TCUDB: Accelerating Database with Tensor Processors

Yu-Ching Hu
University of California, Riverside
Riverside, California, USA
yhul30@ucr.edu

ABSTRACT

The emergence of novel hardware accelerators has powered the
tremendous growth of machine learning in recent years. These
accelerators deliver incomparable performance gains in processing
high-volume matrix operators, particularly matrix multiplication, a
core component of neural network training and inference. In this
work, we explored opportunities of accelerating database systems
using NVIDIA’s Tensor Core Units (TCUs). We present TCUDB, a
TCU-accelerated query engine processing a set of query operators
including natural joins and group-by aggregates as matrix operators
within TCUs. Matrix multiplication was considered inefficient in
the past; however, this strategy has remained largely unexplored in
conventional GPU-based databases, which primarily rely on vector
or scalar processing. We demonstrate the significant performance
gain of TCUDB in a range of real-world applications including
entity matching, graph query processing, and matrix-based data
analytics. TCUDB achieves up to 288X speedup compared to a
baseline GPU-based query engine.

CCS CONCEPTS

« Information systems — Relational database model; DBMS
engine architectures; Query optimization; Query operators;
Query planning; Join algorithms; - Hardware — Hardware
accelerators.

KEYWORDS
Tensor Cores, database engine

ACM Reference Format:

Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. TCUDB: Acceler-
ating Database with Tensor Processors. In Proceedings of the 2022 Inter-
national Conference on Management of Data (SIGMOD °22), June 12-17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3514221.3517869

1 INTRODUCTION

The enormous demand for artificial intelligence (AI) and machine
learning (ML) workloads has driven the development and inte-
gration of accelerators containing instructions operating on two-
dimensional tensors (i.e., matrices). Examples include NVIDIA’s
Tensor Core Units (TCUs) [60], Google’s Tensor Processing Units
(TPUs) [75], and Apple’s Neural Processing Units (NPUs) [6]. Im-
proving matrix algebra through matrix units (MXUs), which popular
AI/ML models heavily rely on, drastically increases the orders of
magnitude speedup and energy efficiency. This is particularly true
when compared with conventional scalar processors (e.g., CPUs)
and vector processors (e.g., graphical processing units [GPUs]).

In this work, we explore opportunities of integrating Tensor Core
Units (TCUs) into a database engine’s architecture. Despite being

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA.

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9249-5/22/06.

https://doi.org/10.1145/3514221.3517869

Yuliang Li
Megagon Labs
Mountain View, California, USA
yuliang@megagon.ai

Hung-Wei Tseng
University of California, Riverside
Riverside, California, USA
htseng@ucr.edu

originally designed for AI/ML workloads, tensor processors also
hold potential performance improvements for database engines.
This is due to both the increasing demand for native support of
linear algebra queries (e.g., matrix multiplication itself) in SQL DB
engines [3, 24, 26, 39, 57] and the observation that a large number
of regular query operators can be cast into matrix multiplication.
For example, one can show that the most commonly used natural
joins [5, 20] and group-by aggregates can be encoded as matrix
multiplication, which enables TCUs to deliver exceptional perfor-
mance.

However, the presence of these AI/ML accelerators, or more
generally matrix processors, does not provide a drop-in upgrade to
the query engine’s performance. Three major challenges must be
addressed.

Challenges. First, the conventional GPU databases primarily im-
plement the physical operators (e.g., the partitioned hash join algo-
rithm [46]) in a non-matrix-friendly manner. These algorithms and
operators typically do not operate on tensors directly. As a result,
it is hard to modify them with the intent of taking advantage of
TCUs’ computation power.

Second, although DB operators such as joins can theoretically be
encoded as matrix multiplications, executing all of them as dense
multiplication might not always be beneficial. For example, the
underlying data distributions can cause the two operands to be
sparse matrices, which require a different data organization and
APIs to achieve the best performance.

Next, a DB engine with TCUs must prevent itself from generat-
ing erroneous query results because of the low-precision nature
of the tensor processors. The current tensor processors are lim-
ited in precision as AI/ML applications are error-tolerant because
NVIDIA’s TCUs only support 16-bit floating-point numbers while
Google’s TPUs only work on at most 8-bit integers. Moreover, these
tensor processors share the same data movement overhead with
other hardware accelerators while additionally suffering from the
data transformation overhead (i.e., table — tensor). A higher pre-
cision requirement means introducing more data movement and
transformation overhead. As a result, the proposed system must
maintain a balance between two factors.

TCUDB. This paper presents TCUDB, an analytic database query
engine that explores the potential of tensor processors to accelerate
analytic query workloads using TCUs by tackling the aforemen-
tioned challenges. Figure 1 provides an overview of the system
architecture of TCUDB. TCUDB extends the common architecture
of GPU-accelerated databases [13, 34, 54, 72, 76, 83, 87, 89, 90, 92]
as a way to further accommodate executing query operators with
TCU acceleration in the query analyzer, the query optimizer, the
code generator, and the program driver.

To address the challenge of executing queries using matrix op-
erations, we re-engineered a set of query operators that are theo-
retically feasible to be mapped to tensor/matrix algebra operations
for TCUDB. The query operators cover a large set of commonly
used ones including natural joins and group-by aggregates. As
shown in Figure 1, TCUDB features a code generator for generating
executable code mapping input tables to tensor format and pro-
cesses the query as matrix multiplication via WMMA or cuBLAS
API calls. Depending on the data sparsity, TCUDB provides the

https://doi.org/10.1145/3514221.3517869
https://doi.org/10.1145/3514221.3517869
https://doi.org/10.1145/3514221.3517869

TCUDB

iigﬁci Aéval' B.val ‘ Query Query Code Program 1
4 Analyzer Optimizer Generator Driver
WHERE A.ID = B.ID; Y - v 4 %

Table Storage

wmma_optimized gemm<<<deviceProp.multiProcessorCount, THREADS_PER_BLOCK,
SHMEM_Sz>>>(At, Bt, Ct, Ct, M, N, K, 1.0, 0.0));

© N O o s N =

Figure 1: An overview of TCUDB’s workflow.

option of sparse tensor encoding with sparse matrix multiplication.
We developed the TCU-SpMM operator to support sparse matrix
multiplication with TCU acceleration. Then, the TCUDB query
analyzer is capable of generating query plans, which use these
TCU-accelerated physical operators.

To resolve the challenge of limited precision and overhead in
modern tensor processors, TCUDB’s query optimizer carefully
gauges the parameters in precision, data movement overhead, data
transformation overhead, and computation throughput — as us-
ing lower data precision yields lower data movement overhead
and higher computation throughput, but also takes higher risks of
leading into unacceptable answers as well as higher data transfor-
mation overhead. TCUDB presents an adaptive mixed-precision
query optimization that dynamically selects the most appropri-
ate precision in delivering the desired level of accuracy using the
shortest end-to-end latency to handle queries.

Contributions. By presenting, implementing and evaluating TCUDB,
this paper makes the following contributions:

e We explored the space of opportunities of optimizing a GPU-
accelerated analytic query engine by leveraging TCUs. In our ini-
tial investigation, we found that TCU delivers >5X performance
gains for matrix multiplication compared to the conventional
CUDA cores in GPUs. This finding contradicts the conventional
wisdom that considers matrix multiplication a slow operator
because of its high computational complexity. As such, TCUs pro-
vide new opportunities to optimize processing analytic queries
as matrix multiplication.

o Next, we identified a collection of query patterns that can po-
tentially be accelerated by TCUs. The query patterns include the
most commonly used SQL operators in analytic queries such as
joins and group-by aggregates (e.g., SUM and COUNT). We demon-
strate simple algorithms for transforming relational tables into
matrix format and translating SQL operator into one or more ma-
trix multiplication operators. Our algorithmic design is generic
as it can be generalized to multi-way joins and aggregation over
joins.

We designed and implemented TCUDB, a TCU-accelerated an-

alytic database engine. On top of a traditional GPU database !,

TCUDB features a query optimizer that identifies (1) the most

efficient TCU query plan and (2) the best GPU/CPU-based plan

and decides which plan to execute via cost estimation. If a TCU-
accelerated plan is selected, TCUDB leverages a code genera-
tor to rewrite (parts of) the query into C programs that invoke

NVIDIA’s CUDA APL To the best of our knowledge, TCUDB is

the first analytic database engine with TCU-accelerated built-in.

o We evaluated TCUDB on 4 real-world use cases: (1) linear algebra
(LA) queries, (2) entity matching (EM), (3) graph analytics, and

!We archive the source code and workloads at our

https://github.com/escalab/TCUDB

GitHub page:

T
FP32/INT32 FP32 b ”T
CUDA CUDA Cor
Cores Cores || 411

nit | | |

Figure 2: The GA102 Streaming Multiprocessor (SM) archi-
tecture in GeForce RTX 30-series GPUs.

(4) analytic queries such as the star-schema benchmark. TCUDB
demonstrates an outstanding performance advantage over a GPU-
based engine (YDB), by achieving up to 288X speedup. Our results
also highlight the necessity of the query optimizer and TCUDB’s
scalability advantage in future GPU architecture.

2 BACKGROUND AND MOTIVATION

This section describes the background of the conventional query
processing on a GPU and the motivation inspired by the character-
istic of Tensor Core Units (TCUs). By comparing to the traditional
vector processing model, we demonstrate the tensor processing
model in a database system that can deliver better performance
on linear algebra queries in terms of computing capability and
scalability.

2.1 Tensor Core Units (TCUs)

As deep neural networks heavily rely on operations using matrix
multiplications (e.g., convolution), recent hardware accelerators
feature matrix units (MXUs) in their microarchitectures to signifi-
cantly boost the performance in machine learning (ML) workloads.
Famous examples include NVIDIA’s Tensor Core Units (TCUs),
Google’s Tensor Processing Units (TPUs), and Apple’s Neural En-
gine.

This paper selects TCUs as the underlying accelerators for the
following reasons: (1) Programmability: TCUs expose their low-
level C++ API to programmers such as highly optimized cuBLAS
APIs or customizable WMMA (Warp Matrix Multiply-Accumulate)
APIs, giving programmers complete freedom in implementing al-
gorithms and integrating with existing systems. By contrast, their
counterparts are only programmable through domain-specific lan-
guages tailored for ML. (2) Accessibility: TCUs are now standardized
components in NVIDIA’s GPU architectures, ranging from high-
end server solutions, gaming solutions, to embedded solutions.
Conversely, high-performance TPUs are only accessible through
Google’s cloud services and Apple’s NPUs are only available on
their machines. (3) Flexibility: Tensor cores together with other

7812.5 [TGUDA Cores 15452
1562.5 TCUs 1813 "
3125 S sars

A 555

1.00 - 8.02

364

121

o
co MmN N
- oo,

021
1024x1024 2048x2048 4096x4096 8192x8192 16384x16384
The dimensions of input matrices

Relative Execution Time
(Lower is Better, Log-Scale)

Figure 3: The performance of performing matrix multiplica-
tions using conventional CUDA cores and TCUs.

Query Lyl defy L Code
Analyzer Optimizer Generator

Program Driver

>
GPU GPU GPU
Operators || Operators || Operators

GPU CPU Y
Hardware o> z
[Device Memory | [Host Memory | »

Figure 4: Typical GPU-accelerated database architecture.

ALUs on the GPU supports multiple data precision with various
operations. Other ML accelerators only support limited precision.

TCUs are currently available as separated functional units from
conventional vector floating-point and integer ALUs within the
current generation of streaming multiprocessors (SM) as Figure 2
depicts. Figure 3 compares the latency of multiplying matrices
with different sizes, ranging from 1024x1024 inputs matrices to
1638416384 ones, using conventional vector processing units (CUDA
cores) and TCUs, on NVIDIA’s RTX 3090 GPU. The results show
that TCUs consistently outperform CUDA cores by up to a 5%
speedup. By translating the latency to TFLOPs, we measured a peak
of 63 TFLOPs on TCUs and 19 TFLOPs using mixed precision on
CUDA cores only.

Despite the significant speedup in matrix operations, TCUs still
have limited precision drawbacks seen in other AI/ML accelerators
in a way that TCUs only support at most 16-bit numbers as inputs
and incur additional overhead in casting data into the desired 16-bit
formats. Being separated functional units within an SM and the
nature that an SM can only perform a single type of operations
simultaneously, a compute kernel can activate either conventional
vector units or TCUs, but not both of them due to the power con-
straints and the hardware architecture. Therefore, if programmers
do not specifically enable TCUs and rewrite algorithms to perform
matrix multiplications, a GPU program cannot automatically take
advantage of TCUs. Instead, it wastes the rich speedup that the
TCUs can provide.

2.2 GPU-accelerated Database System
Architecture (GPUDB)

Prior to the introduction of TCUs in GPU architectures, database
systems have exploited the potential of using the massive amount
of vector processing units within GPUs to accelerate query process-
ing [8, 13, 82, 92]. The rich thread-level parallelism from these vector
processing units delivers better performance on easily paralleliz-
able operations (e.g., arithmetic computation). Figure 4 shows the
architecture of a typical GPUDB system that Yinyang DB (YDB) (7,
92] and GPUQP [36] adopt. Upon receiving a query, the GPU-
accelerated DB will go through the following stages: (1) Query
plan generation: the query parser translates SQL query into query
plan tree and the query optimizer analyzes the costs and benefits of
query plans to determine the most efficient implementation (i.e., the
cheapest plan) as the physical query plan. (2) Code generation: the
query engine is in charge of the query execution flow by generating

-- Matrix multiplication query:

SELECT A.col_num, B.row_num, SUM(A.val * B.val) as res
FROM A, B

WHERE A.row_num = B.col_num

GROUP BY A.col_num, B.row_num;

Figure 5: Example matrix multiplication query.

the back-end system-level code (e.g., program driver) that maps the
selected query plan to utilize CPU and GPU cores. According to
the type of target queries, different GPU kernels are implemented
to execute relational database operators. (3) Data movements: data
movements involve loading table data to the host main memory
from back-end storage, moving essential data from the host main
memory to GPU device memory and copying results back to the
host main memory.

In the aforementioned database system architecture, data move-
ment between GPU and CPU usually dominates the execution
time [36] and cancels out the performance gain in the computa-
tion part. Therefore, GPU database architecture should make full
use of an in-memory technique such as keeping all tables in GPU
RAM [31] to mitigate the I/O bottleneck. There is no common-use
GPU algorithm suitable for all database systems; the challenge is
to identify which operators can leverage the GPU and combine it
with traditional database query processing. Additionally, the data
storage format also affects the performance of data movement. Due
to the GPU memory access pattern, column-store [1, 2, 31] helps
to exploit coalesced memory as well as reduce data volume going
through the PCle bus by only sending the needed data.

2.3 The Missing Opportunities of GPU
Databases in TCUs

Before the emergence of TCUs, conventional wisdom assumed that
matrix multiplication is an inefficient operation. Therefore, state-of-
the-art GPUDB systems are designed in favor of vector processing,
yet completely avoid the usage of matrix multiplications. With-
out redesigning application algorithms and data layout, existing
GPUDB systems cannot reap the benefits of TCUs.

The query in Figure 5 provides an example of how an existing
GPUDB misses the potential of using TCUs. The result of this query
is essentially a list of triples of (row_num, col_num, val) with unique
combinations of row_num, col_num and the val in each triple is
the sum of the pairwise multiplications on val fields from a record
in table A with its row_num matching another record’s col_num
from table B. This is essentially an SQL query that performs matrix
multiplication on elements from two tables A and B. This query
can be implemented through one matrix multiplication if we can
layout the matching elements in matrices appropriately.

However, conventional GPUDB query processing algorithms are
designed at the operator level with each operator as a kernel func-
tion running on GPUs. To execute the above query, conventional
GPUDB uses operators to build hash tables for A and B, scanning
both tables, performing HashJoin, and aggregating the final result.
Among these GPU operators, HashJoin where performs join op-
eration in a pairwise, vectorized fashion to find matching tuples
between two hash tables usually takes the most time during the
query execution. The aggregation operator is second to HashJoin,
which is also time-consuming in accumulating the computation
result using vector operations. As the above computation only re-
quires vector inner-products, the generated GPU kernel code will
never enable TCUs.

W oo e

N

3 TCU-ACCELERATED QUERY PATTERNS

As mentioned above, TCUs can potentially improve the perfor-
mance of an analytic query by executing (parts of) the query as
matrix multiplication. Next, to achieve this goal, we start by iden-
tifying a number of query patterns that TCUDB can execute as
matrix multiplications.

3.1 Two-way natural join

The first supported query pattern is the simple 2-way join. For
example, given two tables A and B with two attributes (ID,Val),
consider the following query:

-- Q1:

SELECT A.Val, B.val
FROM A, B

WHERE A.ID = B.ID;

To process this query as a matrix operation, we first need to convert
the two tables into a matrix format. Suppose table A contains n
tuples {ay, ..., an} and table B contains m tuples {b1, . .., b, } where
each a; and b; are unique row IDs. Let dom(A.ID) and dom(B.ID) be
the domains of the ID column of A and B respectively. Let dom(ID)
to be the union of the two domains dom(A.ID) U dom(B.ID) having
k distinct values {oy, . .., v; }. To compute the join, we construct a
n X k matrix mat(A) and a m X k matrix mat(B) where

mat(A)ij = 11if a;.ID = v}, otherwise 0 ;
mat(B);; = 1if ;.ID = vj, otherwise 0 .
The result of the join A > B is then the n by m matrix
C =mat(A) x mat(B).
It is easy to show that a tuple (a;, b;) is in the join result if and only
if Cij > 0.

Alternatively, when the domains dom(A.Val) and dom(B.Val) are
small, one can also construct mat(A) and mat(B) as the adjacency
matrices where mat(A);; = 1if (u;,0;) € A (and respectively for
mat(B)) otherwise 0. The number of rows of mat(A) and mat(B)
will be |dom(A.Val)| and |dom(B.Val)| respectively.

Note that in this query pattern, the single attributes A.ID, A.Val,
B.ID and B.Val can be generalized to sets of multiple attributes.
The attribute sets *.ID and *.Val can potentially overlap thus it is
general enough to cover all cases of 2-way natural join.

3.2 Multi-way joins
Next, we extend the querying capability with matrix multiplication
to multi-way joins. Consider the following snippet of a 3-way join
query where the 3 input tables are A(IDq, Val), B(ID1, IDy, Val),
and C(IDy, Val) respectively.

-- Q2:
SELECT A.vVal, B.Val, C.val
FROM A, B, C

WHERE A.ID_1 = B.ID_1 AND B.ID_2 = C.ID_2;

As in conventional join processing, we assume a join order of
A — B — C. To evaluate this join, one needs to (1) first compute
A»<Basmat(A) x mat(B)T, (2) convert the resulting n by m matrix
back to table format and (3) compute the join with table C as a
second matrix operator. By repeating step (2) and (3) to convert
intermediate results to tables, we can generalize this algorithm from
3-way joins to multi-way joins.

To avoid unnecessary data transfer from GPU memory to the
host, in step (2), one can perform the matrix-table conversion with a
CUDA-enabled nonzero(-) operator [71]. Formally, given a matrix
M, nonzero(M) computes {(i, j)|M;; > 0}. Next, to perform the
second join, let

Qe W o o=

o 1’ be the size of nz = nonzero(mat(A) x mat(B)T),

e m’ be the size of table C = {cy,...,cn} and

e k’ be the size of dom(B.ID;) U dom(C.ID2) = {uy, ..., up}.

We denote by nz; the i-th pair of the nz array. Next, we construct a

n’ by k’ matrix mat(AB) and a m’ by k” matrix mat(C) where

mat(AB);; = 1if b.ID2 = u;j for nz; = (_, i’), otherwise 0;

mat(C);; = 1if ¢;.ID, = uj, otherwise 0.

The result of the 3-way join is then mat(AB) x mat(C)".

There is an exception case where the intermediate matrix-table
conversion can be omitted. When B.Val = 0 (i.e., relation B is
projected out entirely), the result of the join can be simplified as

mat(A) x mat(B)" x mat(C)"
where mat(B) is a k by k" matrix constructed as B;; = 1if (v;,u;) € B
otherwise 0.

Similar to the 2-way join case, the method can be generalized to
multi-way joins consisting of multiple join and/or return attributes.

3.3 Group-by aggregates over joins

A simple yet useful extension of the above two query patterns with
joins is to add group-by aggregates. For example, over the same
schema (ID,Val) of the previous 2-way join case:

-- Q3:

SELECT SUM(A.Val), B.val
FROM A, B

WHERE A.ID = B.ID

GROUP BY B.Val;

A naive method to evaluate this query is to first evaluate the nat-
ural join in the TCU-optimized manner, convert the matrix result to
the table format, and then compute the group-by and SUM aggre-
gate with CPU or GPU-based methods. We propose the following
method that avoids any unnecessary intermediate computation via
2 matrix operations. First, we construct the two input matrices. For
the matrix dimensions, we let
e 1 be the size of A,

e m be the size of dom(B.Val) = {uy,...,um}, and
e k be the size of dom(A.ID) U dom(B.ID) = {uq, ..., 0%}
We construct a n by k matrix mat(A) and a m by k matrix where
mat(A);; = a;.Val if a;.ID = v}, otherwise 0;
mat(B);; = 1if (u;,vj) € B, otherwise 0.
Next, the query result can be computed as
1" % mat(A) x mat(B)T

where is an 1 X n matrix consisting of only ones. We can show
the following:

11Xn

Lemma 3.1. (Q3, informal) For every tuple (a;"", b;) and for M =
1" xmat(A) xmat(B)T, (a;", b;) is in the query result of Q3 if and
only if M1 = a3"™.

Intuitively, we leverage the first multiplication with mat(B)T to
compute the join. By filling the input matrices mat(A) with actual
values instead of 0’s or 1’s, we keep track of those values in the
intermediate matrix product mat(A) x mat(B)". The multiplication
with 1'%7 then serves as a reduction operator that sums up all
columns of mat(A) x mat(B)T.

In addition to SUM, we are able to apply the same method to
support the COUNT and AVG aggregate functions. For COUNT, when
we construct mat(A), we simply need to set mat(A);; to 1 for a;.ID =
vj (instead of a;.Val). We can obtain AVG by dividing SUM by COUNT.

s w oo o—

s W oo oe

For aggregate queries without GROUP BY, such as

-- Q4:

SELECT SUM(A.vVal % B.vVal)
FROM A, B

WHERE A.ID = B.ID;

we set mat(A);; = a;.Val for a;.ID = v; and mat(B);; = b;.Val for
b;.ID = v; and compute the sum as mat(A) X mat(B)T x 11 with
an additional reduction by multiplying 11%".

3.4 Other supported operators

The above query patterns can also be extended with the ORDER BY
clause to sort the results in ASC/DESC order by a certain column.
Instead of sorting after the multiplication operators, we preserved
the specified order in the input matrices (e.g., mat(A) and mat(B))
so that the result matrix is naturally sorted.

Another class of supported query pattern is the non-equi join
such as:

-- Q5:

SELECT A.Val, B.val
FROM A, B

WHERE A.ID < B.ID;

We can compute this query by slightly adjusting the translation
for Q1 by setting mat(A);; = 1 for a;.Val < vj. The same method
applies to the other comparison operators {<, >, <, >, #}.

Last but not least, for the query pattern that is of the semantics
of matrix multiplication as Figure 5 shows, we can directly map the
query to the corresponding matrix operation.

Beyond the supported patterns. For queries that do not match
exactly with any of the supported query patterns, as part of the
query optimization workflow (Figure 6), TCUDB relies on pattern
matching to identify subqueries that can be TCU-accelerated from
the input query’s AST. We note that there are common subqueries
that are beyond the expressiveness of the TCU platform, such as ag-
gregation with MIN/MAX or arithmetic operators such as addition
and division. The limited expressiveness is mainly due to NVIDIA’s
current TCU programming interface which only supports matrix
multiply-accumulate. However, since the underlying hardware is
powerful enough to perform the aforementioned operators, we
anticipate a more flexible programming interface in the future so
that TCUDB can support a wide range of query patterns.

4 TCUDB: A TCU-ACCELERATED DB ENGINE

To leverage TCUs for queries in relational database systems, this
paper presents TCUDB, a DB engine that identifies, optimizes, eval-
uates and implements aforementioned query patterns in Section 3.
This section provides an overview of the design of TCUDB’s exten-
sions and discusses the optimizations on a TCU-accelerated query
plan.

4.1 Overview

TCUDB implements the system architecture in Figure 1 to execute
queries on TCUs using the following major components.

Query Optimizer In a system with TCUs presented, the query
plan in exercising a query is from either (1) the most efficient
TCU-accelerated query plan or (2) the most efficient conventional
CPU/GPU-based plan, depending on which one can deliver the
lowest cost (i.e., the shortest end-to-end latency). TCUDB leverages
existing infrastructure in GPUDB to evaluate the second option but
extends the query optimizer in creating, optimizing and evaluating
the latency of TCU-accelerated query plans.

Program Driver TCUDB extends the program driver to addition-
ally contain a set of library functions that implement operators men-
tioned in Section 3 using TCUs. These functions invoke NVIDIA’s
CUDA C++ Warp Matrix Multiply and Accumulate (WMMA) or
cuBLAS API functions to achieve the series of computation that
each operator requires. These operators also present interfaces in
various data types to support the demand for the most efficient
query plan.

Code Generator If TCUDB selects a TCU-accelerated query plan
to exercise an incoming query, the code generator will rewrite the
query as C code and dynamically compile the code to execute the
selected query plan. The TCUDB code extension is responsible for
creating the input matrices, calling operator functions in corre-
sponding data types and remapping the output from the operator
outcome.

Among these three intensively extended modules, the query
optimizer is the most critical component as it serves as the core
controlling the use of TCUs as well as code generation for queries.
In the rest of this section, we will focus on the query optimizer.

4.2 TCUDB query optimizer

PU-
Sub-Query CPU-based

GPU-based
CPU/GPU

®(Transformation
Cost Estimator
processing

[32vit>] |_sbit? Di_?zeuhf;;h;lul
[16bit? 4bit? 2 cost(GPU
< cost(GPU)
| @ ®
® Matrix 20 Working set =M Query Cost
density test size test Estimator

< O (density threshold)

Table
statistics

< M (Device memory)

Blocked MatMul
(MSplitGEMM)

Sparse MatMul
(TCU-SpMM)

Figure 6: The workflow of the TCUDB query optimizer.

Figure 6 shows the workflow of the TCUDB query optimizer.
The optimizer takes a subquery from the query AST as input and
performs a series of tests to determine whether the subquery should
be executed with TCU and how. The optimizer first checks if the
subquery falls in one of the supported query patterns. Next, it
performs the data range feasibility test (Section 4.2.1) to decide if
particular data types can provide sufficient precision to the query.
After that, the input tables may also result in matrices too large
to fit in the GPU’s device memory or sparse matrices for which
dense multiplication algorithm is sub-optimal. For these cases, the
optimizer estimates the working set sizes and matrix density from
statistics pre-computed from input tables. TCUDB applies blocked
matrix multiplication (MSplitGEMM, Section 4.2.3) and sparse ma-
trix multiplication (TCU-SpMM, Section 4.2.4) respectively. Finally,
the optimizer estimates the query execution cost with TCU and tests
whether the cost is lower than the estimated cost with CPU/GPU
(Section 4.2.2). If any of the tests fail, TCUDB falls back to the
standard CPU or GPU-based query execution.

Note that the query cost estimator needs to take into account the
data transformation cost which consists of both computation and
data movement overhead. If the original table size plus the working
set size fits in the device memory, TCUDB can transform tables into
matrix format within GPU to save the overhead of transforming
data within CPU and moving large matrices into the GPU device.

4.2.1 Feasibility Test. Even though a query contains patterns match-
ing identified patterns in Section 3, a query may still be unfeasible
for TCUs due to the limitations of TCUs in input precision and data
types. If applying TCUs would result in loss of precision or lead to
unwanted outcomes, TCUDB should not use TCUs to evaluate the
incoming query.

Therefore, TCUDB must perform a feasibility test for each query
that contains qualified patterns by evaluating the input data ranges,
identifying the most compact inputs/outputs data types and es-
timating the working set sizes for operators within a query. To
facilitate this process, TCUDB adds metadata to each database table
to contain three values for each column, including (1) the minimum
value, (2) the maximum value, and (3) the number of distinct values.

If the operator works with the numerical computation on the
input data values directly, TCUDB first uses the minimum and
maximum values along with the raw data types of the operator’s
input data. If the input data can be represented by TCU-compatible
data types, including 16-bit half floating-point (half), 8-bit integers
(int8), and 4-bit integers (int4), this stage will also determine the
most compact data type. However, if the dataset cannot leverage
any TCU-compatible data type, the feasibility test will suggest that
the system not use TCUs in the incoming query. The database
system can use other available options (e.g., a CPU-based or a pure
GPU-based query engine) instead.

The number of records, the number of distinct values and the
maximum/minimum values of each column also help the feasibility
test to identify the case where the result value can surpass the range
of 16-bit numbers and potentially lead to errors. Let m; represents
the maximum of the maximum value and the absolute value of the
minimum value within a column of n elements in one of the input
matrix and that of a row with n elements is my for another input
matrix, the feasibility test can conservatively estimate the maximum
value in the resulting matrix as mq X my X n. If the maximum result
value falls beyond the range of TCUs 16-bit number ranges, TCUDB
will use query executors based on other hardware components
instead.

4.2.2 Cost estimation of query plans. The cost of a TCU-accelerated
operator contains:

(1) the data transformation cost DT_op which equals the latency for
creating input matrices to perform the TCU-accelerated operators
from the input tables,

(2) the data movement overhead DM_op for copying data between
the host main memory or data storage to the GPU’s device memory,
and

(3) the computation time CT_op, the actual running time that the
TCUs spend on executing the generated TCU code.

Depending on the estimated working set size of the query, the
data transformation process of TCUDB can take place using the
CPU or the GPU. The costs of DT_op and DM_op vary according to
the approach.

CPU-based data transformation. The most general data trans-
formation approach in TCUDB uses the host main memory and
CPU to prepare inputs for the designated TCU-accelerated operator.
This approach fills input matrices for a TCU-accelerated operator
using methods described in Section 3 and works regardless of the
estimated working set size of the query.

Consider the example of the 2-way natural join. To create the
input matrices for an operator, TCUDB typically needs to scan
through qualified/valid records for the operator and convert the
values into the desired matrix representations. The data transforma-
tion cost is linear to the number of qualified/valid records. Let A and
B be two input tables (which can also be intermediate results from
subqueries) of size m and n respectively. Assume the throughput of

the host system in scanning the raw data is a constant «. If their
matrix representations mat(A) and mat(B) are not yet created, the
scan operator will take DT_op ~ « - (m + n) in transforming input
data to the desired matrices. The cost can also be a - m or « - n if
either matrix is already created.

In this approach, the data movement overhead is controlled by (1)
the volume of transformed matrices or input data and (2) the avail-
able bandwidth between the GPU and the host processor denoted
by Bandwidthgpy/nost- If A is of dimension M x K with type_A and
B is of dimension K X N with type_ B, the data movement cost can
be estimated by

MK - sizeof(type_A) + NK - sizeof(type_B)
BandWidthGpu/host ’

DM _op =~ (1)

GPU-assisted data transformation. To optimize the data trans-
formation overhead DT_op, the query plan may perform the data
transformation on the GPU to leverage its massive parallelism to
convert thousands of pairs of values simultaneously into matrix for-
mat. In other words, we can take advantage of the GPU’s parallelism
to speed up the data transformation operation as well as avoid the
additional data movement that copies the transformed matrix from
the host memory to the GPU device memory. In contrast to the
CPU-based approach, the data movement occurs before the data
transformation in the GPU-assisted approach as the raw data must
be present in the GPU’s device memory in advance for the transfor-
mation to begin. Therefore, TCUDB can only use GPU-assisted data
transformation when both the estimated working set size and the
volume of necessary raw data (e.g., columns from the selected table)
for transformation can fit in GPU’s device memory. Leveraging
the same 2-way natural join example, TCUDB can estimate the
corresponding DM_op using Equation 2 as:

M - sizeof(type_A) + N - sizeof(type_B)
BandWidthGpu/host '

DM_op =~ (2

where M and N are the numbers of elements in the raw data
columns of the joined columns and (type_A) and (type_B) are the
raw data types of both columns before transformation.

In terms of DT_op, the GPU-based scan operator still takes = o -
(m+n) operations in transforming input data to the desired matrices
—buta GPU can perform p of these in parallel if the GPU has p vector
processors available. In modern GPU architectures, p is typically
more than 2,000. The DT_op in GPU-assisted approach is estimated

as DT_op = w Notice that the GPU-based approach needs to

move raw data in Equation 2, TCUDB still needs to evaluate the
summation of DM_op and DT_op to determine the most appropriate
data transformation method.

Computation cost. Finally, the dimensions of the transformed
input matrices also determine the TCU computation time. Using
the number of records, the number of distinct values and the most
compact data type derived from the feasibility test, TCUDB can esti-
mate the required device memory and the density of input matrices
for the operator. Based on the estimation, TCUDB can potentially
take three different approaches in performing an operator.

(1) If all inputs and outputs fit within the device memory, TCUDB
simply needs to copy all inputs into the device memory and invokes
the matrix multiplication function once.

(2) In case the working set size exceeds the available device memory,
TCUDB’s query plan will need to apply the blocked and pipeline
matrix multiplication algorithm [52, 97] to move parts of input and
output data as well as perform matrix multiplications block-by-
block. (Section 4.2.3)

(3) If the densities of input matrices are lower than a certain thresh-
old (an architecture-dependent value), TCUDB will use sparse ma-
trix multiplications instead. (Section 4.2.4)

Since each pair of values in input matrices requires 2 operations
for multiplication and accumulation, the computation time in the
simplest case where all input matrices fit in the device memory can
be estimated by

CT op~ MNK X — 2 3)
peak_TCU_TFLOPS

where peak_TCU_TFLOPS is the TCUs’ peak number of floating-
point operations per second (FLOPS). If the query results in inputs
larger than device memory, TCUDB still leverages Equation 3 to
estimate the cost but replaces peak_TCU_TFLOPS with the measured
FLOPS from the blocked/pipelined matrix multiplications. For the
cases where input matrices are sparse, TCUDB estimates the com-
putation costs not only using the FLOPS from our sparse matrix
multiplication implementation but also multiplying the cost by the
density of inputs.

The final cost estimation is then the summation of the above
three terms DT_op+DM_op+CT_op. TCUDB then compares this esti-
mated cost with the estimated cost of the other CPU/GPU-based op-
erators to decide whether to use TCUs. TCUDB obtain the most up-
to-date estimations for Bandwidthgpy/pest and peak_TCU_TFLOPS
by checking the execution time of previous queries.

Note that there can be more than one TCU-accelerated plan be-
cause the system can choose a higher or lower-precision data type,
which can change the decision of whether to perform transforma-
tion operator within the GPU or not.

4.2.3 Handling large datasets. Due to the limited device memory
capacity (e.g., 24 GBs in our case), the input matrices of TCUDB’s
operators cannot fit in the GPU’s device memory if the datasets are
extremely large and dense. Once TCUDB catches such a case during
the feasibility test, TCUDB will consider applying a blocked matrix
multiplication algorithm for the corresponding query operators.
The blocked matrix multiplication algorithm works by fetching a
submatrix from the system main memory as a multiplicand, gradu-
ally fetching other same-sized submatrices as the multiplier, and
aggregating the result to the corresponding submatrix in the result
matrices.

TCUDB’s implementation of blocked matrix multiplication ex-
tends MSplitGEMM [97] to support blocked matrix multiplications
using TCUs. Both TCUDB’s implementation and MSplitGEMM
exploit pipeline parallelism by creating multiple streams in fetch-
ing input submatrices, performing matrix multiplication and ac-
cumulation, and writing back results simultaneously. TCUDB’s
implementation uses TCUs for matrix multiplication and accumu-
lation instead of conventional GPU cores. During the periodical
microbenchmark tests, TCUDB also performs a series of tests to
figure out the optimal size of submatrices that balances the latency
of each stage in the pipeline to maximize the computation through-
put. The measured throughput using these optimal parameters will
also be used as the metrics for evaluating the costs of large and
dense inputs in Section 4.2.2.

4.2.4 Handling sparse matrices. Due to the current capability of
TCU hardware in handling sparse matrices, conventional TCU oper-
ators that assume dense matrices as their inputs may not always out-
perform a GPU plan when the input matrices to a TCU-accelerated
operator are very sparse. Therefore, TCUDB implements a TCU-
accelerated sparse matrix multiplication (TCU-SpMM) operator
that

e transforms an input into a compressed sparse row matrix format

(CSR)

e partitions an input matrix into 16X16 submatrices,
e skips submatrices containing all 0s,
e multiplies the rest using TCUs and accumulates results [94].

By doing so, the TCU-SpMM operator can still leverage TCU’s
computation power but on a much smaller number of submatrices
pairs when the input matrices are large and sparse.

To determine whether a TCU-SpMM-based plan should replace
the dense multiplication plan, TCUDB needs to estimate the cost
similar to the regular cases with dense matrices. We estimate the
total cost by multiplying the estimated dense operator cost by
the inputs’ densities. In addition, the TCU-SpMM-based operator
requires scanning inputs to construct/partition a matrix and filter
those all-0-submatrices. TCUDB estimates this part of the cost with
a simple linear function with respect to the input size.

Finally, the query optimizer of TCUDB still needs to evaluate
plans using the GPU-based HashJoin cost model [92], in particu-
lar sparse matrix multiplication on conventional CUDA cores to
determine whether a TCU-SpMM-based plan is more efficient.

5 EXPERIMENTAL RESULTS

Leveraging TCUs’ capabilities in optimizing matrix algebra, TCUDB
delivers up to 14x speedup over a conventional GPU-based DB en-
gine for the sample queries that Section 3 describes. Inspired by
the result, we experimented with TCUDB in real-world applica-
tion query workloads with inputs as large as 24 GBs. In summary,
TCUDB achieves up to 7.52X speedup in matrix multiplications, up
to 3.96% speedup for analytic queries in the star schema benchmark,
up to 288X speedup in entity matching queries, and up to 4.22x
speedup for the core of the PageRank algorithm. The comparison
of TCUDB performance on different GPU architectures also reveals
the strong potential of TCU-accelerated DB engines in the future.

5.1 Experimental Methodology

We conducted experiments on a machine with an Intel Core i7-
7700K processor, 32 GB DDR4 DRAM. The processor contains 4
cores and each processor core runs at 4.2 GHz by default. The
GPU in our experiments is an NVIDIA GeForce RTX 3090 GPU
based on Ampere architecture. This GPU contains 24 GB GDDR6X
device memory and 328 Tensor Cores and attaches to a PCle 3.0
%16 slot. The TCU-accelerated operator library in TCUDB is im-
plemented using a NVIDIA CUDA Toolkit 11.2. The system runs a
Linux 4.15.0 kernel with the NVIDIA driver version in 460.32.03. We
compared TCUDB with a state-of-the-art GPU execution engine for
warehouse-style queries, YDB [92] and a pure CPU-based execution
engine, MonetDB [10], as reference designs.

5.2 Microbenchmark

To allow query optimizers to select the right query plans, the data-
base engine must obtain samples of executing workloads using
TCU-accelerated operations. Upon installing TCUDB in the system
or when the system detected any change in hardware configura-
tions, TCUDB will perform a one-time sampling process that runs
a set of microbenchmark workloads to collect critical timing infor-
mation for query optimizations.

During the sampling process, TCUDB will execute three main
queries, Q1, Q3 and Q4 from Section 3, with various-sized, random-
generated input datasets. TCUDB does not evaluate Q2 and Q5 as
they are essentially combinations of other queries. The sampling
process also helps us to classify the cases where TCUDB is superior
to the conventional GPU-accelerated engine and identify the source
of performance gain/loss in TCUDB. With large system main mem-
ory and aggressive file system caching by operating systems as well

(@)

§ 300 To (TCUDE) e 3 400 i roupBy+Aggregation (TCUDB] B | 35441 5 30 Join+Aggregation (TCUDB) = 303.24

8 50 HashJoin (YDB) == 8 350 GroupBy+Aggregation (YDB) ——— 8 300 Aggregation (YDB) ———

@ MonetDB == %) HashdJoin (YDB) === % HashdJoin (YDB) ===

5 GPU Memory Copy —— 5 300 MonetDB === 5 250 MonetDB ===

£ 200 Fill Matrices (TCUDB) s 2 250 GPU Memory Copy ==—=1 S GPU Memory Copy =—=2

S S Fill Matrices (TCUDB) mmmmm 3 200 Fill Matrices (TCUDB)

by 150 e 200 by

£ 100 € 150 g 150

§ 6588 5268 | § 100 8818 sess |8 10 7689 5287

3 50 22,05 3 23.15, 3 50 2247

8 420100005 308012 1’2'_5‘6041 ﬂ 173 8 %0 14100004 L 380008 14.57) 32 H 187 8 563100008 - '8000.19 18.015.7¢ HZJB

[0) =) =

§ 33% 53% £3%F B85 828%F ZZE ZEZEZ BZZIRE ZTIZZ ZE3E B3F 2E%

s ®z3 ®>*3 @823 Bzl s B3z B3 Py BzIs Bz Py BT B3I

E IR 2 S o 2 S o e S o 2 E S o 2 S o 2 S o 2 S o S I 2 S o 2 S o e Y 2

2 g9 g8 S3z9g a2 g8 S99 3 s -89° -g9 g8 -39 -38a
S¢s 8g4g 8§83 &5 82¢ 8&8g4g 883 85« 8928 8354 983 8§5g
g8 g2 ¥ g6&¢ g8 g®2 28 m8¢ g8 g®2 ¥ g&¢
S < 2 o 2 © ° I 3 <) o 3 © ° N S < 2 o 2 © ° I

(b) (©

Figure 7: The relative execution time of running (a) Q1, (b) Q3, and (c) Q4 with various number of records and 32 distinct values

in the target attribute on TCUDB, YDB, and MonetDB.

«
6 Join (TCUDB) —— 8 Join+GroupBy+Aggregation (TCUDB) === 6 O Join+Aggregation (TCUDB) ===
= HashJoin (YDB) == GroupBy+Aggregation (YDB) ——1 Aggregation (YDB) ——
=5 ¢ MonetDB === =7 s HashdJoin (YDB) == =5 HashJoin (YDB) ===
% ml .GPU Memory Copy =—— % < MonetDB == % MonetDB ==
o Fill Matrices (TCUDB) mmmmm o 617 GPU Memory Copy —— o GPU Memory Copy ——
@ 4 @ Fill Matrices (TCUDB) @ 4 3 Fill Matrices (TCUDB)
P < = 5 .
[N [o (o]
H = S S H
5]) o 5]
23 Q 4 2 23
o o © o o ©
£ =] £ 3 - £ < -4
= : = N = ®
c 2 = © c & & c 2 =
2 o o = 2 2 N] 2 o 5
3 < 3 =] P 3 < < : N
o 2 o - o = o © 3 o o o ~ o - NS ©
1|7 =1 © © e ¥ 288¢ =37 ¢ 2 8 1) o @© © R o115 : @ 3 © Y., NNo oN®
3 Se |lo— |low S8 223 =24 51||5 @) 3 So 9« 930 o395 o [|1Sn llSo ||@e ||Ze 83y II8 &3
5 8 8 Do Dv— D'— H N 285 o S Hg ST 1128 S8 |[|sR Hov— osN FHogl o S [i]o [i]v— - |8 Hog IS1=1=R=1=]
8, 1Hs s WS Nz Hlls Wfs AN #A0 3, HES 1AS NES l§s 18s lEs f8s [88 3, 1Hs s s [fs [0s |G OAE G
T e s o o g o o o s s s .~ g e e s s s s o
0NN NNON O0N0 000 OO0 00N 00O Omm OO OND OO0 N0N0 00N 000 O0m O0m 0NN 0NN ON0 000 OO0 00N NOM Omm
s 555 585 888 £08 280 880 S0 880 © 808 888 £0C 858 888 £0C 88C 868§ S08 888 98 o08 808 885 888 85t
2 830 530 5=R 5sP Sal 53R BaR 59R % BaR 530 530 5gP 5oR 530 S2° 5gC © S3C 53L b= 5el SaC 53R bap bel
Sok 23t S8t Sk S-b 2k 23t gt Sokt 2aE S8t 2t 2-E St 23k Zob 2ok 2ot S8t Sk S-b 2k 23t st
Son Sox Sne =Ne =ha =25y 2Qx =Qu Siq 26y =rne =Ne =Dha =25 2Qx =% Son Sy Sne =Ne =ha =25y =Qx =Qw
ADN $OO PON ©O O <N oNUT LD ADD gOD EON OB NOT < N ENUT oSO ADD g DD PON ©OB O w4 N EIF oI®
8%e 38¢ Tz B0 78h Igo FTeS 84C 8¢ ITe 83T BEU B0 IO FOT He8 8T 30 VT KU 78b IS FeS 84S
©T® Yo —J© NFo 1WIo OZT. OB OB OV oY —JW NJo VI OFT. OB OB ©T® Yo —J© NFo VR OB OF Q3T
® 2 o © oY oY Yo —Jv NFw <20 ® 9 o © ©Yo oY oY —fw NFo <JFo ® 2 o © oY Yo Yo —Jv ANFw <20
S T3 TR 2 3 2 3 2 ¥ ¥ gV SBT3 T3 23 29 3 2 ¥ V2 g5 S T3 T2 3 2 3 2 ¥ ¥ gV
<+ < o ¥ o ¥ o ¥ oo 22 9 2 o 2 < <+ o ¥ o ¥ o ¥ o 22 90 22 o0 2 <+ =3 o ¥ 8 ¥ 6 ¥ 0 292 o © o ©
=3 < < 8 < g < g < < =3 < g < g < g < < < < 8 < g < Sr <
(@) (b) (©)

Figure 8: The relative execution time of running (a) Q1, (b) Q3, and (c) Q4 with 4096 records and various distinct values in the

target attribute on TCUDB, YDB, and MonetDB.

as the underlying high-performance NVMe SSD, we have not ob-
served significant disk load time in each DB engine’s initialization
phase.

As MonetDB is a full-fledged system, we excluded the additional
steps/overheads by measuring only the time to execute the physi-
cal plan for a fair comparison. (We use the “~timer=performance”
option and disable the resulting output to report the runtime part
only.)

Figure 7 and Figure 8 present a subset of microbenchmark results
from the sampling process on the default testbed described in Sec-
tion 5.1. We label the x-axis of each sample in this figure with two
parts in the configuration. The first part is the parameters for the
query, M, K and N, that represent the sizes of the input matrices
for each evaluated operator where one matrix has the dimension of
M X K and the other is K X N. To save space, we only present the
cases when M = N and label each configuration with their values
of M and K as M, K in these figures. The second part is the DB
engine (i.e, TCUDB, YDB, or MonetDB). The vertical axis in each
figure shows the aggregated execution time in each step of running
these queries, normalized to the total time when running the same
query using YDB, the conventional GPU-accelerated engine, with
M =N =4096 and K = 32.

Figure 7(a) shows the performance of Q1 for TCUDB, YDB and
MonetDB from input sizes 4096 to 32768. Both TCUDB and YDB sig-
nificantly outperform MonetDB for this query. TCUDB outperforms
YDB in most configurations. The advantage of TCUDB is especially
significant when datasets grow. TCUDB outperforms YDB by 14x

for the case of (32768, 32) and 9.3X for (16384, 32), but only 1.18x% for
(4096,32). Observing the breakdown of execution time in Figure 7(a),
we found the major speedup comes from the significant reduction
of computation time from the TCU-accelerated join operator, de-
spite the additional overhead in filling and transforming datasets
into the desired matrices for TCUDB.

Figure 8(a) varies the number of distinct values that affect the
sparsity of input matrices in Q1 for TCUDB’s join operator. As the
number of distinct values becomes larger, the performance advan-
tage of TCUDB’s join operator over YDB and MonetDB begins to
shrink. Because the sizes of one dimension of both input matri-
ces for the TCUDB join operator in Q1 depends on the number
of distinct values from the chosen attribute to perform matching,
matching on an attribute with more distinct values will lead to
computation on larger but sparse matrices. In contrast, YDB’s and
MonetDB’s HashJoin algorithm produces smaller vectors as the
chance (i.e., total number) of records sharing a single value reduces
if the number of distinct values increases. Therefore, even though
YDB’s and MonetDB’s HashJoin operator needs to work on more
pairs of vectors, each pair of vectors have smaller dimensions. How-
ever, TCUDB’s join operator still outperforms YDB and MonetDB
in all cases until the number of distinct values reaches 4096. This
profiling result suggests that TCUDB select a GPU-hash-join-based
or sparse-matrix-based implementation if the density of input ma-
trices is below 0.04% on our testbed.

Figure 7(b) presents the performance of running Q3 using TCUDB,
YDB and MonetDB. Q3 evaluates the group-by and aggregations

over join query. Unlike the conventional GPU-accelerated DB en-
gine where group-by and aggregations are separate operations
after the hash join, TCUDB can implement the whole Q3 using just
one matrix multiplication. As a result, the execution time of using
TCUDB of executing Q3 remains similar to executing Q1 when the
input parameters are the same. However, YDB or MonetDB always
have to perform the additional group-by operations and leads to
a longer execution time than performing Q1 for the same inputs.
Therefore, the performance advantage of TCUDB becomes more
significant for Q3. For (32768, 32), TCUDB can outperform YDB by
45X%.

When we increase the number of distinct values as in Figure 8(b),
TCUDB becomes less advantageous, similar to the phenomenon
in Q1. However, as TCUDB still uses single-matrix-multiplication-
based Join/Aggregation/GroupBy operation to perform operations
where YDB or MonetDB needs multiple-step HashJoin and Group-
By/Aggregation operators, TCUDB still outperforms YDB and Mon-
etDB in all cases.

Figure 7(c) presents the relative execution time of Q4 on TCUDB,
YDB and MonetDB. YDB and MonetDB will perform Q4 using
HashJoin and then an aggregate query but without a group-by op-
erator. Therefore, the overall execution time in each configuration
of YDB and MonetDB is less than Q3 because of the elimination
of group-by operator. However, again, TCUDB still implements
this operator using single matrix multiplication on the transformed
input matrices. Therefore, TCUDB achieves 19X speedup for (32768,
32).

As in Q1 and Q3, TCUDB becomes less advantageous when we
increase the number of distinct values as in Figure 8(c). Because the
amount of operations in YDB and MonetDB for Q4 is fewer than
Q3, we still see TCUDB falls short when the number of distinct
reaches 4096 and suggest an alternative plan for cases where input
matrix densities are below 0.04%.

5.3 Analytic queries: Star Schema Benchmark

We evaluate the performance of TCUDB on the popular Star Schema
Benchmark (SSB) [68], a benchmark suite modeling the data ware-
house workloads. SSB is widely used in benchmarking analytic
engines due to its realistic modeling of data warehousing work-
loads. The database form a star schema consisting of one fact table
(lineorder) and four dimension tables (supplier, customer,
date and part) connected to the fact table by foreign keys.

The benchmark provides 13 queries in 4 flights. TCUDB sup-
ports all the 13 SSB queries. Figure 9 compares the performance of
TCUDB, YDB and MonetDB in running SSB queries with scaling
factors varying from 1 to 8 resulting in data sizes from 0.7GB to
5.6GB.

Figure 9 summarizes the results. TCUDB outperforms both YDB
and MonetDB in all evaluated SSB workloads with up to 3.96x
speedup when running Q4.1 with scaling factor as 8. Even with the
worst performing SSB Q3.1, TCUDB still maintains the same level of
performance as YDB. These promising results show that TCUDB has
the potentials of being integrated into real-world analytic engines.

5.4 Case studies: matrix multiplication, entity
matching, and PageRank

In addition to individual operators, we also evaluated three rep-

resentative use cases, matrix multiplication, entity matching and

PageRank to demonstrate TCUDB’s capabilities in handling inten-

sive operations and large datasets.

2048 4096 8192 16384 32768

X2048 X4096 X8192 | X16384 | Xx32768

X2048 X4096 X8192 | X16384 | X32768

x=0,1 0 0 0 0 0

27 <x <27 0 0 | 0.00076% | 0.00076% | 0.00076%
—25 <x <215 || 0.00114% | 0.00450% | 0.00908% | 0.00908% | 0.00908%
—231 < x <231 || 0.00122% | 0.00451% | 0.00909% | 0.00909% | 0.00909%

Table 1: The mean absolute percentage error rates (MAPE) of
matrix multiplication queries with various value ranges.

5.4.1 Matrix Multiplication. Matrix multiplication was once con-
sidered inefficient for relational databases. With the help of hardware-
accelerated matrix multiplications, TCUDB can make queries con-
taining complex linear algebra operations more efficient. We use
a query in Figure 5 to demonstrate this use case. We create two
tables A and B where each record in both tables has three attributes
(row_num, col_num, val) as the input. We generate the synthetic
dataset according to this schema with input matrices of dimensions
up to 32768x%32768 and data volume up to 24 GB, approximately
2.14 billion records.

Figure 10 presents the relative execution time and breakdown
of performing matrix multiplication on TCUDB and YDB, using
YDB with each table containing 4096x4096 records as the baseline.
We did not include MonetDB’s result in these Figures as MonetDB
cannot finish these queries within a reasonable amount of time and
present MonetDB’s results in Figure 10 would render the results of
TCUDB and YDB invisible. When the dataset contains fewer than
16384%16384 records, the input matrices that TCUDB creates for
the TCU’s Join + Aggregation + GroupBy operator completely fit
in the GPU’s device memory. TCUDB consistently outperforms
YDB and delivers up to 7.51X speedup. When the dataset contains
32768%32768 records for each table, TCUDB must partition the in-
put matrices into submatrices, use the block algorithm, and pipeline
the swapping in/out of submatrices to perform the Join/Aggrega-
tion/GroupBy operator. TCUDB still performs multiplication and
aggregation of submatrices using TCUs. Even with the overhead
of data exchanges in the blocked Join/Aggregation/GroupBy op-
erator, TCUDB is still able to outperform YDB by 7.92x for the
case of 32768x32768 records for each table. As datasets fit in the
system’s main memory as well as the operating system’s aggres-
sive caching and the help of high-speed NVMe SSD, the data load
time from storage is relatively insignificant in these experiments.
The data movement (cudaMemcpy) time is the most timing critical
stage for TCUDB. However, the amount of time is comparable to
TCUDB and YDB because both engines only transfer the required
data to the device memory. The most time-consuming parts for
YDB are HashJoin and GroupBy operations because code using
conventional CUDA cores needs to iterate tables row by row. YDB
spends up to 14X (in the case of 16384x16384 records in each ta-
ble) more execution time in HashJoin and GroupBy than TCUDB’s
single Join/Aggregation/GroupBy operator.

Due to the limited 16-bit precision of TCUs, they cannot gener-
ate 100% accurate results in some cases. Table 1 shows the mean
absolute percentage error (MAPE) rates in performing matrix mul-
tiplication queries. In the cases where the values are only 0s and 1s
— similar to the cases of Q1 and Q2, the generated TCUDB opera-
tions can always produce accurate outputs. Therefore, the result
implies that TCUDB never leads to incorrect outcomes for sub-
queries like Q1 and Q2. When we enlarge the value ranges, we
start to see errors in results, but with very limited imprecision —
even in the worst case, the MAPE is lower than 0.01%. We believe
this error rate is acceptable in most cases. This level of data error
does not cause any inexact query results for the entity matching
or the microbenchmark workloads. For numerical analysis such

aoe W o e

56 JmmAggregauon TCUDE) = 39 Tom Aggregaﬂon =]
2 gregaton (YDB) == 28 gregation (YDB) ——1
<5 o m (B) == = I laehoin [VDE)
2 etDB —— a7 MonetDB ———1
5 4 5 6]
H Fil Msinese 4TCUDE) = o 2 . i isticer néuDB) =]
3 @ 35 3
33 8 EReE]
o 2413 2
£2 s s s E3
8 - 8 8 s 3 g s s

g1 = S 5 ¢ ST 2 - mes
E S| 3 S 2
o g0 ng Os
° [@ @ @ o @ @ @ @@ 9 @ @ @ o @© @ @ @ @ [
T 90 a [aR=l-) Qo a 8848 g oo6a g 8 a o oo o o a
S T = 2 T = 2 T = 2 T =2 8 T = 2 T = 2 T = 2 T = 2
£ £ - o S - o 2 =-o E-o £ £ Zo 2 =-o S - o 2 =-o
g §7-E E§5E Ef3E E3;EE grcE E3E E5E £ E
5 S0 - S0 - S0 - S&c 5 S0 - S0 - S 06 - S0 =
2 = = = o - o = £ 2 = 5 = o - o - <

= 1] o G o G < S = 5] o <] o G < s}

o] ¢} <] 1] ¢} <] <]

(@) (b)

Normalized execution time (Lower is faster)

8 Joln Aggvegatlon (TCUDB) § 8 Jmn Aggrsgaﬂon (TCUDB) ==
7 g regation (YDB) ——1
= O laehoin [VDE)
6 26 MonetDB ——1
5 GPU opyl:l
5 25 o~ i ratness (G008 et
4 S n
=4ie o @
3 23ta o
: :: ﬂ 2. 125 |28 [|2s
g = = = - 9
5 {
. sillEs llOe |[lA8 [l8s
—_ = = —_ = = —_ = = - = = 3 —_ = = —_ = = = = = _ = =
o o o o oo o o o o o o ° o oo o o o o o o o o o
a oo a oo a oo oo 3 o oo a oo aQ oo o o Qo
T = 2 T = 2 T = 2 T > 2 S T = 2 T = 2 T > 2 T = 2
c - O c - O c - O s - O = c - O c - O c - O c - O
Sk R St $3EE 82 E R 23k Sk
S0 - 6 - S0 - S0z 5 £To= S0 - <SG - s 3 -
- = = o - o = £z = = = o - o3 - X
= 5 o <} o <} < S = & o S o S < <}
<} s} G S G <} <} S
(© @

Figure 9: The relative runtime of star schema benchmark on TCUDB compared to MonetDB and YDB running the same query

as the baseline with scaling factor (a) 1, (b) 2, (c) 4 and (d) 8.

70 i 66,32
Join+GroupBy-+Aggregation (TCUDB) ——1

OE) 60 GroupBy+Aggregation (YDB) C—

= HashJoin (YDB) ==

c~ 50 GPU Memory Copy —=

£ Fill Matrices (TCUDE) mmmmm

38 40

52 30

T O

o=z 20

33 1 3.97 0 897

ET 1.00) : 0.53 2.02

£ 018 o 22]

z 4096x 4096x 8192x 8192x 16384x 16384x 32768x 32768x
4096 4096 8192 8192 16384 16384 32768x 32768x
x4096 x4096 x8192 x8192 x16384 x16384 32768 32768
(YDB) (TCUDB) (YDB) (TCUDB) (YDB) (TCUDB) (YDB) (TCUDB)

Figure 10: The relative execution time and breakdown of
matrix multiplication query on TCUDB and YDB.

as SSB, the result values can have minor error rates typically less
than 0.001% for cases with input values larger than 21> or matrices
with a dimension larger than 8192 due to the 16-bit representation.
However, the error rate is very insignificant and never results in
misplacement of rankings and orderings of the query results.

5.4.2 Entity Matching. Entity matching (EM), also known as entity
resolution, fuzzy join, and record linkage, searches records corre-
spond to the same real-world entities from different data sources [16,
25, 27, 50]. A key component of EM is blocking [30, 50, 70]. Given
two tables of entity records, the goal of blocking is to apply match-
ing heuristics to quickly generate candidate pairs of records that
are likely to be real matches, which are later processed by a more
accurate pairwise classifier (aka the matcher). Scalability is the main
challenge of blocking as the heuristics are typically natural join
conditions (e.g., selecting products with the same brand) that often
produce large join results. Therefore, we expect that TCUDB can
provide significant performance gain for this EM workload.

To validate this hypothesis, we evaluate TCUDB’s performance
on two real EM datasets BeerAdvo-RateBeer and iTunes-Amazon
from the Deepmatcher benchmark [62]. The BeerAdvo-RateBeer
dataset contains two tables, where one of them contains 3,777 rows
and the other contains 2,671 rows, from different sources. Each table
has the same table schema with five attributes {ID, BEER_NAME,
FACTORY, STYLE, ABV}. Table 2 reveals the number of distinct
values of each attribute, which acts as one matrix dimension for
TCUDB when performing join operation. We evaluate the following
query on BeerAdvo-RateBeer dataset to perform blocking:

-- EM-blocking query for BeerAdvo-RateBeer dataset:
SELECT TABLE_A.ID, TABLE_A.BEER_NAME,
TABLE_B.ID, TABLE_B.BEER_NAME
FROM TABLE_A, TABLE_B
WHERE TABLE_A.ABV = TABLE_B.ABV;

-- attributes may vary

The iTunes-Amazon dataset contains two tables, where one of
them has 6,907 rows and the other has 55,923 rows, from iTunes and
Amazon music. Both tables share the same table schema with seven
attributes ID, PRICE, GENRE, TIME, ARTIST, COPYRIGHT, and ALBUM.

Qe w o e

Attribute
#distinct values

ABV | Style | Factory | BeerName
20 71 3678 6228

Table 2: Distinct values in BeerAdvo-RateBeer dataset.

Attribute Price | Genre | Time | Artist | Copyright | Album
#distinct values | 12 813 | 908 | 2418 3197 6004

#distinct values | 25 1614 | 1208 | 6420 8199 11005
(scaled)

Table 3: Distinct values in iTunes-Amazon dataset.

Table 3 shows the number of distinct values for each attribute in
the iTunes-Amazon dataset. We perform the following query on
the iTunes-Amazon dataset for blocking:

-- EM-blocking query for iTunes-Amazon dataset:
SELECT TABLE_A.ID, TABLE_A.SONG,
TABLE_B.ID, TABLE_B.SONG
FROM TABLE_A, TABLE_B
WHERE TABLE_A.ARTIST =
vary

TABLE_B.ARTIST; -- attributes may

Figure 11 presents the result of running the above EM-blocking
queries on the two datasets and different attributes. As the exe-
cution time varies significantly among different queries, we use
YDB running the same query as the baseline and show the relative
execution time. TCUDB outperforms YDB in most cases, achieving
a maximum speedup of 288X among our experiments.

TCUDB is especially effective when the number of distinct values

is small. For the BeerAdvo-RateBeer dataset in Figure 11(a), TCUDB
is at most 33x faster than YDB when searching for matches on
the ABV attribute where there are only 20 distinct values. For the
iTunes dataset in Figure 11(b), TCUDB further shows 288X speedup
over YDB when performing entity matchings on the Price attribute
that only has 12 distinct values. When the number of distinct values
becomes larger, the performance advantage of TCUDB’s operators
relying on dense matrix operations over YDB starts to shrink, for
the reason we have described in Section 5.2. However, as TCUDB
uses TCU-spMM in these cases, TCUDB still outperforms YDB and
MonetDB in all cases.
Scaling up. To demonstrate the ability of TCUDB and the query
optimizer in dealing with larger EM datasets, we synthesized an
iTunes-Amazon dataset by randomly duplicating each input table’s
entry values. The resulting dataset contains 111,846 records in the
larger input source and 13,814 in the smaller one. The #distinct
values (scaled) show the resulting distinct values in each attribute
field of this synthetic dataset.

Figure 11(c) shows the relative execution time of TCUDB, com-
pared with YDB running the same query. TCUDB still outperforms
YDB in most cases, by up to 216X when performing matching on

o v oe W N = o v om W o =

P Y R S

2 8 Join+GroupBy (TCUDB) 1 2 8 Join+GroupBy (TCUDB) ———1 2 35 Join+GroupBy (TCUDB) ———
&7 HashiotonetDB == 87 MonetDB === g 3o MonetDB ==
2 g epuﬁer%?y(oow) — 2 o HashJoin (YDB) === ° < HashJoin (YDB) ==
5 Fill Matrices (TCUDB) mmmm 5 _GPU Memory Copy === 5 25 “GPU Memory Copy £=——
25 35 Fill Matrices (TCUDB) s = Fill Matrices (TCUDB)
3 3 © 3 2 N
=418 Q sS4l 3 < =
[d 2
E3l@ & o g Esla 3 £S
= o N = N =) T 1
S 2 o o o (=3NS 5 2 = o o o Lo N o <]
= S S S o S = S S S S =] - =
Sl = s = g = g = sl 3118 IR€ |l7e |lge Fr8 [1/S 3 os z
[} 4 o o 5 4 q 5 o (7} 5
g s = o= O §,0As Hos NAZ HAS [Ofe g ¢ UHE [lis
T @ ao o o @ @ o @ @ O D@D 9 ODND DODD OO0 D00 OO0 D00 9 D0NDN OND OO0 OO0 OO@D @mo;d
5888 988 888 2842 1 888 08 280 888 S8R 288 S 883 482 888 482 888 482
E 5>2 592 532 592 E 53l 52 5P 532 5zl 5e2 E 58l 58P 592 532 5zL 5e0
s =3 % =S =< s 5= S e~ 5 s$e% sSEY SEY €% 5% =35 8 S8 sSET SEL sSE€%- =S5% =S3%
z =< > S 5 2 S35 2 S 3 e Z2 SEg Sge SEe S&Ey St S2e 2 STy S8 SEe SEB StE So€

> o @ > > ® g © Z E g2 ¢o0c @ E B £ E£ZFD E<3 -2 00c o E B £ EZD E<3

g 0% 5 08 §5§ B§s Be VR ECOE:BREETZ BCEUEECOE:oRRLES

@ s £ 283 a 3 = < 2°8 =2 o G - < g2 8 =
w o} Q o O o O
2 o o [$)
(@) (b) (©

Figure 11: The relative runtime of the EM-blocking queries on TCUDB using the default deepmatcher datasets (a) BeerAdvo-
RateBeer (b) iTunes-Amazon and (c) scaled iTunes-Amazon, compared to MonetDB and YDB running the same query as the

baseline.
#Nodes 1024 2048 3072 4096 8192 16384 32768
#Edges 2058 4152 6280 8450 17444 37106 82070

Table 4: Reduced graph information.

the price field. When TCUDB performs the query on artist, album
and copyright fields, the query optimizer detects that these cases
contain way too many distinct values and the pure TCU operator
cannot efficiently process the query since the input matrices are
sparse. Therefore, TCUDB uses a TCU-SpMM operator for query
processing and achieves more than 6.67x and 7.8X speedup on
Copyright and Album, respectively, over YDB that essentially per-
forms sparse matrix multiplications using CUDA cores.

5.4.3 PageRank. To demonstrate TCUDB’s ability in processing
graph-related queries as well as data analytics, we also evaluate
TCUDB in performing the PageRank algorithm. PageRank algo-
rithm consists of three steps: (1) computing the out-degree of each
node, (2) initializing the value of each node, and finally, (3) calculat-
ing the PageRank iteratively. The whole PageRank algorithm can
be implemented as the following three queries:

-- PR Q1: compute out-degree
SELECT NODE.ID,

COUNT (EDGE . SRC)
FROM NODE, EDGE
WHERE NODE.ID = EDGE.SRC
GROUP BY NODE.ID;

-- PR Q2: initialize values

SELECT NODE.ID,
(1-@alpha)/@num_node as rank

FROM NODE, OUTDEGREE

WHERE NODE.ID = OUTDEGREE.ID;

-- @alpha is 0.85 by default

-- PR Q3: calculate the PageRank score

SELECT
SUM(@alpha * PAGERANK.rank / OUTDEGREE.DEGREE)
+ (1-@alpha)/@num_node

FROM PAGERANK, OUTDEGREE

WHERE PAGERANK.ID = OUTDEGREE.ID;

-- @alpha is 0.85 by default

Among these three queries, PR Q1 represents step 1, PR Q2
represents step 2 and PR Q3 represents step 3. A complete run of
the PageRank algorithm will invoke PR Q1 and PR Q2 once and
execute PR Q3 several times until the PageRank scores converge or
reach the maximal number of iterations.

We used the Pennsylvania road network dataset from SNAP [53]
that contains 1.08M nodes and 1.54M edges as the input dataset.
Evaluated TCUDB under different sizes of graphs, we created a
subset of the original graph for our experiments using the most
popular N nodes and preserving the connectivity of selected nodes
in the original graph. Table 4 describes the characteristics of the
resulting graphs. Figure 12 illustrates the relative execution time
and the breakdown of latency in each system component for all
three queries. We normalized the execution time to run the same
query using the graph with 1K nodes on YDB.

Though the computation of out-degree using PR Q1 is a one-
pass task (Figure 12(a)), TCUDB’s pure TCU Join/Aggregation/-
Groupby operator still has advantages when the graph is small, by
up to 3.6X speedup with 1K graph. For graphs with more than 3K
nodes, TCUDB selects TCU-SpMM to exercise the Join/Aggrega-
tion/Groupby operator due to the low density in their adjacency
matrices. Compared with a pure TCU Join/Aggregation/Groupby
operator, a TCU-SpMM-based operator spends more time in creat-
ing operator inputs. However, as the TCU-SpMM-based operator
skips submatrices with all 0s, TCU-SpMM significantly reduces the
computation time on matrix multiplications and allows TCUDB to
outperform YDB that essentially performs sparse matrix operations
on CUDA cores by up to 7.69x.

PR Q2 is also a one-time process in the PageRank algorithm
but requires additional arithmetic to initialize the values for PR
Q3. Figure 12(b) shows that TCUDB consistently performs better
than YDB. with speedup ranging from 1.40x to 4.18x. Similar to Q1,
TCUDB uses a dense TCU operator for graphs smaller than 2K and
uses TCU-SpMM'’s Join/Aggregation/Groupby to exercise queries
for larger graphs.

Figure 12(c) shows the performance of TCUDB and YDB in per-
forming PR Q3, the core of the PageRank algorithm that the algo-
rithm executes multiple times until values converge. In our experi-
ments, we performed PR Q3 for 50 iterations for each configuration.
For PR Q3, TCUDB’s Join/Aggregation/Group operator improves
the execution time of arithmetic calculations over the multi-step
process in YDB. TCUDB is 4.22x faster than YDB with 1K nodes
in the graph. Even with graphs containing 8K nodes, TCUDB still
outperforms YDB by 3.24%, as TCU-SpMM'’s Join/Aggregation/-
Groupby skips submatrices containing all 0Os.

5.5 Comparison with Graph Database Systems

TCUDB demonstrates the potential of using relational database
engines to analyze datasets that are originally graphs through case
studies on PageRank. On the other hand, graph database systems

470
470

o

o
o

Join+GroupBy+Aggregation (TCUDB) —— 526
GroupBy+Aggregation (YDB) ——

HashJoin (YDB) ===

GPU Memory Copy ——

Fill Matrices (TCUDB) s

a
IS

IS
w

3.23

w

1.98

)

1.34
1.00

=3
'S
®

0.41 0.44

0.23

o
o

Normalized execution time (Lower is faster)
Normalized execution time (Lower is faster)
n

1K(YDB)
1K(TCUDB)
2K(YDB)
2K(TCUDB)
3K(YDB)
3K(TCUDB)
4K(YDB)
ax(rcuns)] :
8K(YDB)
8K(TCUDB) .ﬂ 2
1K(YDB)
1K(TCUDB)
2K(YDB)
2K(TCUDB)

(@)

Join+GroupBy+Aggregation (TCUDB) ——
GroupBy+Aggregation (YDB) —— 4.17
HashJoin (YDB) ===
GPU Memory Copy ——
Fill Matrices (TCUDB) s

3K(YDB)

—
=5

Join+GroupBy+Aggregation (TCUDB) ——
GroupBy-+Aggregation (YDB) ——
HashJoin (YDB) ==

GPU Memory Copy ——

Fill Matrices (TCUDB) s

IS

w

1.96

o

Normalized execution time (Lower is faster)
n

4K(YDB)
8K(YDB) |
1K(YDB)
2K(YDB)
3K(YDB)
8K(YDB)
8K(TCUDB) -D g

aecrcvoe) [T

n
v [
axrcuos) [] §

=~ 3K(TCUDB)
8K(TCUDB)
1K(TCUDB)
2K(TCUDB)
3K(TCUDB)

—~
o
~

Figure 12: The relative execution time of executing PageRank queries (a) Q1, (b) Q2, and (c) Q3 on TCUDB, using YDB running
the same query as the baseline. Each value equals the actual query time divided by YDB’s runtime on the 1k table.

MonetDB —— YDB —— MagiQ —— TCUQB mmmm
7 3
[}
E 6
=)
835 - 2
xe 3 o &
o8 2|3 e 8= o S g B
@2 22y cCRee -8 =& =
sl 28s 1l [T =
E 0
g 1K 2K 4K 8K 16K 32K

Figure 13: The relative latency of the core join and aggre-
gation operation when running PageRank Q3 in MonetDB,
YDB, MAGiQ, and TCUDB.

provide more natural representations and storage layouts to serve
the same purpose. To investigate the strength and the implications
of TCUDB in the future advancement of graph database systems,
this section compares the performance of TCUDB on the PageRank
algorithm with the state-of-the-art graph query engine MAGIQ [43].
In contrast to the table-style storage that relational database sys-
tems and TCUDB use, MAGiQ’s backend storage is organized as
2-dimensional key-value pairs, typically already in some sparse ma-
trix formats. MAGIQ translates the queries described by SPARQL
into a set of GraphBLAS [19] calls on these sparse matrices.

We use the same SNAP dataset as in Section 5.4.3 to evaluate the
PageRank performance of MAGIiQ with GPU and TCUDB. Figure 13
compares the performance of MAGIQ and TCUDB with MonetDB
and YDB as references. However, the released version of YDB can
only support these queries with datasets containing at most 8,192
nodes. Due to the large overhead of retrieving sparse matrices
in MAGIQ compared to other counterparts, we only present the
latency of the core join and aggregation operations in each exper-
iment. The presented numbers are PageRank Q3’s performance
on the sub-sampled graphs listed in Table 4. MAGIiQ outperforms
YDB, the pure GPU query engine on relational databases, in all
cases, demonstrating that a customized graph database engine does
provide a more efficient platform for graph analytics on the same
architecture. Meanwhile, TCUDB outperforms MAGIQ in all eval-
uated cases. The main reason is that TCUs allow TCUDB to more
efficiently exercise these queries than GraphBLAS that uses only
conventional GPU cores at this moment. We observed that the dif-
ference is more significant as the graph becomes larger and more
sparse. These results help us generate two insights. First, with TCUs,
graph analytics can be efficient with existing relational databases.
Second, graph databases can also be more efficient if their backends
can leverage TCUs as TCUDB does.

3

4096,32 C——1 16384,32 1 average mmmm
= 8192,32 1 32768,32 mmmm
T 25 -
@ IS RIS
a 2 e
@ hafiad
g 15
>
S
S
g 05
g
%) 0
Q1 Q1 Q3 Q3 Q4 Q4
(YDB) (TCUDB) (YDB) (TCUDB) (YDB) (TCUDB)

Figure 14: The microbenchmark speedup of using RTX 3090
over RTX 2080 for Q1, Q3, Q4 on TCUDB and YDB. Each value
equals RTX 2080 time divided by RTX 3090 time.

5.6 TCUDB on different GPU architectures

To investigate the performance scaling on different GPU architec-
tures and their implications to the design of the TCU-accelerated
DB engine, we perform experiments on NVIDIA’s 2080, which uses
an earlier Turing GPU architecture with the last generation TCU
available.

Figure 14 compares the performance of microbenchmarks on the
same queries Q1, Q3, Q4 mentioned in Section 5.2 using both YDB
and TCUDB on RTX 3090 GPU and RTX 2080 GPU. The baseline
ran the same query using the same DB engine on RTX 2080. We
observed that TCUDB performs better generation-over-generation
— when using RTX 3090 TCUDB achieved an average speedup of
1.77% on Q1, 1.74X on Q3 and 2.25X on Q4, but YDB only achieved
1.37X on Q1, 1.23X on Q3 and 1.25X on Q4. It is worth noting that
RTX 3090 contains only 328 Tensor Cores compared to 368 Tensor
Cores in RTX 2080. On the other hand, the RTX 3090 has 10496
conventional CUDA GPU cores for vector processing while RTX
2080 only has 2944 of them. The results reveals that the performance
scaling of Tensor Cores in newer generations of GPU architectures
is stronger than conventional vector processing cores, given that
RTX 3090 has fewer Tensor Cores, 3.4X more CUDA cores, but
TCUDB’s speedup is more significant on RTX 3090. This result also
indicates applications, including DB engines, with a larger portion
relying on TCUs will expect to receive more performance gains
when new GPU architectures are used.

6 RELATED WORK

Hardware-accelerated DB’s. Integrating advanced hardware ac-
celerators into database systems has been an active line of research
for the past few decades. Commonly considered accelerators in-
clude GPUs [12, 13, 17, 29, 34, 54, 72, 76, 83, 87, 89, 90, 92, 93] and

FPGAs [28, 59, 63, 69, 88]. Optimization techniques have been pro-
posed for database operators including Select [79], Join [35, 37, 38,
78], Sort [33] and Group-by Aggregate [47]. In particular, to support
star schema queries, YDB [92] implements these operators into a
data warehousing engine, which we used as a baseline for TCUDB.
GPUs have also been incorporated into industrial DB engines such
as OmnisciDB [67], Kinetica [49], and BlazingSQL [9].

With GPUs reducing the computation time but the increasing
volume of datasets, the data movement overhead becomes more
significant to the degree that DB engines must be aware [11, 73].
Several GPUDB systems incorporate GPU RDMA techniques [4,
48, 55, 66, 81, 95] to directly access data on the storage devices [15,
54, 96] or efficiently exchange data among multiple GPUs [58],
bypassing the host system’s main memory. This paper is orthogonal
but will receive significant benefit from this line of research projects.
To fundamentally address the data movement overhead, DB systems
can push down the computation of query processing into existing
or additional hardware logic to offload part of the computation
instead of using computing resources on the host system [22, 23,
44, 45, 51, 85, 86]. However, due to the power and hardware budget
of memory/storage devices, the computing resources near data
locations are typically limited. For the cases studied in this paper, DB
systems still have to rely on host computing resources (i.e., GPUs,
TCUs, FPGAs and TPUs) to efficiently perform the received queries.
With modern matrix processors need to partition matrix data and
accept reduced precision values, DB system like this paper can
still leveage near data processing models to reduce precisions [41]
or reshape data [56] if the processing power in storage devices is
permitted.

Matrix processors in relational databases. To the best of our
knowledge, TCUDB is the first database system that fully lever-
ages Tensor Core Units (TCUs) as matrix processors to acceler-
ate compute-intensive database queries. Prior work [18] leverages
TCUs for scan/reduction operators by mapping scan/reduction
into matrix-vector products. However, [18] only treats TCUs as
wider vector processors leveraging TCU’s fused operations that can
perform multiplications and accumulations in a single operation.
In contrast, TCUDB transforms queries into matrix-matrix opera-
tions so that it can fully utilize TCUs’ nature as matrix processors.
Prior work [40] investigated the feasibility of accelerating relational
queries using Google Cloud’s closed-architecture TPU platform and
proprietary version of TensorFlow. However, due to limitations of
the platform, [40] only accelerates vector-based operators such
as reduced sum. Its implementation can only support single-table
queries (called Dimension Join in [40]). On the other hand, TCUDB
can support a wide range of queries include two-way natural joins
by leveraging TCUs for matrix operations.

Join processing as matrix multiplication. A key technical con-
tribution of TCUDB is to cast the join operator as dense matrix
multiplication. While being unconventional due to the high theo-
retical computational complexity, this idea was explored in [5] and
more recently in [20]. In particular, [20] proposed a fast join algo-
rithm that combines worst-case optimal join algorithms [65] and
fast matrix multiplication. The authors also provide a CPU-based
implementation highlighting performance gain from the highly-
optimized linear algebra framework such as Intel MKL [84]. The
implementation achieves up to 50X performance improvement com-
pared to baselines. In TCUDB, we further push this trend by lever-
aging NVIDIA’s TCUs that are specialized for tensor processing,
which commonly appears in deep learning workloads to achieve
up to 288x performance gain.

Graph queries as matrix operators. Processing queries as ma-
trix operators have also been considered in the context of graph
databases. In particular, MAGIQ [43] accelerates SPARQL queries

on RDF graphs by translating queries into sparse matrix linear al-
gebra programs. We have discussed the key differences between
TCUDB and MAGIQ in Section 5.5. Our experiment results also
show that integrating TCUDB’s strategy of executing those matrix
operators in TCUs can be an interesting optimization opportunity
for graph query engines like MAGIQ.

Advanced in-database analytics. To accommodate the expo-
nential growth in data science and machine learning applications,
a recent line of work [3, 14, 24, 26, 39, 42, 57, 80] focuses on sup-
porting advanced analytics queries that involve linear algebra (LA)
operators. TCUDB shares the goal of LevelHeaded [3] in identifying
the worst-case optimal join (WCQJ) [65] or LaraDB’s rule-based
translation between relational queries and parallel LA queries, but
TCUDB additionally provides the capability of translating (parts
of) the query to TCU-accelerated matrix multiplication operator(s)
and different sets of opportunities from the orders of magnitude
speedup by TCUs in such operations. TCUDB also offers a better
system architecture by making TCU-accelerated operators as inte-
gral parts of the DB engine and thus incurs zero system overhead
in processing TCU-accelerated queries. In contrast, query analyzers
like AIDA [26] that rely on external parallel libraries from different
language frameworks from the query engine always lead to redun-
dant memory copies that are especially significant in our use cases.
Compared with proposals relying on SQL extensions that introduce
data type labels (e.g., vector and matrix) to support LA queries [57]
or new query languages [14], TCUDB does not require any change
to the SQL.

Entity Matching and PageRank. A major challenge in EM [16,
25, 27, 50] is in the blocking phase [30, 50, 70] to reduce the number
of candidate pairs to be matched by heuristics specified as natu-
ral joins. Our case study demonstrates that TCUDB delivers over
300% speedup for blocking queries compared to a GPU-accelerated
HashJoin implementation. This indicates the potential of building
scalable EM systems with TCUDB as the backend.

PageRank is a graph-based ranking algorithm with applications
from web searches to basic science (see [32] for a survey). PageRank
is also commonly used in benchmarks of graph databases [21, 61, 64].
While there has been an effort to accelerate PageRank (and other
graph analytic queries) using GPUs [74, 77, 91], to our knowledge,
TCUDB is the first to attempt to accelerate PageRank using TCUs.

7 CONCLUSION

This paper proposes, implements and evaluates TCUDB, an efficient
database query engine with TCUs, an emerging type of AI/ML hard-
ware accelerator presented in modern GPU architectures. This pa-
per identifies query patterns that match TCUs’ acceleration model.
Through solving technical difficulties such as remapping inputs
and limited precision, the resulting TCUDB shows ours achieves up
to 288X speedup against the baseline GPU-accelerated DB engine.
The performance gain of TCUDB over conventional GPU-based
DB engines indicates a strong performance scaling in new GPU
architectures. For future work, we plan to extend TCUDB by explor-
ing more potential workloads and addressing the complex query
optimization problem with multiple accelerators of different types.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
helpful comments. This work was sponsored by the two National
Science Foundation (NSF) awards, CNS-1940048 and CNS-2007124.
This work was also supported by new faculty start-up funds from
University of California, Riverside.

REFERENCES

(1]

[2

—

[3

[9
[10]

(11

[12]

(13

[14

[15]

[16

[17]

[18]

[19]

[20]

[23]

[24]

[25]

[26]

[27]

Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. 2009. Column-oriented
database systems. Proceedings of the VLDB Endowment 2, 2 (2009), 1664-1665.
Daniel] Abadi, Samuel R Madden, and Nabil Hachem. 2008. Column-stores vs.
row-stores: How different are they really?. In SIGMOD. ACM, 967-980.
Christopher Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré. 2018.
Levelheaded: A unified engine for business intelligence and linear algebra query-
ing. In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
449-460.

AMD Inc. 2014. AMD FirePro DirectGMA. http://developer.amd.com/community/
blog/2014/09/08/amd- firepro-gpus-directgma/.

Rasmus Resen Amossen and Rasmus Pagh. 2009. Faster join-projects and sparse
matrix multiplications. In Proceedings of the 12th International Conference on
Database Theory. Association for Computing Machinery, 121-126.

Apple Inc. 2020. Apple M1. https://www.apple.com/newsroom/2020/11/apple-
unleashes-m1/.

B. He, M. Lu, K. Yang, R. Fang, N. Govindaraju, Q. Luo, and P. Sander. 2013.
GPUDB source code. http://code.google.com/p/gpudb

Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL Database Operations
on a GPU with CUDA. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. Association for Computing Machinery,
94-103.

BlazingSQL Inc. 2015. BlazingDB. https://blazingsql.com.

Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR, Vol. 5. 225-237.

Sebastian Bre 8, Henning Funke, and Jens Teubner. 2016. Robust Query Processing
in Co-Processor-Accelerated Databases. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). 1891-1906.

Sebastian Bref5, Bastian Kocher, Henning Funke, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. 2018. Generating Custom Code for Efficient Query Execution
on Heterogeneous Processors. The VLDB Journal 27, 6 (Dec. 2018), 797-822.
Sebastian Bref3 and Gunter Saake. 2013. Why it is time for a HyPE: A hybrid
query processing engine for efficient GPU coprocessing in DBMS. Proc. VLDB
Endow. 6, 12 (2013), 1398-1403.

Robert Brijder, Floris Geerts, Jan Van Den Bussche, and Timmy Weerwag. 2019.
On the Expressive Power of Query Languages for Matrices. ACM Trans. Database
Syst. 44, 4, Article 15 (Oct. 2019).

W. G. Choi, D. Kim, H. Roh, and S. Park. 2020. OurRocks: offloading disk scan
directly to GPU in write-optimized database system. IEEE Trans. Comput. (2020),
1-1.

Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. 2015. Entity
resolution in the web of data. Synthesis Lectures on the Semantic Web 5, 3 (2015),
1-122.

Periklis Chrysogelos, Panagiotis Sioulas, and Anastasia Ailamaki. 2019. Hardware-
conscious query processing in gpu-accelerated analytical engines. In Proceesings
of the 9th Biennial Conference on Innovative Data Systems Research.

Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. 2019.
Accelerating Reduction and Scan Using Tensor Core Units. In Proceedings of the
ACM International Conference on Supercomputing. Association for Computing
Machinery, 46-57.

Tim Davis, Michel Pelletier, and Scott Kolodziej. 2017. GraphBLAS Standard.
https://github.com/GraphBLAS.

Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2020. Fast Join Project Query
Evaluation Using Matrix Multiplication. In SIGMOD. Association for Computing
Machinery, 1213-1223.

Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E Lee. 2020. Aggregation support for
modern graph analytics in TigerGraph. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 377-392.

Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,
and David J. DeWitt. 2013. Query Processing on Smart SSDs: Opportunities and
Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. ACM, 1221-1230.

Jaeyoung Do and Jignesh M. Patel. 2009. Join Processing for Flash SSDs: Remem-
bering Past Lessons. In Proceedings of the Fifth International Workshop on Data
Management on New Hardware. 1-8.

Oksana Dolmatova, Nikolaus Augsten, and Michael H Béhlen. 2020. A Relational
Matrix Algebra and its Implementation in a Column Store. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 2573-2587.
Xin Luna Dong and Divesh Srivastava. 2013. Big data integration. In 2013 IEEE
29th international conference on data engineering (ICDE). IEEE, 1245-1248.
Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA:
Abstraction for Advanced in-Database Analytics. PVLDB 11, 11 (2018), 1400-
1413.

Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. 2006.
Duplicate record detection: A survey. IEEE Transactions on knowledge and data
engineering 19, 1 (2006), 1-16.

(28]

[29

[30

[31

@
&,

[33

(34]

(35]

'S
S

[37

[38

[39

[40

[41

[42

[43

[44

[52

Jian Fang, Yvo TB Mulder, Jan Hidders, Jinho Lee, and H Peter Hofstee. 2020.
In-memory database acceleration on FPGAs: a survey. The VLDB Journal 29, 1
(2020), 33-59.

Henning Funke, Sebastian Bref3, Stefan Noll, Volker Markl, and Jens Teubner. 2018.
Pipelined Query Processing in Coprocessor Environments. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD °18). 1603-1618.
Luca Gagliardelli, Giovanni Simonini, Domenico Beneventano, and Sonia Berga-
maschi. 2019. SparkER: Scaling Entity Resolution in Spark. In EDBT 2019: 22nd
International Conference on Extending Database Technology.

Pedram Ghodsnia. 2012. An In-GPU-Memory Column-Oriented Database for
Processing Analytical Workloads. 54-59.

David F Gleich. 2015. PageRank beyond the Web. siam REVIEW 57, 3 (2015),
321-363.

Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006. GPUT-
eraSort: high performance graphics co-processor sorting for large database man-
agement. In SIGMOD. ACM, 325-336.

Naga K Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.
2004. Fast computation of database operations using graphics processors. In
SIGMOD. ACM, 215-226.

C. Guo and H. Chen. 2019. In-Memory Join Algorithms on GPUs for Large-
Data. In 2019 IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
1060-1067.

Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. 2009. Relational Query Coprocessing on Graphics Processors.
ACM Trans. Database Syst. 34 (2009).

Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational joins on graphics processors. In SIGMOD. 511-524.
Jiong He, Mian Lu, and Bingsheng He. 2013. Revisiting co-processing for hash
joins on the coupled cpu-gpu architecture. VLDB 6, 10 (2013), 889-900.

Joseph M Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, et al. 2012. The MADIib Analytics Library. Proceedings of the VLDB
Endowment 5, 12 (2012).

Pedro Holanda and Hannes Miihleisen. 2019. Relational Queries with a Tensor
Processing Unit. In Proceedings of the 15th International Workshop on Data Man-
agement on New Hardware. Association for Computing Machinery, Article 19,
3 pages.

Yu-Ching Hu, Murtuza Taher Lokhandwala, Te I, and Hung-Wei Tseng. 2019.
Dynamic Multi-Resolution Data Storage. In 52th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2019 (Best Paper Honorable Mention)).
Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Ker-
nel for Linear and Relational Algebra Computation. In Proceedings of the 4th
ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond
(BeyondMR’17). Article 2, 10 pages.

Fuad Jamour, Ibrahim Abdelaziz, Yuanzhao Chen, and Panos Kalnis. 2019. Matrix
Algebra Framework for Portable, Scalable and Efficient Query Engines for RDF
Graphs. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys '19).
Association for Computing Machinery.

Yangin Jin, Hung-Wei Tseng, Steven Swanson, and Yannis Papakonstantinou.
2017. KAML: A Flexible, High-Performance Key-Value SSD. In 23th International
Symposium on High Performance Computer Architecture (HPCA 2017).

Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance for Big Data Analytics. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture.
ACM, 1-13.

Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. 2012. GPU join
processing revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware. 55-62.

Tomas Karnagel, René Miiller, and Guy M Lohman. 2015. Optimizing GPU-
accelerated Group-By and Aggregation. ADMS@ VLDB 8 (2015), 20.

Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Amir Wated, Emmett
Witchel, and Mark Silberstein. 2014. GPUnet: Networking abstractions for GPU
programs. In OSDI. 6-8.

Kinetica DB Inc. 2016. Kinetica. https://www.kinetica.com/.

Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jef-
frey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al. 2016.
Magellan: Toward building entity matching management systems. Proceedings of
the VLDB Endowment 9, 12 (2016), 1197-1208.

Gunjae Koo, Kiran Kumar Matam, Te I, Hema Venkata Krishna Giri Narra, Jing
Li, Steven Swanson, Hung-Wei Tseng, and Murali Annavaram. 2017. Summarizer:
Trading Bandwidth with Computing Near Storage. In 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2017). 219-231.

Monica D Lam, Edward E Rothberg, and Michael E Wolf. 1991. The cache
performance and optimizations of blocked algorithms. ACM SIGOPS Operating
Systems Review 25, Special Issue (1991), 63-74.

http://developer.amd.com/community/blog/2014/09/08/amd-firepro-gpus-directgma/
http://developer.amd.com/community/blog/2014/09/08/amd-firepro-gpus-directgma/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
http://code.google.com/p/gpudb
https://blazingsql.com
https://github.com/GraphBLAS
https://www.kinetica.com/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60

(61

[62]

[63]

[70

[71]

[72

[73]

[74

[75]

[76]

[77

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009.
Community Structure in Large Networks: Natural Cluster Sizes and the Absence
of Large Well-Defined Clusters. Internet Mathematics 6, 1 (2009), 29-123.

Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. Hippogriffdb: Balancing I/O and GPU bandwidth in big data
analytics. PVLDB 9, 14 (2016), 1647-1658.

Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yangin Jin, and Steven Swan-
son. 2016. Hippogriff: Efficiently Moving Data in Heterogeneous Computing
Systems. In 2016 IEEE 34th International Conference on Computer Design (ICCD).
IEEE, 376-379.

Yu-Chia Liu and Hung-Wei Tseng. 2021. NDS: N-Dimensional Storage. In 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2021
(Best Paper Nomination)).

S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine. 2019. Scalable Linear
Algebra on a Relational Database System. IEEE Transactions on Knowledge and
Data Engineering 31, 7 (2019), 1224-1238.

Clemens Lutz, Sebastian Bref3, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD °20). 1633-1649.

Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar, and
Hadi Esmaeilzadeh. 2018. In-RDBMS Hardware Acceleration of Advanced Ana-
lytics. PVLDB 11, 11 (2018).

Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. 2018. Nvidia tensor core programmability, performance & precision. In
2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 522-531.

Toannis Mitliagkas, Michael Borokhovich, Alexandros G Dimakis, and Constan-
tine Caramanis. 2015. FrogWild! Fast PageRank Approximations on Graph
Engines. Proc. VLDB Endow. 8, 8 (4 2015), 874-885.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD.
Association for Computing Machinery, 19-34.

Rene Mueller and Jens Teubner. 2009. FPGA: What’s in It for a Database?. In
Proceedings of the 2009 ACM SIGMOD International Conference on Management of
Data (SIGMOD °09). ACM, 999-1004.

Mark Needham and Amy E Hodler. 2019. Graph Algorithms: Practical Examples
in Apache Spark and Neo4j. O’Reilly Media.

Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal
join algorithms. Journal of the ACM (JACM) 65, 3 (2018), 1-40.

NVIDIA. 2017. GPUDirect RDMA. https://developer.nvidia.com/gpudirect.
OmniSci Inc. 2018. Open Source Analytical Database & SQL Engine. https:
//www.omnisci.com/platform/omniscidb.

Patrick O‘Neil, Elizabeth O'Neil, Xuedong Chen, and Stephen Revilak. 2009.
The star schema benchmark and augmented fact table indexing. In Performance
evaluation and benchmarking. 237-252.

Muhsen Owaida, Gustavo Alonso, Laura Fogliarini, Anthony Hock-Koon, and
Pierre-Etienne Melet. 2019. Lowering the Latency of Data Processing Pipelines
through FPGA Based Hardware Acceleration. Proc. VLDB Endow. 13, 1 (2019),
71-85.

George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1-42.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In NeurIPS.

Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based pipelined
query processing engine. In Proceedings of the 2016 International Conference on
Management of Data. 1935-1950.

Steven Pelley, Thomas F Wenisch, Brian T Gold, and Bill Bridge. 2013. Storage
management in the NVRAM era. Proceedings of the VLDB Endowment 7, 2 (2013),
121-132.

Arnon Rungsawang and Bundit Manaskasemsak. 2012. Fast pagerank computa-
tion on a gpu cluster. In 2012 20th Euromicro International Conference on Parallel,
Distributed and Network-based Processing. IEEE, 450-456.

Kaz Sato, Cliff Young, and David Patterson. 2017. An in-depth look at Google’s
first Tensor Processing Unit (TPU). Google Cloud Big Data and Machine Learning
Blog 12 (2017).

Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics.
In SIGMOD. 1617-1632.

Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and
Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. ACM Computing
Surveys (CSUR) 50, 6 (2018), 1-35.

[78

[79

[80

(81]

(82

[83

(84

[89

[90

=)
—

[92

(93]

[94

[95]

[96

[97]

P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
2019. Hardware-Conscious Hash-Joins on GPUs. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 698-709.

Evangelia A Sitaridi and Kenneth A Ross. 2013. Optimizing select conditions on
GPUs. In Proceedings of the Ninth International Workshop on Data Management
on New Hardware. 1-8.

Anthony Thomas and Arun Kumar. 2018. A Comparative Evaluation of Systems
for Scalable Linear Algebra-Based Analytics. Proc. VLDB Endow. 11, 13 (2018),
2168-2182.

Hung-Wei Tseng, Yang Liu, Mark Gahagan, Jing Li, Yangin Jin, and Steven Swan-
son. 2015. Gullfoss: Accelerating and Simplifying Data Movement among Hetero-
geneous Computing and Storage Resources. Technical Report. UCSD Technical
Report.

P. Volk, D. Habich, and W. Lehner. 2010. GPU-Based Speculative Query Processing
for Database Operations. In ADMS@VLDB.

Slawomir Walkowiak, Konrad Wawruch, Marita Nowotka, Lukasz Ligowski, and
Witold Rudnicki. 2010. Exploring utilisation of GPU for database applications.
Procedia Computer Science 1, 1 (2010), 505-513.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi. Springer, 167-188.

Jianguo Wang, Chunbin Lin, Ruining He, Moojin Chae, Yannis Papakonstantinou,
and Steven Swanson. 2017. MILC: Inverted List Compression in Memory. Proc.
VLDB Endow. 10, 8 (4 2017).

Jianguo Wang, Dongchul Park, Yannis Papakonstantinou, and Steven Swanson.
2016. SSD In-Storage Computing for Search Engines. IEEE Trans. Comput. (2016).
Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding, and
Xiaodong Zhang. 2014. Concurrent Analytical Query Processing with GPUs.
VLDB 7, 11 (7 2014), 1011-1022.

Zeke Wang, Huiyan Cheah, Johns Paul, Bingsheng He, and Wei Zhang. 2016.
Accelerating Database Query Processing on OpenCL-based FPGAs. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 274-274.

Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
2012. Kernel weaver: Automatically fusing database primitives for efficient gpu
computation. In MICRO. IEEE Computer Society, 107-118.

Haicheng Wu, D. Zinn, M. Aref, and S. Yalamanchili. 2014. Multipredicate join
algorithms for accelerating relational graph processing on GPUs. In International
Workshop on Accelerating Data Management Systems Using Modern Processor and
Storage Architectures.

Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi Xu. 2010. Efficient
PageRank and SpMV Computation on AMD GPUs. In 2010 39th International
Conference on Parallel Processing. IEEE, 81-89.

Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of processing
data warehousing queries on GPU devices. VLDB 6, 10 (2013), 817-828.

Y. Yuan, M. F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang. 2016. Spark-GPU:
An accelerated in-memory data processing engine on clusters. In 2016 IEEE
International Conference on Big Data (Big Data). 273-283.

Orestis Zachariadis, Nitin Satpute, Juan Géumez-Luna, and Joaqugin Olivares.
2020. Accelerating sparse matrix-matrix multiplication with GPU Tensor Cores.
Computers and Electrical Engineering 88 (2020), 106848. https://doi.org/10.1016/j.
compeleceng.2020.106848

Jie Zhang, David Donofrio, John Shalf, Mahmut T Kandemir, and Myoungsoo Jung.
2015. NVMMU: A Non-volatile Memory Management Unit for Heterogeneous
GPU-SSD Architectures. In PACT. IEEE, 13-24.

Kai Zhang, Feng Chen, Xiaoning Ding, Yin Huai, Rubao Lee, Tian Luo, Kaibo
Wang, Yuan Yuan, and Xiaodong Zhang. 2015. Hetero-DB: Next Generation High-
Performance Database Systems by Best Utilizing Heterogeneous Computing and
Storage Resources. Journal of Computer Science and Technology 30, 4 (2015),
657-678.

Zach Zimmerman. 2016. MSplitGEMM: Large matrix multiplication in CUDA.
https://github.com/zpzim/MSplitGEMM.

https://developer.nvidia.com/gpudirect
https://www.omnisci.com/platform/omniscidb
https://www.omnisci.com/platform/omniscidb
https://doi.org/10.1016/j.compeleceng.2020.106848
https://doi.org/10.1016/j.compeleceng.2020.106848
https://github.com/zpzim/MSplitGEMM

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Tensor Core Units (TCUs)
	2.2 GPU-accelerated Database System Architecture (GPUDB)
	2.3 The Missing Opportunities of GPU Databases in TCUs

	3 TCU-accelerated query patterns
	3.1 Two-way natural join
	3.2 Multi-way joins
	3.3 Group-by aggregates over joins
	3.4 Other supported operators

	4 TCUDB: A TCU-Accelerated DB Engine
	4.1 Overview
	4.2 TCUDB query optimizer

	5 Experimental Results
	5.1 Experimental Methodology
	5.2 Microbenchmark
	5.3 Analytic queries: Star Schema Benchmark
	5.4 Case studies: matrix multiplication, entity matching, and PageRank
	5.5 Comparison with Graph Database Systems
	5.6 TCUDB on different GPU architectures

	6 Related Work
	7 Conclusion
	References

