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Emerging ethical considerations for the use of artificial intelligence in medicine 1 
Rapid developments in artificial intelligence (AI) promise improved diagnosis and care for 2 

patients, but  raise ethical issues.1–5 Over six months, in consultation with the American 3 

Academy of Ophthalmology (AAO) Committee on AI, we analyzed potential ethical 4 

concerns, with a focus on applications of AI in ophthalmology that are deployed or will be 5 

deployed in the near future.6  We identified three pressing issues: 1) transparency, 6 

paradigmatically through the explanation or interpretation of AI models; 2) attribution of 7 

responsibility issues for particular harms arising from the use or misuse of AI; and 3) 8 

scalability of use cases and screening infrastructure. 9 

 10 

1) Transparency. The ability to understand why a machine learning model has produced a 11 

particular result is an oft-cited ethical principle for AI.4,5,7–10  We distinguish between AI 12 

that are interpretable, or governed by models that are directly understandable by humans, 13 

and AI that are too complex for any human to comprehend (sometimes called “black box” 14 

models), requiring post hoc explainability for how results are produced.4 Recent work has 15 

shown that lack of transparency is associated with decreased accuracy of AI algorithms.11,12  16 

Issues of transparency may arise, for example, in diagnosing diabetic retinopathy, 17 

glaucoma, age-related macular degeneration and retinopathy of prematurity (ROP).1  18 

 19 

Transparency may also be important when an AI does not perform as expected or gives a 20 

false answer. Given a novel image to analyze, for example, AI may misdiagnose a patient 21 

based on an incomplete or inadequate “training set.” Machine learning (ML) and especially 22 

deep learning (DL) platforms need to be “trained” on large amounts of historical data (e.g. 23 

fundus photography) to learn which features of an image are associated with a particular 24 
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condition. When a novel image is presented that is atypical, such as if a diabetic retinopathy 25 

AI is given a central retinal vein occlusion, the AI may provide false or even nonsense 26 

answers. Without transparency it may be impossible to explain why a particular failure 27 

occurred: even if the general explanation is that “the training set is insufficiently broad,” 28 

what data are missing or needed may be opaque. 29 

 30 

Transparency is arguably secondary to the capacity for AI to improve patient outcomes and 31 

public health. ML systems in ophthalmology have been tested, but to date only one trial has 32 

demonstrated improved patient outcomes.13 Experiences in other specialties, such as a 33 

2017 trial of using automated interpretation of cardiotocographs in labor, have found no 34 

improvement in clinical outcomes as a result of AI.14 Thus, transparency may be insufficient 35 

to justify the use of AI if it fails to improve patient outcomes. 36 

 37 

The degree to which transparency is obligatory may also depend on the medical specialty. 38 

In some cases, accurate, empirically verified results may be sufficient.  In infectious disease, 39 

for example, broad-spectrum antibiotics may be tried in the absence of detailed 40 

information of a pathogen.8  Ophthalmology, however, is highly explainable in diagnostic 41 

terms with strict definitions for most diseases. Deferring to AI may present a significant 42 

decrease in confidence in the diagnostic process, especially when there are only modest 43 

increases in verifiability. The degree to which this arises, and how this trade-off between 44 

transparency and confidence varies by specialty, needs further investigation. 45 

 46 
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Lack of sufficient transparency may exacerbate other issues in the use of medical AI.  While 47 

human physicians can reflect upon and justify their actions to colleagues, an AI’s mistakes 48 

are predetermined through training. Errors may propagate from a single point of failure if 49 

they become the diagnostic standard across, say, an entire hospital network. Patients may 50 

seek a second opinion, but if an algorithm is widely distributed, they may be diagnosed by 51 

the same system at separate clinics. Future AI may be able to revise their predictions in 52 

response to new data gained through operation in the real world, but this presents its own 53 

challenges, especially if these revisions lack transparency. Excessive trust in AI may be 54 

worse for patient outcomes than if AI were approached more skeptically.15  55 

 56 

Sometimes, the benefits of AI may outweigh transparency concerns. Consider retinopathy 57 

of prematurity (ROP), a leading cause of childhood blindness worldwide. The clinical 58 

benefit of screening is well-established but hampered globally by cost and human labor 59 

requirements.1 AI  may provide a low-cost screening option in resource-scarce settings, 60 

where even modest improvements in testing and treatment could have a significant impact 61 

given the steep long-term costs of ROP.16 While challenges translating diagnosis to 62 

treatment in low-income settings remain,17 the large potential benefits and low cost justify 63 

the use of AI.  64 

 65 

Explainable AI may obviate some of these transparency concerns. Cynthia Rudin has noted, 66 

however, that explainability may be a misnomer. Instead, the focus should be on creating 67 

models that are inherently interpretable, rather than attempting to generate solutions for 68 

unexplainable AI.8 For the foreseeable future, then, a tension exists between deploying 69 
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black-boxed AI immediately or waiting for explainable AI, where delays might come at the 70 

cost of improvements to patient outcomes. 71 

 72 

2) Responsibility. Ethical frameworks may distinguish between the responsibility for 73 

ensuring AI performs in a certain way and the moral or legal liability when harms occur.   74 

Here, we only deal with ethical responsibilities and not, e.g. legal liability, though these are 75 

related issues. In healthcare, a “responsibility gap” arises when responsibility cannot be 76 

easily attributed to one or more actor, including hospitals, health and malpractice insurers, 77 

individual physicians and nurses, and so on. In ophthalmology, one private company, IDx, 78 

has accepted responsibility for errors in their AI, effectively attempting to close the 79 

responsibility gap through claiming responsibility for AI outcomes, enshrining this in legal 80 

terms by purchasing liability and malpractice insurance on behalf of the platform.5  81 

 82 

Companies are responsible for ensuring AI algorithms function appropriately and safely 83 

when used as indicated, but may not be for off-label uses. In their consideration of the legal 84 

aspects of AI, for example, IDx claims their principles require creators “assume liability for 85 

harm caused by the diagnostic output of the device when used properly and on-label.”5 86 

Responsibility for ensuring appropriate off-label use may thus seem to fall to the provider, 87 

but the fragile nature of these models means even strong associations between patient 88 

outcomes and off-label AI use post-market may be undermined if subtle changes in patient 89 

characteristics cause the algorithm to produce flawed results.13,21 Whether providers can 90 

responsibly determine appropriate use based on these unknown variations is unclear.  91 

 92 
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Responsibility issues may become more acute in future adaptive AI that update their 93 

weightings of factors associated with a diagnosis in response to new data. Here, 94 

responsibility for appropriate use might include managing which data is retained by the 95 

system.  For these adaptive regimes, evaluating performance for on-label and off-label 96 

conditions will require continuous post-market monitoring, rather than the current pre-97 

market approval approach for pharmaceuticals or other devices. 98 

 99 

Allocating responsibility at the level of governance and regulation is an additional 100 

challenge. Others have argued that regulation of AI should focus on continuous 101 

monitoring18 with a “system” view that sees new AI as part of a larger network of actors 102 

and institutions and evaluates its performance in the context of that network.15 The 103 

obligation to promote benefits and reduce harms is jointly held by, and distributed 104 

between, the creators and users of an AI. Implementing this in practice, however, would 105 

require overhauling the institutions that govern medical innovation and practice. 106 

 107 

One preliminary approach would require large, adaptive clinical trials of human 108 

adjudication versus AI diagnosis. This approach could validate AI performance in a variety 109 

of contexts to improve outcomes, adapt to other potential uses, and develop trust in the 110 

system. In 2018, engineers at Google demonstrated that image adjudication images by 111 

retinal specialists improved algorithmic outcomes for the diagnosis of diabetic 112 

retinopathy.19  In the same year, IDx reported that their autonomous AI-based diagnostic 113 

exceeds human reference standards.13 Last year, two AI-assisted ROP diagnosis packages 114 

were approved for use20  as part of China’s developing medical AI landscape.21 When 115 
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specialist opinion can be linked to correct surrogate outcomes or risk of poor outcomes, 116 

these trials become an intermediate step towards demonstrating the efficacy of AI, 117 

improving patient outcomes, enhancing trust, and providing a broader context for AI use. 118 

 119 

3) Scalability and implementation. One promise of AI is to automate high volume screening. 120 

Consider a near-future hypothetical. In the United Kingdom the English National Health 121 

Service Diabetic Eye Screening Program screened more than 2 million patients in 2015-16 122 

for diabetic retinopathy.22 We could imagine a case in which this service incorporates AI 123 

diagnosis, an implementation that could place most  diabetic retinopathy cases in the 124 

country under a single algorithm.  125 

 126 

Two failure modes exist for mass AI-driven diagnostics. First, standard errors in 127 

diagnostics matter at scale: a sensitivity of 99.9% for a test that applies to a condition 128 

affecting hundreds of millions of patients still entails hundreds of thousands of false 129 

negatives.2 Importantly, transitioning to AI could redistribute false positives or false 130 

negatives in a population. This raises concerns of justice if, for example, AI misdiagnoses 131 

disproportionately impact disadvantaged groups, as has occurred with pulse oximeters23 132 

and x-ray datasets,24 resulting in a form of “health poverty” where individuals, groups, or 133 

populations are unable to benefit from AI due to a scarcity of representative data, and may 134 

even be harmed by it at the population level.25  The degree to which this may occur with 135 

ophthalmological AI applications is an empirical question. We do, however, know that 136 

racial bias in ophthalmological clinical trials is an ongoing concern,26 and this trend could 137 

continue into AI development if it goes unchecked.  138 
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 139 

However, the distribution of harms using AI might be traded against the distribution of 140 

services through the deployment of AI, such that:  141 

1) Some patients have worse outcomes than others because of the distribution of risk 142 

by AI; yet 143 

2) Those patients have better outcomes than they would otherwise have had because 144 

a. the AI is ultimately less biased than physician treatment alone; or 145 

b. the benefits of access to services outweigh the potential harms of bias; or 146 

c. both. 147 

 148 

Consider the proliferation of telemedicine during the COVID-19 pandemic, particularly for 149 

individuals who may have otherwise delayed diagnosis or treatment.27,28 AI-assisted 150 

diagnostics could make it easier to diagnose patients remotely and at local points of care 151 

using e.g. new innovations such as slit-lamp biomicroscopes used with smartphones29 and 152 

AI-based interpretation of results.  A potential tradeoff arises between errors caused by AI 153 

when a physician cannot directly access the patient, and benefits of receiving early 154 

diagnosis. In rare or emergent cases (such as pandemic) where the risk of travel to a 155 

medical facility presents additional risk, AI may provide preliminary guidance on whether 156 

or not to seek care inside a clinical setting.30 Moreover, even if AI does produce worse 157 

outcomes than physician diagnosis, AI might be justified to the extent delayed or missed 158 

diagnosis is worse.  159 

 160 
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The social benefit of AI to telemedicine relies in part, however, on the extent to which 161 

inequalities of access to information technology can be remedied. Telemedicine is unevenly 162 

adopted by providers, may not be supported by insurers, and depends on reliable internet 163 

access. Smartphone penetration, however, may be higher than access to specialist medical 164 

care in some if not many areas, and thus there may be favorable tradeoffs through local AI-165 

driven solutions. Like other emerging technologies, the setting in which medical AI will be 166 

implemented is a major determinant of the risks and benefits. 167 

 168 

A second failure mode is a systemic failure that affects all or most users simultaneously. 169 

These very low probability, very high consequence events could arise, for example, in the 170 

case of a continual learning AI system intended to improve with additional data31 but which 171 

through sustained machine error ultimately diverges radically from its original parameters 172 

and begins assigning false results. Depending on how submissions to the AI are structured, 173 

“adversarial uses” could arise in which intentionally doctored images are submitted to 174 

achieve the same effect.  175 

 176 

Protection from systemic failures is unlikely to be achieved through self-governance, and 177 

will require regulatory action to guard against. Adding ongoing cybersecurity and fault tree 178 

testing to the approval requirements is one solution, but two challenges arise. First pre-179 

market regulation does typically entail continuous monitoring of the system; study of 180 

results by human analysts; and quality control tests against the algorithm to prevent 181 

system failures may become dysfunctional on a large-scale level. Second, the FDA only 182 

regulates medical devices, of which IDx is one, but some AI (such the Apple Watch pulse 183 
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oximeter) may constitute a “general wellness product” designed to be sold directly to 184 

consumers.32 Addressing both challenges might reduce the possibility of low 185 

probability/high consequence events, but represent tradeoffs in system efficiency and 186 

resource use around AI in medicine. 187 

 188 

In response, the FDA and similar agencies in other countries might require reform to 189 

accommodate the challenges presented by AI. Alternatively, the mismatch between the 190 

current regulatory structure and the potential impacts of AI in medicine might mean that 191 

the FDA is ultimately not well-suited for regulating AI. In the latter case, a new agency may 192 

be required, or governance could occur through a different mechanism entirely, e.g. 193 

through government payment choices in national health insurance schemes. 194 

 195 

AI presents a range of novel opportunities to improve medical care and to make healthcare 196 

more widely accessible to patients. However, the use of AI raises many ethical concerns, 197 

even in cases where it augments the capabilities of human physicians and technicians. 198 

These issues are partly endogenous to AI, and partly a function of the regulatory, social, 199 

and political circumstances in which it is developed and implemented. Realizing the full 200 

benefits of AI will require reaching a consensus on which tradeoffs are acceptable as this 201 

technology is implemented at scale. 202 

 203 
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