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Abstract

Consider a bank that uses an Al system to decide which loan
applications to approve. We want to ensure that the system is
fair, that is, it does not discriminate against applicants based
on a predefined list of sensitive attributes, such as gender and
ethnicity. We expect there to be a regulator whose job it is
to certify the bank’s system as fair or unfair. We consider
issues that the regulator will have to confront when making
such a decision, including the precise definition of fairness,
dealing with proxy variables, and dealing with what we call
allowed variables, that is, variables such as salary on which
the decision is allowed to depend, despite being correlated
with sensitive variables. We show (among other things) that
the problem of deciding fairness as we have defined it is co-
NP-complete, but then argue that, despite that, in practice the
problem should be manageable.

1 Introduction

Al systems are playing a larger and larger role in decision
making these days, in applications like deciding who to
interview and hire, deciding who gets paroled, and deciding
who gets credit. Moreover, Al systems can often make
these decisions better than people (Kleinberg et al. 2018a).
However, as many have noted, this raises the concern that
decisions are made based on sensitive attributes, such as
race, gender, or religion.

Given the laws and regulations governing discrimination
(i.e., making decisions based on the values of sensitive
variables), we consider what we suspect will be an important
use case in the future. We assume that there is a regulator
that regulates financial institutions, for example, banks,
and in particular the decisions made by the banks on
whether to grant loans to applicants. (For definiteness, we
assume that the system being regulated is a bank’s system
for determining who gets a loan. But the points that we
make apply without change to all decision-making systems
where there are discrimination concerns.) The bank wants
to make this decision based on their (possibly proprietary)
causal/machine learning model. (We do not distinguish
causal models from machine learning models, for reasons
that will be come clear shortly.) The bank comes to the
regulator seeking approval. The regulator has some variables
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that she considers sensitive. Intuitively, the bank is not
supposed to use these in making its decision (although some
uses may be permitted, as we shall see). The bank may view
its model as proprietary, so wants to keep as many of the
details regarding its model private, while still convincing the
regulator that it is not discriminating.

We take the bank’s algorithm to be a “grey box”, where
some of its features must be disclosed, but the bank can
still keep many of its features proprietary. Specifically, we
assume that the bank will need to disclose only which
features are inputs and how they are computed from data
obtained about the applicant, and provide the regulator with
black box access to the system, so she can see the decision
made given certain inputs. The bank will also request
the regulator to have certain input variables be explicitly
allowed. Intuitively, allowed variables are inputs that are
correlated with sensitive variables but can be used by the
bank’s algorithm to make decisions. For example, gender
may be considered a sensitive variable, but salary may be
an allowed variable, although it is correlated with gender.
(Allowed variables have been called resolving variables; see,
e.g., (Kilbertus et al. 2017).) The regulator will have to
decide whether to agree with the bank’s request regarding
allowed variables. This is not an easy decision, and is one
that ethicists and society at large may have to resolve.
Nevertheless, we believe that there are necessary conditions
that must be met for a variable to be allowed. The issues
that arise here are essentially those that determine whether
disparate impact has taken place, according to American
law (Primus 2003).

Given the sensitive and allowed variables, our notion
of fairness then says, roughly speaking, that the bank’s
software is fair (i.e., acceptable to the regulator) provided
that changing the values of the sensitive variables has no
impact on the outcome, if all the allowed inputs are kept
fixed. While our definition is very much in the spirit of
earlier definitions of fairness that use causal models (in
particular, the notion of counterfactual fairness introduced
by Kusner et al. (2017), path-dependent notions of fairness
considered in (Chiappa 2019; Nabi and Shpitser 2018), and
the notion implicitly used by Kilbertus et al. (2017)), it
differs in one significant way. Whereas the earlier definitions
are all statistical, ours is not: it requires that outcomes are the
same, not that their probabilities are equal. We argue that for



our setting, this is appropriate. Roughly speaking, we view
a system as fair if it is fair for each applicant.

In this setting, we also examine the effect of proxy
variables. It is often not difficult for an Al system to find
a proxy for a sensitive variable and use that instead. For
example, if gender is a sensitive variable, an Al system
may use a highly correlated variable like favorite clothes
as a proxy for gender. Indeed, not only can an Al system
find proxy variables, if it is told that it cannot use sensitive
variables in its decision, it will actively seek out proxies.
Prince and Schwarcz (2020) point out that while the use
of proxy variables is incompatible with (American) anti-
discrimination laws, it is likely to increase substantially as
more Al systems are used.

Kilbertus et al. (2017) take proxy variables to be nothing
more than descendants of sensitive variables in the causal
graph. If this were always the case, then dealing with them
would be easy. Changing the value of a sensitive variable
should change the value of its proxies, and hence the
outcome. Our approach would call this unfair.

Unfortunately, it is not the case that proxy variables are
always descendants of sensitive variables, for (at least) two
reasons. The first is that a proxy variable can be correlated
with a senstive variable if it is a descendant of an ancestor of
the sensitive variable. For example, if religious affiliation is
a sensitive variable, one of its parents in the causal graph
might be religious affiliation of parents. This is clearly a
good proxy for religious affiliation even though it is not
a descendant of it. However, there is another, arguably
more serious reason that a proxy variable might not be
a descendant of a sensitive variable. Suppose that an Al
system is able to determine (perhaps by checking social
media) which religious holidays an applicant celebrates
(if any). Moreover, it treats this as an input variable. Of
course, in an actual causal model of the world, religious
holidays celebrated is clearly a descendant of religious
affiliation. However, in the bank’s model, it is not. It is just
a variable whose value is determined from social media.
The bank’s system will not “understand” that it should be
a descendant of religious affiliation, and the bank’s system
designers might not even be aware of it being used. While
the connection between religious affiliation and religious
holidays celebrated is blatantly clear, the connection beween
other variables may not be at all clear, and not recognized
by the system designers. In any case, religious holidays
celebrated is not a descendant of religious affiliation;
changing the value of religious affiliation will not affect the
media posts observed. We discuss how the regulator can deal
with both of these concerns in Section 3.

To summarize, the main contribution of this paper lies in
creating a framework that clearly delineates what a regulator
will have to do in order to certify an Al system for fairness.
In doing so, we highlight the subtleties involved in dealing
with allowed variables and proxy variables, and make the
case for a non-statistical definition of fairness. We also
examine the complexity of determining whether a system
is fair, and show that it is co-NP-complete in the size (i.e.,
number of variables) of the system, but then argue that this
should not be a problem in practice.

2 Causal Models

In this section, we review the definition of causal models
introduced by Halpern and Pearl (2005). The material in this
section is largely taken from (Halpern 2016).

We assume that the world is described in terms of
variables and their values. Some variables may have a
causal influence on others. This influence is modeled by
a set of structural equations. It is conceptually useful to
split the variables into two sets: the exogenous variables,
whose values are determined by factors outside the model,
and the endogenous variables, whose values are ultimately
determined by the exogenous variables. The structural
equations describe how these values are determined.

Formally, a causal model M is a pair (S, F), where S
is a signature, which explicitly lists the endogenous and
exogenous variables and characterizes their possible values,
and F defines a set of (modifiable) structural equations,
relating the values of the variables. A signature S is a tuple
(U,V,R), where U is a set of exogenous variables, V is a
set of endogenous variables, and R associates with every
variable Y € U UV a nonempty set R(Y) of possible
values for Y (i.e., the set of values over which Y ranges).
For simplicity, we assume here that ) is finite, as is R(Y)
for every endogenous variable Y € V. F associates with
each endogenous variable X € V a function denoted F'x
(ie., Fx = JF(X)) such that Fy (XveuR(U)) x
(Xyev—{x}R(Y)) — R(X). This mathematical notation
just makes precise the fact that F'y determines the value of
X, given the values of all the other variables in i/ U V.

The structural equations define what happens in the
presence of external interventions. Setting the value of some
variable X to z in a causal model M = (S, F) results in a
new causal model, denoted M x ..., which is identical to M,
except that the equation for X in F is replaced by X = z.

We can also consider probabilistic causal models if we
want to talk about the probability of causality (and, for our
purposes, the probability of discrimination). A probabilistic
causal model is a tuple M = (S, F,Pr), where (S, F) is a
causal model, and Pr is a probability on contexts.

The dependencies between variables in a causal model
M = (U,V,R),F) can be described using a causal
network (or causal graph), whose nodes are labeled by the
endogenous and exogenous variables in M, with one node
for each variable in //UV. The roots of the graph are (labeled
by) the exogenous variables. There is a directed edge from
variable X to Y if Y depends on X; this is the case if there
is some setting of all the variables in &/ U V other than X
and Y such that varying the value of X in that setting results
in a variation in the value of Y'; that is, there is a setting 2’
of the variables other than X and Y and values x and 2’ of
X such that Fy (z,2) # Fy(2/,Z). A causal model M is
recursive (or acyclic) if its causal graph is acyclic. It should
be clear that if M is an acyclic causal model, then given a
context, that is, a setting « for the exogenous variables in
U, the values of all the other variables are determined (i.e.,
there is a unique solution to all the equations). In this paper,
following the literature, we restrict to recursive models.



3 A Regulatory Framework

In this section we provide more detail about how we expect
the regulatory framework to work.

Sensitive variables: We assume that, for each application,
the regulator has a set of variables that are taken to
be senstive (such as race, gender, and so on), typically
determined by the law.

The bank’s network: Knowing the sensitive variables,
the bank can build its Al software. We assume that the bank
collects data for each of its applicants. That data is described
by a collection of variables that we call the data variables.
The data variables will likely include the answers given by
an applicant on an application form; they may also include,
for example, data scraped off the web. The bank would be
required to ask for the values of all sensitive variables, so
the sensitive variables form a subset of the data variables.
(Presumably the bank would tell applicants something like
“We will not use this data to determine the outcome of your
application, but we are required by law to collect it.”)

We assume that the bank uses a (possibly proprietary)
network to determine its decision. The bank would use the
data that it collects about an applicant to determine the value
of the input variables of its network, so it can compute a
decision for that applicant. Some of the data variables might
themselves be input variables; other input variables might be
determined by the data variables according to some rule. We
call this rule the input rule. The bank would be required to
reveal to the regulator what data it collects, how it collects
it (Does it come from an application form? Is it scraped
off the web? If so, from where?), what the input variables
to its network are, and the input rule. We take the “bank’s
system” to consist of all this information, together with the
set of allowed variables, discussed next. Formally, a system

is tuple (D, X, M,A, f), where D is a set of data variables,

X C Dis a set of sensitive variables, M = ((U,V,R),F)
is a causal model, except that we extend R so that it also
associates with each variable D € D a set R(D) of values
(as well as associating a set of values with each variable

ind UY), A C U is a set of allowed variables, and
f : R(D) - R(U) is the data rule (we are treating the
exogenous variables of M as the input variables).

Note that here we are viewing the bank’s network as a
causal graph, where the inputs are the exogenous variables.
(It may actually be even more appropriate to think of the
data variables as the exogenous variables, and then view the
input layer of the neural network as being determined from
the data variables using the input rule.) The internal nodes
of the bank’s network are endogenous variables, whose
values are determined from the values of its parents using
some function (e.g., a softmax). It seems reasonable to view
the bank’s network as a causal graph; after all, the bank’s
decision as to whether to approve the loan is caused by the
values of the inputs to the network. We assume that among
the output values (i.e., leaves) of the bank’s causal network
is the decision. All our definitions are with respect to a
particular decision. The network can have several decision
variables, and it can be fair with respect to some of them

and unfair with respect to others.

Allowed variables: After the software is built, the bank
may ask the regulator to consider certain input variables as
allowed. The bank will have to make a a case for this; as we
suggested in the introduction, we expect the case to have the
same form as that currently made to justify a practice having
disparate impact in American law. Namely, the bank would
have to show that considering these variables is justified by
“business necessity”. For example, the bank might argue
that, if it is not allowed to take salary into account, the
decisions made would be so bad that the bank would just
stop making loans altogether. The bank will have to collect
data to back this up. But we should note that what counts as
appropriate justification of the disparate impact standard is
widely disputed. It may be far from obvious what the “right”
thing is to do. Consider an example taken from Kleinberg et
al. (2018b):

A state government is hiring entry-level budget
analysts. It gives a preference to applicants from the
prestigious colleges and unversities, because these
applicants have done best in the past. This has a
disproportionate adverse effect on African-American
applicants.

Should the variable university rank be allowed? A strong
business case would have to be presented. This observation
suggests that if a system with certain allowed variables is
judged to be fair, and some groups feel that it is nonetheless
discriminatory, the regulator’s choice of allowed variables
might serve as the basis for a legal challenge.! Despite
the difficulty of doing this, and the potential for lawsuits,
we believe that the regulator will ultimately need to decide
which variables to treat as allowed (perhaps with inputs from
various interested parties).

Proxy variables: As we said, we expect the regulator to
treat the bank’s software as a “grey box”. But she will need
to be told all the input variables and how they are obtained.
The main reason for needing to know the input variables
is to test for proxy variables. We do not see any way of
checking this other than by checking, for each subset of
sensitive variables, whether some subset of input variables
gives inappropriate information about the variables in the
set.

We formalize this below, but before going on, we should
stress that the concern about proxy variables used by a
system being correlated with sensitive variables is a real
one, that has been shown to arise in practice. For example,
Datta et al. (2015) showed that the AI system used by
Google to decide which job ads to show users makes
some discriminatory decisions. When users provided gender
information on the Ad Settings page, Datta et al. showed
that simulated users who indicated that they were male

"To give just one real-world example of the difficulty of
deciding what should be allowed, as pointed out by Kleinberg
et al. (2018b), there are ongoing debates and studies regarding
whether, in our language, it is reasonable to take the variable prior
incarceration record to be allowed. Does it help or hurt willingness
to hire black applicants? (See, e.g., (Agan and Starr 2018).)



received ads that promised large salaries more frequently
than simulated female users. But Google clearly used as
input more than just the Ad Settings to decide which ads
to show to each user. The kind of ads shown depended in
large part on the web pages visited by the user. Clearly, the
web pages visited can be a proxy for gender. For example,
the bloggers that the user follows, use of particular keywords
in the user’s posts on social media, and the user’s shopping
activity can all be used to infer gender. Each variable
separately might not have a high correlation with gender, but
together they might indicate with a high degree of certainty
that the user is female.

In addition to gender, which is clearly a sensitive attribute
and should not influence the job ads shown, Datta et al. also
found that ads shown depend on whether the user visits
certain webpages associated with substance abuse. Here it
is less clear whether this should be illegal, as Google might
argue that substance abuse is highly correlated with inability
to keep a high-responsibility (and high-paying) job. In the
language of this paper, Google might argue that substance
abuse should be an allowed variable; it is then up to the
regulator to approve or deny this request.

There are a number of plausible definitions of what it
means for the bank’s input variables to give inappropriate
information about sensitive variables. We consider the
following requirement, which we believe captures the
intuition:

« For some subset X of sensitive variables, some setting &
of the variables in X , some subset Y of disallowed input
variables, some setting ¢ of the variables in }7, some
subset A of allowed input variables, and some setting @
of the variables in A, the event X = & is independent of
?:gjgivenf_f:c‘i.

This condition says that knowing the values of some
disallowed variables and some allowed variables does not
give any information about sensitive variables beyond what
is given by the allowed variables alone. To understand this,
first consider the case that the set A of allowed variables
is empty. Then this just says that that disallowed input
variables give no information about sensitive variables.
Now, by assumption, the allowed variables do give
information about the sensitive variables (e.g., knowing the
salary of an applicant gives some information about the
applicant’s gender). Thus, in the case that A is nonempty,
this condition says that knowing the values of disallowed
variables does not give any information about the values
of sensitive variables beyond what is given by the allowed
variables. Note that information is not “additive”. The fact
that the bank cannot predict the values of sensitive variables
just from disallowed variables does not mean that it cannot
predict the values of sensitive variables better using the
allowed and disallowed variables than it could from the
allowed variables alone. For example, if pet ownership (a
disallowed variable) is distributed equally between women
and men, but is highly correlated with salary (an allowed
variable) for men and not at all for women, then pet
ownership alone does not give any information about gender,

but together with salary it can determine gender with a
higher degree of certainty than salary alone.

While this is the high-level intuition we want to enforce,
what does the regulator actually check? That is, what
probability distribution is it going to use to determine
independence? We believe that, in practice, the regulator will
have to use the probability distribution determined by the
bank’s applicants. Of course, the distribution determined by
this sample may not be a completely accurate description of
the distribution of the actual population (e.g., there might
be some self-selection about who applies for a loan) and
may not have enough data to determine all the relevant
independencies. For example, for some setting ¥ of Y, there
may not be enough applicants that have inputs Y = Y
to determine whether X = z is independent Y = .
In any case, it seems unreasonable to expect complete
independence in the sample; the regulator should have a
threshold of acceptability. The following definition is a first
pass at making precise what we require, where Pr now

—

represents the sample distribution, sd(X) is the standard

deviation of X, and € is some regulator-defined threshold.
(The final definition is a slight generalization.)

Definition 1 (Preliminary version:) A system has no
disallowed proxy variables (at threshold ¢) if for all subsets
X of sensitive variables, all settings Z of X , all subsets Y
of disallowed input variables, all settings 3/ of }7, all subsets
A of allowed input variables, and all settings @ of A such

that Pr(Y = § A A = @) is sufficiently large to determine
statistical independence,

Pr(X =Z|A=a) -Pr(X =2 |Y =§nA=ad)
sd(X)

The standard deviation sd(X) serves as a normalizing
factor here; we are computing whether using the disallowed
variables gives more than an e fraction of a standard
deviation of extra information.

Definition 1 can be visualized as dividing the applicants
into “buckets”, where each bucket corresponds to a setting
of some disallowed variables, and then checking whether
there are buckets that are sufficiently large to be meaningful
and have a distribution of sensitive variables that is different
from the whole dataset. This check is meaningful only if
the bucket is large enough, which might not be the case for
very many buckets. We can get a somewhat more general
definition by allowing buckets to be combined. Formally,
“combining two buckets” simply mean conditioning on their
union. That is, rather than just conditioning on Y = m
in Definition 1, we consider subsets 1717 ... ,}7’“ of input
variables and values 7', ..., %", and condition on (171 =
' U...UY* = 7*); similarly, instead of just conditioning
on A = @, we can conditionon A = @' U... U A™ = g™,
for subsets /_1‘1, e A™ of allowed variables. We take this
to be the official definition of having no disallowed proxy
variables. Note that an important special case of this is
abstracting values. For example, if Y is the variable age,
rather than just conditioning on age = 37, we can condition

< €.



on the range age € {30,...,40} (which is just age =
30U...Uage = 40).

Certifying a system as fair: To certify a system as fair,
the regulator must conduct a number of checks. We already
discussed an important check above: checking that the
system has no disallowed proxy variables. The regulator
must also check that the values of the data variables are
obtained as the bank claimed that they were, and that
the input variables were obtained from the data variables
according to the data rule. (Recall that we require the bank to
reveal the data variables used, how they are obtained, and the
data rule used to compute the values of the input variables
variables.) The regulator should be able to check the latter
properties (i.e., the ones other than checking that there are
no disallowed proxy variables, to which we return below)
by sampling applications. To understand why this is critical,
consider the following example.

Example 1 Since it gets salary information in many
different currencies, the bank convinces the regulator that,
not only should salary be allowed, but it should be able to
convert all information regarding salary to internal units of
currency (according to agreed-upon conversion rates). But in
doing the conversion, the bank slightly modifies the salary,
replacing the low-order number by either O or 1, depending
on whether the applicant is male or female. For example, a
salary of 87,325 (in the bank’s internal units) would become
either 87,320 or 87,321, depending on whether the applicant
is male or female. This means that the bank can base its
decision completely on gender. This is precisely why the
regulator needs to know how all the input variables in the
bank’s system are calculated from data. If the regulator
knows this, she should be able to spot the discrepancy above.
But this will clearly require an alert regulator! I

Finally, the regulator must check that there are no inputs
being used other than those listed by the bank. As we said,
we assume that the regulator has access to the input data
for all applicants. (It actually suffices that she can get data
for a reasonably large random subset of applications.) To
ensure that she is testing all the relevant variables in the tests
discussed above, the regulator can test that setting the inputs
appropriately gives the decision taken by the bank. The fact
that the bank will be monitored in this way should suffice to
prevent it from using undeclared inputs.

With all these tests of the input variables out of the way,
the regulator can check that there is no discrimination in the
more standard sense, namely, checking whether changing
the values of sensitive variables has any impact on the
decision, once we fix the allowed inputs. This is a way
of making precise a claim like “gender has no impact on
the decision, beyond its impact on allowed variables (such
as salary)”. Making this precise in our setting is slightly
more complicated than it would be if we were just dealing
with causal models, since the sensitive variables are not
necessarily part of the causal model (i.e., they may not
be in the bank’s network), but are rather data variables
that are collected from the applicant. To make this precise,
suppose that the data rule for determining the values of input
variables from the values of data variables is given by the

function f. Thus, given a setting d of the data variables,
f(d) is a setting of the input variables. Given a subset B

-

of input variables, let f5, . (d") denote the setting of the
input variables where the values of all input variables other
than those in B are given by f(d’), while the values of the
input variables in B are given by f (cf)

Definition 2 A bank’s system (D, X, M, A, f) is fair with
respect to decision variable D, where D is an endogenous
variable in M, if, for all settings d of the data variables D

and settings d’ that agree with d except for the values of
some sensitive variables, the value of D with the input (i.e.,

—

exogenous) variables set to f(d) is the same as that with the
input variables set to f 5, 7 z(d'). 1

Our definition differs from other causal definitions of
fairness (e.g., (Kilbertus et al. 2017; Kusner et al. 2017;
Loftus et al. 2018)) in one significant respect. Other
definitions of fairness are statistical. They require only that
the probability of the decision D having a certain value
is the same for all settings of the sensitive variables. This
difference is mainly due to our application. We assume
that the values of all the exogenous variables are known
(since they represent inputs to the bank’s system); in the
other papers, it is assumed that all that is known about the
contexts is their probability. Given that we take the values of
exogenous variables to be known, we believe that our choice
is appropriate for our application.

Dealing with complaints: Suppose that the bank’s system
is certified as fair, yet someone brings a complaint of
discrimination. The bank should be able to provide all the
values of the data variables for that person. The regulator can
verify that all input variables were computed appropriately
and that the bank’s software really does produce the result
claimed by the bank for these values. If, despite this, the
regulator finds that the complaint has merit, she can then
check the effect of disallowing some allowed variables, to
try to pinpoint what is causing a perhaps undesirable result.
We anticipate that complaints may result in pressure to
disallow some allowed variables.

Changing the status of variables: While the Al system is
created and maintained by the bank, variables are defined as
sensitive or allowed by the regulator; their status may change
over time. For example, the Equal Credit Opportunity Act
(ECOA) of 1974 prohibited creditors from discrimination
on the basis of race, color, religion, national origin,
sex, marital status, or age, thus making these attributes
sensitive variables. Not all cases of such changes require re-
certification, but some do. It is fairly straightforward to see
that declaring a previously non-sensitive variable sensitive
can render a previously fair system unfair. Indeed, this
probably happened with many bank systems in 1974. It is
also easy to see that if a previously sensitive variable is
declared non-sensitive, then a system that was previously
fair continues to be fair (and a system that was unfair may
become fair).



The effect of changing the status of allowed variables is
somewhat less obvious. In fact, both changing the status
of a previously disallowed variable to allowed and making
a previously allowed variable disallowed can change the
status of the system from fair to unfair or the other way
around. Consider a loan-application system with two data
variables: a sensitive variable gender, with values {M, F'},
and a non-sensitive variable (loan application) amount, with
values {low, high} (we make both variables binary for ease
of exposition). The data variable amount is also an input
variable, along with salary, which, again, has two values:
{low, high}. The value of salary is low if gender=F and
high otherwise. Finally, the decision is “yes” if amount=Ilow
or salary=high. If salary is not an allowed variable, then
the system is clearly unfair: Toggling the gender from F' to
M changes the decision from “no” to “yes”. Changing the
status of the salary variable to allowed, however, makes the
system fair, as gender affects the decision only via salary.

Perhaps a more surprising observation is that making
a previously disallowed variable allowed can make a
previously fair system unfair. Suppose that we add a new
input variable impulsivity to the system above, which is
low if gender=F and high otherwise, and change the
equation for the decision to be “yes” if either salary=high or
impulsivity=low. It is easy to see that the system approves all
loan applications, and if there are no allowed variables, it is
fair. If salary now becomes an allowed variable, the system
stops being fair: if gender=F and we toggle gender while
keeping salary fixed to low, impulsivity becomes high, and
the loan is not approved.

4 Complexity

Clearly, for the regulator to certify a system, she will have
to be able to carry out all the checks in a reasonable amount
of time. We assume that the regulator can run the bank’s
software on a specific input (i.e., for a particular applicant)
to see what the outcome would be, and do so in polynomial
time. The following result seems to suggest that checking for
fairness will be difficult. Importantly, it holds even if there
are relatively few sensitive variables (which is likely to be
the case in practice).

Theorem 4.1 Deciding if a system is fair is co-NP-
complete. More precisely, if Lfair is the language consisting

of all tuples (D, X, M, A, f, D) such that (D, X, M, A, f)
is a system, D is an endogenous variable in M, and
(D, )?, M, fT, f) is fair with respect to decision variable D,
then Lfair is co-NP-complete. This is true even if the number
of settings of exogenous sensitive variables is bounded.

Proof. To see that checking for fairness is in co-NP, it
suffices to check that the complementary problem is in NP.
To check for unfairness we simply have to guess a setting of
the input variables (which amounts to guessing the features
of an applicant), and guess two settings of the sensitive
variables that give different values for D.

To show that checking fairness is co-NP hard, we reduce
the problem of checking whether a propositional formula
¢ is valid to the problem of checking fairness. Given

a propositional formula ¢ whose primitive propositions
are Xi,...,X,, consider a system with data variables
Xo, X1, ..., X,, all binary, such that X is sensitive and the
remaining variables are not. Consider a causal model My
where the exogeneous variables are Xj, ..., X,, the data
rule is the identity, there is only one endogenous variable,
D, and no allowed variables. The equation for D is D = 1if
Xo=0,and D = ¢ if Xy = 1. Since there are no allowed
variables, this system is fair iff ¢ = 1 (i.e., ¢ is true) for
every setting of the variables Xy,..., X,,. But this is the
case iff ¢ is valid. il

As complaints would typically originate from one
perceived case of discrimination, the regulator might have
an easier task checking a complaint than certifying the whole
system. Checking fairness for a specific applicant can have
lower complexity than checking fairness of the system in
general. In order to reason about this complexity formally,
we introduce the following definition of fairness with respect
to a specific case.

Definition 3 [Case-specific fairness] (D,X,M, A, f) is
fair with respect to decision variable D and setting d of the
variables in D if, for all settings d that agree with d except
for the values of some sensitive variables, the value of D

-

with the exogenous variables set to f(d) is the same as that
with the input variables set to f 7, 77 (d'). 1

Here there is some good news. Although the problem
continues to be co-NP-complete, the co-NP-completeness
stems completely from the number of possible settings of
the sensitive variables (since we have to check that the value
of the decision variable is unaffected if we change the values
of the sensitive variables). If we assume, as will almost
certainly be the case in practice, that there are relatively few
sensitive variables and that they have relatively few values,
we can do a brute force check in polynomial time.

Theorem 4.2 Deciding if a system is fair with respect
to a setting of the data variables is co-NP-complete,
but is polynomial in the number of settings of the

sensitive variables. More precisely, if L](Zair is the language

consisting of all tuples (D,X,M7 fY, f,D7J') such that
(D, )?, M, /T, f) is a system, D is an endogenous variable
in M, and d is a setting of the variables in D, and
(D,X,M, A, f) is fair with respect to D and d. then
the decision problem for L]{air is co-NP-complete, but is

polynomial in the number of settings of the exogenous
variables.

Proof. Given a system, a decision variable D, and a setting
d of the data varigbles, we can check _if D has the same value
for all settings d’ that agree with d except for the values
of the sensitive variables. This is clearly polynomial in the
number of settings of the exogenous variables.

If there is no bound on the number of sensitive variables,
then the problem is still clearly in co-NP (this is a special
case of Theorem 4.1). To show co-NP hardness, we again
reduce the validity problem to the problem of checking



fairness. Given a propositional formula ¢ whose primitive

propositions are Xi,...,X,, we consider a system with
data variables Xg, X1, ..., Xy, all of which are sensitive,
where X1, ..., X, are the variables of ¢ and X is a fresh

variable, the data rule is the identity, there is only one
endogenous variable, D, whose equation is X, V ¢, and
there are no allowed variables. This system is fair iff D has
the same value for all settings of the exogenous variables.
If Xo = 1, then D = 1, so we must also have D = 1 if
X = 0. But this means that for all settings of X,..., X,
D = 1. This is the case iff ¢ is valid. il

Theorem 4.2 already suggests why the co-NP-
completeness of checking fairness will not be a big
problem in practice, assuming that the number of settings
of sensitive variables is small. Checking fairness for
a particular individual can be done quickly. Thus, the
regulator can easily sample a relatively large number of
applicants and verify that fairness holds for all of them.
Why is this compatible with Theorem 4.1? To verify that the
formula is valid, we must check all possible settings of the
primitive propositions in the formula. If the bank’s system
uses, say, 1000 input variables, even if they are binary,
there are 21000 settings of these variables, far more than the
number of applicants. We care only about the settings that
actually arise for applicants.

There is one check that the regulator must perform whose
complexity we have not yet considered: checking that there
are no disallowed proxy variables. Again, we believe that
this will not be a problem in practice. Note that whether
there are disallowed proxy variables depends on features of
the applicants; that is, it is not an intrinsic property of the
causal graph, but a property of the data. We believe that,
given n applicants, or, more precisely, given the settings
of the data variables for n applicants, the decision rule,
and a specification of which variables are sensitive), and a
threshold e, we should be able to check in time polynomial
in n whether there are disallowed proxy variables by using
machine learning techniques. However, we leave verifying
this to future work.

There is a concern that the bank might have a better
machine learning program than the regulator, so that the
regulator might not detect any correlation between the
disallowed variables and the sensitive variables, but the
bank’s program can. This is clearly a topic that requires
further investigation.

On what dataset should the regulator run the checks that
we have described? We expect there to be a wealth of
historical data that is used by the bank to train its Al system.
The regulator can request the same training set as the bank
uses and run the initial checks on that set. The regulator
should then request all the applicant data after the bank starts
running its system, and do periodic checks on (a sample of)
that data. Note that the bank can try to fool the regulator
initially, by omitting applicants from the dataset that would
demonstrate that there are disallowed proxy variables. But
as long as the regulator has access to all the applicants,
that problem should be spotted relatively quickly. And if
the bank does not share all the applicant data, this will be
discovered when someone complains. We assume that there

is a system of fines and sanctions that would discourage this
type of “cheating”. Of course, it is possible that the bank’s
initial dataset is not representative of later data for legitimate
reasons. For example, there may be changes in the legal
process for applying for a loan application. But then we
would expect the bank to have to (and be able to) justify
why the initial dataset is not representative.

As these results suggest, regulators should be able
to certify a bank’s system in a reasonable amount of
time, despite the initially discouraging complexity results,
although more work needs to be done to develop algorithms
for verifying that a system has no proxy variables.

5 Conclusions

Assuring fairness of Al algorithms is a relatively recent topic
of interest, but it has already attracted a lot of attention,
due to the ever-increasing use of Al to make decisions. We
believe that there will be pressure to regulate this activity.
Companies may even welcome this regulation, to avoid
getting sued for their practices. Indeed, a number of large
companies recently released packages to detect certain types
of unfairness in the form of bias or under-representation
(e.g. IBM’s Al Fairness 360 (IBM 2018) and Facebook
Fairness Flow (Facebook 2021)). These packages are not
a general attempt to provide a regulatory framework; they
have tailor-made routines to check for particular types of
discrimination. But this does demonstrate that industry is
aware of the problem and is taking preliminary steps. There
has also been work on discovering discrimination against
individuals (Bonchi et al. 2017; Kilbertus et al. 2017; Zhang,
Wu, and Wu 2016, 2019). (Recall that in our setting, this can
be checked easily.)

In this paper, we make a first attempt to define such a
regulatory framework, with definitions and criteria that can
be verified and supported by evidence. While the worst-
case complexity of certifying fairness may appear high, in
practice, we expect that the certification process will be quite
fast and efficient. Of course, not everyone will agree with
all the choices we have made here, and some may feel that
more (or less) regulation should be required. We welcome
discussion of these issues. We believe that it is important
for the AI community to take the lead here, and help guide
policy-makers in coming up with ways to certify software
as acceptable. We hope that our work provides a useful first
step in this direction.
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