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Abstract. We give a counterexample to the conjecture of Martin and Thatte that two balanced rooted binary leaf-labelled
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trees on n leaves have a maximum agreement subtree (MAST) of size at least n2. In particular, we show that for any ¢ > 0,
there exist two balanced rooted binary leaf-labelled trees on n leaves such that any MAST for these two trees has size less than
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cn2. We also improve the lower bound of the size of such a MAST to n&.
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1. Introduction. Leaf-labelled trees, also called phylogenetic trees, are used to represent inferred
evolutionary histories of sets of species or genes [18]. Due to different data sets and methods that are used
to infer such histories, even phylogenetic trees that have been reconstructed for the same set of species or
genes often differ. To quantify the dissimilarities between trees, several tree metrics are commonly used that
compute distances between two phylogenetic trees (for a recent review, see [19]). Moreover, to summarise the
information that two or more phylogenetic trees have in common, maximum agreement subtrees (MASTS)
have become a popular tool. Historically, the concept of a MAST was introduced by Finden and Gordon [8]
as a way of measuring similarities among an arbitrary number of phylogenetic trees. Since their introduction,
MASTSs as well as extensions of the concept of a MAST have also been used in related areas of phylogenetics
such as the computation of consensus trees and supertrees [3, 4, 15]. Intuitively, an agreement subtree for a
collection P of phylogenetic trees is a leaf-labelled tree M that can be embedded in each tree in P. If M has
the maximum number of leaves over all agreement subtrees for P, then M is a MAST (formal definitions
are given below).

Various aspects of MASTs have been well studied over the years. While the problem of computing a
MAST for at least three phylogenetic trees is NP-hard in general [1], several polynomial-time algorithms
have been developed to compute a MAST for two binary phylogenetic trees [6, 9, 21]. In terms of a lower
bound on the size of a MAST, Martin and Thatte [13] have shown that two unrooted binary phylogenetic
trees on n leaves have a MAST on Q(y/logn) leaves. Their result improves on a lower bound of Q(loglogn)
leaves that was previously established by Steel and Székely [20]. Markin [12] has recently closed the gap
between lower and upper bound asymptotics by showing that the minimum MAST for two unrooted binary
phylogenetic trees has ©(logn) leaves.

The size of a MAST of two phylogenetic trees S and T is influenced by the shapes of S and 7, where
the shape refers to the two trees obtained from S and 7 by ignoring their leaf labels. For instance, if S and
T are rooted binary caterpillar trees on the same set of n > 2 leaves with their leaf labels reversed (we make
this more precise in Section 2), they will only have a MAST of size two independent of n. We provide a
formal justification for this statement in Lemma 3.1. Rooted binary caterpillar trees are usually considered
to be the most ‘imbalanced’ trees among all rooted binary phylogenetic trees, and it is natural to ask how the
size of a MAST changes with an increasing balance of the two rooted phylogenetic trees under consideration.
The balance of a phylogenetic tree can, for example, be quantified by tree balance indices such as the Colless
[7] or Sackin [16] index. In this regard, Martin and Thatte [13] have investigated the size of a MAST for two
balanced rooted binary phylogenetic trees on n = 2™ leaves, which-—as the name suggests—are considered
to be the most ‘balanced’ phylogenetic trees among all rooted binary phylogenetic trees. In particular, they
have shown that a MAST for two such trees has at least 2°™ leaves, where 8 ~ 0.149 and, subsequently,
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conjectured that two balanced rooted binary phylogenetic trees on n leaves have a MAST with at least ns
leaves. The main result of this paper, disproves their conjecture for infinitely many values of n via a family
of counterexamples.

For completeness, it is also worth mentioning that lower and upper bounds on the expected size of a
MAST for two phylogenetic trees that are generated under the uniform or Yule-Harding distribution have
been established in [2, 5, 14]. Interestingly, in the context of this paper, Misra and Sullivant [14] have shown
that the expected size of a MAST for two balanced rooted binary phylogenetic trees on n leaves is @(n%)
under the uniform distribution.

To formally state the main results, we require some terminology. A rooted phylogenetic X -tree T is a
rooted tree with leaf set X and with no degree-two vertices, except for the root which has degree at least
two. For technical reasons, if | X| = 1, we additionally allow T to consist of the single vertex in X, in which
case, this vertex is the root as well as the leaf of 7. The size of T is |X|. If | X| =1 or T has the property
that the root has degree two and all other interior vertices have degree three, then 7T is binary. Furthermore,
the height of T is the number of edges on the longest path from the root to a leaf. If T is binary, we say T
is balanced if the size of T is 2™ for some non-negative integer m and the height of 7 is m.

Let 7 be a rooted binary phylogenetic X-tree, and let Y be a subset of X. Then, the restriction of T to
Y, denoted by TY, is the rooted phylogenetic Y-tree obtained from the minimal subtree of 7 that connects
all leaves in Y by suppressing all non-root degree-two vertices. Now let S be a rooted binary phylogenetic
X'-tree. If Y is a subset of X N X’ such that S|Y and 7Y are isomorphic, we call S|Y an agreement subtree
of S and 7. If, amongst all agreement subtrees of S and 7, the restriction S|V is of maximum size, then it
is called a mazimum agreement subtree (MAST) of S and T, and |Y| is denoted by mast(S, T).

The first main result of the paper, Theorem 1.1, shows that two balanced rooted binary phylogenetic
trees on n leaves do not necessarily have a MAST of size at least ne.

THEOREM 1.1. For any ¢ > 0, there exist balanced rooted binary phylogenetic X -trees S and T, where
n = |X|, such that mast(S,T) < cnz.

Theorem 1.1 disproves the aforementioned conjecture by Martin and Thatte [13, Conjecture 20| that we
state next.

CONJECTURE 1.2 (Martin and Thatte [13]). If S and T are two balanced rooted binary phylogenetic
X -trees, where n = | X|, then mast(S,T) > nz.

The second main result, Theorem 1.3, slightly improves the lower bound on the size of a MAST for a
pair of balanced rooted binary phylogenetic trees given in [13] from n®, where 8 ~ 0.149, to n%!7.

THEOREM 1.3. If § and T are two balanced rooted binary phylogenetic X -trees, where n = |X|, then
mast(S, T) > n%7 > ns.

This paper is organised as follows. Section 2 details the notation and definitions used throughout,
while Section 3 establishes Theorem 1.1 via a sequence of lemmas. Subsequently, Section 4 outlines the
counterexample construction for when n = 2048. The last section, Section 5 gives the proof of the improved
lower bound on the size of a MAST for a pair of balanced rooted binary phylogenetic trees (Theorem 1.3).

2. Notation and Preliminaries. In addition to the terminology given in the introduction, this section
provides notation and terminology that is used in the remaining sections. Throughout the paper, X denotes
a non-empty finite set and all logarithms are base 2.

Trees and subtrees. Since all phylogenetic trees in this paper are rooted and binary, we will refer to such
a tree as simply a phylogenetic tree. Let T be a phylogenetic X-tree. We call X the label set of T and
frequently denote it by £(7). A subtree of T is pendant if it can be detached from 7 by deleting a single
edge. Observe that if 7 is balanced, then the size of 7 and each pendant subtree of T is a power of two.
A balanced phylogenetic tree on n leaves has height logn. As an example, Figure 1 shows such a tree on 8
leaves.

Of course, a phylogenetic tree is simply a certain type of rooted tree whose leaves are labelled. Thus,
if we omit the adjective “phylogenetic” and say, for example, a balanced tree, we mean a balanced rooted
binary tree whose leaf set is unlabelled. This occurs, in particular, in some of the proofs where we describe
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Fic. 1. A balanced phylogenetic tree on 8 leaves. The black edges delineate the embedding of the restricted subtree on
leaves {1,2,3,4} which is the caterpillar (1,2,3,4). The restricted subtree on the remaining four leaves also form a caterpillar,
namely (5,6,7,8).

processes that start with an (unlabelled) tree and assign labels to its leaves so that the resulting tree is a
phylogenetic tree.

Caterpillars. Let T be a phylogenetic X-tree with n = |X|. We call T an n-caterpillar or, simply, a
caterpillar if n = 1, or n > 2 and we can order its leaf set X, say ly,ls,...,[,, so that I; and l; have the
same parent and, for all ¢ € {2,3,...,n — 1}, we have that (p;+1,p;) is an edge in 7, where p; 1 and p; are
the parents of ;41 and l;, respectively. We denote such a caterpillar T by (I1,ls,...,l,) or, equivalently,
(la,l1,13,...,1,), where l; and I have been interchanged. For a caterpillar C = (I1,1s,...,1,) and a leaf
I with I ¢ {ly,la,...,1,}, the caterpillar (Iy,l2,...,l,,!') is denoted by C||I’. If C = (I3,ls,...,l,) and
C' = (I1,15,...,17,) are two caterpillars on the same set of leaves such that I; =1, _; , foralli € {1,2,...,n},
we say that C and C’ are a pair of anti-caterpillars. For example, if C = (I1,1a,...,1ls) and C' = (Ig, l7,...,11),
then C and C’ are a pair of anti-caterpillars. Lastly, a caterpillar on 3 leaves, say (a,b,c), is called a triple
and denoted by ab|c or, equivalently, bac.

Embedding trees. Let T be a phylogenetic X-tree, and let 77 be a phylogenetic Y-tree such that Y C X.
We say that T embeds T' if T|L(T’) is isomorphic to 7, in which case we refer to the minimal rooted
subtree of 7 that connects all leaves in Y as an embedding £ of 7' in T. To illustrate, the subtree formed by
the black edges in the balanced phylogenetic tree in Figure 1 is an embedding of the caterpillar (1,2, 3,4).
Analogous to the label set of a phylogenetic tree, we use L(€) to refer to the label set of £. More generally, let
P ={851,8,...,8;} be a set of phylogenetic trees such that, for each ¢ € {1,2,...,k}, we have L(S;) C X.
Then the union £(S1)UL(S2)U- - -UL(SE), denoted by L(P), is the label set of P. If, for each tree S; € P with
i€{1,2,...,k}, T embeds S;, we say that T embeds P. In this case, an embedding, say &, of P in T refers
to the union of edges of an embedding of each tree of P in T, and the label set of £, denoted L(E), is L(P).
Furthermore, if {£(S1), £(S2),...,L(Sk)} is a partition of X, then T perfectly embeds P. Figure 1 shows
a balanced phylogenetic tree on 8 leaves that perfectly embeds the two 4-caterpillars (1,2, 3,4) and (5,6, 7, 8).

Mazimum agreement subtrees. Let S and T be two phylogenetic trees, and let S;,Sg and T, Tr de-
note the two maximal pendant subtrees of S and 7, respectively. Then, mast(S,7) can be computed
recursively [21] as follows:

mast(S, 7) = max {mast(Sr, 7z) + mast(Sg, Tr), mast(S, Tr) + mast(Sg, Tz.),
(2.1) mast (S, T1), mast(S, Tr), mast(Sp, T), Inast(SR,T)}.
Furthermore, a MAST for a pair of phylogenetic trees need not be unique. As an example, consider the two

trees S and 7 on 16 leaves depicted in Figure 2. Any MAST of S and T has size 4. Two such MASTs for
S and T are M; =((6,7),(10,11)) and My =((5,6),(10,12)).

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1 that there exist balanced phylogenetic
trees on n leaves where the size of a MAST is o(y/n). The key idea in establishing the result is to label the

3



leaves of two balanced trees S and T such that (1) each balanced pendant subtree of S of a certain size and
each balanced pendant subtree of 7 of a certain size only have a fixed and small number of labels in common,
and (2) each balanced pendant subtree of S (resp. T) of a certain size perfectly embeds a set of label-disjoint
caterpillars of a fixed size. Lemma 3.2 establishes Property (1), and Corollary 3.4 establishes Property (2).
In fact, establishing both properties is also sufficient to show that the leaves common to a subtree of S and
a subtree of T induce a pair of anti-caterpillars in S and T, respectively. Once we have established that
the leaves of S and 7 can be labeled in the desired way, we establish an upper bound on mast(S,7) in
Lemma, 3.5. Then the proof of Theorem 1.1 is an almost immediate consequence of Theorem 3.6 whose proof
is an amalgamation of Lemmas 3.2 and 3.5 together with Corollary 3.4.

We start with a simple lemma that shows that the size of a MAST of any pair of anti-caterpillars is
two.

LEMMA 3.1. Let C and C' be a pair of anti-caterpillars on at least two leaves. Then mast(C,C") = 2.

Proof. Evidently, mast(C,C’) > 2. Let ab|c be a triple that is embedded in C. Since C and C’ are anti-
caterpillars, it follows that either ac|b or be|a is a triple embedded in C’, in particular, ablc is not embedded
in C’. Hence mast(C,C’) < 3 and, therefore, mast(C,(’) = 2. 0

LEMMA 3.2. Let hy > hy be non-negative integers. Let S (resp. T ) be a balanced tree on 2"M+"2 leqves
consisting of 2" balanced pendant subtrees Sy, S, ..., Son, (resp. Ti, Tz, .., Toni ) each of size 2"2. Then
we can bijectively label the leaves of S and T with the elements in {1,27 .. .,2h1+h2} so that, for all i,j €
{1,2,...,2"M}, the pendant subtrees S; and T; have exactly 22— common labels.

Proof. For each r € {1,2,...,22M} let
Ly={1+(r—1)-2""M 24 (r—1).2mm  ohe=hy (7). 2k

That is, Ly = {1,2,...,2"2"M} [y = {1 42P2=h1 24 ohe=h1  9ha=hi 4 oh2a=h11 and so forth. Note that
|L,.| = 2"2=M for all r. Moreover, L; N L; = () for all i # j, and

92h1

U L ={12,...,2m%"}.
r=1

Using the sets L,, we now assign labels to the pendant subtrees S1,Ss,...,S9; of S and the pendant
subtrees 71,72, ..., Tony of T as follows. For all ¢, the subtree S; is assigned the union of label sets in row i
and, for all j, the subtree 7; is assigned the union of label sets in column j:

T T .. T; . Tom
S, I Lo . L; N Lom
82 L1+2h,1 L2+2h1 e L7+2h1 “e. L2h1 +2h,1
Si L1+(i71),2h1 L2+(i71)42h1 . Lj+(i71)-2h1 . L2h1 +(i—1)-2P1
Sth L1+(2h1 _1),2h1 L2+(2h1 _1).2}7,1 e Lj+(2h1 _1),2h1 e L2h1 +(2h1 _1)42}7,1 = L22h1

Since |L,| = 2"2=M_ and L; N L; = 0 for all i # j, it follows that each subtree S; and 7; is assigned
2h . 2h2=hi = 2h2 (istinct labels. Moreover, under this assignment of labels, £(S;) N £(T;) = L, for some
r€{1,2,...,22"} (namely, the one that is placed in row 7 and column j). In particular, for all i and j, the
pendant subtrees S; and 7; have exactly |L,| = 227" common labels. O

Consider the (infinite) sequence A054243 of integers from The On-Line Encyclopedia of Integer Se-
quences [11]. The first eighteen integers of this sequence are:

n ‘1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a(n) ‘ 1 1 1 2 2 4 8 16 16 32 64 128 256 512 1024 2048 2048 4096
and its closed form is a(n) = oln—logn—1] " Intuitively, the sequence is formed by successive powers of two,
but it “stutters” if n is a power of two, that is, if n is a power of two, then a(n) = a(n + 1).
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LEMMA 3.3. Let n be a positive integer. Then a balanced phylogenetic tree on 2"~ leaves embeds

2Ln710g n—1]

label-disjoint n-caterpillars.

Proof. The proof is by induction on n. Let 7 be a balanced phylogenetic tree on 2" ~! leaves. Evidently,
if n =1, then T embeds one 1-caterpillar, and so the lemma holds. Similarly, if n = 2 (resp. n = 3), then T
embeds one 2-caterpillar (resp. one 3-caterpillar). Now suppose that n > 4, and that the lemma holds for
all positive integers at most n — 1. Let 71 and 75 denote the two maximal pendant subtrees of 7. For each
i € {1,2}, T; is a balanced phylogenetic tree on 2"~2 leaves and so, by the induction assumption, 7; embeds

a(n _ 1) _ 2|_(n—1)—log(n—1)—1j

label-disjoint (n — 1)-caterpillars. The remainder of the proof splits into two cases depending on whether or
not n — 1 is a power of two.

For the first case, assume that n—1 is a power of two. Then a(n) = a(n—1), and so we need to show that
T embeds a(n — 1) label-disjoint n-caterpillars. If C,_1 is an (n — 1)-caterpillar embedded in 7;, then C,,_1 ||l
is an n-caterpillar embedded in T, where [ € 7; and {i,j} = {1,2}. Thus, we can extend an embedding
& of La(n — 1) label-disjoint (n — 1)-caterpillars in 77 and an embedding & of a(n — 1) label-disjoint
(n — 1)-caterpillars in T3 to an embedding of a(n — 1) label-disjoint n-caterpillars in T provided, for each
i € {1,2}, we have

2" — |L(&)| > $a(n —1).

That is,

(3.1) % - oln=n)=log(n=1)—1] . (j — 1) + % gln=1)—log(n-1)~1] < gn—2

Since n — 1 is a power of two and n = 2!°¢", the LHS of (3.1) is
% . 2|_(n71)710g(n71)7lj . ((n _ 1) + 1) _ 271 . 2(n71)710g(n71)71 . 210gn

_ 271—3—10g(n—1)+10gn

As —log(n — 1) +logn < 1, we have

2n—3—log(n—1)+logn < 2n—3+1 _ 2n—2

)

thereby establishing (3.1).

For the second case, assume that n — 1 is not a power of two. Then a(n) = 2a(n — 1), and so we need
to show that 7 embeds 2a(n — 1) label-disjoint n-caterpillars. Analogous to the first case, we can extend an
embedding & of a(n—1) label-disjoint (n—1)-caterpillars in 7; and an embedding & of a(n—1) label-disjoint
(n — 1)-caterpillars in 73 to an embedding of 2a(n — 1) label-disjoint n-caterpillars in T provided, for each
i € {1,2}, we have

272 —|L(E)| > a(n —1).

That is,
(3.2) gltn=D)=log(n=1)=1] (1) 4 gl(n=1)-log(n=1)=1] L gn-2,
Since n = 2!°8™ the LHS of (3.2) is

ol(n=1)~log(n=1)=1) _((;, _ 1) 4 1) = ol(n=D=log(n-1)=1] _glogn

— 2n—2+|_— log(n—1)]+log n

As n — 1 is not a power of two, it follows that |—log(n — 1)] +logn < 0, and so

2n—2+\_— log(n—1)|+logn 2n—2.

This establishes (3.2), and completes the proof of the lemma. d
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COROLLARY 3.4. Let k be a positive integer. Then a balanced phylogenetic tree T of height 2F — 1
perfectly embeds 92" —k—1 caterpillars each of size 2F.

Proof. Taking n = 2* in Lemma 3.3, it follows that 7~ embeds
ol 2*~log(2¥)~1] _ o[2*—k—1] _ 92" k-1

label-disjoint 2¥-caterpillars. Collectively, these caterpillars have

92" —k—1 ok _ 92"—1

labels and, since the caterpillars are label-disjoint and 7 has 921 leaves, it follows that this embedding is
perfect. 0

To illustrate Corollary 3.4 for k = 2, a balanced phylogenetic tree of height 3 perfectly embeds two label-
disjoint 4-caterpillars. For an example, see Figure 1, where the two perfectly embedded caterpillars are
(1,2,3,4) and (5,6,7,8). Moreover, for k = 3, a balanced phylogenetic tree of height 7 perfectly embeds
sixteen label-disjoint 8-caterpillars. Two such trees are shown in Figure 3, where the pair of anti-caterpillars
(1,2,3,4,5,6,7,8) and (8,7,6,5,4,3,2,1) is highlighted in blue and green, respectively.

LEMMA 3.5. Let r be a positive integer. Furthermore, let S and T be two balanced phylogenetic trees
on p-2* and q - 28 leaves, respectively, where k, p, and q are positive integers. Suppose that S consists of
p pendant subtrees S1,Sa, ..., S, each of size 2% and T consists of q pendant subtrees T, Tz, ..., Ty each of
size 2F. If

(i) for alli,j, we have |L(S;) N L(T;)| =r and
(ii) for alli,j, the restrictions S;|(L(S;) N L(T;)) and T;|(L(S;) N L(T;)) is a pair of anti-caterpillars,
then, mast(S,7T) < 2 - max{p, ¢}.

Proof. Let f(p,q) denote the maximum size of a MAST for S and 7. We will show by induction on p+¢
that f(p,q) < 2-max{p,q}. Note that, since S and T are balanced, p and ¢ are powers of two. Furthermore,
by symmetry, f(p,q) = f(g,p).

Without loss of generality, we may assume p < q. If p = 1, then, for all positive integers g, we have
f(1,¢q) = 2q. To see this, for all j, the restricted subtrees S1|(£(S1) N L(T;)) and T;|(L(S1) N L£(T;)) induce
a pair of anti-caterpillars, and so, by Lemma 3.1, each pendant subtree 7; of T contributes exactly 2 leaves
to a MAST between S and T. It follows that the lemma holds for when p = 1 and ¢ is a positive integer.

Now assume that p > 2 and the lemma holds for all smaller values of p + ¢q. Let Sp,Sr and T, Tr
be the maximal pendant subtrees of S and T, respectively. Let M be a MAST of S and 7. If there exist
x,y € L{M) such that € L(SL)NL(TL) and y € L(SL)NL(Tr), then L(M)N L(Sg) is empty. Otherwise,
there is a triple zy|z embedded in M, where z € £L(Sg), but zy|z is not embedded in T, a contradiction.
Intuitively, if M connects one half of S to both halves of T, then the other half of S is not used in M. Using
symmetric arguments, we obtain the following:

(A) if LM)NL(SL) N L(Ty) and L(M) N L(SL) N L(Tr) are non-empty, then L(M) N L(Sg) = 0;
(B) if LM)NL(Sr)NL(TL) and L(M) N L(Sr) N L(Tr) are non-empty, then £(M) N L(SL) = 0;
(C) if LM)NL(SL)NL(Ty) and L(M) N L(Sg) N L(TL) are non-empty, then L(M) N L(Tg) = 0; and
(D) if LM)NL(SL)N L(Tr) and LIM) N L(Sg) N L(Tr) are non-empty, then L(M) N L(TL) = 0.
Thus,

S (Sg) is empty, or

(I) either L(M) N L(SL) or LIM)N
(IT) either £L(M
(ITI) either

NL
YN L(Ty) or LIM) N L(Tr) is empty, or

(LM) N L(SL) N L(Tr)) U (LM) N L(Sr) N L(TL))
or
(LM) N L(SL) N L(TL)) U (LM) N L(Sr) N L(Tr))
is empty.
Therefore, f(p,q) <max{f(p/2,q), f(p,q/2), 2f(p/2,q/2)}
If p < /2, then, by induction, f(p,q) < max{2q,q,2q} = 2q and so, as p < ¢, the lemma holds. If
p > q/2, then, by induction, f(p,q) < max{2q,2p,2q} = 2q since p < ¢, and it again follows that the lemma
holds. This completes the proof. 0



Theorem 1.1 is an almost immediate consequence of the next theorem:
THEOREM 3.6. Let k be a positive integer. Then, there exist balanced phylogenetic X -trees S and T,
where | X| = 22" =%=2 such that mast(S,T) = 22" ~*.

Proof. Let hy =2 —k —1 and hy = 2% — 1. Let S and T be two (unlabelled) balanced trees of height
h = hy + ho. Thus, S and 7 each has size 2" = 227" =%=2 and, each furthermore, has 2" balanced pendant
subtrees of size 2"2. Let S1,Sa, ..., Sy, denote the pendant subtrees of S of size 272 and let 71,72, .. ., Ton
denote the pendant subtrees of T~ of size 2"2.

By Lemma 3.2, we can bijectively label the leaves of S and 7 with the elements in {1, 2,0, 2h1+h2} SO
that, for all 4,5 € {1,2,...,2"1}, the pendant subtrees S; and T; have exactly 2h2=h1 — 2k common labels.
Moreover, it follows by Corollary 3.4 that, under such a bijection, we can label the leaves of S and 7T so
that, for all ¢, j, the restrictions S;|(L£(S;) N L(T;)) and T;|(L(S;) NL(T;)) is in fact a pair of anti-caterpillars.
With this labelling of S and 7, Lemma 3.5 says that:

mast(S, T) < 2 max {2/, 2/} = 2. 92" ~k=1 — 92"k,
Since S and T have the same label sets, it is easily checked that this inequality is an equality, that is,
mast(S,T) = 92"~k

completing the proof of the theorem. 0
We now prove Theorem 1.1.

Proof of Theorem 1.1. Pick an integer k such that k& > 2log(1/c) + 2. By Theorem 3.6, there exist
balanced phylogenetic trees S and T on the same label set of size n = 92" =k=2 guch that

mast(S, T) = 2% ~*.

Since
k
22 —k K
=272t < ¢
k I
92k—5—1
k k 1
where 22" "3271 = n2, we have
2k _k
E_ 2 k_k_ 1
22 k:722k .Y 22 el <oepe,
-
and the theorem follows. 0

In particular, if we take ¢ = 1, then following the proof of Theorem 1.1 and choosing k = 3 implies that
there exist two balanced phylogenetic trees on 2!! = 2048 leaves such that their MAST has size 2° = 32,
whereas /2048 =~ 45.25. Using the results presented in this section, the next section gives an explicit
construction of two balanced phylogenetic trees on 2048 leaves whose MAST has size 32.

4. The Counterexample Construction. In this section, we give an explicit construction of a coun-
terexample to Conjecture 1.2. We note that the results in Section 3 are more general than what we need for
the counterexample that is presented in this section. In particular, Theorem 3.6 shows that, for any positive
integer k, there exists a pair of balanced phylogenetic trees on 92" =k=2 Joaves such that the size of a MAST
for these two trees is 22 . Thus, for k = 3, this theorem states that there exist two balanced trees S and
T on 22°7'=3-2 = 211 — 2048 leaves that can be bijectively labelled with the elements in {1,2,...,2048}
such that the size of a MAST for the resulting two balanced phylogenetic trees has size 22°-3 = 32 < 20483

Let S and T be two balanced trees on 2048 = 24*7 leaves. In what follows, we label the leaves of S and
T such that mast(S,7T) = 32. Let &1,8s,...,S16 be the sixteen leaf-disjoint balanced pendant subtrees of
S that each have size 27, and let 77,73, ..., Tig be the sixteen leaf-disjoint balanced pendant subtrees of T
that each have size 27. By Lemma 3.2 and Corollary 3.4, we can bijectively label the leaves of S and T with
the elements in {1,2,...,2048} such that the following three properties are satisfied:

7



9 12
5 8
6 7
7 6
4 13
8 5
3 14
2 15
1 16
S T

Fic. 2. Two phylogenetic trees S and T on 16 leaves, drawn with PhyloSketch [10]. An embedding of the MAST
Mi =((6,7),(10,11)) for S and T is shown in blue.

(i) for all i,j € {1,2,...,16}, the pendant subtrees S; and 7, have exactly |£(S;) N L(T;)| = 27"* = 8
labels in common,
(ii) each balanced pendant subtree in {S1,8s,...,816} and {71, 7Ta, ..., Tig} perfectly embeds sixteen 8-
caterpillars, and
(ili) the restrictions S;|(£(S;) N L(T;)) and T;|(£(S;) N L(T;)) are a pair of anti-caterpillars.
Now, if S and T have their leaves labelled such that (i), (ii), and (iii) hold, then applying Lemma 3.5 for
when r =8, k =7, and p = ¢ = 16 implies that

mast(S,7T) =2 -max{p,q} =2-16 =32 < 20482,

which disproves Conjecture 1.2. To illustrate the labelling of S and T, the two subtrees §; and 77 with
their leaves labelled are shown in Figure 3. Note that S&; and 77 embed the pair (1,2,3,4,5,6,7,8) and
(8,7,6,5,4,3,2,1) of anti-caterpillars as indicated by the edges highlighted in blue and green, respectively.
The full trees in Newick format are given in Appendix A and their MAST may be verified to have size 32
by standard computations [17].

5. Lower Bounds. The main result of this paper has been to disprove Conjecture 1.2 of [13]. What
then can be said about the size of a MAST of two balanced phylogenetic trees on the same label set? Corollary
16 of the same paper states that two balanced phylogenetic trees on the same leaf set of cardinality n have
a MAST on at least n® leaves, where 3 is not explicitly given but is defined by some formulae. Specifically,

for any § € (0, % — ﬁ), we can take

(14 2log(1 —39)
b= (log(l —30) — log5> '
Numerically, the largest value of § that may be inferred from their approach is approximately 0.149. We
have observed that this lower bound can be slightly improved by analyzing the lower bounds of the possible
cases in the computation of the MAST and careful choice of constants to yield n%17. We can get a slightly
better lower bound of n%172! by using 0.22166 and 0.02478 in Equation 5.1, and similar increases to the lower
bound are in the thousands place. Significant improvement in the lower bound will require a new approach.

THEOREM 5.1. If S and T are two balanced phylogenetic X -trees, where n = |X|, then

mast(S,T) > n"17 > ne.
8



8
7
2 33
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4 Q 134
36
T ) L 35
3 & 132
59
8% S %
oX 13 Q 642
70
4 Q 898
131
1 260
9 38
> 025
0 153
3t 3 1
: :
¢ 3
L 28 8
20 g
2 z
p 26 d 91
30
5
i
y L 4
i
T 8 77
1 774
1 60 90
52 77
59 90
Y 7 904
0.
520
4 19
18
44 >‘1‘§
y L 4
; i
4 . 4
T 3 2
==t ,
Y %% 6
0
L 9
® 8 ® 0
66 0
L =i
gg . i
75 158
73 160
74 159
69 028
77 ;ga
! 2
==t .
37 6%
922
e i
3 412
6 29
: =31
8
¢
- 3
4
]
1 4] 4 5
79 >4
7 2
5 0
2 9
9 ¢
7 L 924
800
=
X 925
797
6
Y 2
44
43
: 3
% 50
07 - 72
; i
T 8 DI 8
1 5
2 3
4
Y 2
T ] 8

Fic. 3. Subtrees S1 (left) and Ti (right) that are used to construct a counterexample for Conjecture 1.2. A pair of
anti-caterpillars on leaves {1,2,...,8} is highlighted in blue and green in S1 and Ti, respectively. Each of 81 and Ti perfectly
embeds sizteen 8-caterpillars.

Proof. The proof closely follows the approach of Lemma 15 in [13] for which Corollary 16 in [13] is an
almost immediate consequence. Let g(hy, ho,t) be the minimum size of a MAST over all pairs of balanced
phylogenetic trees S and 7 such that S has 2"t leaves, 7 has 2"2 leaves, and the leaf sets overlap in exactly
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t > 0 leaves. We first show by induction on h; + ho that

(5.1) g(ha, ho, t) > 20-2210gt=0.025(h1+ha)

For the base case, if h; + ha € {0,1}, then at least one of the trees consists of a single leaf, and so
g(h1,ha,1) = 1 > 2% and Equation (5.1) holds. Now, assume that Equation (5.1) holds for all pairs of
balanced phylogenetic trees whose heights sum to at most hy + hy — 1. Let S and Sg be the two maximal
pendant subtrees of S, and let 77, and Tr be the two maximal pendant subtrees of 7. By Equation (2.1),

mast(S,7) > max {g(h1 — 1,ho — 1,[L(SL) N L(TL)|) + g(h1 — 1, ha — 1,|L(Sr) N L(Tr)|),
g(h1 —1,ho — 1,[L(SL) N L(Tr)]) + g(h1 — 1, ho — 1, [L(Sr) N L(TL)I),
g(ha, he = 1,1L(8) N L(TL)[), g(h1, he — 1, |L£(S) N L(Tr)I),
g(h1 = 1,ho, |L(S1) N L(T)]), g(ha — 1, he, |L(Sr) N L(T)|)}

We freely use this inequality in the remainder of the proof.

Without loss of generality, we may assume that the largest overlap between the leaf sets Sp,Sgr and
Tw, Tr is between Sy, and Tr,. By the pigeonhole principle, |£(S)NL(TL)| > t/4, and so one of the following
cases must occur by exhaustion:

(1) |£(Sgr) N L(Tr)| > 0.037¢;

(Tr)
(i) |£(Sc) N L(Tr)|, |L(Sr) N L(TL)| > 0.037¢;
(iil) |L(Sr)NL(Tr)|, |L(SL) N L(TR)|, |L(Sr) N L(TL)| < 0.037¢;
(iv) |£(SL) N L(Tr)| > 0.037t and |L(Sr) N L(Tr)|, |L(Sr) N L(TL)| < 0.037¢;
(V) |L(Sr)NL(Tr)|, |L(SL) N L(Tr)| < 0.037¢ and |L(Sg) N L(TL)| > 0.037¢.
In Case (i), it follows by the induction assumption that

mast(S, T) > g(hy — 1, ha — 1,0.25¢) + g(h1 — 1, ha — 1,0.037¢)
> 2. 20.2210g0.037t—04025(h1—1+h2—1)

— 21+0.22 log 0.037+0.22 log t+0.05—0.025(h1+h2)

> 20.22 log t—0.025(h1 +}L2) .

In Case (ii), by a similar calculation to that in Case (i), we obtain
mast(S,T) > 2g(hy — 1, hy — 1,0.037t) > 20:22108¢-0.025(h1+h2)

For Case (iii), since the total overlap in leaf sets is ¢, we must have |£(S) N L(7%)| > 0.889¢. So,
mast(S, T) > 2022108 0-889t—0.025(h1 —1+hz—1)
— 90.2210g 0.889+0.22 log t-+0.05—0.025(h1 +h2)

. 90-22log t—0.025(hy +ha)

Finally, in Case (iv), we have |£(Sz) N L(T)| > 0.926t and, in Case (v), we have |£(S) N L(TL)| > 0.926t.
In both cases, we have

mast(S 7-) > 20.2210g0.926t—04025(h1+h2—1)
’ =
— 20.22 log 0.926+0.22 log t+0.025—0.025(h1+h2)

> 20.22 log t—0.025(h1+h2) .

Thus, Equation (5.1) holds by induction. Substituting h; = he = logn and t = n into Equation (5.1), we
obtain that any two balanced phylogenetic trees on the same leaf set of size n have a MAST on at least

> 20.22 logn—0.05logn __ n0.17

o=

g(logn,logn,n) >n

leaves. This completes the proof of the theorem. 0
10
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Appendix A. Example on 2048 leaves. The following two balanced phylogenetic trees on label set
{1,2,...,2048} may be shown to have a MAST of size 32 by standard computational means [17]. They are
presented in standard Newick format below.

S = (e, 2),(3,12)),((4,11),(9,10))), (((5,13),(22,30)), ((39,47) , (55,63)))), ((((6,14), (21,29)), ((72
,80),(88,96))), (((17,18),(19,28)), ((20,27),(25,26))))), (((((7,15),(23,31)), ((38,46),(53,61))), (((49,50), (51,60
)),((52,59),(57,58)))),((((33,34),(35,44)),((36,43),(41,42))), (((37,45),(54,62)),((104,112),(120,128)))))), (((
(((65,66),(67,76)),((68,75),(73,74))), (((69,77),(86,94)), ((103,111),(119,127)))), ((((70,78),(85,93)), ((8,16), (
24,32))),(((81,82),(83,92)), ((84,91),(89,90))))), (((((71,79),(87,95)),((102,110),(117,125))),(((113,114), (115,
124)),((116,123),(121,122)))), ((((97,98),(99,108)), ((100,107) , (105,106)) ), (((101,109), (118,126)), ((40,48) , (56,
64))))))), (((((((129,130),(131,140)),((132,139),(137,138))),(((133,141),(150,158)), ((167,175),(183,191)))), (((
(134,142), (149,157)), ((200,208) , (216,224))), (((145,146) , (147,156)), ((148,155) , (153,154))))), (((((135,143), (151
,159)), ((166,174),(181,189))), (((177,178),(179,188)),((180,187),(185,186)))), ((((161,162),(163,172)), ((164,171
), (169,170))), (((165,173), (182,190)), ((232,240) , (248,256)))))), ((((((193,194), (195,204)) , ((196,203) , (201,202))
), (((197,205), (214,222)),((231,239),(247,255)))), ((((198,206), (213,221)),((136,144),(152,160))), (((209,210), (2
11,220)),((212,219),(217,218))))), (((((199,207) , (215,223) ), ((230,238) , (245,253)) ), (((241,242),(243,252)), ((244
,251), (249,250)))), ((((225,226) , (227,236) ), ((228,235) , (233,234))), (((229,237) , (246,254) ), ((168,176) , (184,192))
)))))), (CCC((((257,258),(259,268)) , ((260,267),(265,266))), (((261,269), (278,286)), ((295,303), (311,319)))), ((((2
62,270), (277,285)), ((328,336) , (344,352))), (((273,274) , (275,284)) , ((276,283) , (281,282))))), (((((263,271),(279,2
87)),((294,302),(309,317))), (((305,306) , (307,316)), ((308,315) , (313,314)))), ((((289,290), (291,300)) , ((292,299),
(297,298))),(((293,301),(310,318)), ((360,368), (376,384))))) ), ((((((321,322),(323,332)), ((324,331),(329,330))),
(((325,333),(342,350)),((359,367),(375,383)))), ((((326,334),(341,349)), ((264,272),(280,288)) ), (((337,338), (339
,348)), ((340,347),(345,346))))), (((((327,335),(343,351)), ((358,366), (373,381))), (((369,370),(371,380) ), ((372,3
79),(377,378)))), ((((353,354) , (355,364) ), ((356,363) , (361,362))), (((357,365) , (374,382) ), ((296,304) , (312,320))))
))), (((((((385,386),(387,396)), ((388,395) , (393,394))), (((389,397) , (406,414)), ((423,431), (439,447)))), ((((390,3
98),(405,413)), ((456,464),(472,480))), (((401,402), (403,412)),((404,411),(409,410))))), (((((391,399), (407,415))
, ((422,430), (437,445))),(((433,434),(435,444)), ((436,443) ,(441,442)))),((((417,418),(419,428)),((420,427) , (425
,426))),(((421,429),(438,446)), ((488,496),(504,512)))))), ((((((449,450), (451,460)), ((452,459), (457,458))), (((4
53,461), (470,478)), ((487,495) , (503,511)))), ((((454,462) , (469,477)), ((392,400), (408,416))) , (((465,466) , (467,476
)), ((468,475),(473,474))))), (((((455,463), (471,479)), ((486,494) , (501,509))) , (((497,498) , (499,508)) , ((500,507),
(505,506)))),((((481,482),(483,492)),((484,491),(489,490))), (((485,493),(502,510)), ((424,432),(440,448))))))))
), (CCCC((((513,514),(515,524)),((516,523),(521,522))), (((517,525), (534,542)), ((651,559) , (567,575)))), ((((518,5
26),(533,541)), ((584,592), (600,608))), (((529,530), (531,540)), ((532,539), (537,538))))), (((((519,527), (535,543))
, ((650,558) , (565,573))), (((561,562) , (563,572)), ((564,571),(569,570)))), ((((545,546) , (547,556)) , ((548,555) , (553
,554))), (((549,557) , (566,574)) , ((616,624) , (632,640)))))), ((((((577,578), (579,588)), ((580,587) , (585,586))) , (((&
81,589), (598,606)), ((615,623), (631,639)))), ((((582,590), (597,605)), ((520,528) , (536,544))) , (((593,594) , (595,604
)), ((596,603),(601,602))))), (((((583,591),(599,607)), ((614,622),(629,637))), (((625,626),(627,636)),((628,635),
(633,634)))), ((((609,610), (611,620)), ((612,619), (617,618))), (((613,621), (630,638)) , ((552,560) , (568,576))))))),
(C(((((641,642),(643,652)), ((644,651),(649,650))), (((645,653),(662,670)),((679,687),(695,703)))), ((((646,654),
(661,669)), ((712,720), (728,736))), (((657,658) , (659,668)) , ((660,667) , (665,666))))), (((((647,655),(663,671)), ((6
78,686) , (693,701))), (((689,690), (691,700)), ((692,699) , (697,698)))), ((((673,674), (675,684)), ((676,683), (681,682
))), (((677,685),(694,702)), ((744,752),(760,768)))))), ((((((705,706),(707,716)),((708,715),(713,714))), (((709,7
17),(726,734)),((743,751),(759,767)))), ((((710,718),(725,733)), ((648,656) , (664,672))), (((721,722),(723,732)),(
(724,731),(729,730))))), (((((711,719),(727,735)), ((742,750) , (757,765))), (((753,754) , (755,764) ), ((756,763) , (761
,762)))), ((((737,738),(739,748) ), ((740,747), (745,746))), (((741,749),(758,766)) , ((680,688),(696,704)))))))), (((
(((((769,770),(771,780)) , ((772,779),(777,778))) , (((773,781),(790,798)), ((807,815) , (823,831)))), ((((774,782),(7
89,797)),((840,848),(856,864))), (((785,786), (787,796)) , ((788,795),(793,794))))), (((((775,783),(791,799)), ((806
,814),(821,829))),(((817,818),(819,828)), ((820,827), (825,826)))), ((((801,802), (803,812)), ((804,811), (809,810))
), (((805,813),(822,830)), ((872,880) , (888,896)))))), ((((((833,834),(835,844)), ((836,843), (841,842))), (((837,845
), (854,862)),((871,879),(887,895)))), ((((838,846),(853,861)), ((776,784),(792,800))), (((849,850),(851,860)), ((8
52,859), (857,858))))), (((((839,847), (855,863)), ((870,878), (885,893))), (((881,882), (883,892)), ((884,891), (889,8
90)))),((((865,866),(867,876)), ((868,875),(873,874))), (((869,877), (886,894)), ((808,816) ,(824,832))))))) , ((((((
(897,898) , (899,908)), ((900,907) , (905,906))), (((901,909), (918,926)) , ((935,943),(951,959)))), ((((902,910) , (917,9
25)),((968,976),(984,992))), (((913,914),(915,924)), ((916,923), (921,922))))), (((((903,911), (919,927)), ((934,942

12



), (949,957))), (((945,946) , (947,956) ), ((948,955) , (953,954)))), ((((929,930), (931,940)), ((932,939) , (937,938))) , ((
(933,941),(950,958)), ((1000,1008) , (1016,1024)))))), ((((((961,962) , (963,972)), ((964,971),(969,970))), (((965,973
), (982,990)),((999,1007),(1015,1023)))), ((((966,974) , (981,989) ), ((904,912) , (920,928))), (((977,978),(979,988)),
((980,987),(985,986))))), (((((967,975),(983,991)), ((998,1006) , (1013,1021))), (((1009,1010),(1011,1020)), ((1012,
1019),(1017,1018)))), ((((993,994) , (995,1004)), ((996,1003) , (1001,1002))), (((997,1005) , (1014,1022)), ((936,944) , (
952,960)))))))))), ((((((((((1025,1026),(1027,1036)),((1028,1035),(1033,1034))), (((1029,1037), (1046,1054) ), ((10
63,1071),(1079,1087)))), ((((1030,1038), (1045,1053)), ((1096,1104),(1112,1120))), (((1041,1042), (1043,1052) ), ((10
44,1051), (1049,1050))))), (((((1031,1039), (1047,1055)), ((1062,1070) , (1077,1085))), (((1073,1074), (1075,1084)) , ((
1076,1083),(1081,1082)))), ((((1057,1058) , (1059,1068)) , ((1060,1067) , (1065,1066))), (((1061,1069), (1078,1086)) , ((
1128,1136),(1144,1152)))))), ((((((1089,1090), (1091,1100)), ((1092,1099) , (1097,1098))), (((1093,1101),(1110,1118)
), ((1127,1135),(1143,1151)))), ((((1094,1102),(1109,1117) ), ((1032,1040) , (1048,1056))), (((1105,1106) , (1107,1116)
), ((1108,1115),(1113,1114))))), (((((1095,1103) ,(1111,1119)),((1126,1134),(1141,1149))),(((1137,1138),(1139,114
8)),((1140,1147),(1145,1146)))), ((((1121,1122),(1123,1132)),((1124,1131),(1129,1130))), (((1125,1133),(1142,115
0)),((1064,1072),(1080,1088))))))), (((((((1153,1154),(1155,1164)),((1156,1163),(1161,1162))),(((1157,1165), (11
74,1182)),((1191,1199),(1207,1215)))), ((((1158,1166), (1173,1181)) , ((1224,1232),(1240,1248)) ), (((1169,1170) , (11
71,1180)),((1172,1179),(1177,1178))))), (((((1159,1167),(1175,1183) ), ((1190,1198) , (1205,1213))), (((1201,1202) , (
1203,1212)),((1204,1211),(1209,1210)))), ((((1185,1186) ,(1187,1196) ), ((1188,1195),(1193,1194))), (((1189,1197) , (
1206,1214)), ((1256,1264), (1272,1280)))))), ((((((1217,1218), (1219,1228)), ((1220,1227) , (1225,1226))), (((1221,122
9),(1238,1246)), ((1255,1263), (1271,1279)))), ((((1222,1230) , (1237,1245)), ((1160,1168) , (1176,1184))), (((1233,123
4),(1235,1244)),((1236,1243),(1241,1242))))), (((((1223,1231),(1239,1247)), ((1254,1262) , (1269,1277))), (((1265,1
266), (1267,1276)), ((1268,1275) , (1273,1274)))), ((((1249,1250), (1251,1260) ) , ((1252,1259) , (1257,1258))), (((1253,1
261),(1270,1278)), ((1192,1200), (1208,1216)))))))), ((((((((1281,1282),(1283,1292)), ((1284,1291), (1289,1290))), (
((1285,1293),(1302,1310)), ((1319,1327), (1335,1343)))), ((((1286,1294), (1301,1309)), ((1352,1360) , (1368,1376))) , (
((1297,1298) , (1299,1308)) , ((1300,1307), (1305,1306))))), (((((1287,1295),(1303,1311)), ((1318,1326) , (1333,1341)))
, (((1329,1330),(1331,1340)), ((1332,1339),(1337,1338)))), ((((1313,1314),(1315,1324) ), ((1316,1323), (1321,1322)))
, (((1317,1325),(1334,1342)), ((1384,1392), (1400,1408)))))), ((((((1345,1346) , (1347,1356) ), ((1348,1355), (1353,135
4))),(((1349,1357),(1366,1374)), ((1383,1391), (1399,1407)))), ((((1350,1358) , (1365,1373) ), ((1288,1296) , (1304,131
2))),(((1361,1362),(1363,1372)), ((1364,1371), (1369,1370))))), (((((1351,1359), (1367,1375) ), ((1382,1390) , (1397,1
405))), (((1393,1394), (1395,1404)) , ((1396,1403) , (1401,1402)))), ((((1377,1378), (1379,1388)), ((1380,1387) , (1385, 1
386))),(((1381,1389), (1398,1406)), ((1320,1328),(1336,1344))))))), (((((((1409,1410),(1411,1420)), ((1412,1419),(
1417,1418))),(((1413,1421), (1430,1438) ), ((1447,1455) , (1463,1471)))), ((((1414,1422),(1429,1437)), ((1480,1488), (
1496,1504))), (((1425,1426) , (1427,1436)), ((1428,1435) , (1433,1434))))), (((((1415,1423),(1431,1439)), ((1446,1454)
,(1461,1469))),(((1457,1458),(1459,1468)), ((1460,1467), (1465,1466)))), ((((1441,1442),(1443,1452)),((1444,1451)
, (1449,1450))), (((1445,1453) , (1462,1470)), ((1512,1520), (1528,1536)))))), ((((((1473,1474), (1475,1484)), ((1476,1
483),(1481,1482))),(((1477,1485), (1494,1502)), ((1511,1519), (1527,1535)))), ((((1478,1486) , (1493,1501)), ((1416,1
424),(1432,1440))), (((1489,1490), (1491,1500)), ((1492,1499) , (1497,1498))))), (((((1479,1487), (1495,1503)), ((1510
,1518), (1525,1533))), (((1521,1522), (1523,1532) ), ((1524,1531) , (1529,1530)))), ((((1505,1506) , (1507,1516)) , ((1508
,1515), (1513,1514))), (((1509,1517), (1526,1534) ), ((1448,1456) , (1464,1472))))))))), (((((((((1537,1538), (1539,154
8)),((1540,1547),(1545,1546))), (((1541,1549) , (1558,1566) ), ((1575,1583) , (1591,1599)))), ((((1542,1550) , (1557,156
5)),((1608,1616), (1624,1632))), (((15653,1554) , (1555,1564) ), ((1556,1563) , (1561,1562))))), (((((1543,1551),(15659,1
567)),((1574,1582), (1589,1597))), (((1585,1586) , (1587,1596) ), ((1588,1595) , (1593,1594)))), ((((1569,1570) , (1571,1
580)), ((1572,1579),(1577,1578))), (((1573,1581) , (1590,1598) ), ((1640,1648) , (1656,1664)))))), ((((((1601,1602), (16
03,1612)),((1604,1611),(1609,1610))), (((1605,1613),(1622,1630)), ((1639,1647) , (1655,1663)))), ((((1606,1614), (16
21,1629)), ((1544,1552),(1560,1568))), (((1617,1618),(1619,1628) ), ((1620,1627), (1625,1626))))), (((((1607,1615), (
1623,1631)), ((1638,1646) , (1653,1661))), (((1649,1650) , (1651,1660) ), ((1652,1659) , (1657,1658)))), ((((1633,1634), (
1635,1644)), ((1636,1643),(1641,1642))), (((1637,1645) , (1654,1662)), ((1576,1584) , (1592,1600))))))), (((((((1665,1
666), (1667,1676)), ((1668,1675), (1673,1674))), (((1669,1677), (1686,1694)), ((1703,1711),(1719,1727)))), ((((1670,1
678),(1685,1693)), ((1736,1744), (1752,1760))), (((1681,1682) , (1683,1692)), ((1684,1691), (1689,1690))))), (((((1671
,1679), (1687,1695)), ((1702,1710), (1717,1725))), (((1713,1714), (1715,1724)), ((1716,1723), (1721,1722))) ), ((((1697
,1698), (1699,1708)), ((1700,1707), (1705,1706))), (((1701,1709), (1718,1726) ), ((1768,1776) , (1784,1792))))) ), ((((((
1729,1730), (1731,1740) ), ((1732,1739) ,(1737,1738))), (((1733,1741) , (1750,1758)) , ((1767,1775) , (1783,1791)))), ((((
1734,1742),(1749,1757) ), ((1672,1680) , (1688,1696))), (((1745,1746) , (1747,1756) ), ((1748,1755) , (1753,1754))))) , (((
((1735,1743),(1751,1759)), ((1766,1774) , (1781,1789))) , (((1777,1778),(1779,1788) ), ((1780,1787), (1785,1786)))) , ((
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((1761,1762), (1763,1772)) , ((1764,1771),(1769,1770)) ), (((1765,1773), (1782,1790) ), ((1704,1712),(1720,1728)))))))
), (CCCC(((L1793,1794), (1795,1804) ), ((1796,1803) , (1801,1802))), (((1797,1805) , (1814,1822)),((1831,1839), (1847,185
5)))), ((((1798,1806) ,(1813,1821)), ((1864,1872), (1880,1888))), (((1809,1810), (1811,1820)), ((1812,1819),(1817,181
8))))), (((((1799,1807),(1815,1823)),((1830,1838),(1845,1853))), (((1841,1842),(1843,1852)),((1844,1851),(1849,1
850)))), ((((1825,1826),(1827,1836) ), ((1828,1835),(1833,1834))), (((1829,1837) , (1846,1854)),((1896,1904) , (1912,1
920)))))), ((((((1857,1858) ,(1859,1868)), ((1860,1867),(1865,1866))), (((1861,1869),(1878,1886)), ((1895,1903), (19
11,1919)))), ((((1862,1870), (1877,1885)), ((1800,1808) , (1816,1824))), (((1873,1874), (1875,1884)), ((1876,1883), (18
81,1882))))), (((((1863,1871),(1879,1887)), ((1894,1902), (1909,1917))), (((1905,1906) , (1907,1916)), ((1908,1915) , (
1913,1914)))), ((((1889,1890) , (1891,1900)), ((1892,1899) , (1897,1898))), (((1893,1901),(1910,1918)), ((1832,1840), (
1848,1856))))))), (((((((1921,1922), (1923,1932)), ((1924,1931), (1929,1930))), (((1925,1933), (1942,1950) ), ((1959,1
967),(1975,1983)))), ((((1926,1934), (1941,1949)), ((1992,2000) , (2008,2016))), (((1937,1938) , (1939,1948) ), ((1940,1
947),(1945,1946))))), (((((1927,1935), (1943,1951)), ((1958,1966) , (1973,1981))), (((1969,1970), (1971,1980)) , ((1972
,1979), (1977,1978)))), ((((1953,1954) , (1955,1964) ), ((1956,1963) , (1961,1962))), (((1957,1965) , (1974,1982)), ((2024
,2032) , (2040,2048)))))), ((((((1985,1986),(1987,1996) ), ((1988,1995), (1993,1994))), (((1989,1997) , (2006,2014)) , ((
2023,2031), (2039,2047)))), ((((1990,1998) , (2005,2013) ), ((1928,1936) , (1944,1952))), (((2001,2002) , (2003,2012) ), ((
2004,2011), (2009,2010))))), (((((1991,1999), (2007,2015)) , ((2022,2030) , (2037,2045))) , (((2033,2034) , (2035,2044) ),
((2036,2043) , (2041,2042)))), ((((2017,2018), (2019,2028) ), ((2020,2027) , (2025,2026)) ), (((2021,2029) , (2038,2046) ),

((1960,1968) , (1976,1984)))))))))));

T = (s, ,6,133)),((5,134), (136,135))), (((4,132), (259,387)), ((514,642) , (770,898)))) , ((((3,131)
,(260,388)), ((1025,1153), (1281,1409))), (((264,263), (262,389)), ((261,390), (392,391))))), (((((2,130), (258,386)),
((515,643),(772,900))), (((776,775) , (774,901)), ((773,902) , (904,903)))), ((((520,519),(518,645)), ((517,646) , (648,
647))),(((516,644),(771,899)), ((1537,1665), (1793,1921)))))), ((((((1032,1031),(1030,1157)), ((1029,1158), (1160, 1
159))),(((1028,1156),(1283,1411) ), ((1538,1666), (1794,1922)))), ((((1027,1155), (1284,1412)), ((1,129), (257,385)))
, (((1288,1287),(1286,1413) ), ((1285,1414),(1416,1415))))), (((((1026,1154) , (1282,1410)), ((15639,1667) , (1796,1924)
)), (((1800,1799),(1798,1925)), ((1797,1926) ,(1928,1927)))), ((((1544,1543), (1542,1669)), ((1541,1670), (1672,1671)
)), (((1540,1668) , (1795,1923)), ((513,641),(769,897))))))), (((((((16,15),(14,141)),((13,142),(144,143))), (((12,1
40), (267,395)), ((522,650) , (778,906)))), ((((11,139), (268,396)), ((1033,1161), (1289,1417))), (((272,271), (270,397)
), ((269,398), (400,399))))), (((((10,138), (266,394)), ((523,651),(780,908))), (((784,783),(782,909)), ((781,910), (9
12,911)))), ((((528,527), (526,653) ), ((525,654) , (656,655))) , (((524,652), (779,907)), ((1545,1673),(1801,1929))))))
, ((((((1040,1039),(1038,1165)),((1037,1166) ,(1168,1167))), (((1036,1164),(1291,1419)), ((1546,1674) , (1802,1930))
)), ((((1035,1163) , (1292,1420)), ((9,137), (265,393))), (((1296,1295) , (1294,1421)), ((1293,1422) , (1424,1423))))), ((
(((1034,1162),(1290,1418) ), ((1547,1675) , (1804,1932))), (((1808,1807), (1806,1933) ), ((1805,1934),(1936,1935)))), (
(((1552,1551),(1550,1677) ), ((1549,1678),(1680,1679))), (((1548,1676) ,(1803,1931)), ((521,649), (777,905)))))))),(
(((((((24,23),(22,149)),((21,150), (152,151))), (((20,148), (275,403)), ((530,658) , (786,914)))), ((((19,147),(276,4
04)),((1041,1169), (1297,1425))), (((280,279) , (278,405) ), ((277,406) , (408,407))))), (((((18,146),(274,402)), ((531,
659) , (788,916))), (((792,791),(790,917)), ((789,918), (920,919)))), ((((536,535) , (534,661)) , ((533,662) , (664,663)))
, (((532,660), (787,915)), ((15653,1681) , (1809,1937))))) ), ((((((1048,1047),(1046,1173)), ((1045,1174),(1176,1175)))
, (((1044,1172),(1299,1427)), ((1554,1682) , (1810,1938)))), ((((1043,1171),(1300,1428)), ((17,145),(273,401))), (((1
304,1303),(1302,1429)), ((1301,1430), (1432,1431))))), (((((1042,1170), (1298,1426)), ((1555,1683) , (1812,1940))) , ((
(1816,1815),(1814,1941)),((1813,1942) , (1944,1943)))), ((((1560,1559) , (1558,1685) ), ((1557,1686) , (1688,1687))), ((
(1556,1684),(1811,1939)), ((529,657),(785,913))))))), (((((((32,31),(30,157)), ((29,158),(160,159))), (((28,156) , (
283,411)), ((538,666) , (794,922)))), ((((27,155),(284,412)), ((1049,1177),(1305,1433))), (((288,287), (286,413)), ((2
85,414),(416,415))))), (((((26,154) ,(282,410)), ((539,667), (796,924))), (((800,799), (798,925)) , ((797,926) , (928,92
7)))),((((544,543), (542,669)), ((541,670),(672,671))), (((540,668),(795,923)), ((1561,1689), (1817,1945)))))), ((((
((1056,1055) , (1054,1181)),((1053,1182),(1184,1183))), (((1052,1180), (1307,1435) ), ((1562,1690) , (1818,1946)))), ((
((1051,1179), (1308,1436)), ((25,153),(281,409))), (((1312,1311),(1310,1437)), ((1309,1438) , (1440,1439))))), (((((1
050,1178), (1306,1434)), ((1563,1691), (1820,1948))), (((1824,1823), (1822,1949)), ((1821,1950), (1952,1951)))), ((((1
568,1567) , (1566,1693)), ((1565,1694) , (1696,1695))), (((1564,1692), (1819,1947)), ((537,665), (793,921))))))))), ((((
(((((40,39),(38,165)), ((37,166),(168,167))), (((36,164), (291,419)), ((546,674), (802,930)))), ((((35,163), (292,420
)), ((1057,1185),(1313,1441))),(((296,295) , (294,421)), ((293,422) , (424,423))))), (((((34,162),(290,418)), ((547,67
5),(804,932))), (((808,807), (806,933)), ((805,934) , (936,935)))), ((((552,551), (550,677)), ((549,678) , (680,679))), (
((548,676) ,(803,931)), ((1569,1697) , (1825,1953)))))), ((((((1064,1063),(1062,1189)), ((1061,1190), (1192,1191))),(
((1060,1188) , (1315,1443)), ((1570,1698) , (1826,1954))) ), ((((1059,1187), (1316,1444)), ((33,161),(289,417))), (((132
0,1319),(1318,1445)), ((1317,1446) ,(1448,1447))))), (((((1058,1186) ,(1314,1442)), ((1571,1699), (1828,1956)) ), (((1
832,1831),(1830,1957)), ((1829,1958) , (1960,1959)))), ((((1576,1575) , (1574,1701)), ((1573,1702) , (1704,1703))), (((1
572,1700), (1827,1955) ), ((545,673), (801,929))))))), (((((((48,47),(46,173)),((45,174),(176,175))), (((44,172),(29
9,427)),((554,682),(810,938)))), ((((43,171),(300,428)),((1065,1193) , (1321,1449))), (((304,303), (302,429)) , ((301
,430) , (432,431))))), (((((42,170), (298,426)), ((555,683) , (812,940))), (((816,815) ,(814,941)), ((813,942) , (944,943)
))), ((((560,559) , (558,685)) , ((557,686) , (688,687))), (((556,684),(811,939)), ((1577,1705), (1833,1961)))))), ((((((
1072,1071),(1070,1197)),((1069,1198) , (1200,1199))), (((1068,1196) , (1323,1451)), ((1578,1706) , (1834,1962)))), ((((
1067,1195), (1324,1452)), ((41,169),(297,425))), (((1328,1327) , (1326,1453)), ((1325,1454) , (1456,1455))))), (((((106
6,1194),(1322,1450)), ((1579,1707), (1836,1964))), (((1840,1839) , (1838,1965) ), ((1837,1966) , (1968,1967)))), ((((158
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4,1583),(1582,1709)), ((1581,1710), (1712,1711))), (((1580,1708) , (1835,1963)), ((553,681) , (809,937)))))))), (((((((
(56,55),(54,181)),((53,182),(184,183))), (((52,180) , (307,435)), ((562,690) , (818,946)))), ((((51,179), (308,436)), (
(1073,1201), (1329,1457))), (((312,311),(310,437)), ((309,438) , (440,439))))), (((((50,178), (306,434)), ((563,691) , (
820,948))),(((824,823),(822,949)), ((821,950) , (952,951)))), ((((568,567) , (566,693)) , ((565,694) , (696,695))), (((56
4,692),(819,947)),((1585,1713),(1841,1969)))))), ((((((1080,1079), (1078,1205)), ((1077,1206) , (1208,1207))), (((10
76,1204),(1331,1459)),((1586,1714),(1842,1970)))), ((((1075,1203),(1332,1460)), ((49,177), (305,433))), (((1336,13
35),(1334,1461)),((1333,1462) , (1464,1463))))), (((((1074,1202), (1330,1458)), ((1587,1715) , (1844,1972))), (((1848,
1847),(1846,1973)), ((1845,1974) , (1976,1975)))), ((((1592,1591), (1590,1717)), ((1589,1718), (1720,1719))), (((1588,
1716),(1843,1971)), ((561,689),(817,945))))))), (((((((64,63),(62,189)), ((61,190),(192,191))), (((60,188), (315,44
3)),((570,698),(826,954)))), ((((59,187),(316,444)),((1081,1209), (1337,1465))), (((320,319), (318,445)), ((317,446
), (448,447))))), (((((58,1886), (314,442)),((571,699), (828,956))), (((832,831),(830,957)), ((829,958) , (960,959)))),
((((576,575), (574,701)), ((573,702), (704,703))), (((672,700), (827,955) ), ((1593,1721), (1849,1977)))))), ((((((1088
,1087), (1086,1213)),((1085,1214) , (1216,1215))), (((1084,1212), (1339,1467)), ((1594,1722), (1850,1978)))), ((((1083
,1211),(1340,1468) ), ((57,185),(313,441))), (((1344,1343),(1342,1469)), ((1341,1470) , (1472,1471))))), (((((1082,12
10),(1338,1466)), ((1595,1723),(1852,1980))), (((1856,1855) , (1854,1981)), ((1853,1982),(1984,1983)))), ((((1600,15
99),(1598,1725)), ((1597,1726) , (1728,1727))), (((1596,1724) , (1851,1979)), ((569,697) , (825,953)))))))))), (((((((((
(72,71),(70,197)), ((69,198) , (200,199))), (((68,196) , (323,451)), ((578,706) , (834,962)))), ((((67,195), (324,452)),(
(1089,1217), (1345,1473))), (((328,327) , (326,453)), ((325,454) , (456,455))))), (((((66,194), (322,450)), ((579,707) , (
836,964))),(((840,839),(838,965)), ((837,966) ,(968,967)))), ((((584,583), (582,709)),((581,710),(712,711))), (((58
0,708),(835,963)),((1601,1729), (1857,1985)))))), ((((((1096,1095), (1094,1221)), ((1093,1222), (1224,1223))), (((10
92,1220),(1347,1475)), ((1602,1730) , (1858,1986)))), ((((1091,1219),(1348,1476)), ((65,193),(321,449))), (((1352,13
51),(1350,1477)), ((1349,1478), (1480,1479))))), (((((1090,1218), (1346,1474)), ((1603,1731),(1860,1988))), (((1864,
1863),(1862,1989)), ((1861,1990), (1992,1991)))), ((((1608,1607) , (1606,1733)), ((1605,1734),(1736,1735))), (((1604,
1732),(1859,1987)), ((577,705) , (833,961))))))), (((((((80,79),(78,205)), ((77,2086) , (208,207))), (((76,204), (331,45
9)),((586,714),(842,970)))), ((((75,203), (332,460) ), ((1097,1225) , (1353,1481))), (((336,335) , (334,461) ), ((333,462
), (464,463))))), (((((74,202),(330,458)), ((587,715), (844,972))), (((848,847) , (846,973)), ((845,974),(976,975)))),
((((592,591),(590,717)), ((589,718),(720,719))), (((588,716) , (843,971)), ((1609,1737), (1865,1993)))))), ((((((1104
,1103),(1102,1229)), ((1101,1230), (1232,1231))), (((1100,1228) , (1355,1483) ), ((1610,1738), (1866,1994)))), ((((1099
,1227),(1356,1484)), ((73,201),(329,457))) , (((1360,1359) , (1358,1485) ), ((1357,1486) , (1488,1487))))), (((((1098,12
26),(1354,1482)), ((1611,1739), (1868,1996))), (((1872,1871), (1870,1997)), ((1869,1998) , (2000,1999)))), ((((1616,16
15),(1614,1741)),((1613,1742),(1744,1743))), (((1612,1740), (1867,1995) ), ((585,713), (841,969)))))))), ((((((((88,
87),(86,213)),((85,214),(216,215))), (((84,212),(339,467)), ((594,722),(850,978)))), ((((83,211),(340,468)), ((110
5,1233),(1361,1489))), (((344,343),(342,469)), ((341,470), (472,471))))), (((((82,210), (338,466)) , ((595,723) , (852,
980))), (((856,855),(854,981)),((8563,982),(984,983)))), ((((600,599), (598,725)) , ((697,726),(728,727))), (((596,72
4),(851,979)), ((1617,1745), (1873,2001)))))), ((((((1112,1111),(1110,1237)), ((1109,1238) , (1240,1239))), (((1108,1
236),(1363,1491)), ((1618,1746) , (1874,2002)))), ((((1107,1235), (1364,1492)), ((81,209), (337,465))), (((1368,1367),
(1366,1493)), ((1365,1494) , (1496,1495))))), (((((1106,1234), (1362,1490)), ((1619,1747) , (1876,2004))), (((1880,1879
), (1878,2005)), ((1877,2006) , (2008,2007)))), ((((1624,1623),(1622,1749)), ((1621,1750) , (1752,1751))), (((1620,1748
), (1875,2003)), ((593,721), (849,977))))))), (((((((96,95),(94,221)),((93,222) , (224,223))), (((92,220), (347,475)),
((602,730), (858,986)))), ((((91,219),(348,476)),((1113,1241),(1369,1497))), (((352,351), (350,477)), ((349,478), (4
80,479))))),(((((90,218), (346,474)), ((603,731), (860,988))), (((864,863), (862,989)), ((861,990), (992,991)))), ((((
608,607) , (606,733)), ((605,734),(736,735))), (((604,732),(859,987)), ((1625,1753), (1881,2009)))))), ((((((1120,111
9),(1118,1245)),((1117,1246),(1248,1247))),(((1116,1244),(1371,1499) ), ((1626,1754) , (1882,2010)))), ((((1115,124
3),(1372,1500)),((89,217), (345,473))), (((1376,1375), (1374,1501) ), ((1373,1502) , (1504,1503))))), (((((1114,1242),
(1370,1498)), ((1627,1755) , (1884,2012))), (((1888,1887) , (1886,2013)), ((1885,2014), (2016,2015)))), ((((1632,1631),
(1630,1757)),((1629,1758),(1760,1759))), (((1628,1756) ,(1883,2011)), ((601,729),(857,985)))))))) ), (((((((((104,1
03),(102,229)), ((101,230), (232,231))), (((100,228), (355,483)), ((610,738) , (866,994)))), ((((99,227), (356,484)) , ((
1121,1249),(1377,1505))), (((360,359) , (358,485)) , ((357,486) , (488,487))))), (((((98,226) , (354,482)), ((611,739), (8
68,996))), (((872,871),(870,997)), ((869,998) , (1000,999)))), ((((616,615),(614,741)), ((613,742),(744,743))), (((61
2,740),(867,995)),((1633,1761), (1889,2017)))))), ((((((1128,1127),(1126,1253)), ((1125,1254),(1256,1255))), (((11
24,1252),(1379,1507)), ((1634,1762) , (1890,2018)))), ((((1123,1251),(1380,1508)), ((97,225) , (353,481))), (((1384,13
83),(1382,1509)), ((1381,1510), (1512,1511))))), (((((1122,1250), (1378,1506)), ((1635,1763) , (1892,2020))), (((1896,
1895) , (1894,2021)), ((1893,2022) , (2024,2023)))), ((((1640,1639), (1638,1765)), ((1637,1766) , (1768,1767))), (((1636,
1764),(1891,2019)), ((609,737),(865,993))))))), (((((((112,111),(110,237)), ((109,238), (240,239))), (((108,236), (3
63,491)),((618,746),(874,1002)))), ((((107,235), (364,492)),((1129,1257),(1385,1513))), (((368,367) , (366,493) ), ((
365,494) , (496,495))))), (((((106,234), (362,490)), ((619,747), (876,1004))), (((880,879), (878,1005)), ((877,1006) , (1
008,1007)))), ((((624,623),(622,749)), ((621,750),(752,751))), (((620,748) , (875,1003)), ((1641,1769) , (1897,2025)))
))), ((((((1136,1135),(1134,1261)), ((1133,1262), (1264,1263))), (((1132,1260), (1387,1515)), ((1642,1770), (1898,202
6)))),((((1131,1259), (1388,1516)), ((105,233),(361,489))), (((1392,1391),(1390,1517) ), ((1389,1518), (1520,1519)))
)), (((((1130,1258),(1386,1514)), ((1643,1771),(1900,2028))), (((1904,1903), (1902,2029)), ((1901,2030) , (2032,2031)
1)), ((((1648,1647),(1646,1773)),((1645,1774),(1776,1775))), (((1644,1772),(1899,2027)), ((617,745),(873,1001))))
)))), (CC(((((120,119),(118,245)), ((117,246) , (248,247))), (((116,244),(371,499)), ((626,754) , (882,1010)))), ((((11
5,243),(372,500)),((1137,1265), (1393,1521))), (((376,375), (374,501)) , ((373,502) , (504,503))))), (((((114,242),(37
0,498)), ((627,755),(884,1012))), (((888,887), (886,1013)), ((885,1014), (1016,1015)))), ((((632,631),(630,757)), ((6
29,758),(760,759))), (((628,756) , (883,1011)), ((1649,1777),(1905,2033)))))), ((((((1144,1143),(1142,1269)), ((1141
,1270), (1272,1271))), (((1140,1268) , (1395,1523)), ((1650,1778) , (1906,2034)))), ((((1139,1267), (1396,1524)), ((113,
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241),(369,497))),(((1400,1399), (1398,1525)), ((1397,1526) , (1528,1527)))) ), (((((1138,1266),(1394,1522)), ((1651,1
779),(1908,2036))), (((1912,1911),(1910,2037)), ((1909,2038) , (2040,2039)))), ((((1656,1655) , (1654,1781)), ((1653,1
782),(1784,1783))), (((1652,1780), (1907,2035)) , ((625,753) , (881,1009))))))), (((((((128,127),(126,253)), ((125,254
), (256,255))), (((124,252),(379,507)) , ((634,762) ,(890,1018)))), ((((123,251), (380,508)), ((1145,1273), (1401,1529)
)), (((384,383),(382,509)),((381,510),(512,511))))), (((((122,250), (378,506) ), ((635,763) , (892,1020))), (((896,895
), (894,1021)),((893,1022), (1024,1023)))), ((((640,639), (638,765) ), ((637,766) , (768,767))), (((636,764),(891,1019)
), ((1657,1785), (1913,2041)))))), ((((((1152,1151),(1150,1277)), ((1149,1278), (1280,1279))), (((1148,1276) , (1403,1
531)), ((1658,1786), (1914,2042)))), ((((1147,1275), (1404,1532)), ((121,249),(377,505))), (((1408,1407) , (1406,1533)
), ((1405,1534),(1536,1535))))), (((((1146,1274) , (1402,1530)), ((1659,1787) , (1916,2044))), (((1920,1919), (1918,204
5)), ((1917,2046) , (2048,2047)))), ((((1664,1663),(1662,1789)), ((1661,1790),(1792,1791))), (((1660,1788) , (1915,204
3)),((633,761),(889,1017)))))))))));
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