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Emerging ethical considerations for the use of artificial intelligence in medicine
Rapid developments in artificial intelligence (Al) promise improved diagnosis and care for

patients, but raise ethical issues.1-> Over six months, in consultation with the American
Academy of Ophthalmology (AAO) Committee on Al, we analyzed potential ethical
concerns, with a focus on applications of Al in ophthalmology that are deployed or will be
deployed in the near future.6 We identified three pressing issues: 1) transparency,
paradigmatically through the explanation or interpretation of Al models; 2) attribution of
responsibility issues for particular harms arising from the use or misuse of Al; and 3)

scalability of use cases and screening infrastructure.

1) Transparency. The ability to understand why a machine learning model has produced a
particular result is an oft-cited ethical principle for AL.457-10 We distinguish between Al
that are interpretable, or governed by models that are directly understandable by humans,
and Al that are too complex for any human to comprehend (sometimes called “black box”
models), requiring post hoc explainability for how results are produced.* Recent work has
shown that lack of transparency is associated with decreased accuracy of Al algorithms.11.12
[ssues of transparency may arise, for example, in diagnosing diabetic retinopathy,

glaucoma, age-related macular degeneration and retinopathy of prematurity (ROP).1

Transparency may also be important when an Al does not perform as expected or gives a
false answer. Given a novel image to analyze, for example, Al may misdiagnose a patient
based on an incomplete or inadequate “training set.” Machine learning (ML) and especially
deep learning (DL) platforms need to be “trained” on large amounts of historical data (e.g.

fundus photography) to learn which features of an image are associated with a particular



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

UNDER REVIEW: DO NOT CIRCULATE FURTHER

condition. When a novel image is presented that is atypical, such as if a diabetic retinopathy
Al is given a central retinal vein occlusion, the Al may provide false or even nonsense
answers. Without transparency it may be impossible to explain why a particular failure
occurred: even if the general explanation is that “the training set is insufficiently broad,”

what data are missing or needed may be opaque.

Transparency is arguably secondary to the capacity for Al to improve patient outcomes and
public health. ML systems in ophthalmology have been tested, but to date only one trial has
demonstrated improved patient outcomes.13 Experiences in other specialties, such as a
2017 trial of using automated interpretation of cardiotocographs in labor, have found no
improvement in clinical outcomes as a result of AL.14 Thus, transparency may be insufficient

to justify the use of Al if it fails to improve patient outcomes.

The degree to which transparency is obligatory may also depend on the medical specialty.
In some cases, accurate, empirically verified results may be sufficient. In infectious disease,
for example, broad-spectrum antibiotics may be tried in the absence of detailed
information of a pathogen.8 Ophthalmology, however, is highly explainable in diagnostic
terms with strict definitions for most diseases. Deferring to Al may present a significant
decrease in confidence in the diagnostic process, especially when there are only modest
increases in verifiability. The degree to which this arises, and how this trade-off between

transparency and confidence varies by specialty, needs further investigation.
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Lack of sufficient transparency may exacerbate other issues in the use of medical Al. While
human physicians can reflect upon and justify their actions to colleagues, an Al’s mistakes
are predetermined through training. Errors may propagate from a single point of failure if
they become the diagnostic standard across, say, an entire hospital network. Patients may
seek a second opinion, but if an algorithm is widely distributed, they may be diagnosed by
the same system at separate clinics. Future Al may be able to revise their predictions in
response to new data gained through operation in the real world, but this presents its own
challenges, especially if these revisions lack transparency. Excessive trust in Al may be

worse for patient outcomes than if Al were approached more skeptically.1>

Sometimes, the benefits of Al may outweigh transparency concerns. Consider retinopathy
of prematurity (ROP), a leading cause of childhood blindness worldwide. The clinical
benefit of screening is well-established but hampered globally by cost and human labor
requirements.! Al may provide a low-cost screening option in resource-scarce settings,
where even modest improvements in testing and treatment could have a significant impact
given the steep long-term costs of ROP.16 While challenges translating diagnosis to
treatment in low-income settings remain,!” the large potential benefits and low cost justify

the use of Al

Explainable Al may obviate some of these transparency concerns. Cynthia Rudin has noted,
however, that explainability may be a misnomer. Instead, the focus should be on creating
models that are inherently interpretable, rather than attempting to generate solutions for

unexplainable AL8 For the foreseeable future, then, a tension exists between deploying
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black-boxed Al immediately or waiting for explainable Al, where delays might come at the

cost of improvements to patient outcomes.

2) Responsibility. Ethical frameworks may distinguish between the responsibility for
ensuring Al performs in a certain way and the moral or legal liability when harms occur.
Here, we only deal with ethical responsibilities and not, e.g. legal liability, though these are
related issues. In healthcare, a “responsibility gap” arises when responsibility cannot be
easily attributed to one or more actor, including hospitals, health and malpractice insurers,
individual physicians and nurses, and so on. In ophthalmology, one private company, IDx,
has accepted responsibility for errors in their Al, effectively attempting to close the
responsibility gap through claiming responsibility for Al outcomes, enshrining this in legal

terms by purchasing liability and malpractice insurance on behalf of the platform.>

Companies are responsible for ensuring Al algorithms function appropriately and safely
when used as indicated, but may not be for off-label uses. In their consideration of the legal
aspects of Al, for example, IDx claims their principles require creators “assume liability for
harm caused by the diagnostic output of the device when used properly and on-label.”>
Responsibility for ensuring appropriate off-label use may thus seem to fall to the provider,
but the fragile nature of these models means even strong associations between patient
outcomes and off-label Al use post-market may be undermined if subtle changes in patient
characteristics cause the algorithm to produce flawed results.1321 Whether providers can

responsibly determine appropriate use based on these unknown variations is unclear.
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93  Responsibility issues may become more acute in future adaptive Al that update their
94  weightings of factors associated with a diagnosis in response to new data. Here,
95 responsibility for appropriate use might include managing which data is retained by the
96 system. For these adaptive regimes, evaluating performance for on-label and off-label
97  conditions will require continuous post-market monitoring, rather than the current pre-
98 market approval approach for pharmaceuticals or other devices.
99
100  Allocating responsibility at the level of governance and regulation is an additional
101  challenge. Others have argued that regulation of Al should focus on continuous
102  monitoring!® with a “system” view that sees new Al as part of a larger network of actors
103  and institutions and evaluates its performance in the context of that network.1> The
104  obligation to promote benefits and reduce harms is jointly held by, and distributed
105  between, the creators and users of an Al. Implementing this in practice, however, would
106  require overhauling the institutions that govern medical innovation and practice.
107
108  One preliminary approach would require large, adaptive clinical trials of human
109  adjudication versus Al diagnosis. This approach could validate Al performance in a variety
110  of contexts to improve outcomes, adapt to other potential uses, and develop trust in the
111  system. In 2018, engineers at Google demonstrated that image adjudication images by
112 retinal specialists improved algorithmic outcomes for the diagnosis of diabetic
113  retinopathy.1® In the same year, IDx reported that their autonomous Al-based diagnostic
114  exceeds human reference standards.!3 Last year, two Al-assisted ROP diagnosis packages

115  were approved for use?? as part of China’s developing medical Al landscape.?! When
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specialist opinion can be linked to correct surrogate outcomes or risk of poor outcomes,
these trials become an intermediate step towards demonstrating the efficacy of Al,

improving patient outcomes, enhancing trust, and providing a broader context for Al use.

3) Scalability and implementation. One promise of Al is to automate high volume screening.
Consider a near-future hypothetical. In the United Kingdom the English National Health
Service Diabetic Eye Screening Program screened more than 2 million patients in 2015-16
for diabetic retinopathy.22 We could imagine a case in which this service incorporates Al
diagnosis, an implementation that could place most diabetic retinopathy cases in the

country under a single algorithm.

Two failure modes exist for mass Al-driven diagnostics. First, standard errors in
diagnostics matter at scale: a sensitivity of 99.9% for a test that applies to a condition
affecting hundreds of millions of patients still entails hundreds of thousands of false
negatives.2 Importantly, transitioning to Al could redistribute false positives or false
negatives in a population. This raises concerns of justice if, for example, Al misdiagnoses
disproportionately impact disadvantaged groups, as has occurred with pulse oximeters?23
and x-ray datasets,24 resulting in a form of “health poverty” where individuals, groups, or
populations are unable to benefit from Al due to a scarcity of representative data, and may
even be harmed by it at the population level.2> The degree to which this may occur with
ophthalmological Al applications is an empirical question. We do, however, know that
racial bias in ophthalmological clinical trials is an ongoing concern,2¢ and this trend could

continue into Al development if it goes unchecked.
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However, the distribution of harms using Al might be traded against the distribution of
services through the deployment of Al, such that:
1) Some patients have worse outcomes than others because of the distribution of risk
by Al; yet
2) Those patients have better outcomes than they would otherwise have had because
a. the Al is ultimately less biased than physician treatment alone; or
b. the benefits of access to services outweigh the potential harms of bias; or

c. both.

Consider the proliferation of telemedicine during the COVID-19 pandemic, particularly for
individuals who may have otherwise delayed diagnosis or treatment.27.28 Al-assisted
diagnostics could make it easier to diagnose patients remotely and at local points of care
using e.g. new innovations such as slit-lamp biomicroscopes used with smartphones2? and
Al-based interpretation of results. A potential tradeoff arises between errors caused by Al
when a physician cannot directly access the patient, and benefits of receiving early
diagnosis. In rare or emergent cases (such as pandemic) where the risk of travel to a
medical facility presents additional risk, Al may provide preliminary guidance on whether
or not to seek care inside a clinical setting.3? Moreover, even if Al does produce worse
outcomes than physician diagnosis, Al might be justified to the extent delayed or missed

diagnosis is worse.
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The social benefit of Al to telemedicine relies in part, however, on the extent to which
inequalities of access to information technology can be remedied. Telemedicine is unevenly
adopted by providers, may not be supported by insurers, and depends on reliable internet
access. Smartphone penetration, however, may be higher than access to specialist medical
care in some if not many areas, and thus there may be favorable tradeoffs through local Al -
driven solutions. Like other emerging technologies, the setting in which medical Al will be

implemented is a major determinant of the risks and benefits.

A second failure mode is a systemic failure that affects all or most users simultaneously.
These very low probability, very high consequence events could arise, for example, in the
case of a continual learning Al system intended to improve with additional data3! but which
through sustained machine error ultimately diverges radically from its original parameters
and begins assigning false results. Depending on how submissions to the Al are structured,
“adversarial uses” could arise in which intentionally doctored images are submitted to

achieve the same effect.

Protection from systemic failures is unlikely to be achieved through self-governance, and
will require regulatory action to guard against. Adding ongoing cybersecurity and fault tree
testing to the approval requirements is one solution, but two challenges arise. First pre-
market regulation does typically entail continuous monitoring of the system; study of
results by human analysts; and quality control tests against the algorithm to prevent
system failures may become dysfunctional on a large-scale level. Second, the FDA only

regulates medical devices, of which IDx is one, but some Al (such the Apple Watch pulse

10
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oximeter) may constitute a “general wellness product” designed to be sold directly to
consumers.32 Addressing both challenges might reduce the possibility of low
probability /high consequence events, but represent tradeoffs in system efficiency and

resource use around Al in medicine.

In response, the FDA and similar agencies in other countries might require reform to
accommodate the challenges presented by Al. Alternatively, the mismatch between the
current regulatory structure and the potential impacts of Al in medicine might mean that
the FDA is ultimately not well-suited for regulating Al. In the latter case, a new agency may
be required, or governance could occur through a different mechanism entirely, e.g.

through government payment choices in national health insurance schemes.

Al presents a range of novel opportunities to improve medical care and to make healthcare
more widely accessible to patients. However, the use of Al raises many ethical concerns,
even in cases where it augments the capabilities of human physicians and technicians.
These issues are partly endogenous to Al, and partly a function of the regulatory, social,
and political circumstances in which it is developed and implemented. Realizing the full
benefits of Al will require reaching a consensus on which tradeoffs are acceptable as this

technology is implemented at scale.
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