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Abstract. We give a counterexample to the conjecture of Martin and Thatte that two balanced rooted binary leaf-labelled

trees on n leaves have a maximum agreement subtree (MAST) of size at least n
1
2 . In particular, we show that for any c > 0,

there exist two balanced rooted binary leaf-labelled trees on n leaves such that any MAST for these two trees has size less than

cn
1
2 . We also improve the lower bound of the size of such a MAST to n

1
6 .

Keywords: balanced tree, caterpillar, maximum agreement subtree, phylogenetic tree

1. Introduction. Leaf-labelled trees, also called phylogenetic trees, are used to represent inferred
evolutionary histories of sets of species or genes [18]. Due to different data sets and methods that are used
to infer such histories, even phylogenetic trees that have been reconstructed for the same set of species or
genes often differ. To quantify the dissimilarities between trees, several tree metrics are commonly used that
compute distances between two phylogenetic trees (for a recent review, see [19]). Moreover, to summarise the
information that two or more phylogenetic trees have in common, maximum agreement subtrees (MASTs)
have become a popular tool. Historically, the concept of a MAST was introduced by Finden and Gordon [8]
as a way of measuring similarities among an arbitrary number of phylogenetic trees. Since their introduction,
MASTs as well as extensions of the concept of a MAST have also been used in related areas of phylogenetics
such as the computation of consensus trees and supertrees [3, 4, 15]. Intuitively, an agreement subtree for a
collection P of phylogenetic trees is a leaf-labelled tree M that can be embedded in each tree in P. If M has
the maximum number of leaves over all agreement subtrees for P, then M is a MAST (formal definitions
are given below).

Various aspects of MASTs have been well studied over the years. While the problem of computing a
MAST for at least three phylogenetic trees is NP-hard in general [1], several polynomial-time algorithms
have been developed to compute a MAST for two binary phylogenetic trees [6, 9, 21]. In terms of a lower
bound on the size of a MAST, Martin and Thatte [13] have shown that two unrooted binary phylogenetic
trees on n leaves have a MAST on Ω(

√
log n) leaves. Their result improves on a lower bound of Ω(log log n)

leaves that was previously established by Steel and Székely [20]. Markin [12] has recently closed the gap
between lower and upper bound asymptotics by showing that the minimum MAST for two unrooted binary
phylogenetic trees has Θ(log n) leaves.

The size of a MAST of two phylogenetic trees S and T is influenced by the shapes of S and T , where
the shape refers to the two trees obtained from S and T by ignoring their leaf labels. For instance, if S and
T are rooted binary caterpillar trees on the same set of n ≥ 2 leaves with their leaf labels reversed (we make
this more precise in Section 2), they will only have a MAST of size two independent of n. We provide a
formal justification for this statement in Lemma 3.1. Rooted binary caterpillar trees are usually considered
to be the most ‘imbalanced’ trees among all rooted binary phylogenetic trees, and it is natural to ask how the
size of a MAST changes with an increasing balance of the two rooted phylogenetic trees under consideration.
The balance of a phylogenetic tree can, for example, be quantified by tree balance indices such as the Colless
[7] or Sackin [16] index. In this regard, Martin and Thatte [13] have investigated the size of a MAST for two
balanced rooted binary phylogenetic trees on n = 2m leaves, which—as the name suggests—are considered
to be the most ‘balanced’ phylogenetic trees among all rooted binary phylogenetic trees. In particular, they
have shown that a MAST for two such trees has at least 2βm leaves, where β ∼ 0.149 and, subsequently,
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conjectured that two balanced rooted binary phylogenetic trees on n leaves have a MAST with at least n
1
2

leaves. The main result of this paper, disproves their conjecture for infinitely many values of n via a family
of counterexamples.

For completeness, it is also worth mentioning that lower and upper bounds on the expected size of a
MAST for two phylogenetic trees that are generated under the uniform or Yule-Harding distribution have
been established in [2, 5, 14]. Interestingly, in the context of this paper, Misra and Sullivant [14] have shown

that the expected size of a MAST for two balanced rooted binary phylogenetic trees on n leaves is Θ(n
1
2 )

under the uniform distribution.
To formally state the main results, we require some terminology. A rooted phylogenetic X-tree T is a

rooted tree with leaf set X and with no degree-two vertices, except for the root which has degree at least
two. For technical reasons, if |X| = 1, we additionally allow T to consist of the single vertex in X, in which
case, this vertex is the root as well as the leaf of T . The size of T is |X|. If |X| = 1 or T has the property
that the root has degree two and all other interior vertices have degree three, then T is binary. Furthermore,
the height of T is the number of edges on the longest path from the root to a leaf. If T is binary, we say T
is balanced if the size of T is 2m for some non-negative integer m and the height of T is m.

Let T be a rooted binary phylogenetic X-tree, and let Y be a subset of X. Then, the restriction of T to
Y , denoted by T |Y , is the rooted phylogenetic Y -tree obtained from the minimal subtree of T that connects
all leaves in Y by suppressing all non-root degree-two vertices. Now let S be a rooted binary phylogenetic
X ′-tree. If Y is a subset of X ∩X ′ such that S|Y and T |Y are isomorphic, we call S|Y an agreement subtree
of S and T . If, amongst all agreement subtrees of S and T , the restriction S|Y is of maximum size, then it
is called a maximum agreement subtree (MAST) of S and T , and |Y | is denoted by mast(S, T ).

The first main result of the paper, Theorem 1.1, shows that two balanced rooted binary phylogenetic
trees on n leaves do not necessarily have a MAST of size at least n

1
2 .

Theorem 1.1. For any c > 0, there exist balanced rooted binary phylogenetic X-trees S and T , where
n = |X|, such that mast(S, T ) < cn

1
2 .

Theorem 1.1 disproves the aforementioned conjecture by Martin and Thatte [13, Conjecture 20] that we
state next.

Conjecture 1.2 (Martin and Thatte [13]). If S and T are two balanced rooted binary phylogenetic

X-trees, where n = |X|, then mast(S, T ) ≥ n
1
2 .

The second main result, Theorem 1.3, slightly improves the lower bound on the size of a MAST for a
pair of balanced rooted binary phylogenetic trees given in [13] from nβ , where β ∼ 0.149, to n0.17.

Theorem 1.3. If S and T are two balanced rooted binary phylogenetic X-trees, where n = |X|, then

mast(S, T ) ≥ n0.17 > n
1
6 .

This paper is organised as follows. Section 2 details the notation and definitions used throughout,
while Section 3 establishes Theorem 1.1 via a sequence of lemmas. Subsequently, Section 4 outlines the
counterexample construction for when n = 2048. The last section, Section 5 gives the proof of the improved
lower bound on the size of a MAST for a pair of balanced rooted binary phylogenetic trees (Theorem 1.3).

2. Notation and Preliminaries. In addition to the terminology given in the introduction, this section
provides notation and terminology that is used in the remaining sections. Throughout the paper, X denotes
a non-empty finite set and all logarithms are base 2.

Trees and subtrees. Since all phylogenetic trees in this paper are rooted and binary, we will refer to such
a tree as simply a phylogenetic tree. Let T be a phylogenetic X-tree. We call X the label set of T and
frequently denote it by L(T ). A subtree of T is pendant if it can be detached from T by deleting a single
edge. Observe that if T is balanced, then the size of T and each pendant subtree of T is a power of two.
A balanced phylogenetic tree on n leaves has height log n. As an example, Figure 1 shows such a tree on 8
leaves.

Of course, a phylogenetic tree is simply a certain type of rooted tree whose leaves are labelled. Thus,
if we omit the adjective “phylogenetic” and say, for example, a balanced tree, we mean a balanced rooted
binary tree whose leaf set is unlabelled. This occurs, in particular, in some of the proofs where we describe
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leaves of two balanced trees S and T such that (1) each balanced pendant subtree of S of a certain size and
each balanced pendant subtree of T of a certain size only have a fixed and small number of labels in common,
and (2) each balanced pendant subtree of S (resp. T ) of a certain size perfectly embeds a set of label-disjoint
caterpillars of a fixed size. Lemma 3.2 establishes Property (1), and Corollary 3.4 establishes Property (2).
In fact, establishing both properties is also sufficient to show that the leaves common to a subtree of S and
a subtree of T induce a pair of anti-caterpillars in S and T , respectively. Once we have established that
the leaves of S and T can be labeled in the desired way, we establish an upper bound on mast(S, T ) in
Lemma 3.5. Then the proof of Theorem 1.1 is an almost immediate consequence of Theorem 3.6 whose proof
is an amalgamation of Lemmas 3.2 and 3.5 together with Corollary 3.4.

We start with a simple lemma that shows that the size of a MAST of any pair of anti-caterpillars is
two.

Lemma 3.1. Let C and C′ be a pair of anti-caterpillars on at least two leaves. Then mast(C, C′) = 2.

Proof. Evidently, mast(C, C′) ≥ 2. Let ab|c be a triple that is embedded in C. Since C and C′ are anti-
caterpillars, it follows that either ac|b or bc|a is a triple embedded in C′, in particular, ab|c is not embedded
in C′. Hence mast(C, C′) < 3 and, therefore, mast(C, C′) = 2.

Lemma 3.2. Let h2 ≥ h1 be non-negative integers. Let S (resp. T ) be a balanced tree on 2h1+h2 leaves
consisting of 2h1 balanced pendant subtrees S1,S2, . . . ,S2h1 (resp. T1, T2, . . . , T2h1 ) each of size 2h2 . Then
we can bijectively label the leaves of S and T with the elements in

{

1, 2, . . . , 2h1+h2

}

so that, for all i, j ∈
{1, 2, . . . , 2h1}, the pendant subtrees Si and Tj have exactly 2h2−h1 common labels.

Proof. For each r ∈ {1, 2, . . . , 22h1}, let

Lr = {1 + (r − 1) · 2h2−h1 , 2 + (r − 1) · 2h2−h1 , . . . , 2h2−h1 + (r − 1) · 2h2−h1}.

That is, L1 = {1, 2, . . . , 2h2−h1}, L2 = {1+2h2−h1 , 2+2h2−h1 , . . . , 2h2−h1 +2h2−h1}, and so forth. Note that
|Lr| = 2h2−h1 for all r. Moreover, Li ∩ Lj = ∅ for all i 6= j, and

22h1
⋃

r=1

Lr =
{

1, 2, . . . , 2h1+h2
}

.

Using the sets Lr, we now assign labels to the pendant subtrees S1,S2, . . . ,S2h1 of S and the pendant
subtrees T1, T2, . . . , T2h1 of T as follows. For all i, the subtree Si is assigned the union of label sets in row i
and, for all j, the subtree Tj is assigned the union of label sets in column j:

T1 T2 . . . Tj . . . T2h1

S1 L1 L2 . . . Lj . . . L2h1

S2 L1+2h1 L2+2h1 . . . Lj+2h1 . . . L2h1+2h1

...
...

... . . .
... . . .

...
Si L1+(i−1)·2h1 L2+(i−1)·2h1 . . . Lj+(i−1)·2h1 . . . L2h1+(i−1)·2h1

...
...

... . . .
...

S2h1 L1+(2h1−1)·2h1 L2+(2h1−1)·2h1 . . . Lj+(2h1−1)·2h1 . . . L2h1+(2h1−1)·2h1 = L22h1

Since |Lr| = 2h2−h1 , and Li ∩ Lj = ∅ for all i 6= j, it follows that each subtree Si and Tj is assigned
2h1 · 2h2−h1 = 2h2 distinct labels. Moreover, under this assignment of labels, L(Si) ∩ L(Tj) = Lr for some
r ∈ {1, 2, . . . , 22h1} (namely, the one that is placed in row i and column j). In particular, for all i and j, the
pendant subtrees Si and Tj have exactly |Lr| = 2h2−h1 common labels.

Consider the (infinite) sequence A054243 of integers from The On-Line Encyclopedia of Integer Se-
quences [11]. The first eighteen integers of this sequence are:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a(n) 1 1 1 2 2 4 8 16 16 32 64 128 256 512 1024 2048 2048 4096

and its closed form is a(n) = 2bn−logn−1c. Intuitively, the sequence is formed by successive powers of two,
but it “stutters” if n is a power of two, that is, if n is a power of two, then a(n) = a(n+ 1).
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Lemma 3.3. Let n be a positive integer. Then a balanced phylogenetic tree on 2n−1 leaves embeds

2bn−logn−1c

label-disjoint n-caterpillars.

Proof. The proof is by induction on n. Let T be a balanced phylogenetic tree on 2n−1 leaves. Evidently,
if n = 1, then T embeds one 1-caterpillar, and so the lemma holds. Similarly, if n = 2 (resp. n = 3), then T
embeds one 2-caterpillar (resp. one 3-caterpillar). Now suppose that n ≥ 4, and that the lemma holds for
all positive integers at most n− 1. Let T1 and T2 denote the two maximal pendant subtrees of T . For each
i ∈ {1, 2}, Ti is a balanced phylogenetic tree on 2n−2 leaves and so, by the induction assumption, Ti embeds

a(n− 1) = 2b(n−1)−log(n−1)−1c

label-disjoint (n− 1)-caterpillars. The remainder of the proof splits into two cases depending on whether or
not n− 1 is a power of two.

For the first case, assume that n−1 is a power of two. Then a(n) = a(n−1), and so we need to show that
T embeds a(n−1) label-disjoint n-caterpillars. If Cn−1 is an (n−1)-caterpillar embedded in Ti, then Cn−1||l
is an n-caterpillar embedded in T , where l ∈ Tj and {i, j} = {1, 2}. Thus, we can extend an embedding
E1 of 1

2a(n − 1) label-disjoint (n − 1)-caterpillars in T1 and an embedding E2 of 1
2a(n − 1) label-disjoint

(n − 1)-caterpillars in T2 to an embedding of a(n − 1) label-disjoint n-caterpillars in T provided, for each
i ∈ {1, 2}, we have

2n−2 − |L(Ei)| ≥ 1
2a(n− 1).

That is,

(3.1) 1
2 · 2b(n−1)−log(n−1)−1c · (n− 1) + 1

2 · 2b(n−1)−log(n−1)−1c ≤ 2n−2.

Since n− 1 is a power of two and n = 2logn, the LHS of (3.1) is

1
2 · 2b(n−1)−log(n−1)−1c · ((n− 1) + 1) = 2−1 · 2(n−1)−log(n−1)−1 · 2logn

= 2n−3−log(n−1)+logn.

As − log(n− 1) + log n ≤ 1, we have

2n−3−log(n−1)+logn ≤ 2n−3+1 = 2n−2,

thereby establishing (3.1).
For the second case, assume that n − 1 is not a power of two. Then a(n) = 2a(n − 1), and so we need

to show that T embeds 2a(n− 1) label-disjoint n-caterpillars. Analogous to the first case, we can extend an
embedding E1 of a(n−1) label-disjoint (n−1)-caterpillars in T1 and an embedding E2 of a(n−1) label-disjoint
(n − 1)-caterpillars in T2 to an embedding of 2a(n − 1) label-disjoint n-caterpillars in T provided, for each
i ∈ {1, 2}, we have

2n−2 − |L(Ei)| ≥ a(n− 1).

That is,

(3.2) 2b(n−1)−log(n−1)−1c · (n− 1) + 2b(n−1)−log(n−1)−1c ≤ 2n−2.

Since n = 2logn, the LHS of (3.2) is

2b(n−1)−log(n−1)−1c · ((n− 1) + 1) = 2b(n−1)−log(n−1)−1c · 2logn

= 2n−2+b− log(n−1)c+logn.

As n− 1 is not a power of two, it follows that b− log(n− 1)c+ log n ≤ 0, and so

2n−2+b− log(n−1)c+logn ≤ 2n−2.

This establishes (3.2), and completes the proof of the lemma.
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Corollary 3.4. Let k be a positive integer. Then a balanced phylogenetic tree T of height 2k − 1

perfectly embeds 22
k−k−1 caterpillars each of size 2k.

Proof. Taking n = 2k in Lemma 3.3, it follows that T embeds

2b2k−log(2k)−1c = 2b2k−k−1c = 22
k−k−1

label-disjoint 2k-caterpillars. Collectively, these caterpillars have

22
k−k−1 · 2k = 22

k−1

labels and, since the caterpillars are label-disjoint and T has 22
k−1 leaves, it follows that this embedding is

perfect.

To illustrate Corollary 3.4 for k = 2, a balanced phylogenetic tree of height 3 perfectly embeds two label-
disjoint 4-caterpillars. For an example, see Figure 1, where the two perfectly embedded caterpillars are
(1, 2, 3, 4) and (5, 6, 7, 8). Moreover, for k = 3, a balanced phylogenetic tree of height 7 perfectly embeds
sixteen label-disjoint 8-caterpillars. Two such trees are shown in Figure 3, where the pair of anti-caterpillars
(1, 2, 3, 4, 5, 6, 7, 8) and (8, 7, 6, 5, 4, 3, 2, 1) is highlighted in blue and green, respectively.

Lemma 3.5. Let r be a positive integer. Furthermore, let S and T be two balanced phylogenetic trees
on p · 2k and q · 2k leaves, respectively, where k, p, and q are positive integers. Suppose that S consists of
p pendant subtrees S1,S2, . . . ,Sp each of size 2k and T consists of q pendant subtrees T1, T2, . . . , Tq each of
size 2k. If
(i) for all i, j, we have |L(Si) ∩ L(Tj)| = r and
(ii) for all i, j, the restrictions Si|(L(Si) ∩ L(Tj)) and Tj |(L(Si) ∩ L(Tj)) is a pair of anti-caterpillars,

then, mast(S, T ) ≤ 2 ·max{p, q}.
Proof. Let f(p, q) denote the maximum size of a MAST for S and T . We will show by induction on p+q

that f(p, q) ≤ 2 ·max{p, q}. Note that, since S and T are balanced, p and q are powers of two. Furthermore,
by symmetry, f(p, q) = f(q, p).

Without loss of generality, we may assume p ≤ q. If p = 1, then, for all positive integers q, we have
f(1, q) = 2q. To see this, for all j, the restricted subtrees S1|(L(S1) ∩ L(Tj)) and Tj |(L(S1) ∩ L(Tj)) induce
a pair of anti-caterpillars, and so, by Lemma 3.1, each pendant subtree Tj of T contributes exactly 2 leaves
to a MAST between S and T . It follows that the lemma holds for when p = 1 and q is a positive integer.

Now assume that p ≥ 2 and the lemma holds for all smaller values of p + q. Let SL,SR and TL, TR
be the maximal pendant subtrees of S and T , respectively. Let M be a MAST of S and T . If there exist
x, y ∈ L(M) such that x ∈ L(SL)∩L(TL) and y ∈ L(SL)∩L(TR), then L(M)∩L(SR) is empty. Otherwise,
there is a triple xy|z embedded in M, where z ∈ L(SR), but xy|z is not embedded in T , a contradiction.
Intuitively, if M connects one half of S to both halves of T , then the other half of S is not used in M. Using
symmetric arguments, we obtain the following:
(A) if L(M) ∩ L(SL) ∩ L(TL) and L(M) ∩ L(SL) ∩ L(TR) are non-empty, then L(M) ∩ L(SR) = ∅;
(B) if L(M) ∩ L(SR) ∩ L(TL) and L(M) ∩ L(SR) ∩ L(TR) are non-empty, then L(M) ∩ L(SL) = ∅;
(C) if L(M) ∩ L(SL) ∩ L(TL) and L(M) ∩ L(SR) ∩ L(TL) are non-empty, then L(M) ∩ L(TR) = ∅; and
(D) if L(M) ∩ L(SL) ∩ L(TR) and L(M) ∩ L(SR) ∩ L(TR) are non-empty, then L(M) ∩ L(TL) = ∅.
Thus,

(I) either L(M) ∩ L(SL) or L(M) ∩ L(SR) is empty, or
(II) either L(M) ∩ L(TL) or L(M) ∩ L(TR) is empty, or
(III) either

(L(M) ∩ L(SL) ∩ L(TR)) ∪ (L(M) ∩ L(SR) ∩ L(TL))
or

(L(M) ∩ L(SL) ∩ L(TL)) ∪ (L(M) ∩ L(SR) ∩ L(TR))
is empty.

Therefore, f(p, q) ≤ max{f(p/2, q), f(p, q/2), 2f(p/2, q/2)}.
If p ≤ q/2, then, by induction, f(p, q) ≤ max{2q, q, 2q} = 2q and so, as p ≤ q, the lemma holds. If

p > q/2, then, by induction, f(p, q) ≤ max{2q, 2p, 2q} = 2q since p ≤ q, and it again follows that the lemma
holds. This completes the proof.

6



Theorem 1.1 is an almost immediate consequence of the next theorem:

Theorem 3.6. Let k be a positive integer. Then, there exist balanced phylogenetic X-trees S and T ,

where |X| = 22
k+1−k−2, such that mast(S, T ) = 22

k−k.

Proof. Let h1 = 2k − k − 1 and h2 = 2k − 1. Let S and T be two (unlabelled) balanced trees of height

h = h1 + h2. Thus, S and T each has size 2h = 22
k+1−k−2 and, each furthermore, has 2h1 balanced pendant

subtrees of size 2h2 . Let S1,S2, . . . ,S2h1 denote the pendant subtrees of S of size 2h2 and let T1, T2, . . . , T2h1

denote the pendant subtrees of T of size 2h2 .
By Lemma 3.2, we can bijectively label the leaves of S and T with the elements in

{

1, 2, . . . , 2h1+h2

}

so
that, for all i, j ∈ {1, 2, . . . , 2h1}, the pendant subtrees Si and Tj have exactly 2h2−h1 = 2k common labels.
Moreover, it follows by Corollary 3.4 that, under such a bijection, we can label the leaves of S and T so
that, for all i, j, the restrictions Si|(L(Si)∩L(Tj)) and Tj |(L(Si)∩L(Tj)) is in fact a pair of anti-caterpillars.
With this labelling of S and T , Lemma 3.5 says that:

mast(S, T ) ≤ 2 ·max
{

2h1 , 2h1
}

= 2 · 22k−k−1 = 22
k−k.

Since S and T have the same label sets, it is easily checked that this inequality is an equality, that is,

mast(S, T ) = 22
k−k,

completing the proof of the theorem.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Pick an integer k such that k > 2 log(1/c) + 2. By Theorem 3.6, there exist

balanced phylogenetic trees S and T on the same label set of size n = 22
k+1−k−2 such that

mast(S, T ) = 22
k−k.

Since
22

k−k

22
k− k

2
−1

= 2−
k

2
+1 < c,

where 22
k− k

2
−1 = n

1
2 , we have

22
k−k =

22
k−k

22
k− k

2
−1

· 22k− k

2
−1 < cn

1
2 ,

and the theorem follows.

In particular, if we take c = 1, then following the proof of Theorem 1.1 and choosing k = 3 implies that
there exist two balanced phylogenetic trees on 211 = 2048 leaves such that their MAST has size 25 = 32,
whereas

√
2048 ≈ 45.25. Using the results presented in this section, the next section gives an explicit

construction of two balanced phylogenetic trees on 2048 leaves whose MAST has size 32.

4. The Counterexample Construction. In this section, we give an explicit construction of a coun-
terexample to Conjecture 1.2. We note that the results in Section 3 are more general than what we need for
the counterexample that is presented in this section. In particular, Theorem 3.6 shows that, for any positive

integer k, there exists a pair of balanced phylogenetic trees on 22
k+1−k−2 leaves such that the size of a MAST

for these two trees is 22
k−k. Thus, for k = 3, this theorem states that there exist two balanced trees S and

T on 22
3+1−3−2 = 211 = 2048 leaves that can be bijectively labelled with the elements in {1, 2, . . . , 2048}

such that the size of a MAST for the resulting two balanced phylogenetic trees has size 22
3−3 = 32 < 2048

1
2 .

Let S and T be two balanced trees on 2048 = 24+7 leaves. In what follows, we label the leaves of S and
T such that mast(S, T ) = 32. Let S1,S2, . . . ,S16 be the sixteen leaf-disjoint balanced pendant subtrees of
S that each have size 27, and let T1, T2, . . . , T16 be the sixteen leaf-disjoint balanced pendant subtrees of T
that each have size 27. By Lemma 3.2 and Corollary 3.4, we can bijectively label the leaves of S and T with
the elements in {1, 2, . . . , 2048} such that the following three properties are satisfied:
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t > 0 leaves. We first show by induction on h1 + h2 that

(5.1) g(h1, h2, t) ≥ 20.22 log t−0.025(h1+h2).

For the base case, if h1 + h2 ∈ {0, 1}, then at least one of the trees consists of a single leaf, and so
g(h1, h2, 1) = 1 ≥ 20 and Equation (5.1) holds. Now, assume that Equation (5.1) holds for all pairs of
balanced phylogenetic trees whose heights sum to at most h1 + h2 − 1. Let SL and SR be the two maximal
pendant subtrees of S, and let TL and TR be the two maximal pendant subtrees of T . By Equation (2.1),

mast(S, T ) ≥ max
{

g(h1 − 1, h2 − 1, |L(SL) ∩ L(TL)|) + g(h1 − 1, h2 − 1, |L(SR) ∩ L(TR)|),
g(h1 − 1, h2 − 1, |L(SL) ∩ L(TR)|) + g(h1 − 1, h2 − 1, |L(SR) ∩ L(TL)|),
g(h1, h2 − 1, |L(S) ∩ L(TL)|), g(h1, h2 − 1, |L(S) ∩ L(TR)|),
g(h1 − 1, h2, |L(SL) ∩ L(T )|), g(h1 − 1, h2, |L(SR) ∩ L(T )|)

}

.

We freely use this inequality in the remainder of the proof.
Without loss of generality, we may assume that the largest overlap between the leaf sets SL,SR and

TL, TR is between SL and TL. By the pigeonhole principle, |L(SL)∩L(TL)| ≥ t/4, and so one of the following
cases must occur by exhaustion:
(i) |L(SR) ∩ L(TR)| ≥ 0.037t;
(ii) |L(SL) ∩ L(TR)|, |L(SR) ∩ L(TL)| ≥ 0.037t;
(iii) |L(SR) ∩ L(TR)|, |L(SL) ∩ L(TR)|, |L(SR) ∩ L(TL)| < 0.037t;
(iv) |L(SL) ∩ L(TR)| ≥ 0.037t and |L(SR) ∩ L(TR)|, |L(SR) ∩ L(TL)| < 0.037t;
(v) |L(SR) ∩ L(TR)|, |L(SL) ∩ L(TR)| < 0.037t and |L(SR) ∩ L(TL)| ≥ 0.037t.

In Case (i), it follows by the induction assumption that

mast(S, T ) ≥ g(h1 − 1, h2 − 1, 0.25t) + g(h1 − 1, h2 − 1, 0.037t)

> 2 · 20.22 log 0.037t−0.025(h1−1+h2−1)

= 21+0.22 log 0.037+0.22 log t+0.05−0.025(h1+h2)

> 20.22 log t−0.025(h1+h2).

In Case (ii), by a similar calculation to that in Case (i), we obtain

mast(S, T ) ≥ 2g(h1 − 1, h2 − 1, 0.037t) > 20.22 log t−0.025(h1+h2).

For Case (iii), since the total overlap in leaf sets is t, we must have |L(SL) ∩ L(TL)| ≥ 0.889t. So,

mast(S, T ) ≥ 20.22 log 0.889t−0.025(h1−1+h2−1)

= 20.22 log 0.889+0.22 log t+0.05−0.025(h1+h2)

> 20.22 log t−0.025(h1+h2).

Finally, in Case (iv), we have |L(SL) ∩ L(T )| ≥ 0.926t and, in Case (v), we have |L(S) ∩ L(TL)| ≥ 0.926t.
In both cases, we have

mast(S, T ) ≥ 20.22 log 0.926t−0.025(h1+h2−1)

= 20.22 log 0.926+0.22 log t+0.025−0.025(h1+h2)

> 20.22 log t−0.025(h1+h2).

Thus, Equation (5.1) holds by induction. Substituting h1 = h2 = log n and t = n into Equation (5.1), we
obtain that any two balanced phylogenetic trees on the same leaf set of size n have a MAST on at least

g(log n, log n, n) ≥ 20.22 logn−0.05 logn = n0.17 > n
1
6

leaves. This completes the proof of the theorem.
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Appendix A. Example on 2048 leaves. The following two balanced phylogenetic trees on label set
{1, 2, . . . , 2048} may be shown to have a MAST of size 32 by standard computational means [17]. They are
presented in standard Newick format below.

S =(((((((((((1,2),(3,12)),((4,11),(9,10))),(((5,13),(22,30)),((39,47),(55,63)))),((((6,14),(21,29)),((72

,80),(88,96))),(((17,18),(19,28)),((20,27),(25,26))))),(((((7,15),(23,31)),((38,46),(53,61))),(((49,50),(51,60

)),((52,59),(57,58)))),((((33,34),(35,44)),((36,43),(41,42))),(((37,45),(54,62)),((104,112),(120,128)))))),(((

(((65,66),(67,76)),((68,75),(73,74))),(((69,77),(86,94)),((103,111),(119,127)))),((((70,78),(85,93)),((8,16),(

24,32))),(((81,82),(83,92)),((84,91),(89,90))))),(((((71,79),(87,95)),((102,110),(117,125))),(((113,114),(115,

124)),((116,123),(121,122)))),((((97,98),(99,108)),((100,107),(105,106))),(((101,109),(118,126)),((40,48),(56,

64))))))),(((((((129,130),(131,140)),((132,139),(137,138))),(((133,141),(150,158)),((167,175),(183,191)))),(((

(134,142),(149,157)),((200,208),(216,224))),(((145,146),(147,156)),((148,155),(153,154))))),(((((135,143),(151

,159)),((166,174),(181,189))),(((177,178),(179,188)),((180,187),(185,186)))),((((161,162),(163,172)),((164,171

),(169,170))),(((165,173),(182,190)),((232,240),(248,256)))))),((((((193,194),(195,204)),((196,203),(201,202))

),(((197,205),(214,222)),((231,239),(247,255)))),((((198,206),(213,221)),((136,144),(152,160))),(((209,210),(2

11,220)),((212,219),(217,218))))),(((((199,207),(215,223)),((230,238),(245,253))),(((241,242),(243,252)),((244

,251),(249,250)))),((((225,226),(227,236)),((228,235),(233,234))),(((229,237),(246,254)),((168,176),(184,192))

)))))),((((((((257,258),(259,268)),((260,267),(265,266))),(((261,269),(278,286)),((295,303),(311,319)))),((((2

62,270),(277,285)),((328,336),(344,352))),(((273,274),(275,284)),((276,283),(281,282))))),(((((263,271),(279,2

87)),((294,302),(309,317))),(((305,306),(307,316)),((308,315),(313,314)))),((((289,290),(291,300)),((292,299),

(297,298))),(((293,301),(310,318)),((360,368),(376,384)))))),((((((321,322),(323,332)),((324,331),(329,330))),

(((325,333),(342,350)),((359,367),(375,383)))),((((326,334),(341,349)),((264,272),(280,288))),(((337,338),(339

,348)),((340,347),(345,346))))),(((((327,335),(343,351)),((358,366),(373,381))),(((369,370),(371,380)),((372,3

79),(377,378)))),((((353,354),(355,364)),((356,363),(361,362))),(((357,365),(374,382)),((296,304),(312,320))))

))),(((((((385,386),(387,396)),((388,395),(393,394))),(((389,397),(406,414)),((423,431),(439,447)))),((((390,3

98),(405,413)),((456,464),(472,480))),(((401,402),(403,412)),((404,411),(409,410))))),(((((391,399),(407,415))

,((422,430),(437,445))),(((433,434),(435,444)),((436,443),(441,442)))),((((417,418),(419,428)),((420,427),(425

,426))),(((421,429),(438,446)),((488,496),(504,512)))))),((((((449,450),(451,460)),((452,459),(457,458))),(((4

53,461),(470,478)),((487,495),(503,511)))),((((454,462),(469,477)),((392,400),(408,416))),(((465,466),(467,476

)),((468,475),(473,474))))),(((((455,463),(471,479)),((486,494),(501,509))),(((497,498),(499,508)),((500,507),

(505,506)))),((((481,482),(483,492)),((484,491),(489,490))),(((485,493),(502,510)),((424,432),(440,448))))))))

),(((((((((513,514),(515,524)),((516,523),(521,522))),(((517,525),(534,542)),((551,559),(567,575)))),((((518,5

26),(533,541)),((584,592),(600,608))),(((529,530),(531,540)),((532,539),(537,538))))),(((((519,527),(535,543))

,((550,558),(565,573))),(((561,562),(563,572)),((564,571),(569,570)))),((((545,546),(547,556)),((548,555),(553

,554))),(((549,557),(566,574)),((616,624),(632,640)))))),((((((577,578),(579,588)),((580,587),(585,586))),(((5

81,589),(598,606)),((615,623),(631,639)))),((((582,590),(597,605)),((520,528),(536,544))),(((593,594),(595,604

)),((596,603),(601,602))))),(((((583,591),(599,607)),((614,622),(629,637))),(((625,626),(627,636)),((628,635),

(633,634)))),((((609,610),(611,620)),((612,619),(617,618))),(((613,621),(630,638)),((552,560),(568,576))))))),

(((((((641,642),(643,652)),((644,651),(649,650))),(((645,653),(662,670)),((679,687),(695,703)))),((((646,654),

(661,669)),((712,720),(728,736))),(((657,658),(659,668)),((660,667),(665,666))))),(((((647,655),(663,671)),((6

78,686),(693,701))),(((689,690),(691,700)),((692,699),(697,698)))),((((673,674),(675,684)),((676,683),(681,682

))),(((677,685),(694,702)),((744,752),(760,768)))))),((((((705,706),(707,716)),((708,715),(713,714))),(((709,7

17),(726,734)),((743,751),(759,767)))),((((710,718),(725,733)),((648,656),(664,672))),(((721,722),(723,732)),(

(724,731),(729,730))))),(((((711,719),(727,735)),((742,750),(757,765))),(((753,754),(755,764)),((756,763),(761

,762)))),((((737,738),(739,748)),((740,747),(745,746))),(((741,749),(758,766)),((680,688),(696,704)))))))),(((

(((((769,770),(771,780)),((772,779),(777,778))),(((773,781),(790,798)),((807,815),(823,831)))),((((774,782),(7

89,797)),((840,848),(856,864))),(((785,786),(787,796)),((788,795),(793,794))))),(((((775,783),(791,799)),((806

,814),(821,829))),(((817,818),(819,828)),((820,827),(825,826)))),((((801,802),(803,812)),((804,811),(809,810))

),(((805,813),(822,830)),((872,880),(888,896)))))),((((((833,834),(835,844)),((836,843),(841,842))),(((837,845

),(854,862)),((871,879),(887,895)))),((((838,846),(853,861)),((776,784),(792,800))),(((849,850),(851,860)),((8

52,859),(857,858))))),(((((839,847),(855,863)),((870,878),(885,893))),(((881,882),(883,892)),((884,891),(889,8

90)))),((((865,866),(867,876)),((868,875),(873,874))),(((869,877),(886,894)),((808,816),(824,832))))))),((((((

(897,898),(899,908)),((900,907),(905,906))),(((901,909),(918,926)),((935,943),(951,959)))),((((902,910),(917,9

25)),((968,976),(984,992))),(((913,914),(915,924)),((916,923),(921,922))))),(((((903,911),(919,927)),((934,942
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),(949,957))),(((945,946),(947,956)),((948,955),(953,954)))),((((929,930),(931,940)),((932,939),(937,938))),((

(933,941),(950,958)),((1000,1008),(1016,1024)))))),((((((961,962),(963,972)),((964,971),(969,970))),(((965,973

),(982,990)),((999,1007),(1015,1023)))),((((966,974),(981,989)),((904,912),(920,928))),(((977,978),(979,988)),

((980,987),(985,986))))),(((((967,975),(983,991)),((998,1006),(1013,1021))),(((1009,1010),(1011,1020)),((1012,

1019),(1017,1018)))),((((993,994),(995,1004)),((996,1003),(1001,1002))),(((997,1005),(1014,1022)),((936,944),(

952,960)))))))))),((((((((((1025,1026),(1027,1036)),((1028,1035),(1033,1034))),(((1029,1037),(1046,1054)),((10

63,1071),(1079,1087)))),((((1030,1038),(1045,1053)),((1096,1104),(1112,1120))),(((1041,1042),(1043,1052)),((10

44,1051),(1049,1050))))),(((((1031,1039),(1047,1055)),((1062,1070),(1077,1085))),(((1073,1074),(1075,1084)),((

1076,1083),(1081,1082)))),((((1057,1058),(1059,1068)),((1060,1067),(1065,1066))),(((1061,1069),(1078,1086)),((

1128,1136),(1144,1152)))))),((((((1089,1090),(1091,1100)),((1092,1099),(1097,1098))),(((1093,1101),(1110,1118)

),((1127,1135),(1143,1151)))),((((1094,1102),(1109,1117)),((1032,1040),(1048,1056))),(((1105,1106),(1107,1116)

),((1108,1115),(1113,1114))))),(((((1095,1103),(1111,1119)),((1126,1134),(1141,1149))),(((1137,1138),(1139,114

8)),((1140,1147),(1145,1146)))),((((1121,1122),(1123,1132)),((1124,1131),(1129,1130))),(((1125,1133),(1142,115

0)),((1064,1072),(1080,1088))))))),(((((((1153,1154),(1155,1164)),((1156,1163),(1161,1162))),(((1157,1165),(11

74,1182)),((1191,1199),(1207,1215)))),((((1158,1166),(1173,1181)),((1224,1232),(1240,1248))),(((1169,1170),(11

71,1180)),((1172,1179),(1177,1178))))),(((((1159,1167),(1175,1183)),((1190,1198),(1205,1213))),(((1201,1202),(

1203,1212)),((1204,1211),(1209,1210)))),((((1185,1186),(1187,1196)),((1188,1195),(1193,1194))),(((1189,1197),(

1206,1214)),((1256,1264),(1272,1280)))))),((((((1217,1218),(1219,1228)),((1220,1227),(1225,1226))),(((1221,122

9),(1238,1246)),((1255,1263),(1271,1279)))),((((1222,1230),(1237,1245)),((1160,1168),(1176,1184))),(((1233,123

4),(1235,1244)),((1236,1243),(1241,1242))))),(((((1223,1231),(1239,1247)),((1254,1262),(1269,1277))),(((1265,1

266),(1267,1276)),((1268,1275),(1273,1274)))),((((1249,1250),(1251,1260)),((1252,1259),(1257,1258))),(((1253,1

261),(1270,1278)),((1192,1200),(1208,1216)))))))),((((((((1281,1282),(1283,1292)),((1284,1291),(1289,1290))),(

((1285,1293),(1302,1310)),((1319,1327),(1335,1343)))),((((1286,1294),(1301,1309)),((1352,1360),(1368,1376))),(

((1297,1298),(1299,1308)),((1300,1307),(1305,1306))))),(((((1287,1295),(1303,1311)),((1318,1326),(1333,1341)))

,(((1329,1330),(1331,1340)),((1332,1339),(1337,1338)))),((((1313,1314),(1315,1324)),((1316,1323),(1321,1322)))

,(((1317,1325),(1334,1342)),((1384,1392),(1400,1408)))))),((((((1345,1346),(1347,1356)),((1348,1355),(1353,135

4))),(((1349,1357),(1366,1374)),((1383,1391),(1399,1407)))),((((1350,1358),(1365,1373)),((1288,1296),(1304,131

2))),(((1361,1362),(1363,1372)),((1364,1371),(1369,1370))))),(((((1351,1359),(1367,1375)),((1382,1390),(1397,1

405))),(((1393,1394),(1395,1404)),((1396,1403),(1401,1402)))),((((1377,1378),(1379,1388)),((1380,1387),(1385,1

386))),(((1381,1389),(1398,1406)),((1320,1328),(1336,1344))))))),(((((((1409,1410),(1411,1420)),((1412,1419),(

1417,1418))),(((1413,1421),(1430,1438)),((1447,1455),(1463,1471)))),((((1414,1422),(1429,1437)),((1480,1488),(

1496,1504))),(((1425,1426),(1427,1436)),((1428,1435),(1433,1434))))),(((((1415,1423),(1431,1439)),((1446,1454)

,(1461,1469))),(((1457,1458),(1459,1468)),((1460,1467),(1465,1466)))),((((1441,1442),(1443,1452)),((1444,1451)

,(1449,1450))),(((1445,1453),(1462,1470)),((1512,1520),(1528,1536)))))),((((((1473,1474),(1475,1484)),((1476,1

483),(1481,1482))),(((1477,1485),(1494,1502)),((1511,1519),(1527,1535)))),((((1478,1486),(1493,1501)),((1416,1

424),(1432,1440))),(((1489,1490),(1491,1500)),((1492,1499),(1497,1498))))),(((((1479,1487),(1495,1503)),((1510

,1518),(1525,1533))),(((1521,1522),(1523,1532)),((1524,1531),(1529,1530)))),((((1505,1506),(1507,1516)),((1508

,1515),(1513,1514))),(((1509,1517),(1526,1534)),((1448,1456),(1464,1472))))))))),(((((((((1537,1538),(1539,154

8)),((1540,1547),(1545,1546))),(((1541,1549),(1558,1566)),((1575,1583),(1591,1599)))),((((1542,1550),(1557,156

5)),((1608,1616),(1624,1632))),(((1553,1554),(1555,1564)),((1556,1563),(1561,1562))))),(((((1543,1551),(1559,1

567)),((1574,1582),(1589,1597))),(((1585,1586),(1587,1596)),((1588,1595),(1593,1594)))),((((1569,1570),(1571,1

580)),((1572,1579),(1577,1578))),(((1573,1581),(1590,1598)),((1640,1648),(1656,1664)))))),((((((1601,1602),(16

03,1612)),((1604,1611),(1609,1610))),(((1605,1613),(1622,1630)),((1639,1647),(1655,1663)))),((((1606,1614),(16

21,1629)),((1544,1552),(1560,1568))),(((1617,1618),(1619,1628)),((1620,1627),(1625,1626))))),(((((1607,1615),(

1623,1631)),((1638,1646),(1653,1661))),(((1649,1650),(1651,1660)),((1652,1659),(1657,1658)))),((((1633,1634),(

1635,1644)),((1636,1643),(1641,1642))),(((1637,1645),(1654,1662)),((1576,1584),(1592,1600))))))),(((((((1665,1

666),(1667,1676)),((1668,1675),(1673,1674))),(((1669,1677),(1686,1694)),((1703,1711),(1719,1727)))),((((1670,1

678),(1685,1693)),((1736,1744),(1752,1760))),(((1681,1682),(1683,1692)),((1684,1691),(1689,1690))))),(((((1671

,1679),(1687,1695)),((1702,1710),(1717,1725))),(((1713,1714),(1715,1724)),((1716,1723),(1721,1722)))),((((1697

,1698),(1699,1708)),((1700,1707),(1705,1706))),(((1701,1709),(1718,1726)),((1768,1776),(1784,1792)))))),((((((

1729,1730),(1731,1740)),((1732,1739),(1737,1738))),(((1733,1741),(1750,1758)),((1767,1775),(1783,1791)))),((((

1734,1742),(1749,1757)),((1672,1680),(1688,1696))),(((1745,1746),(1747,1756)),((1748,1755),(1753,1754))))),(((

((1735,1743),(1751,1759)),((1766,1774),(1781,1789))),(((1777,1778),(1779,1788)),((1780,1787),(1785,1786)))),((
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((1761,1762),(1763,1772)),((1764,1771),(1769,1770))),(((1765,1773),(1782,1790)),((1704,1712),(1720,1728)))))))

),((((((((1793,1794),(1795,1804)),((1796,1803),(1801,1802))),(((1797,1805),(1814,1822)),((1831,1839),(1847,185

5)))),((((1798,1806),(1813,1821)),((1864,1872),(1880,1888))),(((1809,1810),(1811,1820)),((1812,1819),(1817,181

8))))),(((((1799,1807),(1815,1823)),((1830,1838),(1845,1853))),(((1841,1842),(1843,1852)),((1844,1851),(1849,1

850)))),((((1825,1826),(1827,1836)),((1828,1835),(1833,1834))),(((1829,1837),(1846,1854)),((1896,1904),(1912,1

920)))))),((((((1857,1858),(1859,1868)),((1860,1867),(1865,1866))),(((1861,1869),(1878,1886)),((1895,1903),(19

11,1919)))),((((1862,1870),(1877,1885)),((1800,1808),(1816,1824))),(((1873,1874),(1875,1884)),((1876,1883),(18

81,1882))))),(((((1863,1871),(1879,1887)),((1894,1902),(1909,1917))),(((1905,1906),(1907,1916)),((1908,1915),(

1913,1914)))),((((1889,1890),(1891,1900)),((1892,1899),(1897,1898))),(((1893,1901),(1910,1918)),((1832,1840),(

1848,1856))))))),(((((((1921,1922),(1923,1932)),((1924,1931),(1929,1930))),(((1925,1933),(1942,1950)),((1959,1

967),(1975,1983)))),((((1926,1934),(1941,1949)),((1992,2000),(2008,2016))),(((1937,1938),(1939,1948)),((1940,1

947),(1945,1946))))),(((((1927,1935),(1943,1951)),((1958,1966),(1973,1981))),(((1969,1970),(1971,1980)),((1972

,1979),(1977,1978)))),((((1953,1954),(1955,1964)),((1956,1963),(1961,1962))),(((1957,1965),(1974,1982)),((2024

,2032),(2040,2048)))))),((((((1985,1986),(1987,1996)),((1988,1995),(1993,1994))),(((1989,1997),(2006,2014)),((

2023,2031),(2039,2047)))),((((1990,1998),(2005,2013)),((1928,1936),(1944,1952))),(((2001,2002),(2003,2012)),((

2004,2011),(2009,2010))))),(((((1991,1999),(2007,2015)),((2022,2030),(2037,2045))),(((2033,2034),(2035,2044)),

((2036,2043),(2041,2042)))),((((2017,2018),(2019,2028)),((2020,2027),(2025,2026))),(((2021,2029),(2038,2046)),

((1960,1968),(1976,1984)))))))))));

T = (((((((((((8,7),(6,133)),((5,134),(136,135))),(((4,132),(259,387)),((514,642),(770,898)))),((((3,131)

,(260,388)),((1025,1153),(1281,1409))),(((264,263),(262,389)),((261,390),(392,391))))),(((((2,130),(258,386)),

((515,643),(772,900))),(((776,775),(774,901)),((773,902),(904,903)))),((((520,519),(518,645)),((517,646),(648,

647))),(((516,644),(771,899)),((1537,1665),(1793,1921)))))),((((((1032,1031),(1030,1157)),((1029,1158),(1160,1

159))),(((1028,1156),(1283,1411)),((1538,1666),(1794,1922)))),((((1027,1155),(1284,1412)),((1,129),(257,385)))

,(((1288,1287),(1286,1413)),((1285,1414),(1416,1415))))),(((((1026,1154),(1282,1410)),((1539,1667),(1796,1924)

)),(((1800,1799),(1798,1925)),((1797,1926),(1928,1927)))),((((1544,1543),(1542,1669)),((1541,1670),(1672,1671)

)),(((1540,1668),(1795,1923)),((513,641),(769,897))))))),(((((((16,15),(14,141)),((13,142),(144,143))),(((12,1

40),(267,395)),((522,650),(778,906)))),((((11,139),(268,396)),((1033,1161),(1289,1417))),(((272,271),(270,397)

),((269,398),(400,399))))),(((((10,138),(266,394)),((523,651),(780,908))),(((784,783),(782,909)),((781,910),(9

12,911)))),((((528,527),(526,653)),((525,654),(656,655))),(((524,652),(779,907)),((1545,1673),(1801,1929))))))

,((((((1040,1039),(1038,1165)),((1037,1166),(1168,1167))),(((1036,1164),(1291,1419)),((1546,1674),(1802,1930))

)),((((1035,1163),(1292,1420)),((9,137),(265,393))),(((1296,1295),(1294,1421)),((1293,1422),(1424,1423))))),((

(((1034,1162),(1290,1418)),((1547,1675),(1804,1932))),(((1808,1807),(1806,1933)),((1805,1934),(1936,1935)))),(

(((1552,1551),(1550,1677)),((1549,1678),(1680,1679))),(((1548,1676),(1803,1931)),((521,649),(777,905)))))))),(

(((((((24,23),(22,149)),((21,150),(152,151))),(((20,148),(275,403)),((530,658),(786,914)))),((((19,147),(276,4

04)),((1041,1169),(1297,1425))),(((280,279),(278,405)),((277,406),(408,407))))),(((((18,146),(274,402)),((531,

659),(788,916))),(((792,791),(790,917)),((789,918),(920,919)))),((((536,535),(534,661)),((533,662),(664,663)))

,(((532,660),(787,915)),((1553,1681),(1809,1937)))))),((((((1048,1047),(1046,1173)),((1045,1174),(1176,1175)))

,(((1044,1172),(1299,1427)),((1554,1682),(1810,1938)))),((((1043,1171),(1300,1428)),((17,145),(273,401))),(((1

304,1303),(1302,1429)),((1301,1430),(1432,1431))))),(((((1042,1170),(1298,1426)),((1555,1683),(1812,1940))),((

(1816,1815),(1814,1941)),((1813,1942),(1944,1943)))),((((1560,1559),(1558,1685)),((1557,1686),(1688,1687))),((

(1556,1684),(1811,1939)),((529,657),(785,913))))))),(((((((32,31),(30,157)),((29,158),(160,159))),(((28,156),(

283,411)),((538,666),(794,922)))),((((27,155),(284,412)),((1049,1177),(1305,1433))),(((288,287),(286,413)),((2

85,414),(416,415))))),(((((26,154),(282,410)),((539,667),(796,924))),(((800,799),(798,925)),((797,926),(928,92

7)))),((((544,543),(542,669)),((541,670),(672,671))),(((540,668),(795,923)),((1561,1689),(1817,1945)))))),((((

((1056,1055),(1054,1181)),((1053,1182),(1184,1183))),(((1052,1180),(1307,1435)),((1562,1690),(1818,1946)))),((

((1051,1179),(1308,1436)),((25,153),(281,409))),(((1312,1311),(1310,1437)),((1309,1438),(1440,1439))))),(((((1

050,1178),(1306,1434)),((1563,1691),(1820,1948))),(((1824,1823),(1822,1949)),((1821,1950),(1952,1951)))),((((1

568,1567),(1566,1693)),((1565,1694),(1696,1695))),(((1564,1692),(1819,1947)),((537,665),(793,921))))))))),((((

(((((40,39),(38,165)),((37,166),(168,167))),(((36,164),(291,419)),((546,674),(802,930)))),((((35,163),(292,420

)),((1057,1185),(1313,1441))),(((296,295),(294,421)),((293,422),(424,423))))),(((((34,162),(290,418)),((547,67

5),(804,932))),(((808,807),(806,933)),((805,934),(936,935)))),((((552,551),(550,677)),((549,678),(680,679))),(

((548,676),(803,931)),((1569,1697),(1825,1953)))))),((((((1064,1063),(1062,1189)),((1061,1190),(1192,1191))),(

((1060,1188),(1315,1443)),((1570,1698),(1826,1954)))),((((1059,1187),(1316,1444)),((33,161),(289,417))),(((132

0,1319),(1318,1445)),((1317,1446),(1448,1447))))),(((((1058,1186),(1314,1442)),((1571,1699),(1828,1956))),(((1

832,1831),(1830,1957)),((1829,1958),(1960,1959)))),((((1576,1575),(1574,1701)),((1573,1702),(1704,1703))),(((1

572,1700),(1827,1955)),((545,673),(801,929))))))),(((((((48,47),(46,173)),((45,174),(176,175))),(((44,172),(29

9,427)),((554,682),(810,938)))),((((43,171),(300,428)),((1065,1193),(1321,1449))),(((304,303),(302,429)),((301

,430),(432,431))))),(((((42,170),(298,426)),((555,683),(812,940))),(((816,815),(814,941)),((813,942),(944,943)

))),((((560,559),(558,685)),((557,686),(688,687))),(((556,684),(811,939)),((1577,1705),(1833,1961)))))),((((((

1072,1071),(1070,1197)),((1069,1198),(1200,1199))),(((1068,1196),(1323,1451)),((1578,1706),(1834,1962)))),((((

1067,1195),(1324,1452)),((41,169),(297,425))),(((1328,1327),(1326,1453)),((1325,1454),(1456,1455))))),(((((106

6,1194),(1322,1450)),((1579,1707),(1836,1964))),(((1840,1839),(1838,1965)),((1837,1966),(1968,1967)))),((((158
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4,1583),(1582,1709)),((1581,1710),(1712,1711))),(((1580,1708),(1835,1963)),((553,681),(809,937)))))))),(((((((

(56,55),(54,181)),((53,182),(184,183))),(((52,180),(307,435)),((562,690),(818,946)))),((((51,179),(308,436)),(

(1073,1201),(1329,1457))),(((312,311),(310,437)),((309,438),(440,439))))),(((((50,178),(306,434)),((563,691),(

820,948))),(((824,823),(822,949)),((821,950),(952,951)))),((((568,567),(566,693)),((565,694),(696,695))),(((56

4,692),(819,947)),((1585,1713),(1841,1969)))))),((((((1080,1079),(1078,1205)),((1077,1206),(1208,1207))),(((10

76,1204),(1331,1459)),((1586,1714),(1842,1970)))),((((1075,1203),(1332,1460)),((49,177),(305,433))),(((1336,13

35),(1334,1461)),((1333,1462),(1464,1463))))),(((((1074,1202),(1330,1458)),((1587,1715),(1844,1972))),(((1848,

1847),(1846,1973)),((1845,1974),(1976,1975)))),((((1592,1591),(1590,1717)),((1589,1718),(1720,1719))),(((1588,

1716),(1843,1971)),((561,689),(817,945))))))),(((((((64,63),(62,189)),((61,190),(192,191))),(((60,188),(315,44

3)),((570,698),(826,954)))),((((59,187),(316,444)),((1081,1209),(1337,1465))),(((320,319),(318,445)),((317,446

),(448,447))))),(((((58,186),(314,442)),((571,699),(828,956))),(((832,831),(830,957)),((829,958),(960,959)))),

((((576,575),(574,701)),((573,702),(704,703))),(((572,700),(827,955)),((1593,1721),(1849,1977)))))),((((((1088

,1087),(1086,1213)),((1085,1214),(1216,1215))),(((1084,1212),(1339,1467)),((1594,1722),(1850,1978)))),((((1083

,1211),(1340,1468)),((57,185),(313,441))),(((1344,1343),(1342,1469)),((1341,1470),(1472,1471))))),(((((1082,12

10),(1338,1466)),((1595,1723),(1852,1980))),(((1856,1855),(1854,1981)),((1853,1982),(1984,1983)))),((((1600,15

99),(1598,1725)),((1597,1726),(1728,1727))),(((1596,1724),(1851,1979)),((569,697),(825,953)))))))))),(((((((((

(72,71),(70,197)),((69,198),(200,199))),(((68,196),(323,451)),((578,706),(834,962)))),((((67,195),(324,452)),(

(1089,1217),(1345,1473))),(((328,327),(326,453)),((325,454),(456,455))))),(((((66,194),(322,450)),((579,707),(

836,964))),(((840,839),(838,965)),((837,966),(968,967)))),((((584,583),(582,709)),((581,710),(712,711))),(((58

0,708),(835,963)),((1601,1729),(1857,1985)))))),((((((1096,1095),(1094,1221)),((1093,1222),(1224,1223))),(((10

92,1220),(1347,1475)),((1602,1730),(1858,1986)))),((((1091,1219),(1348,1476)),((65,193),(321,449))),(((1352,13

51),(1350,1477)),((1349,1478),(1480,1479))))),(((((1090,1218),(1346,1474)),((1603,1731),(1860,1988))),(((1864,

1863),(1862,1989)),((1861,1990),(1992,1991)))),((((1608,1607),(1606,1733)),((1605,1734),(1736,1735))),(((1604,

1732),(1859,1987)),((577,705),(833,961))))))),(((((((80,79),(78,205)),((77,206),(208,207))),(((76,204),(331,45

9)),((586,714),(842,970)))),((((75,203),(332,460)),((1097,1225),(1353,1481))),(((336,335),(334,461)),((333,462

),(464,463))))),(((((74,202),(330,458)),((587,715),(844,972))),(((848,847),(846,973)),((845,974),(976,975)))),

((((592,591),(590,717)),((589,718),(720,719))),(((588,716),(843,971)),((1609,1737),(1865,1993)))))),((((((1104

,1103),(1102,1229)),((1101,1230),(1232,1231))),(((1100,1228),(1355,1483)),((1610,1738),(1866,1994)))),((((1099

,1227),(1356,1484)),((73,201),(329,457))),(((1360,1359),(1358,1485)),((1357,1486),(1488,1487))))),(((((1098,12

26),(1354,1482)),((1611,1739),(1868,1996))),(((1872,1871),(1870,1997)),((1869,1998),(2000,1999)))),((((1616,16

15),(1614,1741)),((1613,1742),(1744,1743))),(((1612,1740),(1867,1995)),((585,713),(841,969)))))))),((((((((88,

87),(86,213)),((85,214),(216,215))),(((84,212),(339,467)),((594,722),(850,978)))),((((83,211),(340,468)),((110

5,1233),(1361,1489))),(((344,343),(342,469)),((341,470),(472,471))))),(((((82,210),(338,466)),((595,723),(852,

980))),(((856,855),(854,981)),((853,982),(984,983)))),((((600,599),(598,725)),((597,726),(728,727))),(((596,72

4),(851,979)),((1617,1745),(1873,2001)))))),((((((1112,1111),(1110,1237)),((1109,1238),(1240,1239))),(((1108,1

236),(1363,1491)),((1618,1746),(1874,2002)))),((((1107,1235),(1364,1492)),((81,209),(337,465))),(((1368,1367),

(1366,1493)),((1365,1494),(1496,1495))))),(((((1106,1234),(1362,1490)),((1619,1747),(1876,2004))),(((1880,1879

),(1878,2005)),((1877,2006),(2008,2007)))),((((1624,1623),(1622,1749)),((1621,1750),(1752,1751))),(((1620,1748

),(1875,2003)),((593,721),(849,977))))))),(((((((96,95),(94,221)),((93,222),(224,223))),(((92,220),(347,475)),

((602,730),(858,986)))),((((91,219),(348,476)),((1113,1241),(1369,1497))),(((352,351),(350,477)),((349,478),(4

80,479))))),(((((90,218),(346,474)),((603,731),(860,988))),(((864,863),(862,989)),((861,990),(992,991)))),((((

608,607),(606,733)),((605,734),(736,735))),(((604,732),(859,987)),((1625,1753),(1881,2009)))))),((((((1120,111

9),(1118,1245)),((1117,1246),(1248,1247))),(((1116,1244),(1371,1499)),((1626,1754),(1882,2010)))),((((1115,124

3),(1372,1500)),((89,217),(345,473))),(((1376,1375),(1374,1501)),((1373,1502),(1504,1503))))),(((((1114,1242),

(1370,1498)),((1627,1755),(1884,2012))),(((1888,1887),(1886,2013)),((1885,2014),(2016,2015)))),((((1632,1631),

(1630,1757)),((1629,1758),(1760,1759))),(((1628,1756),(1883,2011)),((601,729),(857,985))))))))),(((((((((104,1

03),(102,229)),((101,230),(232,231))),(((100,228),(355,483)),((610,738),(866,994)))),((((99,227),(356,484)),((

1121,1249),(1377,1505))),(((360,359),(358,485)),((357,486),(488,487))))),(((((98,226),(354,482)),((611,739),(8

68,996))),(((872,871),(870,997)),((869,998),(1000,999)))),((((616,615),(614,741)),((613,742),(744,743))),(((61

2,740),(867,995)),((1633,1761),(1889,2017)))))),((((((1128,1127),(1126,1253)),((1125,1254),(1256,1255))),(((11

24,1252),(1379,1507)),((1634,1762),(1890,2018)))),((((1123,1251),(1380,1508)),((97,225),(353,481))),(((1384,13

83),(1382,1509)),((1381,1510),(1512,1511))))),(((((1122,1250),(1378,1506)),((1635,1763),(1892,2020))),(((1896,

1895),(1894,2021)),((1893,2022),(2024,2023)))),((((1640,1639),(1638,1765)),((1637,1766),(1768,1767))),(((1636,

1764),(1891,2019)),((609,737),(865,993))))))),(((((((112,111),(110,237)),((109,238),(240,239))),(((108,236),(3

63,491)),((618,746),(874,1002)))),((((107,235),(364,492)),((1129,1257),(1385,1513))),(((368,367),(366,493)),((

365,494),(496,495))))),(((((106,234),(362,490)),((619,747),(876,1004))),(((880,879),(878,1005)),((877,1006),(1

008,1007)))),((((624,623),(622,749)),((621,750),(752,751))),(((620,748),(875,1003)),((1641,1769),(1897,2025)))

))),((((((1136,1135),(1134,1261)),((1133,1262),(1264,1263))),(((1132,1260),(1387,1515)),((1642,1770),(1898,202

6)))),((((1131,1259),(1388,1516)),((105,233),(361,489))),(((1392,1391),(1390,1517)),((1389,1518),(1520,1519)))

)),(((((1130,1258),(1386,1514)),((1643,1771),(1900,2028))),(((1904,1903),(1902,2029)),((1901,2030),(2032,2031)

))),((((1648,1647),(1646,1773)),((1645,1774),(1776,1775))),(((1644,1772),(1899,2027)),((617,745),(873,1001))))

)))),((((((((120,119),(118,245)),((117,246),(248,247))),(((116,244),(371,499)),((626,754),(882,1010)))),((((11

5,243),(372,500)),((1137,1265),(1393,1521))),(((376,375),(374,501)),((373,502),(504,503))))),(((((114,242),(37

0,498)),((627,755),(884,1012))),(((888,887),(886,1013)),((885,1014),(1016,1015)))),((((632,631),(630,757)),((6

29,758),(760,759))),(((628,756),(883,1011)),((1649,1777),(1905,2033)))))),((((((1144,1143),(1142,1269)),((1141

,1270),(1272,1271))),(((1140,1268),(1395,1523)),((1650,1778),(1906,2034)))),((((1139,1267),(1396,1524)),((113,

15



241),(369,497))),(((1400,1399),(1398,1525)),((1397,1526),(1528,1527))))),(((((1138,1266),(1394,1522)),((1651,1

779),(1908,2036))),(((1912,1911),(1910,2037)),((1909,2038),(2040,2039)))),((((1656,1655),(1654,1781)),((1653,1

782),(1784,1783))),(((1652,1780),(1907,2035)),((625,753),(881,1009))))))),(((((((128,127),(126,253)),((125,254

),(256,255))),(((124,252),(379,507)),((634,762),(890,1018)))),((((123,251),(380,508)),((1145,1273),(1401,1529)

)),(((384,383),(382,509)),((381,510),(512,511))))),(((((122,250),(378,506)),((635,763),(892,1020))),(((896,895

),(894,1021)),((893,1022),(1024,1023)))),((((640,639),(638,765)),((637,766),(768,767))),(((636,764),(891,1019)

),((1657,1785),(1913,2041)))))),((((((1152,1151),(1150,1277)),((1149,1278),(1280,1279))),(((1148,1276),(1403,1

531)),((1658,1786),(1914,2042)))),((((1147,1275),(1404,1532)),((121,249),(377,505))),(((1408,1407),(1406,1533)

),((1405,1534),(1536,1535))))),(((((1146,1274),(1402,1530)),((1659,1787),(1916,2044))),(((1920,1919),(1918,204

5)),((1917,2046),(2048,2047)))),((((1664,1663),(1662,1789)),((1661,1790),(1792,1791))),(((1660,1788),(1915,204

3)),((633,761),(889,1017)))))))))));

16


	Introduction
	Notation and Preliminaries
	Proof of Theorem 1.1
	The Counterexample Construction
	Lower Bounds
	Acknowledgements
	References
	Appendix A. Example on 2048 leaves

