K(δ0
tX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) −

K
2

(δ0
kX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) −

1
2
{(µ̂1X − µ

0
1X) + (µ̂kX − µ

0
kX)}⊤ĈX δ̂kX .

Because

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX) = ∆2

k + ∆
2
t − 2(δ0

tX)⊤C0
Xδ

0
kX ,

we hence have

−(δ0
tX)⊤C0

Xδ
0
kX =

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX) −

1
2

(∆2
k + ∆

2
t ) ≤

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX) − ∆k∆t.

Consequently, applying the Cauchy-Schwarz inequality together with (26) and (27), we can obtain

(δ0
tX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) ≤∆t

√︂
1 + Op(dn) ∆k

√︄
1 + Op(

b(n)
k

∆k
) + Op(dn) +

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX) − ∆t∆k

≤∆t∆k[1 + Op(
b(n)

k

∆k
) + Op(dn)] − ∆t∆k +

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX)

≤∆2[Op(
b(n)

k

∆k
) + Op(dn)] +

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX).

Similarly,

(δ0
kX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) = ∆2

k[Op(
b(n)

k

∆k
) + Op(dn)] ≤ ∆2[Op(

b(n)
k

∆k
) + Op(dn)].

As a result, according to Lemma 3, we have

(µ0
tX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) − (

µ̂1X + µ̂kX

2
)⊤ĈX δ̂kX + (

µ0
1X + µ

0
kX

2
)⊤C0

Xδ
0
kX

≤∆2[Op(
b(n)

k

∆k
) + Op(dn)] +

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX) +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Op(

√︄
S h;pq(n)

k

n
) − Op(

√︄
q(n)

k

n
)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
√︂
δ̂
⊤

kXĈX δ̂kX

≤∆2[Op(
b(n)

k

∆k
) + Op(dn)] + ∆kOp(

√︄
S h;pq(n)

k

n
)

√︄
1 + Op(

b(n)
k

∆k
) + Op(dn) +

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX)

=∆2[Op(
b(n)

k

∆k
) + Op(dn)] + ∆2

k[Op(
b(n)

k

∆2
k

) + Op(
dn

∆k
) + Op(

√︂
S h;pq(n)

k
√

n∆k
)] +

1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX)

≤∆2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Op(
b(n)

k

∆k
) + Op(dn) + Op(

√︂
S h;pq(n)

k
√

n∆k
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + 1
2

(δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX).
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From Lemma 4, note that when t = k, we have (µ0
kX)⊤(ĈX δ̂kX − C0

Xδ
0
kX) − (µ̂1X + µ̂kX)⊤ĈX δ̂kX/2 + (µ0

1X +

µ0
kX)⊤C0

Xδ
0
kX/2 = ∆

2
[︃
Op(b(n)

k /∆k) + Op(dn) + Op(
√︂

S h;pq(n)
k /(
√

n∆k))
]︃
. With Lemmas 2 - 4, we are ready to com-

plete the proof of Theorem 1.

Proof of Theorem 1: Let ẐPROP and ẐBayes denote the predicted class labels obtained by the proposed model and the
Bayes rule, respectively. For simplicity, we assume π1 = . . . = πK instead of Condition C7 in the proofs of Theorems
1 - 3 with no influence on the theoretical results, since Condition C7 is only used to bound the term ln(πk/π1) in the
LDA rule. Define ϑk = (x− (µ0

1X + µ
0
kX)/2)⊤C0

Xδ
0
kX and ϑ̂k = (x− (µ̂1X + µ̂kX)/2)⊤ĈX δ̂kX for a new sample x. Then for

any ϵ > 0,

RPROP(T ) − RBayes ≤ Pr(ẐPROP ≠ ẐBayes) ≤ 1 − Pr(|ϑ̂k − ϑk | <
ϵ

2
, |ϑk − ϑℓ | > ϵ for any k, ℓ)

≤ Pr(|ϑ̂k − ϑk | ≥
ϵ

2
for some k) + Pr(|ϑk − ϑℓ | ≤ ϵ for some k, ℓ).

Firstly, we bound the probability Pr(|ϑk − ϑℓ | ≤ ϵ for some k, ℓ). Since ϑk − ϑℓ = x⊤C0
X(δ0

kX − δ
0
ℓX) − (µ0

1X +

µ0
kX)⊤C0

Xδ
0
kX/2 + (µ0

1X + µ
0
ℓX)⊤C0

Xδ
0
ℓX/2, the variance of ϑk − ϑℓ is (δ0

kX − δ
0
ℓX)⊤C0

X(δ0
kX − δ

0
ℓX). Hence,

Pr(|ϑk − ϑℓ | ≤ ϵ for some k, ℓ) =
K∑︂

t=1

Pr(|ϑk − ϑℓ | ≤ ϵ |Z = t)πt ≤
∑︂
k,ℓ,t

πt
Cϵ√︂

(δ0
kX − δ

0
ℓX)⊤C0

X(δ0
kX − δ

0
ℓX)
≤ CK2ϵ,

where the last inequality is obtained by Condition C6. Secondly, we bound the term Pr(|ϑ̂k − ϑk | ≥ ϵ/2 for some k).
As (ϑ̂k − ϑk |Z = t) = x⊤(ĈX δ̂kX − C0

Xδ
0
kX) − (µ̂1X + µ̂kX)⊤ĈX δ̂kX/2 + (µ0

1X + µ
0
kX)⊤C0

Xδ
0
kX/2, the conditional difference

term (ϑ̂k − ϑk |Z = t) is from normal distribution N(µϑ, σ2
ϑ) with

µ(t)
ϑ
= (µ0

tX)⊤(ĈX δ̂kX − C0
Xδ

0
kX) − (

µ̂1X + µ̂kX

2
)⊤ĈX δ̂kX + (

µ0
1X + µ

0
kX

2
)⊤C0

Xδ
0
kX

and

σ2
ϑ = (δ̂

⊤

kXĈX − (δ0
kX)⊤C0

X)Σ0
X(ĈX δ̂kX − C0

Xδ
0
kX).

By Markov’s inequality, together with Lemmas 2 and 4, we have

Pr(|ϑ̂k − ϑk | ≥
ϵ

2
for some k) =

K∑︂
t≠k

πt Pr(|ϑ̂k − ϑk | ≥
ϵ

2
|Z = t) + πk Pr(|ϑ̂k − ϑk | ≥

ϵ

2
|Z = k)

≤

C max
k

(δ̂
⊤

kXĈX − (δ0
kX)⊤C0

X)Σ0
X(ĈX δ̂kX − C0

Xδ
0
kX)

(ϵ − µ(t≠k)
ϑ

)2
+

(δ̂
⊤

kXĈX − (δ0
kX)⊤C0

X)Σ0
X(ĈX δ̂kX − C0

Xδ
0
kX)

(ϵ − µ(k)
ϑ

)2

≤

C max
k
∆2

k[Op( b(n)
k
∆k

) + Op(dn)]⎡⎢⎢⎢⎢⎣ϵ − ∆2[Op( b(n)
k
∆k

) + Op(dn) + Op(

√︂
S h;pq(n)

k
√

n∆k
)] − 1

2 (δ0
kX − δ

0
tX)⊤C0

X(δ0
kX − δ

0
tX)

⎤⎥⎥⎥⎥⎦2

+
∆2

k[Op( b(n)
k
∆k

) + Op(dn)]⎡⎢⎢⎢⎢⎣ϵ − ∆2[Op( b(n)
k
∆k

) + Op(dn) + Op(

√︂
S h;pq(n)

k
√

n∆k
)]
⎤⎥⎥⎥⎥⎦2

≤
∆2Op(ξn;k)

[ϵ − ∆2Op(ξn;k) − 1
2 (δ0

kX − δ
0
tX)⊤C0

X(δ0
kX − δ

0
tX)]2

+
∆2Op(ξn;k)

[ϵ − ∆2Op(ξn;k)]2 . (29)
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By Condition C6, the first term of (29) converges to 0 in probability. Choose ϵ = Cξαn;k, where 0 < α < 1/2 with a
positive constant C, then

Pr(|ϑ̂k − ϑk | ≥
ϵ

2
for some k) ≤

∆2Op(ξn;k)

[ϵ − ∆2Op(ξn;k) − 1
2 (δ0

kX − δ
0
tX)⊤C0

X(δ0
kX − δ

0
tX)]2

+
∆2Op(ξ1−2α

n;k )

[C − ∆2Op(ξ1−αn;k )]2

P
→ 0.

Theorem 1 establishes the sub-optimality property of the proposed classification rule for the multi-class problem.
In the case of two-class problem, the Bayes error rate can be expressed in a closed form of

RBayes = Φ(−∆2/2)

when the data are from normal distribution, where Φ represents the cumulative distribution function of N(0, 1), and

∆2 =

√︂
(δ0

2X)⊤C0
Xδ

0
2X =

√︂
(µ0

2X − µ
0
1X)⊤C0

X(µ0
2X − µ

0
1X). Accordingly, in Theorems 2 and 3, we can compute the

convergence rate of the proposed rule for the two-class problem, and subsequently investigate its properties.

Theorem 2. Assume that Conditions C1 - C7 hold with K = 2, and

ξn = max{dn,
b(n)

2

∆2
,

√︁
s2S h;p
√

n∆2
} → 0.

Then we have RPROP(T ) = Φ(−(∆2/2)[1 + Op(ξn)]).

Theorem 3. Assuming that all the conditions in Theorem 2 are satisfied, we have
(i) if ∆2 is bounded, then the proposed rule is asymptotically optimal and RPROP(T )/RBayes − 1 = Op(ξn);
(ii) if ∆2 → ∞, then the proposed rule is asymptotically sub-optimal;
(iii) if ∆2 → ∞ and ξn∆2

2 → 0, then the proposed rule is asymptotically optimal.

Proof of Theorem 2: The conditional misclassification rate is

RPROP(T ) =
1
2

2∑︂
k=1

Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (−1)kδ̂
⊤

2XĈX(µ0
kX − µ̂kX) − δ̂

⊤

2XĈX(µ̂1X − µ̂2X)/2√︂
δ̂
⊤

2XĈXΣ
0
XĈX δ̂2X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
2

2∑︂
k=1

Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (−1)kδ̂
⊤

2XĈX(µ0
kX − µ̂kX) − δ̂

⊤

2XĈX δ̂2X√︂
δ̂
⊤

2XĈXΣ
0
XĈX δ̂2X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
By the result (21), we have

δ̂
⊤

2XĈXΣ
0
XĈX δ̂2X = δ̂

⊤

2XĈX δ̂2X[1 + Op(dn)] = δ̂
⊤

2XC0
X δ̂2X[1 + Op(dn)].

From the result (22), together with E[(δ0
2X)⊤C0

X(δ̂2X − δ
0
2X)]2 ≤ ∆2

2E[(δ̂2X − δ
0
2X)⊤C0

X(δ̂2X − δ
0
2X)], it is easy to derive

δ̂
⊤

2XC0
X δ̂2X = (δ0

2X)⊤C0
Xδ

0
2X + (δ0

2X)⊤C0
X(δ̂2X − δ

0
2X) + (δ̂2X − δ

0
2X)⊤C0

X(δ̂2X − δ
0
2X)

= ∆2
2 + Op(b(n)

2 ∆2) + Op((b(n)
2 )2) = ∆2

2[1 + Op(
b(n)

2

∆2
)].

Hence we have

δ̂
⊤

2XĈX δ̂2X = δ̂
⊤

2XC0
X δ̂2X[1 + Op(dn)] = ∆2

2[1 + Op(
b(n)

2

∆2
) + Op(dn)].
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Therefore, by Lemma 3, we obtain

δ̂
⊤

2XĈX(µ̂1X − µ
0
1X) − δ̂

⊤

2XĈX δ̂2X√︂
δ̂
⊤

2XĈXΣ
0
XĈX δ̂2X

=
Op(

√︂
q(n)

2
n ) + Op(

√︂
S h;pq(n)

2
n ) −

√︂
δ̂
⊤

2XĈX δ̂2X√︁
1 + Op(dn)

= −
∆2

2

√︃
1 + Op( b(n)

2
∆2

) + Op(dn)√︁
1 + Op(dn)

+
Op(

√︂
S h;pq(n)

2
n )√︁

1 + Op(dn)
= −
∆2

2
[1 + Op(

b(n)
2

∆2
) + Op(dn)] + Op(

√︄
S h;pq(n)

2

n
)

= −
∆2

2
[1 + Op(ξn)].

Similarly, we have
δ̂
⊤

2XĈX(µ0
2X − µ̂2X) − δ̂

⊤

2XĈX δ̂2X√︂
δ̂
⊤

2XĈXΣ
0
XĈX δ̂2X

= −
∆2

2
[1 + Op(ξn)],

which proves the theorem.

To establish the theoretical results in Theorem 3, we need a lemma from Shao et al. [42]. We state it here for
completeness, and then prove Theorem 3.

Lemma 5. Let a(1)
n and a(2)

n be two sequences of positive numbers such that a(1)
n → ∞ and a(2)

n → 0 as n → ∞. If
limn→∞ a(1)

n a(2)
n = ρ, where ρ may be 0, positive, or∞, then

lim
n→∞

Φ(−
√︂

a(1)
n (1 − a(2)

n ))

Φ(−
√︂

a(1)
n )

= eρ.

Proof: See the proof of Lemma 1 in Shao et al. [42].

Proof of Theorem 3: (i) Let ϕ be the density function of N(0, 1). By the mean value theorem,

RPROP(T ) − RBayes = Φ(−
∆2

2
[1 + Op(ξn)]) − Φ(−

∆2

2
) = −ϕ(τn)

∆2

2
Op(ξn),

where τn is between −∆2/2 and −(∆2/2)[1 + Op(ξn)]. Since ∆2 is bounded, then RBayes is bounded away from 0.
Hence,

RPROP(T )
RBayes

− 1 = −
∆2

2
ϕ(τn)
RBayes

Op(ξn) = Op(ξn).

(ii) When ∆2 → ∞, we have RPROP(T )
P
→ 0. This, together with lim∆2→∞ RBayes = 0, proves (2).

(iii) The conditions ∆2 → ∞, limn→∞ ξn∆
2
2 = 0, together with Lemma 5, prove that RPROP(T )/RBayes

P
→ 1.

Theorem 2 provides the convergence rate of the proposed classification rule for the two-class problem with respect
to ξn. Base on such a result, Theorem 3 demonstrates that the property of the proposed classification rule (optimal-
ity or sub-optimality) depends on the scenarios of the true model’s ∆2. Specifically, (1) when ∆2 is bounded, i.e.,
limn→∞ RBayes > 0, then RPROP(T ) converges in probability to the same limit as RBayes. (2) When ∆2 → ∞, i.e.,

RBayes → 0, then RPROP(T )
P
→ 0; in this case, if we further have ξn∆2

2 → 0, then RPROP(T ) and RBayes have the same
convergence rate.
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3.2. Consistency property of the prediction of y
Now, we derive the consistency property for the proposed estimate of y. Denote by ŷP the predicted value of y

obtained from the proposed model. Define ŷB to be the predicted value of y for x when all parameters are known.
Specifically, first obtain the class label k via the Bayes LDA rule, then ŷB = yk = µky + Σ

⊤
XyΣ

−1
X (x − µkX). Hence, the

mean squared errors (MSE) of estimates ŷB and ŷP are MSEBayes = E[(ŷB − y)2|T ] and MSEPROP = E[(ŷP − y)2|T ].
Now we establish the theoretical results of ŷP in Theorem 4.

Theorem 4. Assume that Conditions C1 - C7 hold and the conditions in Theorem 1 are satisfied. Then we have

MS EPROP − MS EBayes
P
→ 0,

for the multi-class qualitative response.

Proof of Theorem 4: Define rik = Pr(Ẑ = i|Z = k) for i, k ∈ {1, . . . ,K}. Let R be the misclassification error for a
classifier, it is then calculated via

R =
K∑︂

k=1

Pr(Z = k) Pr(Ẑ ≠ k|Z = k) =
K∑︂

k=1

⎛⎜⎜⎜⎜⎜⎜⎝πk

K∑︂
i≠k

rik

⎞⎟⎟⎟⎟⎟⎟⎠ . (30)

Now we derive an upper bound of (ŷ − y)2. Since it is random, we focus on the average, i.e.,

E[(ŷ − y)2|x,T ] = EyEŷ|T [(ŷ − y)2|x,T ]. (31)

To simplify the notation, we omit x and T and write it as EyEŷ|T [(ŷ − y)2]. Then (31) becomes

E[(ŷ − y)2] = EyEŷ|T [(ŷ − y)2] = EZ[Ey|Z Eŷ|T [(ŷ − y)2]|Z] =
K∑︂

k=1

πkEy|Z=k

⎡⎢⎢⎢⎢⎢⎣ K∑︂
i=1

rik(ŷi − y)2|Z = k

⎤⎥⎥⎥⎥⎥⎦ .
Next, we derive

Ey|Z=1

[︂
a1(ŷ1 − y)2|Z = 1

]︂
= Ey|Z=1

[︂
a1{ŷ1 − E(y|Z = 1) + E(y|Z = 1) − y}2|Z = 1

]︂
= Ey|Z=1

[︂
a1{ŷ1 − E(y|Z = 1)}2|Z = 1

]︂
+ Ey|Z=1

[︂
a1{y − E(y|Z = 1)}2|Z = 1

]︂
= a1{ŷ1 − E(y|Z = 1)}2 + a1Var(y|Z = 1).

Similarly, we have for c > 0 and i, k ∈ {1, . . . ,K}

Ey|Z=k

[︂
c(ŷi − y)2|Z = k

]︂
= c{ŷi − E(y|Z = k)}2 + cVar(y|Z = k).

As a result, (31) is decomposed as

E[(ŷ − y)2|x,T ] =
K∑︂

k=1

πk

⎡⎢⎢⎢⎢⎢⎣ K∑︂
i=1

rik{ŷi − E(y|Z = k)}2 +
K∑︂

i=1

rikVar(y|Z = k)

⎤⎥⎥⎥⎥⎥⎦
=

K∑︂
k=1

K∑︂
i=1

πkrik{ŷi − E(y|Z = k)}2 + (σ2
y − Σ

⊤
XyΣ

−1
X ΣXy)

K∑︂
k=1

K∑︂
i=1

πkrik

=

K∑︂
k=1

K∑︂
i=1

πkrik{ŷi − E(y|Z = k)}2 + (σ2
y − Σ

⊤
XyΣ

−1
X ΣXy),

where in the second equality Var(y|Z = k) = σ2
y − Σ

⊤
XyΣ

−1
X ΣXy is used, and the third equality uses

∑︁K
k=1

∑︁K
i=1 πkrik = 1.

Now we tackle with each term of

{ŷk − E(y|Z = k)}2 =
{︃
(µ̂ky − µky) +

(︃
Σ̂
⊤

XyΣ̂
−1
X − Σ

⊤
XyΣ

−1
X

)︃
x −

(︃
Σ̂
⊤

XyΣ̂
−1
X µ̂kX − Σ

⊤
XyΣ

−1
X µkX

)︃}︃2
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and {︁
ŷk − E(y|Z = k′)

}︁2
=

{︃
(µ̂ky − µk′y) +

(︃
Σ̂
⊤

XyΣ̂
−1
X − Σ

⊤
XyΣ

−1
X

)︃
x −

(︃
Σ̂
⊤

XyΣ̂
−1
X µ̂kX − Σ

⊤
XyΣ

−1
X µk′X

)︃}︃2

=

{︃
(µ̂ky − µky) +

(︃
Σ̂
⊤

XyΣ̂
−1
X − Σ

⊤
XyΣ

−1
X

)︃
x −

(︃
Σ̂
⊤

XyΣ̂
−1
X µ̂kX − Σ

⊤
XyΣ

−1
X µkX

)︃
+ (µky − µk′y) −

(︂
Σ⊤XyΣ

−1
X µkX − Σ

⊤
XyΣ

−1
X µk′X

)︂}︂2
, k ≠ k′.

For k ∈ {1, . . . ,K} and k ≠ k′, define the following terms

bky = µ̂ky − µky, Dkk′ = E(y|Z = k) − E(y|Z = k′) = (µky − µk′y) −
(︂
Σ⊤XyΣ

−1
X µkX − Σ

⊤
XyΣ

−1
X µk′X

)︂
,

h =
(︃
Σ̂
⊤

XyΣ̂
−1
X − Σ

⊤
XyΣ

−1
X

)︃⊤
, dk = Σ̂

⊤

XyΣ̂
−1
X µ̂kX − Σ

⊤
XyΣ

−1
X µkX .

Therefore, we obtain

E[(ŷ − y)2|x,T ] =
K∑︂

i=1

πirii(biy + h⊤x − di)2 +

K∑︂
k=1

K∑︂
i≠k

πkrik(biy + h⊤x − di + Dik)2 + (σ2
y − Σ

⊤
XyΣ

−1
X ΣXy)

=

K∑︂
i=1

πirii(biy + h⊤x − di)2 +

K∑︂
k=1

K∑︂
i≠k

πkrik(biy + h⊤x − di)2 +

K∑︂
k=1

K∑︂
i≠k

πkrikD2
ik

+

K∑︂
k=1

K∑︂
i≠k

2πkrik(biy + h⊤x − di)Dik + (σ2
y − Σ

⊤
XyΣ

−1
X ΣXy)

=M +
K∑︂

k=1

K∑︂
i≠k

πkrikD2
ik + (σ2

y − Σ
⊤
XyΣ

−1
X ΣXy),

where

M =
K∑︂

k=1

K∑︂
i=1

πkrik(biy + h⊤x − di)2 +

K∑︂
k=1

K∑︂
i≠k

2πkrik(biy + h⊤x − di)Dik.

Now if the classification of Z is based on the known distribution, the misclassification rate R is RBayes. For i, k ∈
{1, . . . ,K}, let rB

ik = Pr(Ẑ = i|Z = k) represent the corresponding rik with Ẑ obtained from Bayes rule. Similarly, let
symbol rP

ik be the corresponding rik with Ẑ from the proposed model. Denote by MPROP the value of M computed
from the proposed model. Note that the value of M computed from the Bayes rule is equal to 0. Then we have

E[(ŷP − y)2|x,T ] − E[(ŷB − y)2|x,T ] =MPROP +

K∑︂
k=1

K∑︂
i≠k

(πkrP
ik − πkrB

ik)D2
ik ≤MPROP + [RPROP(T ) − RBayes]D2

max,

where D2
max = max {D2

kk′ }, and the last inequality uses (30). By conditions in Theorem 1, Ex(MPROP)
P
→ 0 as n → ∞.

Consequently, we have

MSEPROP −MSEBayes = E[(ŷP − y)2|T ] − E[(ŷB − y)2|T ] = ExE[(ŷP − y)2|x,T ] − ExE[(ŷB − y)2|x,T ]

≤ Ex(MPROP) + [RPROP(T ) − RBayes]D2
max

P
→ 0.

Theorem 4 compares the MSE of the proposed estimate of y with that from the optimal Bayes rule (under the
assumption that all parameters are known). Since the classification errors from a classification rule might be larger
than 0, the MSE of ŷ may not converge to 0 even though the sample size n is sufficiently large. Here we adopt
the MSEBayes as a reasonable performance benchmark to evaluate the property of the proposed model with respect
to y. Theorem 4 states that the difference of MSE between the proposed and the Bayes methods converges to 0 in
probability.
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4. Numerical results

In this section, we study the empirical performance of the proposed GAQQ model from multiple perspectives. In
Sections 4.1 and 4.2, we examine the performance of our method via simulated QQ data with two-class and multi-
class responses, respectively. In Section 4.3, two real-world data examples from material science and genetics are
used to illustrate the merits of the proposed approach.

4.1. Two-class settings of the qualitative response

We evaluate the performance of the proposed GAQQ method for a binary response Z under different inverse
covariance matrices C and mean differences δ2. The proposed GAQQ model is compared with several benchmark
methods, denoted as GLDA, CL, and ENET, which use the predictor variables X to predict Z and y. The GLDA
employs the LDA classification rule for Z using the Moore-Penrose generalized inverse of the sample covariance
matrix of X when p > n. The CL method applies the LPD technique [7] to predict the response Z based on X. With
their estimated class label of Z, the GLDA and CL predict y by (11). The ENET method uses the elastic-net logistic
model [50] on predictor variables X to fit the response Z and hence predicts Z for the testing data. For the quantitative
response y, the ENET separately fits two elastic-net linear regressions for two classes using training data, and then
predicts y in the testing data based on its estimated Z. The tuning parameters of the CL and ENET methods are
chosen by five-fold cross validation. Specifically, we split the training data into V sets with roughly equal size. In the
ENET method, let β̂

(ν)

log
(λ) be the estimated coefficients of elastic-net logistic regression from the νth set of splitting

data under given choice of two tuning parameters, ν ∈ {1, . . . ,V}. Also let Ẑ(ν)
(λ) be the predicted Z using β̂

(ν)

log
(λ)

and training data excluding the νth set. The tuning parameters are chosen to minimize
∑︁V
ν=1 ∥Ẑ

(ν)
(λ) − Z(−ν)∥22, where

Z(−ν) represents the vector of values of Z in the training data without the νth set. Similarly, let β̂
(ν)

lm
(λ) be the estimated

coefficients of elastic-net linear regression from the νth set of splitting data with two tuning parameters. Denote by
ŷ(ν)(λ) the predicted y using β̂

(ν)

lm
(λ) and training data excluding the νth set. The tuning parameters are chosen to

minimize
√︂∑︁V

ν=1 ∥ŷ
(ν)(λ) − y(−ν)∥22/V , where y(−ν) represents the vector of values of y in the training data without the

νth set. The cross-validation procedure of CL method for modeling the response Z is provided in detail in Cai and Liu
[7]. The GLDA is implemented in the R software. The glmnet(·) function in R is used for the ENET method. The
CL method is implemented by using linprog(·) function in the Matlab software. All numerical studies are carried
out on an Intel Xeon Gold 6248 2.50 GHz processor.

Regarding the inverse covariance matrix C, we consider the following five structures in the simulations, which are
commonly used in the literature [47]:

Model 1. C1 = I. ci j = 1 if i = j and 0 otherwise;
Model 2. C2 = AR(0.6). The conditional covariance between any two random variables is fixed to be 0.6|i− j|,

1 ≤ i, j ≤ p;
Model 3. C3 is generated by randomly permuting rows and corresponding columns of the matrix C2;

Model 4. C4 =

(︄
CS(0.6) 0

0 I

)︄
, where CS(0.6) represents a 5 × 5 compound symmetry matrix with diagonal

entries 1 and others 0.6. 0 indicates a matrix with all entries 0;
Model 5. C5 = Θ + αI, where the diagonal entries of Θ are zeros and Θi j = Θ ji = b ∗ Uni f (−1, 1) for i ≠ j,

where b is from the Bernoulli distribution with probability 0.15 equal 1. Each off-diagonal entry of Θ is generated
independently. The value of α is gradually increased to make sure that C5 is positive definite.

Model 1 is the simplest sparse matrix indicating that variables are independent of each other. Model 4 is a sparse
matrix indicating that only the first 5 variables are correlated. This matrix includes more sparsity as the dimensionality
increases. Models 2 and 3 are relatively dense matrices, and they also become more sparse when the dimensionality
increases. All of these four matrices have sparse structures to some extent, while Model 5 is a general sparse matrix
with no structure, which is similarly used in Bien and Tibshirani [4].

For the mean difference δ2, we consider two different levels of sparsity. The µ1 is the vector with all elements
zeros, and the µ2 is generated such that (S1): 25% of the elements in µ2 are zeros; (S2): 75% of the elements in µ2
are zeros. The positions of zeros in µ2 are randomly distributed with its nonzero values independently generated from
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Table 1: Averages and standard errors (in parenthesis) of misclassification errors (MEs) in percentage obtained from ENET, GLDA, CL and GAQQ
methods for Models 1-5 based on 100 replications.

Model 1 Model 2 Model 3 Model 4 Model 5

p = 40

ENET 25.3(0.51) 25.4(0.44) 25.0(0.49) 24.8(0.46) 25.6(0.45)
S1 GLDA 9.28(0.42) 10.2(0.75) 9.40(0.66) 5.28(0.33) 9.13(0.33)

CL 1.68(0.21) 10.9(1.04) 8.75(1.00) 4.58(0.51) 1.20(0.22)
GAQQ 2.92(0.26) 9.93(0.41) 17.7(0.50) 2.33(0.24) 2.67(0.22)
ENET 25.3(0.45) 26.1(0.47) 24.3(0.42) 26.2(0.42) 25.1(0.41)

S2 GLDA 20.0(0.66) 9.78(0.41) 13.1(0.49) 22.8(0.63) 18.8(0.58)
CL 6.92(0.39) 4.90(0.33) 8.63(0.50) 8.65(0.38) 8.48(0.40)

GAQQ 5.32(0.32) 4.52(0.28) 7.10(0.28) 6.28(0.30) 5.88(0.29)

p = 80

ENET 25.0(0.51) 24.4(0.44) 24.8(0.44) 23.9(0.48) 25.8(0.54)
S1 GLDA 7.88(0.43) 11.2(0.49) 12.6(0.52) 8.03(0.38) 11.3(0.49)

CL 6.37(1.38) 10.4(0.66) 11.2(0.63) 5.63(1.48) 9.38(1.57)
GAQQ 0.10(0.04) 2.97(0.22) 2.22(0.19) 0.07(0.03) 3.53(0.22)
ENET 24.8(0.42) 25.3(0.39) 25.2(0.43) 24.3(0.43) 23.9(0.52)

S2 GLDA 19.5(0.55) 26.7(0.68) 24.8(0.76) 16.1(0.63) 20.9(0.61)
CL 4.67(0.37) 20.5(0.77) 18.2(1.01) 2.65(0.30) 14.5(0.92)

GAQQ 1.08(0.13) 10.6(0.37) 5.42(0.30) 0.57(0.11) 3.33(0.22)

p = 200

ENET 24.3(0.41) 24.9(0.52) 24.4(0.42) 25.2(0.43) 24.6(0.43)
S1 GLDA 2.25(0.20) 14.1(0.52) 13.6(0.42) 3.13(0.22) 7.23(0.36)

CL 2.08(0.20) 2.88(0.18) 2.72(0.17) 2.12(0.21) 2.26(0.15)
GAQQ 0.22(0.06) 0.47(0.09) 0.20(0.05) 0.23(0.07) 0.05(0.03)
ENET 25.3(0.40) 25.5(0.40) 24.6(0.47) 25.7(0.49) 25.3(0.51)

S2 GLDA 9.73(0.40) 20.5(0.55) 24.3(0.57) 9.08(0.40) 15.0(0.50)
CL 1.46(0.14) 2.96(0.16) 2.29(0.11) 2.06(0.18) 2.38(0.16)

GAQQ 0.01(0.00) 1.10(0.16) 1.55(0.16) 0.02(0.01) 0.17(0.05)

uniform distribution Uni f (0, 2). We consider p ∈ {40, 80, 200}, and generate n1 = 30 observations from N(µ1,C−1)
as well as n2 = 30 observations from N(µ2,C−1) as the training set. The same procedure is employed to generate the
testing data, which is used to evaluate the prediction performance of y and Z for different compared methods. We
consider the root mean squared prediction error RMSPE =

√︁∑︁n
i=1(yi − ŷi)2/n to measure the prediction accuracy for

the quantitative response y, where ŷi represents the predicted value. The prediction performance of the qualitative
response Z is measured by the empirical misclassification error ME =

∑︁n
i=1 I(zi ≠ ẑi)/n, where ẑi is the predicted value

of zi and I(·) is an indicator function. To make it easier for understanding the proposed methodology in the numerical
studies, we summarize the implementation of GAQQ method in the following Algorithm 3 (based on Algorithms 1
and 2) for two-class settings of the qualitative response.

Algorithm 3
Step 1: Given (λ1, λ2), set δ̂2,0 = (w̄1 − w̄2)/2.
Step 2: Given δ2 = δ̂2,t, solve C in (7) by the Glasso at the tth iteration.
Step 3: Given C = Ĉt, solve δ2 in (9) by the Lasso at the tth iteration.
Step 4: Repeat Step 2 and 3 till both Ĉt and δ̂2,t converge.
Step 5: Choose the optimal values of δ2 and C with respect to (λ1, λ2) via (10), denoted by δ̂2 and Ĉ respectively.
Step 6: Calculate γ̂ = w̄ + (n2 − n1)δ̂2/n; compute µ̂1 = δ̂2 + γ̂ and µ̂2 = γ̂ − δ̂2.
Step 7: For a new observation x, compute ŷk = µ̂ky− Ĉ⊤Xy(x− µ̂kX)/ĉ2

y for k ∈ {1, 2}; obtain p̂k by plugging (x⊤, ŷk)⊤

into the density functions of N(µ̂k, Ĉ
−1

).
Step 8: If π̂1 p̂1 > π̂2 p̂2, let ŷ = ŷ1 and Ẑ = 1; otherwise let ŷ = ŷ2 and Ẑ = 2.

Tables 1 and 2 report the averaged MEs in percentage and averaged RMPSE, as well as their corresponding
standard errors in parenthesis for each approach over 100 replications. It can be seen from Table 1 that the proposed
method generally outperforms other approaches with respect to MEs. Such an advantage becomes more significant as
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Table 2: Averages and standard errors (in parenthesis) of root mean squared prediction errors (RMSPE) obtained from ENET, GLDA, CL and
GAQQ methods for Models 1-5 based on 100 replications.

Model 1 Model 2 Model 3 Model 4 Model 5

p = 40

ENET 1.18(0.01) 1.62(0.02) 1.84(0.02) 1.91(0.01) 1.73(0.02)
S1 GLDA 1.82(0.03) 2.00(0.04) 2.03(0.04) 1.82(0.03) 1.82(0.03)

CL 1.79(0.03) 1.97(0.06) 2.03(0.08) 1.65(0.03) 1.74(0.03)
GAQQ 1.07(0.01) 1.21(0.01) 1.49(0.01) 1.02(0.01) 1.17(0.02)
ENET 1.59(0.01) 1.20(0.01) 1.42(0.02) 1.22(0.01) 1.12(0.01)

S2 GLDA 1.93(0.03) 1.96(0.03) 1.90(0.03) 1.85(0.03) 1.77(0.02)
CL 1.82(0.03) 1.78(0.03) 1.70(0.03) 1.67(0.03) 1.58(0.03)

GAQQ 1.07(0.01) 1.14(0.01) 1.37(0.01) 0.98(0.01) 1.09(0.01)

p = 80

ENET 1.58(0.01) 1.77(0.02) 1.68(0.02) 1.37(0.01) 1.75(0.01)
S1 GLDA 2.01(0.03) 2.62(0.04) 2.38(0.04) 2.08(0.03) 1.92(0.03)

CL 2.02(0.04) 2.63(0.07) 2.31(0.05) 1.88(0.03) 1.72(0.03)
GAQQ 1.11(0.01) 1.26(0.01) 1.54(0.01) 1.11(0.01) 1.31(0.01)
ENET 1.08(0.01) 1.31(0.01) 1.44(0.02) 1.61(0.01) 1.11(0.01)

S2 GLDA 1.96(0.03) 2.56(0.05) 2.27(0.04) 2.04(0.03) 2.36(0.04)
CL 1.76(0.03) 2.38(0.05) 2.10(0.04) 1.85(0.03) 2.20(0.04)

GAQQ 1.02(0.01) 1.10(0.01) 1.39(0.01) 0.99(0.01) 1.11(0.01)

p = 200

ENET 1.66(0.02) 1.24(0.01) 1.68(0.02) 1.07(0.01) 1.61(0.02)
S1 GLDA 1.24(0.01) 1.58(0.02) 1.62(0.02) 1.21(0.01) 1.40(0.02)

CL 1.27(0.03) 1.60(0.02) 1.65(0.02) 1.28(0.02) 1.36(0.03)
GAQQ 1.08(0.01) 1.27(0.01) 1.44(0.02) 1.06(0.01) 1.15(0.01)
ENET 1.03(0.01) 1.65(0.01) 1.62(0.01) 1.22(0.01) 1.17(0.01)

S2 GLDA 1.19(0.01) 1.67(0.02) 1.76(0.02) 1.22(0.01) 1.32(0.01)
CL 1.19(0.01) 1.55(0.02) 1.74(0.02) 1.23(0.01) 1.33(0.01)

GAQQ 1.01(0.01) 1.25(0.01) 1.43(0.01) 1.01(0.01) 1.15(0.01)

the underlying models are more sparse. Specifically, in the scenario of S1 = 25% and p = 40, the proposed GAQQ
model does not perform as well as others, since the underlying models in this scenario are the least sparse, especially
for the dense Models 2 and 3. In contrast, the proposed method produces relatively better comparison results in the
scenario of S2 = 75% and p = 40, where the true mean difference is more sparse. Furthermore, this advantage of
proposed GAQQ model is well evidenced in the scenario of p = 80, and even more notable when p = 200 with its
substantially lower MEs than other methods.

From Table 2, we observe that the proposed method generally gives superior performance over other compared
approaches for each scenario in predicting the quantitative response y. The possible explanations are in two folds.
First, the proposed GAQQ method provides an accurate classification of the qualitative response Z. Second, the
proposed GAQQ has a proper estimation of C by the regularization that is used in the prediction of quantitative
response y according to (11), resulting in an improvement of the prediction accuracy. It is also seen that the CL and
GLDA models are comparable in some cases, due to that both of them use the Moore-Penrose generalized inverse of
the sample covariance of X for Σ̂

−1
X in the prediction of quantitative response y in (11). But the CL method is generally

better since it has more accurate classification results than the GLDA in Table 1.

4.2. Multi-class settings of the qualitative response

Now, we examine the performance of the proposed GAQQ method for multi-class settings of the qualitative re-
sponse. We consider p = 200 and K = 4 classes of qualitative response Z with training sizes n1 = n2 = n3 = n4 = 30
for Models 1 - 5 of inverse covariance matrix C. Let µk j represent the jth entry of the mean value µk. Generate
µk j = 0.5 ∗ k + uk j for j ∈ {2k − 1, 2k, 2k + 1, . . . , 2k + 6}, otherwise µk j = 0, where uk j is from Uni f (−1, 1). The train-
ing data are generated from N(µk,C−1), and the testing data follow the same generation procedure. We summarize the
proposed GAQQ model in terms of both estimation and prediction procedures in the following Algorithm 4 (based on
Algorithms 1 and 2) for multi-class settings of the qualitative response.
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Table 3: Averages and standard errors (in parenthesis) of MEs in percentage and RMSPE obtained from compared methods for multi-class settings
of p = 200 based on 100 replications.

Model 1 Model 2 Model 3 Model 4 Model 5
ME

GLDA 40.58 (0.46) 59.15 (0.56) 55.56 (0.51) 39.40 (0.48) 48.28 (0.55)
WT 17.26 (0.35) 43.73 (0.59) 43.01 (0.47) 17.90 (0.38) 33.17 (0.67)

CHWE 14.70 (0.32) 25.14 (0.40) 32.16 (0.50) 16.66 (0.44) 21.31 (0.44)
GAQQ 14.02 (0.32) 25.36 (0.53) 33.34 (0.50) 17.11 (0.42) 20.99 (0.49)

RMSPE
GLDA 1.64 (0.01) 2.09 (0.02) 2.02 (0.02) 1.66 (0.01) 1.71 (0.02)

WT 1.56 (0.01) 2.05 (0.02) 1.94 (0.02) 1.57 (0.01) 1.63 (0.02)
CHWE 1.56 (0.01) 2.01 (0.02) 1.92 (0.02) 1.55 (0.01) 1.61 (0.02)
GAQQ 0.99 (0.01) 1.11 (0.01) 1.27 (0.01) 1.01 (0.01) 1.39 (0.02)

Algorithm 4
Step 1: Given (λ1, λ2), set δ̂k,0 = (w̄k − w̄1)/K.
Step 2: Given δk = δ̂k,t, solve C in (17) by the Glasso at the tth iteration.
Step 3: Given C = Ĉt, δg = δ̂g,t, g ≠ k, solve δk in (19) by the Lasso at the tth iteration.
Step 4: Repeat Step 2 and 3 till Ĉt and all the δ̂k,t converge.
Step 5: Choose the optimal values of δk and C with respect to (λ1, λ2) via (20), denoted by δ̂k and Ĉ respectively.
Step 6: Calculate γ̂ = w̄ +

∑︁K
g=2 δ̂g − (K/n)

∑︁K
g=2 ngδ̂g, and µ̂k = γ̂ −

∑︁K
g=2 δ̂g + Kδ̂k.

Step 7: For a new observation x, compute ŷk = µ̂ky − Ĉ⊤Xy(x − µ̂kX)/ĉ2
y for k ∈ {1, . . . ,K}; obtain p̂k by plugging

(x⊤, ŷk)⊤ into the density functions of N(µ̂k, Ĉ
−1

).
Step 8: Let t = arg maxk π̂k p̂k, then ŷ = ŷt and Ẑ = t.

We compare the proposed method with the GLDA, as well as the estimators proposed by Witten and Tibshirani
[45] (WT) and Clemmensen et al. [9] (CHWE), where the latter two methods are designed for multi-class problems.
We use the WT and CHWE models to first predict the class label Z for the testing data, and then the response y
is estimated, by the multivariate normal property, as µ̂ky + Σ̂

⊤

XyΣ̂
−1
X (x − µ̂kX) if their estimates Ẑ = k. The WT and

CHWE methods are implemented by packages PenalizedLDA and sda from R software, respectively. The results of
performance measures, ME and RMSPE, of the methods under comparison, are summarized in Table 3 based on 100
replications. One can see that the GAQQ method performs better than the GLDA as well as the WT method, and is
comparable with the CHWE in terms of the MEs. Besides, the GAQQ method gives the best performance among the
compared approaches with significantly lower values of RMSPE.

4.3. Case studies with real-world data

In this section, we apply the proposed GAQQ method to two real-data case studies. The first one is from the
study of Heusler compounds in material science and the second one is from the study of molecular diagnostics of
Ulcerative colitis and Crohn’s disease. Although from different fields, both problems contain QQ responses with
high-dimensional predictors, and the proposed GAQQ method appears to have much better performance in terms of
prediction accuracy compared with other methods.

The case study on material sciences is regarding the Heusler compounds, which are a large family of intermetallics
with more than 1000 known members. Many Heusler compounds have shown exotic properties, such as supercon-
ductivity and topological band structures, which have promising applications for quantum computing. Understanding
the thermodynamic stability of Heusler compounds lays the foundation for exploiting the large chemical space to dis-
cover and design new functional Heusler materials [33, 36, 37]. To determine the thermodynamic stability of Heusler
compounds, there are two key metrics: the mixing enthalpy (quantitative response) and the global stability based on
hull energy (binary qualitative response). The comprehensive database of 180628 full Heusler structures was built by
collecting the relevant structural and energetic data from the Materials Project [20], OQMD [41], and AFLOW [12].
These data were calculated using first-principles methods based on density functional theory, and it was extremely
computationally expensive (taking hours) to generate one entry of the data. Therefore, a statistical model that can

21



accurately predict the thermodynamic stability for any elemental and compound features is a useful surrogate of the
first-principle computation models.

Since there is an intrinsic relationship between two QQ responses, the proposed GAQQ method is suitable to
improve the prediction accuracy by jointly fitting them together. To demonstrate the GAQQ method in the scenario
when the number of predictors is large relative to the size of the data, we randomly choose 150 samples from each
class of the binary response. We delete the predictor variables whose standard deviations are less than 1.0e−6, resulting
in 157 predictors of elemental and compound features. To examine the prediction performance of the GAQQ method
and other comparison methods, we randomly divide data into a training set with a size of 200 and a testing set with a
size of 100. Table 4 reports the prediction performance results based on 50 random splits of the Heusler data. From the
results, it is seen that the proposed GAQQ performs much better than other methods in comparison, with the smallest
values for the misclassification error (ME) and the root mean squared prediction error (RMSPE).

Table 4: Averages and standard errors (in parenthesis) of MEs in percentage and RMSPE obtained from compared methods for Heusler and gene
expression data based on 50 random splits.

Heusler Data
Methods GLDA ENET CL GAQQ

ME 27.27 (1.828) 11.87 (0.332) 16.20 (0.688) 10.49 (0.363)
RMSPE 1.797 (0.445) 0.317 (0.083) 1.046 (0.053) 0.142 (0.002)

IBD Gene Data
Methods GLDA WT CHWE GAQQ

ME 21.90 (0.800) 24.80 (0.583) 18.10 (0.555) 15.77 (0.584)
RMSPE 0.743 (0.014) 0.751 (0.014) 0.746 (0.014) 0.661 (0.011)

The second data for the case study considers the multi-class settings of the qualitative response. The IBD gene data
[6] are gene expressions on Ulcerative colitis (UC) and Crohn’s disease (CD), two of which are common inflammatory
bowel diseases (IBD) producing intestinal inflammation and tissue damage. The IBD data set was collected at North
American and European clinical sites from blood samples of 42 healthy individuals, 59 CD patients, and 26 UC
patients with 22,283 genes. An exploratory analysis, similarly conducted as in Shao et al. [42], is performed as
variable screening by one-way ANOVA with three levels (healthy individuals, CD patients, and UC patients). We
choose the top 101 significant gene variables to form the data for methods comparison. To create a quantitative
response, one gene variable is randomly chosen as the quantitative response from the 101 significant variables. The
data set is then randomly partitioned into a training set with 67 samples and testing data with the rest 60 samples. Table
4 presents the comparison results by the GLDA, WT, CHWE, and proposed GAQQ methods based on 50 random splits
of the data. We observe that the proposed GAQQ method performs substantially well with relatively lower values of
ME and RMSPE, as well as their corresponding standard errors in the parenthesis. Such empirical results demonstrate
that the proposed GAQQ method can achieve accurate predictions for both QQ responses in high-dimensional data.

5. Conclusions, limitations and future research

In this work, we propose a generative modeling approach to jointly model the data with QQ responses. By fully
exploring the joint distribution of the QQ responses and predictor variables, the proposed method enables efficient
parameter estimation, model prediction, and most importantly, lays a good foundation for investigating the asymptotic
properties for QQ responses, which few works have studied so far. Note that there are some discussions in the literature
about the comparable performance between the joint modeling and separate modeling under certain situations with
n > p. When n < p, the proposed joint modeling approach can generally have better advantage than the separate
modeling since there are relatively limited observations in the data.

The proposed GAQQ model in this work can be easily extended to accommodate the cases where the quantitative
response y = (y1, . . . , yq)⊤ has multiple dimensions by assuming (X⊤, y⊤)⊤ is from different multivariate normal
distributions, see assumption (1). The parameter estimation follows the same procedure, and the prediction on y
is essentially via the multivariate normal properties, see (11). For the case of multiple qualitative responses, Z =
(Z1, . . . ,Zm)⊤, the GAQQ model cannot be applied directly. The simplest solution is to replace Z with a single
multi-class qualitative variable with K =

∏︁m
j=1 K j and K j the number of classes for Z j. Then we can apply the
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GAQQ model discussed in Section 2.2. Another potential challenge is the situation that some of the X variables are
quantitative whereas the others are qualitative. Then one cannot simply adopt multivariate normal distribution for
X. To accommodate this situation for the proposed method, one possibility is to consider the multivariate normal
distribution for quantitative variables in X and proper nonparametric density distributions for the qualitative variables.

The research has several future directions. In this work, we assume that the observed data follow normal distribu-
tion for model parsimony in the large-dimensional setting. When the data are not normally behaved or contaminated
with outliers, it will be important to consider robust statistical modeling [28]. One possible direction is to incorporate
robust discriminant analysis [30, 38] into the proposed method, such as using robust estimation of mean and inverse
covariance matrix. Another possible way is to use t distribution as the assumption for robust modeling. Additional re-
search direction is to accommodate a more flexible structure on the joint distribution of QQ responses and predictors.
For example, one can extend the LDA for the classification of the qualitative response to the quadratic discriminant
analysis (QDA). However, its estimation for high-dimensional data would encounter difficulty due to a large number
of parameters. Besides, additional research direction is to apply the generative modeling approach for the data with
semi-continuous responses, or the ordinal and quantitative responses [48]. One may employ the ordinal regression for
the ordinal response, and then derive its joint likelihood function with appropriate regularization.

Appendix

Below we provide the derivation from (18) to (19). The derivation from (8) to (9) is a special case with K = 2. For
δ j, j ∈ {2, . . . ,K},

K∑︂
k=1

∑︂
i∈Gk

(wi − w̄ +
K
n

K∑︂
g=2

ngδg − Kδk)⊤C(wi − w̄ +
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where

M = − n j
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