
TCUDB: Accelerating Database with Tensor Processors
Yu-Ching Hu

University of California, Riverside

Riverside, California, USA

yhu130@ucr.edu

Yuliang Li

Megagon Labs

Mountain View, California, USA

yuliang@megagon.ai

Hung-Wei Tseng

University of California, Riverside

Riverside, California, USA

htseng@ucr.edu

ABSTRACT
The emergence of novel hardware accelerators has powered the

tremendous growth of machine learning in recent years. These

accelerators deliver incomparable performance gains in processing

high-volume matrix operators, particularly matrix multiplication, a

core component of neural network training and inference. In this

work, we explored opportunities of accelerating database systems

using NVIDIA’s Tensor Core Units (TCUs). We present TCUDB, a

TCU-accelerated query engine processing a set of query operators

including natural joins and group-by aggregates as matrix operators

within TCUs. Matrix multiplication was considered inefficient in

the past; however, this strategy has remained largely unexplored in

conventional GPU-based databases, which primarily rely on vector

or scalar processing. We demonstrate the significant performance

gain of TCUDB in a range of real-world applications including

entity matching, graph query processing, and matrix-based data

analytics. TCUDB achieves up to 288× speedup compared to a

baseline GPU-based query engine.

CCS CONCEPTS
• Information systems→ Relational database model; DBMS
engine architectures; Query optimization; Query operators;
Query planning; Join algorithms; •Hardware→Hardware
accelerators.

KEYWORDS
Tensor Cores, database engine

ACM Reference Format:
Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. TCUDB: Acceler-

ating Database with Tensor Processors. In Proceedings of the 2022 Inter-
national Conference on Management of Data (SIGMOD ’22), June 12–17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3514221.3517869

1 INTRODUCTION
The enormous demand for artificial intelligence (AI) and machine

learning (ML) workloads has driven the development and inte-

gration of accelerators containing instructions operating on two-

dimensional tensors (i.e., matrices). Examples include NVIDIA’s

Tensor Core Units (TCUs) [60], Google’s Tensor Processing Units

(TPUs) [75], and Apple’s Neural Processing Units (NPUs) [6]. Im-

provingmatrix algebra throughmatrix units (MXUs), which popular

AI/ML models heavily rely on, drastically increases the orders of

magnitude speedup and energy efficiency. This is particularly true

when compared with conventional scalar processors (e.g., CPUs)

and vector processors (e.g., graphical processing units [GPUs]).

In this work, we explore opportunities of integrating Tensor Core

Units (TCUs) into a database engine’s architecture. Despite being

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9249-5/22/06.

https://doi.org/10.1145/3514221.3517869

originally designed for AI/ML workloads, tensor processors also

hold potential performance improvements for database engines.

This is due to both the increasing demand for native support of

linear algebra queries (e.g., matrix multiplication itself) in SQL DB

engines [3, 24, 26, 39, 57] and the observation that a large number

of regular query operators can be cast into matrix multiplication.

For example, one can show that the most commonly used natural

joins [5, 20] and group-by aggregates can be encoded as matrix

multiplication, which enables TCUs to deliver exceptional perfor-

mance.

However, the presence of these AI/ML accelerators, or more

generally matrix processors, does not provide a drop-in upgrade to

the query engine’s performance. Three major challenges must be

addressed.

Challenges. First, the conventional GPU databases primarily im-

plement the physical operators (e.g., the partitioned hash join algo-

rithm [46]) in a non-matrix-friendly manner. These algorithms and

operators typically do not operate on tensors directly. As a result,

it is hard to modify them with the intent of taking advantage of

TCUs’ computation power.

Second, although DB operators such as joins can theoretically be

encoded as matrix multiplications, executing all of them as dense

multiplication might not always be beneficial. For example, the

underlying data distributions can cause the two operands to be

sparse matrices, which require a different data organization and

APIs to achieve the best performance.

Next, a DB engine with TCUs must prevent itself from generat-

ing erroneous query results because of the low-precision nature

of the tensor processors. The current tensor processors are lim-

ited in precision as AI/ML applications are error-tolerant because

NVIDIA’s TCUs only support 16-bit floating-point numbers while

Google’s TPUs only work on at most 8-bit integers. Moreover, these

tensor processors share the same data movement overhead with

other hardware accelerators while additionally suffering from the

data transformation overhead (i.e., table→ tensor). A higher pre-

cision requirement means introducing more data movement and

transformation overhead. As a result, the proposed system must

maintain a balance between two factors.

TCUDB. This paper presents TCUDB, an analytic database query

engine that explores the potential of tensor processors to accelerate

analytic query workloads using TCUs by tackling the aforemen-

tioned challenges. Figure 1 provides an overview of the system

architecture of TCUDB. TCUDB extends the common architecture

of GPU-accelerated databases [13, 34, 54, 72, 76, 83, 87, 89, 90, 92]

as a way to further accommodate executing query operators with

TCU acceleration in the query analyzer, the query optimizer, the

code generator, and the program driver.

To address the challenge of executing queries using matrix op-

erations, we re-engineered a set of query operators that are theo-

retically feasible to be mapped to tensor/matrix algebra operations

for TCUDB. The query operators cover a large set of commonly

used ones including natural joins and group-by aggregates. As

shown in Figure 1, TCUDB features a code generator for generating

executable code mapping input tables to tensor format and pro-

cesses the query as matrix multiplication via WMMA or cuBLAS

API calls. Depending on the data sparsity, TCUDB provides the

https://doi.org/10.1145/3514221.3517869
https://doi.org/10.1145/3514221.3517869
https://doi.org/10.1145/3514221.3517869

Table Storage

TCUDB

Query
Analyzer

Query
Optimizer

Program
Driver

Code
Generator

SELECT A.Val, B.Val
FROM A, B
WHERE A.ID = B.ID;

wmma_optimized_gemm<<<deviceProp.multiProcessorCount, THREADS_PER_BLOCK,
 SHMEM_SZ>>>(At, Bt, Ct, Ct, M, N, K, 1.0, 0.0));

Figure 1: An overview of TCUDB’s workflow.
option of sparse tensor encoding with sparse matrix multiplication.

We developed the TCU-SpMM operator to support sparse matrix

multiplication with TCU acceleration. Then, the TCUDB query

analyzer is capable of generating query plans, which use these

TCU-accelerated physical operators.

To resolve the challenge of limited precision and overhead in

modern tensor processors, TCUDB’s query optimizer carefully

gauges the parameters in precision, data movement overhead, data

transformation overhead, and computation throughput — as us-

ing lower data precision yields lower data movement overhead

and higher computation throughput, but also takes higher risks of

leading into unacceptable answers as well as higher data transfor-

mation overhead. TCUDB presents an adaptive mixed-precision

query optimization that dynamically selects the most appropri-

ate precision in delivering the desired level of accuracy using the

shortest end-to-end latency to handle queries.

Contributions. By presenting, implementing and evaluating TCUDB,

this paper makes the following contributions:

• We explored the space of opportunities of optimizing a GPU-

accelerated analytic query engine by leveraging TCUs. In our ini-

tial investigation, we found that TCU delivers >5× performance

gains for matrix multiplication compared to the conventional

CUDA cores in GPUs. This finding contradicts the conventional

wisdom that considers matrix multiplication a slow operator

because of its high computational complexity. As such, TCUs pro-

vide new opportunities to optimize processing analytic queries

as matrix multiplication.

• Next, we identified a collection of query patterns that can po-

tentially be accelerated by TCUs. The query patterns include the

most commonly used SQL operators in analytic queries such as

joins and group-by aggregates (e.g., SUM and COUNT). We demon-

strate simple algorithms for transforming relational tables into

matrix format and translating SQL operator into one or more ma-

trix multiplication operators. Our algorithmic design is generic

as it can be generalized to multi-way joins and aggregation over

joins.

• We designed and implemented TCUDB, a TCU-accelerated an-

alytic database engine. On top of a traditional GPU database
1
,

TCUDB features a query optimizer that identifies (1) the most

efficient TCU query plan and (2) the best GPU/CPU-based plan

and decides which plan to execute via cost estimation. If a TCU-

accelerated plan is selected, TCUDB leverages a code genera-

tor to rewrite (parts of) the query into C programs that invoke

NVIDIA’s CUDA API. To the best of our knowledge, TCUDB is

the first analytic database engine with TCU-accelerated built-in.

• We evaluated TCUDB on 4 real-world use cases: (1) linear algebra

(LA) queries, (2) entity matching (EM), (3) graph analytics, and

1
We archive the source code and workloads at our GitHub page:

https://github.com/escalab/TCUDB

Cache/Scheduler/Dispatch
Register

FP32/INT32
CUDA
Cores

FP32
CUDA
Cores

Tensor
Core
Unit
SFULD/STLD/STLD/ST LD/ST

Figure 2: The GA102 Streaming Multiprocessor (SM) archi-
tecture in GeForce RTX 30-series GPUs.

(4) analytic queries such as the star-schema benchmark. TCUDB

demonstrates an outstanding performance advantage over a GPU-

based engine (YDB), by achieving up to 288× speedup. Our results

also highlight the necessity of the query optimizer and TCUDB’s

scalability advantage in future GPU architecture.

2 BACKGROUND AND MOTIVATION
This section describes the background of the conventional query

processing on a GPU and the motivation inspired by the character-

istic of Tensor Core Units (TCUs). By comparing to the traditional

vector processing model, we demonstrate the tensor processing

model in a database system that can deliver better performance

on linear algebra queries in terms of computing capability and

scalability.

2.1 Tensor Core Units (TCUs)
As deep neural networks heavily rely on operations using matrix

multiplications (e.g., convolution), recent hardware accelerators

feature matrix units (MXUs) in their microarchitectures to signifi-

cantly boost the performance in machine learning (ML) workloads.

Famous examples include NVIDIA’s Tensor Core Units (TCUs),

Google’s Tensor Processing Units (TPUs), and Apple’s Neural En-

gine.

This paper selects TCUs as the underlying accelerators for the

following reasons: (1) Programmability: TCUs expose their low-

level C++ API to programmers such as highly optimized cuBLAS

APIs or customizable WMMA (Warp Matrix Multiply-Accumulate)

APIs, giving programmers complete freedom in implementing al-

gorithms and integrating with existing systems. By contrast, their

counterparts are only programmable through domain-specific lan-

guages tailored forML. (2) Accessibility: TCUs are now standardized

components in NVIDIA’s GPU architectures, ranging from high-

end server solutions, gaming solutions, to embedded solutions.

Conversely, high-performance TPUs are only accessible through

Google’s cloud services and Apple’s NPUs are only available on

their machines. (3) Flexibility: Tensor cores together with other

 0.1

 0.5

 2.5

 12.5

 62.5

 312.5

 1562.5

 7812.5

1024x1024 2048x2048 4096x4096 8192x8192 16384x16384R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e

(L
o
w

e
r

is
 B

e
tt
e
r,

 L
o
g
-S

c
a
le

)

The dimensions of input matrices

CUDA Cores

1.00

3.64

27.1

181.3

1545.2

TCUs

0.21

1.21

8.02

55.5

547.6

Figure 3: The performance of performing matrix multiplica-
tions using conventional CUDA cores and TCUs.

Query
Analyzer

Query
Optimizer

Sto
rag

e

Code
Generator

CPU

Host Memory

GPU

Device Memory
Join Aggr.

Program Driver
GPU

Operators
GPU

Operators
GPU

Operators

Hardware

Figure 4: Typical GPU-accelerated database architecture.
ALUs on the GPU supports multiple data precision with various

operations. Other ML accelerators only support limited precision.

TCUs are currently available as separated functional units from

conventional vector floating-point and integer ALUs within the

current generation of streaming multiprocessors (SM) as Figure 2

depicts. Figure 3 compares the latency of multiplying matrices

with different sizes, ranging from 1024×1024 inputs matrices to

16384×16384 ones, using conventional vector processing units (CUDA
cores) and TCUs, on NVIDIA’s RTX 3090 GPU. The results show

that TCUs consistently outperform CUDA cores by up to a 5×
speedup. By translating the latency to TFLOPs, we measured a peak

of 63 TFLOPs on TCUs and 19 TFLOPs using mixed precision on

CUDA cores only.

Despite the significant speedup in matrix operations, TCUs still

have limited precision drawbacks seen in other AI/ML accelerators

in a way that TCUs only support at most 16-bit numbers as inputs

and incur additional overhead in casting data into the desired 16-bit

formats. Being separated functional units within an SM and the

nature that an SM can only perform a single type of operations

simultaneously, a compute kernel can activate either conventional

vector units or TCUs, but not both of them due to the power con-

straints and the hardware architecture. Therefore, if programmers

do not specifically enable TCUs and rewrite algorithms to perform

matrix multiplications, a GPU program cannot automatically take

advantage of TCUs. Instead, it wastes the rich speedup that the

TCUs can provide.

2.2 GPU-accelerated Database System
Architecture (GPUDB)

Prior to the introduction of TCUs in GPU architectures, database

systems have exploited the potential of using the massive amount

of vector processing units within GPUs to accelerate query process-

ing [8, 13, 82, 92]. The rich thread-level parallelism from these vector

processing units delivers better performance on easily paralleliz-

able operations (e.g., arithmetic computation). Figure 4 shows the

architecture of a typical GPUDB system that Yinyang DB (YDB) [7,

92] and GPUQP [36] adopt. Upon receiving a query, the GPU-

accelerated DB will go through the following stages: (1) Query

plan generation: the query parser translates SQL query into query

plan tree and the query optimizer analyzes the costs and benefits of

query plans to determine the most efficient implementation (i.e., the

cheapest plan) as the physical query plan. (2) Code generation: the

query engine is in charge of the query execution flow by generating

1 -- Matrix multiplication query:
2 SELECT A.col_num, B.row_num, SUM(A.val * B.val) as res
3 FROM A, B
4 WHERE A.row_num = B.col_num
5 GROUP BY A.col_num, B.row_num;

Figure 5: Example matrix multiplication query.

the back-end system-level code (e.g., program driver) that maps the

selected query plan to utilize CPU and GPU cores. According to

the type of target queries, different GPU kernels are implemented

to execute relational database operators. (3) Data movements: data

movements involve loading table data to the host main memory

from back-end storage, moving essential data from the host main

memory to GPU device memory and copying results back to the

host main memory.

In the aforementioned database system architecture, data move-

ment between GPU and CPU usually dominates the execution

time [36] and cancels out the performance gain in the computa-

tion part. Therefore, GPU database architecture should make full

use of an in-memory technique such as keeping all tables in GPU

RAM [31] to mitigate the I/O bottleneck. There is no common-use

GPU algorithm suitable for all database systems; the challenge is

to identify which operators can leverage the GPU and combine it

with traditional database query processing. Additionally, the data

storage format also affects the performance of data movement. Due

to the GPU memory access pattern, column-store [1, 2, 31] helps

to exploit coalesced memory as well as reduce data volume going

through the PCIe bus by only sending the needed data.

2.3 The Missing Opportunities of GPU
Databases in TCUs

Before the emergence of TCUs, conventional wisdom assumed that

matrix multiplication is an inefficient operation. Therefore, state-of-

the-art GPUDB systems are designed in favor of vector processing,

yet completely avoid the usage of matrix multiplications. With-

out redesigning application algorithms and data layout, existing

GPUDB systems cannot reap the benefits of TCUs.

The query in Figure 5 provides an example of how an existing

GPUDB misses the potential of using TCUs. The result of this query

is essentially a list of triples of (𝑟𝑜𝑤_𝑛𝑢𝑚, 𝑐𝑜𝑙_𝑛𝑢𝑚, 𝑣𝑎𝑙) with unique
combinations of 𝑟𝑜𝑤_𝑛𝑢𝑚, 𝑐𝑜𝑙_𝑛𝑢𝑚 and the 𝑣𝑎𝑙 in each triple is

the sum of the pairwise multiplications on 𝑣𝑎𝑙 fields from a record

in table 𝐴 with its 𝑟𝑜𝑤_𝑛𝑢𝑚 matching another record’s 𝑐𝑜𝑙_𝑛𝑢𝑚
from table 𝐵. This is essentially an SQL query that performs matrix

multiplication on elements from two tables 𝐴 and 𝐵. This query
can be implemented through one matrix multiplication if we can

layout the matching elements in matrices appropriately.

However, conventional GPUDB query processing algorithms are

designed at the operator level with each operator as a kernel func-

tion running on GPUs. To execute the above query, conventional

GPUDB uses operators to build hash tables for 𝐴 and 𝐵, scanning
both tables, performing HashJoin, and aggregating the final result.

Among these GPU operators, HashJoin where performs join op-

eration in a pairwise, vectorized fashion to find matching tuples

between two hash tables usually takes the most time during the

query execution. The aggregation operator is second to HashJoin,
which is also time-consuming in accumulating the computation

result using vector operations. As the above computation only re-

quires vector inner-products, the generated GPU kernel code will

never enable TCUs.

3 TCU-ACCELERATED QUERY PATTERNS
As mentioned above, TCUs can potentially improve the perfor-

mance of an analytic query by executing (parts of) the query as

matrix multiplication. Next, to achieve this goal, we start by iden-

tifying a number of query patterns that TCUDB can execute as

matrix multiplications.

3.1 Two-way natural join
The first supported query pattern is the simple 2-way join. For

example, given two tables A and B with two attributes (ID, Val),
consider the following query:

1 -- Q1:
2 SELECT A.Val, B.Val
3 FROM A, B
4 WHERE A.ID = B.ID;

To process this query as a matrix operation, we first need to convert

the two tables into a matrix format. Suppose table A contains 𝑛
tuples {𝑎1, . . . , 𝑎𝑛} and table B contains𝑚 tuples {𝑏1, . . . , 𝑏𝑚}where
each 𝑎𝑖 and 𝑏𝑖 are unique row IDs. Let dom(A.ID) and dom(B.ID) be
the domains of the ID column of A and B respectively. Let dom(ID)
to be the union of the two domains dom(A.ID) ∪ dom(B.ID) having
𝑘 distinct values {𝑣1, . . . , 𝑣𝑘 }. To compute the join, we construct a

𝑛 × 𝑘 matrix mat(A) and a𝑚 × 𝑘 matrix mat(B) where
mat(A)𝑖 𝑗 = 1 if 𝑎𝑖 .ID = 𝑣 𝑗 , otherwise 0 ;

mat(B)𝑖 𝑗 = 1 if 𝑏𝑖 .ID = 𝑣 𝑗 , otherwise 0 .

The result of the join A ⊲⊳ B is then the 𝑛 by𝑚 matrix

C = mat(A) × mat(B)T .
It is easy to show that a tuple (𝑎𝑖 , 𝑏 𝑗) is in the join result if and only

if C𝑖 𝑗 > 0.

Alternatively, when the domains dom(A.Val) and dom(B.Val) are
small, one can also construct mat(A) and mat(B) as the adjacency
matrices where mat(A)𝑖 𝑗 = 1 if (𝑢𝑖 , 𝑣 𝑗) ∈ A (and respectively for

mat(B)) otherwise 0. The number of rows of mat(A) and mat(B)
will be |dom(A.Val) | and |dom(B.Val) | respectively.

Note that in this query pattern, the single attributes A.ID, A.Val,
B.ID and B.Val can be generalized to sets of multiple attributes.

The attribute sets ∗.ID and ∗.Val can potentially overlap thus it is

general enough to cover all cases of 2-way natural join.

3.2 Multi-way joins
Next, we extend the querying capability with matrix multiplication

to multi-way joins. Consider the following snippet of a 3-way join

query where the 3 input tables are A(ID1, Val), B(ID1, ID2, Val),
and C(ID2, Val) respectively.

1 -- Q2:
2 SELECT A.Val, B.Val, C.Val
3 FROM A, B, C
4 WHERE A.ID_1 = B.ID_1 AND B.ID_2 = C.ID_2;

As in conventional join processing, we assume a join order of

A → B → C. To evaluate this join, one needs to (1) first compute

A ⊲⊳ B as mat(A) × mat(B)T, (2) convert the resulting 𝑛 by𝑚 matrix

back to table format and (3) compute the join with table C as a

second matrix operator. By repeating step (2) and (3) to convert

intermediate results to tables, we can generalize this algorithm from

3-way joins to multi-way joins.

To avoid unnecessary data transfer from GPU memory to the

host, in step (2), one can perform the matrix-table conversion with a

CUDA-enabled nonzero(·) operator [71]. Formally, given a matrix

𝑀 , nonzero(𝑀) computes {(𝑖, 𝑗) |𝑀𝑖 𝑗 > 0}. Next, to perform the

second join, let

• 𝑛′ be the size of nz = nonzero(mat(A) × mat(B)T),
• 𝑚′

be the size of table C = {𝑐1, . . . , 𝑐𝑚′} and
• 𝑘 ′ be the size of dom(B.ID2) ∪ dom(C.ID2) = {𝑢1, . . . , 𝑢𝑘′}.
We denote by nz𝑖 the 𝑖-th pair of the nz array. Next, we construct a

𝑛′ by 𝑘 ′ matrix mat(AB) and a𝑚′
by 𝑘 ′ matrix mat(C) where

mat(AB)𝑖 𝑗 = 1 if 𝑏𝑖′ .ID2 = 𝑢 𝑗 for nz𝑖 = (_, 𝑖 ′), otherwise 0;
mat(C)𝑖 𝑗 = 1 if 𝑐𝑖 .ID2 = 𝑢 𝑗 , otherwise 0.

The result of the 3-way join is then mat(AB) × mat(C)T.
There is an exception case where the intermediate matrix-table

conversion can be omitted. When B.Val = ∅ (i.e., relation B is

projected out entirely), the result of the join can be simplified as

mat(A) × mat(B)T × mat(C)T

where mat(B) is a𝑘 by𝑘 ′matrix constructed as B𝑖 𝑗 = 1 if (𝑣𝑖 , 𝑢 𝑗) ∈ B
otherwise 0.

Similar to the 2-way join case, the method can be generalized to

multi-way joins consisting of multiple join and/or return attributes.

3.3 Group-by aggregates over joins
A simple yet useful extension of the above two query patterns with

joins is to add group-by aggregates. For example, over the same

schema (ID, Val) of the previous 2-way join case:

1 -- Q3:
2 SELECT SUM(A.Val), B.Val
3 FROM A, B
4 WHERE A.ID = B.ID
5 GROUP BY B.Val;

A naive method to evaluate this query is to first evaluate the nat-

ural join in the TCU-optimized manner, convert the matrix result to

the table format, and then compute the group-by and SUM aggre-

gate with CPU or GPU-based methods. We propose the following

method that avoids any unnecessary intermediate computation via

2 matrix operations. First, we construct the two input matrices. For

the matrix dimensions, we let

• 𝑛 be the size of A,
• 𝑚 be the size of dom(B.Val) = {𝑢1, . . . , 𝑢𝑚}, and
• 𝑘 be the size of dom(A.ID) ∪ dom(B.ID) = {𝑣1, . . . , 𝑣𝑘 }.
We construct a 𝑛 by 𝑘 matrix mat(A) and a𝑚 by 𝑘 matrix where

mat(A)𝑖 𝑗 = 𝑎𝑖 .Val if 𝑎𝑖 .ID = 𝑣 𝑗 , otherwise 0;

mat(B)𝑖 𝑗 = 1 if (𝑢𝑖 , 𝑣 𝑗) ∈ B, otherwise 0.

Next, the query result can be computed as

11×𝑛 × mat(A) × mat(B)T

where 11×𝑛 is an 1×𝑛 matrix consisting of only ones. We can show

the following:

Lemma 3.1. (Q3, informal) For every tuple (𝑎sum
𝑖

, 𝑏𝑖) and for𝑀 =

11×𝑛 ×mat(A) ×mat(B)T, (𝑎sum
𝑖

, 𝑏𝑖) is in the query result of Q3 if and
only if𝑀𝑖,1 = 𝑎

sum
𝑖

.

Intuitively, we leverage the first multiplication with mat(B)T to
compute the join. By filling the input matrices mat(A) with actual

values instead of 0’s or 1’s, we keep track of those values in the

intermediate matrix product mat(A) × mat(B)T. The multiplication

with 11×𝑛 then serves as a reduction operator that sums up all

columns of mat(A) × mat(B)T.
In addition to SUM, we are able to apply the same method to

support the COUNT and AVG aggregate functions. For COUNT, when
we construct mat(A), we simply need to set mat(A)𝑖 𝑗 to 1 for 𝑎𝑖 .ID =

𝑣 𝑗 (instead of 𝑎𝑖 .Val). We can obtain AVG by dividing SUM by COUNT.

For aggregate queries without GROUP BY, such as

1 -- Q4:
2 SELECT SUM(A.Val * B.Val)
3 FROM A, B
4 WHERE A.ID = B.ID;

we set mat(A)𝑖 𝑗 = 𝑎𝑖 .Val for 𝑎𝑖 .ID = 𝑣 𝑗 and mat(B)𝑖 𝑗 = 𝑏𝑖 .Val for

𝑏𝑖 .ID = 𝑣 𝑗 and compute the sum as mat(A) × mat(B)T × 1𝑚×1
with

an additional reduction by multiplying 11×𝑛 .

3.4 Other supported operators
The above query patterns can also be extended with the ORDER BY
clause to sort the results in ASC/DESC order by a certain column.

Instead of sorting after the multiplication operators, we preserved

the specified order in the input matrices (e.g., mat(A) and mat(B))
so that the result matrix is naturally sorted.

Another class of supported query pattern is the non-equi join

such as:

1 -- Q5:
2 SELECT A.Val, B.Val
3 FROM A, B
4 WHERE A.ID < B.ID;

We can compute this query by slightly adjusting the translation

for Q1 by setting mat(A)𝑖 𝑗 = 1 for 𝑎𝑖 .Val < 𝑣 𝑗 . The same method

applies to the other comparison operators {<, >, ≤, ≥,≠}.
Last but not least, for the query pattern that is of the semantics

of matrix multiplication as Figure 5 shows, we can directly map the

query to the corresponding matrix operation.

Beyond the supported patterns. For queries that do not match

exactly with any of the supported query patterns, as part of the

query optimization workflow (Figure 6), TCUDB relies on pattern

matching to identify subqueries that can be TCU-accelerated from

the input query’s AST. We note that there are common subqueries

that are beyond the expressiveness of the TCU platform, such as ag-

gregation with MIN/MAX or arithmetic operators such as addition

and division. The limited expressiveness is mainly due to NVIDIA’s

current TCU programming interface which only supports matrix

multiply-accumulate. However, since the underlying hardware is

powerful enough to perform the aforementioned operators, we

anticipate a more flexible programming interface in the future so

that TCUDB can support a wide range of query patterns.

4 TCUDB: A TCU-ACCELERATED DB ENGINE
To leverage TCUs for queries in relational database systems, this

paper presents TCUDB, a DB engine that identifies, optimizes, eval-

uates and implements aforementioned query patterns in Section 3.

This section provides an overview of the design of TCUDB’s exten-

sions and discusses the optimizations on a TCU-accelerated query

plan.

4.1 Overview
TCUDB implements the system architecture in Figure 1 to execute

queries on TCUs using the following major components.

Query Optimizer In a system with TCUs presented, the query

plan in exercising a query is from either (1) the most efficient

TCU-accelerated query plan or (2) the most efficient conventional

CPU/GPU-based plan, depending on which one can deliver the

lowest cost (i.e., the shortest end-to-end latency). TCUDB leverages

existing infrastructure in GPUDB to evaluate the second option but

extends the query optimizer in creating, optimizing and evaluating

the latency of TCU-accelerated query plans.

Program Driver TCUDB extends the program driver to addition-

ally contain a set of library functions that implement operators men-

tioned in Section 3 using TCUs. These functions invoke NVIDIA’s

CUDA C++ Warp Matrix Multiply and Accumulate (WMMA) or

cuBLAS API functions to achieve the series of computation that

each operator requires. These operators also present interfaces in

various data types to support the demand for the most efficient

query plan.

Code Generator If TCUDB selects a TCU-accelerated query plan

to exercise an incoming query, the code generator will rewrite the

query as C code and dynamically compile the code to execute the

selected query plan. The TCUDB code extension is responsible for

creating the input matrices, calling operator functions in corre-

sponding data types and remapping the output from the operator

outcome.

Among these three intensively extended modules, the query

optimizer is the most critical component as it serves as the core

controlling the use of TCUs as well as code generation for queries.

In the rest of this section, we will focus on the query optimizer.

4.2 TCUDB query optimizer

Matched query
pattern?

Data range
test

yes

no CPU/GPU
processing

8bit?

4bit?

Query Cost
Estimator

Sub-Query

Dense MatMul
(TCUJoin)

Blocked MatMul
(MSplitGEMM)

Working set
size test

Matrix
density test

Sparse MatMul
(TCU-SpMM)

≥ Θ

< Θ (density threshold)

≥ M

< M (Device memory)

32bit?

16bit?

Table
statistics

no

 < cost(GPU)

GPU-based

Transformation
Cost Estimator

CPU-based

≥ cost(GPU)

①

②

③
④ ⑤

⑥

Figure 6: The workflow of the TCUDB query optimizer.

Figure 6 shows the workflow of the TCUDB query optimizer.

The optimizer takes a subquery from the query AST as input and

performs a series of tests to determine whether the subquery should

be executed with TCU and how. The optimizer first checks if the

subquery falls in one of the supported query patterns. Next, it

performs the data range feasibility test (Section 4.2.1) to decide if

particular data types can provide sufficient precision to the query.

After that, the input tables may also result in matrices too large

to fit in the GPU’s device memory or sparse matrices for which

dense multiplication algorithm is sub-optimal. For these cases, the

optimizer estimates the working set sizes and matrix density from

statistics pre-computed from input tables. TCUDB applies blocked

matrix multiplication (MSplitGEMM, Section 4.2.3) and sparse ma-

trix multiplication (TCU-SpMM, Section 4.2.4) respectively. Finally,

the optimizer estimates the query execution cost with TCU and tests

whether the cost is lower than the estimated cost with CPU/GPU

(Section 4.2.2). If any of the tests fail, TCUDB falls back to the

standard CPU or GPU-based query execution.

Note that the query cost estimator needs to take into account the

data transformation cost which consists of both computation and

data movement overhead. If the original table size plus the working

set size fits in the device memory, TCUDB can transform tables into

matrix format within GPU to save the overhead of transforming

data within CPU and moving large matrices into the GPU device.

4.2.1 Feasibility Test. Even though a query contains patternsmatch-

ing identified patterns in Section 3, a query may still be unfeasible

for TCUs due to the limitations of TCUs in input precision and data

types. If applying TCUs would result in loss of precision or lead to

unwanted outcomes, TCUDB should not use TCUs to evaluate the

incoming query.

Therefore, TCUDB must perform a feasibility test for each query

that contains qualified patterns by evaluating the input data ranges,

identifying the most compact inputs/outputs data types and es-

timating the working set sizes for operators within a query. To

facilitate this process, TCUDB adds metadata to each database table

to contain three values for each column, including (1) the minimum

value, (2) the maximum value, and (3) the number of distinct values.

If the operator works with the numerical computation on the

input data values directly, TCUDB first uses the minimum and

maximum values along with the raw data types of the operator’s

input data. If the input data can be represented by TCU-compatible

data types, including 16-bit half floating-point (half), 8-bit integers
(int8), and 4-bit integers (int4), this stage will also determine the

most compact data type. However, if the dataset cannot leverage

any TCU-compatible data type, the feasibility test will suggest that

the system not use TCUs in the incoming query. The database

system can use other available options (e.g., a CPU-based or a pure

GPU-based query engine) instead.

The number of records, the number of distinct values and the

maximum/minimum values of each column also help the feasibility

test to identify the case where the result value can surpass the range

of 16-bit numbers and potentially lead to errors. Let𝑚1 represents

the maximum of the maximum value and the absolute value of the

minimum value within a column of 𝑛 elements in one of the input

matrix and that of a row with 𝑛 elements is𝑚2 for another input

matrix, the feasibility test can conservatively estimate themaximum

value in the resulting matrix as𝑚1 ×𝑚2 ×𝑛. If the maximum result

value falls beyond the range of TCUs 16-bit number ranges, TCUDB

will use query executors based on other hardware components

instead.

4.2.2 Cost estimation of query plans. The cost of a TCU-accelerated
operator contains:

(1) the data transformation cost DT_op which equals the latency for

creating input matrices to perform the TCU-accelerated operators

from the input tables,

(2) the data movement overhead DM_op for copying data between
the host main memory or data storage to the GPU’s device memory,

and

(3) the computation time CT_op, the actual running time that the

TCUs spend on executing the generated TCU code.

Depending on the estimated working set size of the query, the

data transformation process of TCUDB can take place using the

CPU or the GPU. The costs of DT_op and DM_op vary according to

the approach.

CPU-based data transformation. The most general data trans-

formation approach in TCUDB uses the host main memory and

CPU to prepare inputs for the designated TCU-accelerated operator.

This approach fills input matrices for a TCU-accelerated operator

using methods described in Section 3 and works regardless of the

estimated working set size of the query.

Consider the example of the 2-way natural join. To create the

input matrices for an operator, TCUDB typically needs to scan

through qualified/valid records for the operator and convert the

values into the desired matrix representations. The data transforma-

tion cost is linear to the number of qualified/valid records. Let𝐴 and

𝐵 be two input tables (which can also be intermediate results from

subqueries) of size𝑚 and 𝑛 respectively. Assume the throughput of

the host system in scanning the raw data is a constant 𝛼 . If their
matrix representations mat(A) and mat(B) are not yet created, the
scan operator will take DT_op ≈ 𝛼 · (𝑚 + 𝑛) in transforming input

data to the desired matrices. The cost can also be 𝛼 ·𝑚 or 𝛼 · 𝑛 if

either matrix is already created.

In this approach, the data movement overhead is controlled by (1)

the volume of transformed matrices or input data and (2) the avail-

able bandwidth between the GPU and the host processor denoted

by BandwidthGPU/host. If𝐴 is of dimension𝑀 ×𝐾 with type_A and
𝐵 is of dimension 𝐾 × 𝑁 with type_B, the data movement cost can

be estimated by

DM_op ≈ 𝑀𝐾 · sizeof(type_A) + 𝑁𝐾 · sizeof(type_B)
BandwidthGPU/host

. (1)

GPU-assisted data transformation. To optimize the data trans-

formation overhead DT_op, the query plan may perform the data

transformation on the GPU to leverage its massive parallelism to

convert thousands of pairs of values simultaneously into matrix for-

mat. In other words, we can take advantage of the GPU’s parallelism

to speed up the data transformation operation as well as avoid the

additional data movement that copies the transformed matrix from

the host memory to the GPU device memory. In contrast to the

CPU-based approach, the data movement occurs before the data

transformation in the GPU-assisted approach as the raw data must

be present in the GPU’s device memory in advance for the transfor-

mation to begin. Therefore, TCUDB can only use GPU-assisted data

transformation when both the estimated working set size and the

volume of necessary raw data (e.g., columns from the selected table)

for transformation can fit in GPU’s device memory. Leveraging

the same 2-way natural join example, TCUDB can estimate the

corresponding DM_op using Equation 2 as:

DM_op ≈ 𝑀 · sizeof(type_A) + 𝑁 · sizeof(type_B)
BandwidthGPU/host

. (2)

where 𝑀 and 𝑁 are the numbers of elements in the raw data

columns of the joined columns and (type_A) and (type_B) are the
raw data types of both columns before transformation.

In terms of DT_op, the GPU-based scan operator still takes ≈ 𝛼 ·
(𝑚+𝑛) operations in transforming input data to the desiredmatrices

– but a GPU can perform p of these in parallel if the GPU has p vector
processors available. In modern GPU architectures, p is typically
more than 2,000. The DT_op in GPU-assisted approach is estimated

as DT_op ≈ 𝛼 · (𝑚+𝑛)
𝑝 . Notice that the GPU-based approach needs to

move raw data in Equation 2, TCUDB still needs to evaluate the

summation of DM_op and DT_op to determine the most appropriate

data transformation method.

Computation cost. Finally, the dimensions of the transformed

input matrices also determine the TCU computation time. Using

the number of records, the number of distinct values and the most

compact data type derived from the feasibility test, TCUDB can esti-

mate the required device memory and the density of input matrices

for the operator. Based on the estimation, TCUDB can potentially

take three different approaches in performing an operator.

(1) If all inputs and outputs fit within the device memory, TCUDB

simply needs to copy all inputs into the device memory and invokes

the matrix multiplication function once.

(2) In case the working set size exceeds the available device memory,

TCUDB’s query plan will need to apply the blocked and pipeline

matrix multiplication algorithm [52, 97] to move parts of input and

output data as well as perform matrix multiplications block-by-

block. (Section 4.2.3)

(3) If the densities of input matrices are lower than a certain thresh-

old (an architecture-dependent value), TCUDB will use sparse ma-

trix multiplications instead. (Section 4.2.4)

Since each pair of values in input matrices requires 2 operations

for multiplication and accumulation, the computation time in the

simplest case where all input matrices fit in the device memory can

be estimated by

CT_op ≈ 𝑀𝑁𝐾 × 2

peak_TCU_TFLOPS
(3)

where peak_TCU_TFLOPS is the TCUs’ peak number of floating-

point operations per second (FLOPS). If the query results in inputs

larger than device memory, TCUDB still leverages Equation 3 to

estimate the cost but replaces peak_TCU_TFLOPSwith the measured

FLOPS from the blocked/pipelined matrix multiplications. For the

cases where input matrices are sparse, TCUDB estimates the com-

putation costs not only using the FLOPS from our sparse matrix

multiplication implementation but also multiplying the cost by the

density of inputs.

The final cost estimation is then the summation of the above

three terms DT_op+DM_op+CT_op. TCUDB then compares this esti-

mated cost with the estimated cost of the other CPU/GPU-based op-

erators to decide whether to use TCUs. TCUDB obtain the most up-

to-date estimations for BandwidthGPU/host and peak_TCU_TFLOPS
by checking the execution time of previous queries.

Note that there can be more than one TCU-accelerated plan be-

cause the system can choose a higher or lower-precision data type,

which can change the decision of whether to perform transforma-

tion operator within the GPU or not.

4.2.3 Handling large datasets. Due to the limited device memory

capacity (e.g., 24 GBs in our case), the input matrices of TCUDB’s

operators cannot fit in the GPU’s device memory if the datasets are

extremely large and dense. Once TCUDB catches such a case during

the feasibility test, TCUDB will consider applying a blocked matrix

multiplication algorithm for the corresponding query operators.

The blocked matrix multiplication algorithm works by fetching a

submatrix from the system main memory as a multiplicand, gradu-

ally fetching other same-sized submatrices as the multiplier, and

aggregating the result to the corresponding submatrix in the result

matrices.

TCUDB’s implementation of blocked matrix multiplication ex-

tends MSplitGEMM [97] to support blocked matrix multiplications

using TCUs. Both TCUDB’s implementation and MSplitGEMM

exploit pipeline parallelism by creating multiple streams in fetch-

ing input submatrices, performing matrix multiplication and ac-

cumulation, and writing back results simultaneously. TCUDB’s

implementation uses TCUs for matrix multiplication and accumu-

lation instead of conventional GPU cores. During the periodical

microbenchmark tests, TCUDB also performs a series of tests to

figure out the optimal size of submatrices that balances the latency

of each stage in the pipeline to maximize the computation through-

put. The measured throughput using these optimal parameters will

also be used as the metrics for evaluating the costs of large and

dense inputs in Section 4.2.2.

4.2.4 Handling sparse matrices. Due to the current capability of

TCU hardware in handling sparse matrices, conventional TCU oper-

ators that assume dense matrices as their inputs may not always out-

perform a GPU plan when the input matrices to a TCU-accelerated

operator are very sparse. Therefore, TCUDB implements a TCU-

accelerated sparse matrix multiplication (TCU-SpMM) operator

that

• transforms an input into a compressed sparse row matrix format

(CSR)

• partitions an input matrix into 16×16 submatrices,

• skips submatrices containing all 0s,

• multiplies the rest using TCUs and accumulates results [94].

By doing so, the TCU-SpMM operator can still leverage TCU’s

computation power but on a much smaller number of submatrices

pairs when the input matrices are large and sparse.

To determine whether a TCU-SpMM-based plan should replace

the dense multiplication plan, TCUDB needs to estimate the cost

similar to the regular cases with dense matrices. We estimate the

total cost by multiplying the estimated dense operator cost by

the inputs’ densities. In addition, the TCU-SpMM-based operator

requires scanning inputs to construct/partition a matrix and filter

those all-0-submatrices. TCUDB estimates this part of the cost with

a simple linear function with respect to the input size.

Finally, the query optimizer of TCUDB still needs to evaluate

plans using the GPU-based HashJoin cost model [92], in particu-

lar sparse matrix multiplication on conventional CUDA cores to

determine whether a TCU-SpMM-based plan is more efficient.

5 EXPERIMENTAL RESULTS
Leveraging TCUs’ capabilities in optimizing matrix algebra, TCUDB

delivers up to 14× speedup over a conventional GPU-based DB en-

gine for the sample queries that Section 3 describes. Inspired by

the result, we experimented with TCUDB in real-world applica-

tion query workloads with inputs as large as 24 GBs. In summary,

TCUDB achieves up to 7.52× speedup in matrix multiplications, up

to 3.96× speedup for analytic queries in the star schema benchmark,

up to 288× speedup in entity matching queries, and up to 4.22×
speedup for the core of the PageRank algorithm. The comparison

of TCUDB performance on different GPU architectures also reveals

the strong potential of TCU-accelerated DB engines in the future.

5.1 Experimental Methodology
We conducted experiments on a machine with an Intel Core i7-

7700K processor, 32 GB DDR4 DRAM. The processor contains 4

cores and each processor core runs at 4.2 GHz by default. The

GPU in our experiments is an NVIDIA GeForce RTX 3090 GPU

based on Ampere architecture. This GPU contains 24 GB GDDR6X

device memory and 328 Tensor Cores and attaches to a PCIe 3.0

x16 slot. The TCU-accelerated operator library in TCUDB is im-

plemented using a NVIDIA CUDA Toolkit 11.2. The system runs a

Linux 4.15.0 kernel with the NVIDIA driver version in 460.32.03. We

compared TCUDB with a state-of-the-art GPU execution engine for

warehouse-style queries, YDB [92] and a pure CPU-based execution

engine, MonetDB [10], as reference designs.

5.2 Microbenchmark
To allow query optimizers to select the right query plans, the data-

base engine must obtain samples of executing workloads using

TCU-accelerated operations. Upon installing TCUDB in the system

or when the system detected any change in hardware configura-

tions, TCUDB will perform a one-time sampling process that runs

a set of microbenchmark workloads to collect critical timing infor-

mation for query optimizations.

During the sampling process, TCUDB will execute three main

queries, Q1, Q3 and Q4 from Section 3, with various-sized, random-

generated input datasets. TCUDB does not evaluate Q2 and Q5 as

they are essentially combinations of other queries. The sampling

process also helps us to classify the cases where TCUDB is superior

to the conventional GPU-accelerated engine and identify the source

of performance gain/loss in TCUDB. With large system main mem-

ory and aggressive file system caching by operating systems as well

 0

 50

 100

 150

 200

 250

 300

4
0
9
6
,3

2
 (

M
o
n
e
tD

B
)

4
0
9
6
,3

2
 (

Y
D

B
)

4
0
9
6
,3

2
 (

T
C

U
D

B
)

8
1
9
2
,3

2
 (

M
o
n
e
tD

B
)

8
1
9
2
,3

2
 (

Y
D

B
)

8
1
9
2
,3

2
 (

T
C

U
D

B
)

1
6
3
8
4
,3

2
 (

M
o
n
e
tD

B
)

1
6
3
8
4
,3

2
 (

Y
D

B
)

1
6
3
8
4
,3

2
 (

T
C

U
D

B
)

3
2
7
6
8
,3

2
 (

M
o
n
e
tD

B
)

3
2
7
6
8
,3

2
 (

Y
D

B
)

3
2
7
6
8
,3

2
 (

T
C

U
D

B
)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
 (

L
o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Join (TCUDB)

4.90 1.00 0.05
22.05

3.08 0.12

65.88

12.86
0.41

258.41

52.68

1.73

 0

 50

 100

 150

 200

 250

 300

 350

 400

4
0
9
6
,3

2
 (

M
o
n
e
tD

B
)

4
0
9
6
,3

2
 (

Y
D

B
)

4
0
9
6
,3

2
 (

T
C

U
D

B
)

8
1
9
2
,3

2
 (

M
o
n
e
tD

B
)

8
1
9
2
,3

2
 (

Y
D

B
)

8
1
9
2
,3

2
 (

T
C

U
D

B
)

1
6
3
8
4
,3

2
 (

M
o
n
e
tD

B
)

1
6
3
8
4
,3

2
 (

Y
D

B
)

1
6
3
8
4
,3

2
 (

T
C

U
D

B
)

3
2
7
6
8
,3

2
 (

M
o
n
e
tD

B
)

3
2
7
6
8
,3

2
 (

Y
D

B
)

3
2
7
6
8
,3

2
 (

T
C

U
D

B
)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
 (

L
o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

GroupBy+Aggregation (YDB)
Join+GroupBy+Aggregation (TCUDB)

0.14 1.00 0.04
23.15

3.60 0.09

88.18

14.57
0.32

354.41

58.55

1.37

 0

 50

 100

 150

 200

 250

 300

 350

4
0
9
6
,3

2
 (

M
o
n
e
tD

B
)

4
0
9
6
,3

2
 (

Y
D

B
)

4
0
9
6
,3

2
 (

T
C

U
D

B
)

8
1
9
2
,3

2
 (

M
o
n
e
tD

B
)

8
1
9
2
,3

2
 (

Y
D

B
)

8
1
9
2
,3

2
 (

T
C

U
D

B
)

1
6
3
8
4
,3

2
 (

M
o
n
e
tD

B
)

1
6
3
8
4
,3

2
 (

Y
D

B
)

1
6
3
8
4
,3

2
 (

T
C

U
D

B
)

3
2
7
6
8
,3

2
 (

M
o
n
e
tD

B
)

3
2
7
6
8
,3

2
 (

Y
D

B
)

3
2
7
6
8
,3

2
 (

T
C

U
D

B
)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
 (

L
o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Aggregation (YDB)
Join+Aggregation (TCUDB)

5.63 1.00 0.08
22.47

3.00 0.19

76.89

13.01
0.71

303.24

52.87

2.78

(a) (b) (c)

Figure 7: The relative execution time of running (a) Q1, (b) Q3, and (c) Q4 with various number of records and 32 distinct values
in the target attribute on TCUDB, YDB, and MonetDB.

 0

 1

 2

 3

 4

 5

 6

4
0
9
6
,3

2
 (

M
o
n
e
tD

B
)

4
0
9
6
,3

2
 (

Y
D

B
)

4
0
9
6
,3

2
 (

T
C

U
D

B
)

4
0
9
6
,6

4
 (

M
o
n
e
tD

B
)

4
0
9
6
,6

4
 (

Y
D

B
)

4
0
9
6
,6

4
 (

T
C

U
D

B
)

4
0
9
6
,1

2
8
 (

M
o
n
e
tD

B
)

4
0
9
6
,1

2
8
 (

Y
D

B
)

4
0
9
6
,1

2
8
 (

T
C

U
D

B
)

4
0
9
6
,2

5
6
 (

M
o
n
e
tD

B
)

4
0
9
6
,2

5
6
 (

Y
D

B
)

4
0
9
6
,2

5
6
 (

T
C

U
D

B
)

4
0
9
6
,5

1
2
 (

M
o
n
e
tD

B
)

4
0
9
6
,5

1
2
 (

Y
D

B
)

4
0
9
6
,5

1
2
 (

T
C

U
D

B
)

4
0
9
6
,1

0
2
4
 (

M
o
n
e
tD

B
)

4
0
9
6
,1

0
2
4
 (

Y
D

B
)

4
0
9
6
,1

0
2
4
 (

T
C

U
D

B
)

4
0
9
6
,2

0
4
8
 (

M
o
n
e
tD

B
)

4
0
9
6
,2

0
4
8
 (

Y
D

B
)

4
0
9
6
,2

0
4
8
 (

T
C

U
D

B
)

4
0
9
6
,4

0
9
6
 (

M
o
n
e
tD

B
)

4
0
9
6
,4

0
9
6
 (

Y
D

B
)

4
0
9
6
,4

0
9
6
 (

T
C

U
D

B
)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
 (

L
o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Join (TCUDB)

4
.9

0
1
.0

0
0
.0

5

3
.2

9
0
.9

0
0
.0

6

2
.4

2
0
.6

2
0
.0

8

1
.9

6
0
.6

1
0
.1

1

1
.4

6
0
.6

0
0
.1

5 0
.7

1
0
.5

4
0
.2

1

0
.5

0
0
.5

3
0
.3

4

0
.4

1
0
.5

3
0
.6

0

 0

 1

 2

 3

 4

 5

 6

 7

 8

4
0
9
6
,3

2
 (

M
o
n
e
tD

B
)

4
0
9
6
,3

2
 (

Y
D

B
)

4
0
9
6
,3

2
 (

T
C

U
D

B
)

4
0
9
6
,6

4
 (

M
o
n
e
tD

B
)

4
0
9
6
,6

4
 (

Y
D

B
)

4
0
9
6
,6

4
 (

T
C

U
D

B
)

4
0
9
6
,1

2
8
 (

M
o
n
e
tD

B
)

4
0
9
6
,1

2
8
 (

Y
D

B
)

4
0
9
6
,1

2
8
 (

T
C

U
D

B
)

4
0
9
6
,2

5
6
 (

M
o
n
e
tD

B
)

4
0
9
6
,2

5
6
 (

Y
D

B
)

4
0
9
6
,2

5
6
 (

T
C

U
D

B
)

4
0
9
6
,5

1
2
 (

M
o
n
e
tD

B
)

4
0
9
6
,5

1
2
 (

Y
D

B
)

4
0
9
6
,5

1
2
 (

T
C

U
D

B
)

4
0
9
6
,1

0
2
4
 (

M
o
n
e
tD

B
)

4
0
9
6
,1

0
2
4
 (

Y
D

B
)

4
0
9
6
,1

0
2
4
 (

T
C

U
D

B
)

4
0
9
6
,2

0
4
8
 (

M
o
n
e
tD

B
)

4
0
9
6
,2

0
4
8
 (

Y
D

B
)

4
0
9
6
,2

0
4
8
 (

T
C

U
D

B
)

4
0
9
6
,4

0
9
6
 (

M
o
n
e
tD

B
)

4
0
9
6
,4

0
9
6
 (

Y
D

B
)

4
0
9
6
,4

0
9
6
 (

T
C

U
D

B
)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
 (

L
o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

GroupBy+Aggregation (YDB)
Join+GroupBy+Aggregation (TCUDB)

6
.0

7
1
.0

0
0
.0

4

3
.9

2
0
.6

6
0
.0

4

2
.4

1
0
.5

3
0
.0

5

2
.0

6
0
.5

0
0
.0

8

1
.5

9
0
.4

6
0
.1

0 0
.8

2
0
.4

5
0
.1

4 0
.5

6
0
.4

4
0
.2

3 0
.7

3
0
.4

4
0
.4

1

 0

 1

 2

 3

 4

 5

 6

4
0
9
6
,3

2
 (

M
o
n
e
tD

B
)

4
0
9
6
,3

2
 (

Y
D

B
)

4
0
9
6
,3

2
 (

T
C

U
D

B
)

4
0
9
6
,6

4
 (

M
o
n
e
tD

B
)

4
0
9
6
,6

4
 (

Y
D

B
)

4
0
9
6
,6

4
 (

T
C

U
D

B
)

4
0
9
6
,1

2
8
 (

M
o
n
e
tD

B
)

4
0
9
6
,1

2
8
 (

Y
D

B
)

4
0
9
6
,1

2
8
 (

T
C

U
D

B
)

4
0
9
6
,2

5
6
 (

M
o
n
e
tD

B
)

4
0
9
6
,2

5
6
 (

Y
D

B
)

4
0
9
6
,2

5
6
 (

T
C

U
D

B
)

4
0
9
6
,5

1
2
 (

M
o
n
e
tD

B
)

4
0
9
6
,5

1
2
 (

Y
D

B
)

4
0
9
6
,5

1
2
 (

T
C

U
D

B
)

4
0
9
6
,1

0
2
4
 (

M
o
n
e
tD

B
)

4
0
9
6
,1

0
2
4
 (

Y
D

B
)

4
0
9
6
,1

0
2
4
 (

T
C

U
D

B
)

4
0
9
6
,2

0
4
8
 (

M
o
n
e
tD

B
)

4
0
9
6
,2

0
4
8
 (

Y
D

B
)

4
0
9
6
,2

0
4
8
 (

T
C

U
D

B
)

4
0
9
6
,4

0
9
6
 (

M
o
n
e
tD

B
)

4
0
9
6
,4

0
9
6
 (

Y
D

B
)

4
0
9
6
,4

0
9
6
 (

T
C

U
D

B
)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
 (

L
o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Aggregation (YDB)
Join+Aggregation (TCUDB)5

.6
3

1
.0

0
0
.0

8

3
.5

0
0
.7

4
0
.0

8

2
.0

8
0
.6

0
0
.1

0

1
.8

8
0
.5

3
0
.1

3

1
.0

7
0
.4

6
0
.1

6 0
.7

4
0
.4

4
0
.2

4

0
.4

7
0
.4

2
0
.3

8

0
.3

8
0
.4

2
0
.6

8

(a) (b) (c)

Figure 8: The relative execution time of running (a) Q1, (b) Q3, and (c) Q4 with 4096 records and various distinct values in the
target attribute on TCUDB, YDB, and MonetDB.

as the underlying high-performance NVMe SSD, we have not ob-

served significant disk load time in each DB engine’s initialization

phase.

As MonetDB is a full-fledged system, we excluded the additional

steps/overheads by measuring only the time to execute the physi-

cal plan for a fair comparison. (We use the “–timer=performance”
option and disable the resulting output to report the runtime part

only.)

Figure 7 and Figure 8 present a subset of microbenchmark results

from the sampling process on the default testbed described in Sec-

tion 5.1. We label the x-axis of each sample in this figure with two

parts in the configuration. The first part is the parameters for the

query, 𝑀 , 𝐾 and 𝑁 , that represent the sizes of the input matrices

for each evaluated operator where one matrix has the dimension of

𝑀 × 𝐾 and the other is 𝐾 × 𝑁 . To save space, we only present the

cases when𝑀 = 𝑁 and label each configuration with their values

of 𝑀 and 𝐾 as 𝑀,𝐾 in these figures. The second part is the DB

engine (i.e, TCUDB, YDB, or MonetDB). The vertical axis in each

figure shows the aggregated execution time in each step of running

these queries, normalized to the total time when running the same

query using YDB, the conventional GPU-accelerated engine, with

𝑀 = 𝑁 = 4096 and 𝐾 = 32.

Figure 7(a) shows the performance of Q1 for TCUDB, YDB and

MonetDB from input sizes 4096 to 32768. Both TCUDB and YDB sig-

nificantly outperformMonetDB for this query. TCUDB outperforms

YDB in most configurations. The advantage of TCUDB is especially

significant when datasets grow. TCUDB outperforms YDB by 14×

for the case of (32768, 32) and 9.3× for (16384, 32), but only 1.18× for

(4096,32). Observing the breakdown of execution time in Figure 7(a),

we found the major speedup comes from the significant reduction

of computation time from the TCU-accelerated join operator, de-

spite the additional overhead in filling and transforming datasets

into the desired matrices for TCUDB.

Figure 8(a) varies the number of distinct values that affect the

sparsity of input matrices in Q1 for TCUDB’s join operator. As the

number of distinct values becomes larger, the performance advan-

tage of TCUDB’s join operator over YDB and MonetDB begins to

shrink. Because the sizes of one dimension of both input matri-

ces for the TCUDB join operator in Q1 depends on the number

of distinct values from the chosen attribute to perform matching,

matching on an attribute with more distinct values will lead to

computation on larger but sparse matrices. In contrast, YDB’s and

MonetDB’s HashJoin algorithm produces smaller vectors as the

chance (i.e., total number) of records sharing a single value reduces

if the number of distinct values increases. Therefore, even though

YDB’s and MonetDB’s HashJoin operator needs to work on more

pairs of vectors, each pair of vectors have smaller dimensions. How-

ever, TCUDB’s join operator still outperforms YDB and MonetDB

in all cases until the number of distinct values reaches 4096. This

profiling result suggests that TCUDB select a GPU-hash-join-based

or sparse-matrix-based implementation if the density of input ma-

trices is below 0.04% on our testbed.

Figure 7(b) presents the performance of runningQ3 using TCUDB,

YDB and MonetDB. Q3 evaluates the group-by and aggregations

over join query. Unlike the conventional GPU-accelerated DB en-

gine where group-by and aggregations are separate operations

after the hash join, TCUDB can implement the whole Q3 using just

one matrix multiplication. As a result, the execution time of using

TCUDB of executing Q3 remains similar to executing Q1 when the

input parameters are the same. However, YDB or MonetDB always

have to perform the additional group-by operations and leads to

a longer execution time than performing Q1 for the same inputs.

Therefore, the performance advantage of TCUDB becomes more

significant for Q3. For (32768, 32), TCUDB can outperform YDB by

45×.
When we increase the number of distinct values as in Figure 8(b),

TCUDB becomes less advantageous, similar to the phenomenon

in Q1. However, as TCUDB still uses single-matrix-multiplication-

based Join/Aggregation/GroupBy operation to perform operations

where YDB or MonetDB needs multiple-step HashJoin and Group-

By/Aggregation operators, TCUDB still outperforms YDB and Mon-

etDB in all cases.

Figure 7(c) presents the relative execution time of Q4 on TCUDB,

YDB and MonetDB. YDB and MonetDB will perform Q4 using

𝐻𝑎𝑠ℎ𝐽𝑜𝑖𝑛 and then an aggregate query but without a group-by op-

erator. Therefore, the overall execution time in each configuration

of YDB and MonetDB is less than Q3 because of the elimination

of group-by operator. However, again, TCUDB still implements

this operator using single matrix multiplication on the transformed

input matrices. Therefore, TCUDB achieves 19× speedup for (32768,

32).

As in Q1 and Q3, TCUDB becomes less advantageous when we

increase the number of distinct values as in Figure 8(c). Because the

amount of operations in YDB and MonetDB for Q4 is fewer than

Q3, we still see TCUDB falls short when the number of distinct

reaches 4096 and suggest an alternative plan for cases where input

matrix densities are below 0.04%.

5.3 Analytic queries: Star Schema Benchmark
We evaluate the performance of TCUDB on the popular Star Schema

Benchmark (SSB) [68], a benchmark suite modeling the data ware-

house workloads. SSB is widely used in benchmarking analytic

engines due to its realistic modeling of data warehousing work-

loads. The database form a star schema consisting of one fact table

(lineorder) and four dimension tables (supplier, customer,
date and part) connected to the fact table by foreign keys.

The benchmark provides 13 queries in 4 flights. TCUDB sup-

ports all the 13 SSB queries. Figure 9 compares the performance of

TCUDB, YDB and MonetDB in running SSB queries with scaling

factors varying from 1 to 8 resulting in data sizes from 0.7GB to

5.6GB.

Figure 9 summarizes the results. TCUDB outperforms both YDB

and MonetDB in all evaluated SSB workloads with up to 3.96×
speedup when running Q4.1 with scaling factor as 8. Even with the

worst performing SSB Q3.1, TCUDB still maintains the same level of

performance as YDB. These promising results show that TCUDB has

the potentials of being integrated into real-world analytic engines.

5.4 Case studies: matrix multiplication, entity
matching, and PageRank

In addition to individual operators, we also evaluated three rep-

resentative use cases, matrix multiplication, entity matching and

PageRank to demonstrate TCUDB’s capabilities in handling inten-

sive operations and large datasets.

2048 4096 8192 16384 32768

×2048 ×4096 ×8192 ×16384 ×32768
×2048 ×4096 ×8192 ×16384 ×32768

𝑥 = 0, 1 0 0 0 0 0

−27 ≤ 𝑥 < 2
7

0 0 0.00076% 0.00076% 0.00076%

−215 ≤ 𝑥 < 2
15

0.00114% 0.00450% 0.00908% 0.00908% 0.00908%

−231 ≤ 𝑥 < 2
31

0.00122% 0.00451% 0.00909% 0.00909% 0.00909%

Table 1: The mean absolute percentage error rates (MAPE) of
matrix multiplication queries with various value ranges.

5.4.1 Matrix Multiplication. Matrix multiplication was once con-

sidered inefficient for relational databases.With the help of hardware-

accelerated matrix multiplications, TCUDB can make queries con-

taining complex linear algebra operations more efficient. We use

a query in Figure 5 to demonstrate this use case. We create two

tables𝐴 and 𝐵 where each record in both tables has three attributes

(𝑟𝑜𝑤_𝑛𝑢𝑚, 𝑐𝑜𝑙_𝑛𝑢𝑚, 𝑣𝑎𝑙) as the input. We generate the synthetic

dataset according to this schema with input matrices of dimensions

up to 32768×32768 and data volume up to 24 GB, approximately

2.14 billion records.

Figure 10 presents the relative execution time and breakdown

of performing matrix multiplication on TCUDB and YDB, using

YDB with each table containing 4096×4096 records as the baseline.
We did not include MonetDB’s result in these Figures as MonetDB

cannot finish these queries within a reasonable amount of time and

present MonetDB’s results in Figure 10 would render the results of

TCUDB and YDB invisible. When the dataset contains fewer than

16384×16384 records, the input matrices that TCUDB creates for

the TCU’s Join + Aggregation + GroupBy operator completely fit

in the GPU’s device memory. TCUDB consistently outperforms

YDB and delivers up to 7.51× speedup. When the dataset contains

32768×32768 records for each table, TCUDB must partition the in-

put matrices into submatrices, use the block algorithm, and pipeline

the swapping in/out of submatrices to perform the Join/Aggrega-

tion/GroupBy operator. TCUDB still performs multiplication and

aggregation of submatrices using TCUs. Even with the overhead

of data exchanges in the blocked Join/Aggregation/GroupBy op-

erator, TCUDB is still able to outperform YDB by 7.92× for the

case of 32768×32768 records for each table. As datasets fit in the

system’s main memory as well as the operating system’s aggres-

sive caching and the help of high-speed NVMe SSD, the data load

time from storage is relatively insignificant in these experiments.

The data movement (cudaMemcpy) time is the most timing critical

stage for TCUDB. However, the amount of time is comparable to

TCUDB and YDB because both engines only transfer the required

data to the device memory. The most time-consuming parts for

YDB are HashJoin and GroupBy operations because code using

conventional CUDA cores needs to iterate tables row by row. YDB

spends up to 14× (in the case of 16384×16384 records in each ta-

ble) more execution time in HashJoin and GroupBy than TCUDB’s

single Join/Aggregation/GroupBy operator.

Due to the limited 16-bit precision of TCUs, they cannot gener-

ate 100% accurate results in some cases. Table 1 shows the mean

absolute percentage error (MAPE) rates in performing matrix mul-

tiplication queries. In the cases where the values are only 0s and 1s

– similar to the cases of Q1 and Q2, the generated TCUDB opera-

tions can always produce accurate outputs. Therefore, the result

implies that TCUDB never leads to incorrect outcomes for sub-

queries like Q1 and Q2. When we enlarge the value ranges, we

start to see errors in results, but with very limited imprecision –

even in the worst case, the MAPE is lower than 0.01%. We believe

this error rate is acceptable in most cases. This level of data error

does not cause any inexact query results for the entity matching

or the microbenchmark workloads. For numerical analysis such

 0

 1

 2

 3

 4

 5

 6

Q
1

.1
 (

M
o

n
e

tD
B

)

Q
1

.1
 (

Y
D

B
)

Q
1

.1
 (

T
C

U
D

B
)

Q
2

.1
 (

M
o

n
e

tD
B

)

Q
2

.1
 (

Y
D

B
)

Q
2

.1
 (

T
C

U
D

B
)

Q
3

.1
 (

M
o

n
e

tD
B

)

Q
3

.1
 (

Y
D

B
)

Q
3

.1
 (

T
C

U
D

B
)

Q
4

.1
 (

M
o

n
e

tD
B

)

Q
4

.1
 (

Y
D

B
)

Q
4

.1
 (

T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Aggregation (YDB)
Join+Aggregation (TCUDB)

3
.4

2

1
.0

0

0
.7

4

4
.3

1

1
.0

0

0
.7

1

2
.3

6

1
.0

0

0
.4

2

2
.8

2

1
.0

0

0
.2

7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Q
1

.1
 (

M
o

n
e

tD
B

)

Q
1

.1
 (

Y
D

B
)

Q
1

.1
 (

T
C

U
D

B
)

Q
2

.1
 (

M
o

n
e

tD
B

)

Q
2

.1
 (

Y
D

B
)

Q
2

.1
 (

T
C

U
D

B
)

Q
3

.1
 (

M
o

n
e

tD
B

)

Q
3

.1
 (

Y
D

B
)

Q
3

.1
 (

T
C

U
D

B
)

Q
4

.1
 (

M
o

n
e

tD
B

)

Q
4

.1
 (

Y
D

B
)

Q
4

.1
 (

T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Aggregation (YDB)
Join+Aggregation (TCUDB)

3
.3

2

1
.0

0

0
.5

4

3
.8

9

1
.0

0

1
.0

0

6
.4

2

1
.0

0

1
.0

9

2
.7

5

1
.0

0

0
.3

0

 0

 1

 2

 3

 4

 5

 6

 7

 8

Q
1

.1
 (

M
o

n
e

tD
B

)

Q
1

.1
 (

Y
D

B
)

Q
1

.1
 (

T
C

U
D

B
)

Q
2

.1
 (

M
o

n
e

tD
B

)

Q
2

.1
 (

Y
D

B
)

Q
2

.1
 (

T
C

U
D

B
)

Q
3

.1
 (

M
o

n
e

tD
B

)

Q
3

.1
 (

Y
D

B
)

Q
3

.1
 (

T
C

U
D

B
)

Q
4

.1
 (

M
o

n
e

tD
B

)

Q
4

.1
 (

Y
D

B
)

Q
4

.1
 (

T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Aggregation (YDB)
Join+Aggregation (TCUDB)

2
.5

8

1
.0

0

0
.4

4

3
.6

6

1
.0

0

0
.8

9

6
.0

8

1
.0

0

1
.0

0

2
.7

4

1
.0

0

0
.2

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

Q
1

.1
 (

M
o

n
e

tD
B

)

Q
1

.1
 (

Y
D

B
)

Q
1

.1
 (

T
C

U
D

B
)

Q
2

.1
 (

M
o

n
e

tD
B

)

Q
2

.1
 (

Y
D

B
)

Q
2

.1
 (

T
C

U
D

B
)

Q
3

.1
 (

M
o

n
e

tD
B

)

Q
3

.1
 (

Y
D

B
)

Q
3

.1
 (

T
C

U
D

B
)

Q
4

.1
 (

M
o

n
e

tD
B

)

Q
4

.1
 (

Y
D

B
)

Q
4

.1
 (

T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

MonetDB
HashJoin (YDB)

Aggregation (YDB)
Join+Aggregation (TCUDB)

2
.5

3

1
.0

0

0
.4

2

3
.5

2

1
.0

0

0
.7

7

5
.9

9

1
.0

0

0
.9

6

2
.5

8

1
.0

0

0
.2

5

(a) (b) (c) (d)

Figure 9: The relative runtime of star schema benchmark on TCUDB compared to MonetDB and YDB running the same query
as the baseline with scaling factor (a) 1, (b) 2, (c) 4 and (d) 8.

 0

 10

 20

 30

 40

 50

 60

 70

4096x
4096
x4096
(YDB)

4096x
4096
x4096

(TCUDB)

8192x
8192
x8192
(YDB)

8192x
8192
x8192

(TCUDB)

16384x
16384
x16384
(YDB)

16384x
16384
x16384

(TCUDB)

32768x
32768x
32768
(YDB)

32768x
32768x
32768

(TCUDB)

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
(L

o
w

e
r

is
 f
a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
GroupBy+Aggregation (YDB)

Join+GroupBy+Aggregation (TCUDB)

1.00 0.13
3.97

0.53

10.73

2.02

66.32

8.37

Figure 10: The relative execution time and breakdown of
matrix multiplication query on TCUDB and YDB.
as SSB, the result values can have minor error rates typically less

than 0.001% for cases with input values larger than 2
15

or matrices

with a dimension larger than 8192 due to the 16-bit representation.

However, the error rate is very insignificant and never results in

misplacement of rankings and orderings of the query results.

5.4.2 Entity Matching. Entity matching (EM), also known as entity

resolution, fuzzy join, and record linkage, searches records corre-

spond to the same real-world entities from different data sources [16,

25, 27, 50]. A key component of EM is blocking [30, 50, 70]. Given

two tables of entity records, the goal of blocking is to apply match-

ing heuristics to quickly generate candidate pairs of records that

are likely to be real matches, which are later processed by a more

accurate pairwise classifier (aka thematcher). Scalability is the main

challenge of blocking as the heuristics are typically natural join

conditions (e.g., selecting products with the same brand) that often

produce large join results. Therefore, we expect that TCUDB can

provide significant performance gain for this EM workload.

To validate this hypothesis, we evaluate TCUDB’s performance

on two real EM datasets BeerAdvo-RateBeer and iTunes-Amazon

from the Deepmatcher benchmark [62]. The BeerAdvo-RateBeer

dataset contains two tables, where one of them contains 3,777 rows

and the other contains 2,671 rows, from different sources. Each table

has the same table schema with five attributes {ID, BEER_NAME,
FACTORY, STYLE, ABV}. Table 2 reveals the number of distinct

values of each attribute, which acts as one matrix dimension for

TCUDBwhen performing join operation. We evaluate the following

query on BeerAdvo-RateBeer dataset to perform blocking:

1 -- EM-blocking query for BeerAdvo-RateBeer dataset:
2 SELECT TABLE_A.ID, TABLE_A.BEER_NAME,
3 TABLE_B.ID, TABLE_B.BEER_NAME
4 FROM TABLE_A, TABLE_B
5 WHERE TABLE_A.ABV = TABLE_B.ABV; -- attributes may vary

The iTunes-Amazon dataset contains two tables, where one of

them has 6,907 rows and the other has 55,923 rows, from iTunes and

Amazon music. Both tables share the same table schema with seven

attributes ID, PRICE, GENRE, TIME, ARTIST, COPYRIGHT, and ALBUM.

Attribute ABV Style Factory BeerName

#distinct values 20 71 3678 6228

Table 2: Distinct values in BeerAdvo-RateBeer dataset.

Attribute Price Genre Time Artist Copyright Album

#distinct values 12 813 908 2418 3197 6004

#distinct values 25 1614 1208 6420 8199 11005

(scaled)

Table 3: Distinct values in iTunes-Amazon dataset.

Table 3 shows the number of distinct values for each attribute in

the iTunes-Amazon dataset. We perform the following query on

the iTunes-Amazon dataset for blocking:

1 -- EM-blocking query for iTunes-Amazon dataset:
2 SELECT TABLE_A.ID, TABLE_A.SONG,
3 TABLE_B.ID, TABLE_B.SONG
4 FROM TABLE_A, TABLE_B
5 WHERE TABLE_A.ARTIST = TABLE_B.ARTIST; -- attributes may

vary

Figure 11 presents the result of running the above EM-blocking

queries on the two datasets and different attributes. As the exe-

cution time varies significantly among different queries, we use

YDB running the same query as the baseline and show the relative

execution time. TCUDB outperforms YDB in most cases, achieving

a maximum speedup of 288× among our experiments.

TCUDB is especially effective when the number of distinct values

is small. For the BeerAdvo-RateBeer dataset in Figure 11(a), TCUDB

is at most 33× faster than YDB when searching for matches on

the ABV attribute where there are only 20 distinct values. For the

iTunes dataset in Figure 11(b), TCUDB further shows 288× speedup

over YDB when performing entity matchings on the Price attribute

that only has 12 distinct values. When the number of distinct values

becomes larger, the performance advantage of TCUDB’s operators

relying on dense matrix operations over YDB starts to shrink, for

the reason we have described in Section 5.2. However, as TCUDB

uses TCU-spMM in these cases, TCUDB still outperforms YDB and

MonetDB in all cases.

Scaling up. To demonstrate the ability of TCUDB and the query

optimizer in dealing with larger EM datasets, we synthesized an

iTunes-Amazon dataset by randomly duplicating each input table’s

entry values. The resulting dataset contains 111,846 records in the

larger input source and 13,814 in the smaller one. The #distinct

values (scaled) show the resulting distinct values in each attribute

field of this synthetic dataset.

Figure 11(c) shows the relative execution time of TCUDB, com-

pared with YDB running the same query. TCUDB still outperforms

YDB in most cases, by up to 216× when performing matching on

 0

 1

 2

 3

 4

 5

 6

 7

 8

A
B

V
 (

M
o

n
e

tD
B

)

A
B

V
 (

Y
D

B
)

A
B

V
 (

T
C

U
D

B
)

S
ty

le
 (

M
o

n
e
tD

B
)

S
ty

le
 (

Y
D

B
)

S
ty

le
 (

T
C

U
D

B
)

F
a

c
to

ry
 (

M
o
n

e
tD

B
)

F
a

c
to

ry
 (

Y
D

B
)

F
a

c
to

ry
 (

T
C

U
D

B
)

B
e

e
rN

a
m

e
 (

M
o

n
e

tD
B

)

B
e

e
rN

a
m

e
 (

Y
D

B
)

B
e

e
rN

a
m

e
 (

T
C

U
D

B
)

N
o

rm
a
liz

e
d

 e
x
e

c
u
ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
MonetDB

Join+GroupBy (TCUDB)

3
.0

6

1
.0

0

0
.0

3

2
.3

7

1
.0

0

0
.4

0

3
.0

8

1
.0

0

0
.6

0

2
.4

9

1
.0

0

0
.7

5

 0

 1

 2

 3

 4

 5

 6

 7

 8

P
ri
c
e
 (

M
o
n

e
tD

B
)

P
ri
c
e
 (

Y
D

B
)

P
ri
c
e

 (
T

C
U

D
B

)

G
e

n
re

 (
M

o
n

e
tD

B
)

G
e

n
re

 (
Y

D
B

)

G
e

n
re

 (
T

C
U

D
B

)

T
im

e
 (

M
o

n
e

tD
B

)

T
im

e
 (

Y
D

B
)

T
im

e
 (

T
C

U
D

B
)

A
rt

is
t

(M
o

n
e

tD
B

)

A
rt

is
t

(Y
D

B
)

A
rt

is
t

(T
C

U
D

B
)

C
o

p
y
ri
g

h
t

(M
o

n
e

tD
B

)

C
o
p

y
ri
g

h
t

(Y
D

B
)

C
o

p
y
ri
g

h
t

(T
C

U
D

B
)

A
lb

u
m

 (
M

o
n

e
tD

B
)

A
lb

u
m

 (
Y

D
B

)

A
lb

u
m

 (
T

C
U

D
B

)

N
o

rm
a
liz

e
d

 e
x
e

c
u
ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
MonetDB

Join+GroupBy (TCUDB)

2
.8

1

1
.0

0

0
.0

0
3

7
.7

1

1
.0

0

0
.2

6

2
.3

4

1
.0

0

0
.0

6

3
.4

6

1
.0

0

0
.0

8 1
.1

6

1
.0

0

0
.3

0

1
.4

9

1
.0

0

0
.4

2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
ri
c
e
 (

M
o
n

e
tD

B
)

P
ri
c
e
 (

Y
D

B
)

P
ri
c
e

 (
T

C
U

D
B

)

G
e

n
re

 (
M

o
n

e
tD

B
)

G
e

n
re

 (
Y

D
B

)

G
e

n
re

 (
T

C
U

D
B

)

T
im

e
 (

M
o

n
e

tD
B

)

T
im

e
 (

Y
D

B
)

T
im

e
 (

T
C

U
D

B
)

A
rt

is
t

(M
o

n
e

tD
B

)

A
rt

is
t

(Y
D

B
)

A
rt

is
t

(T
C

U
D

B
)

C
o

p
y
ri
g

h
t

(M
o

n
e

tD
B

)

C
o
p

y
ri
g

h
t

(Y
D

B
)

C
o

p
y
ri
g

h
t

(T
C

U
D

B
)

A
lb

u
m

 (
M

o
n

e
tD

B
)

A
lb

u
m

 (
Y

D
B

)

A
lb

u
m

 (
T

C
U

D
B

)

N
o

rm
a
liz

e
d

 e
x
e

c
u
ti
o

n
 t

im
e

 (
L

o
w

e
r

is
 f

a
s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
MonetDB

Join+GroupBy (TCUDB)

2
.4

6

1
.0

0

0
.0

0
5

1
.6

7

1
.0

0

0
.1

4

2
.2

0

1
.0

0

0
.0

9
6

1
.3

3

1
.0

0

0
.1

3

1
.0

9

1
.0

0

0
.1

3

1
.7

2

1
.0

0

0
.1

5

(a) (b) (c)

Figure 11: The relative runtime of the EM-blocking queries on TCUDB using the default deepmatcher datasets (a) BeerAdvo-
RateBeer (b) iTunes-Amazon and (c) scaled iTunes-Amazon, compared to MonetDB and YDB running the same query as the
baseline.

#Nodes 1024 2048 3072 4096 8192 16384 32768

#Edges 2058 4152 6280 8450 17444 37106 82070

Table 4: Reduced graph information.

the price field. When TCUDB performs the query on artist, album

and copyright fields, the query optimizer detects that these cases

contain way too many distinct values and the pure TCU operator

cannot efficiently process the query since the input matrices are

sparse. Therefore, TCUDB uses a TCU-SpMM operator for query

processing and achieves more than 6.67× and 7.8× speedup on

Copyright and Album, respectively, over YDB that essentially per-

forms sparse matrix multiplications using CUDA cores.

5.4.3 PageRank. To demonstrate TCUDB’s ability in processing

graph-related queries as well as data analytics, we also evaluate

TCUDB in performing the PageRank algorithm. PageRank algo-

rithm consists of three steps: (1) computing the out-degree of each

node, (2) initializing the value of each node, and finally, (3) calculat-

ing the PageRank iteratively. The whole PageRank algorithm can

be implemented as the following three queries:

1 -- PR Q1: compute out-degree
2 SELECT NODE.ID,
3 COUNT(EDGE.SRC)
4 FROM NODE, EDGE
5 WHERE NODE.ID = EDGE.SRC
6 GROUP BY NODE.ID;

1 -- PR Q2: initialize values
2 SELECT NODE.ID,
3 (1-@alpha)/@num_node as rank
4 FROM NODE, OUTDEGREE
5 WHERE NODE.ID = OUTDEGREE.ID;
6 -- @alpha is 0.85 by default

1 -- PR Q3: calculate the PageRank score
2 SELECT
3 SUM(@alpha * PAGERANK.rank / OUTDEGREE.DEGREE)
4 + (1-@alpha)/@num_node
5 FROM PAGERANK, OUTDEGREE
6 WHERE PAGERANK.ID = OUTDEGREE.ID;
7 -- @alpha is 0.85 by default

Among these three queries, PR Q1 represents step 1, PR Q2

represents step 2 and PR Q3 represents step 3. A complete run of

the PageRank algorithm will invoke PR Q1 and PR Q2 once and

execute PR Q3 several times until the PageRank scores converge or

reach the maximal number of iterations.

We used the Pennsylvania road network dataset from SNAP [53]

that contains 1.08M nodes and 1.54M edges as the input dataset.

Evaluated TCUDB under different sizes of graphs, we created a

subset of the original graph for our experiments using the most

popular 𝑁 nodes and preserving the connectivity of selected nodes

in the original graph. Table 4 describes the characteristics of the

resulting graphs. Figure 12 illustrates the relative execution time

and the breakdown of latency in each system component for all

three queries. We normalized the execution time to run the same

query using the graph with 1K nodes on YDB.

Though the computation of out-degree using PR Q1 is a one-

pass task (Figure 12(a)), TCUDB’s pure TCU Join/Aggregation/-

Groupby operator still has advantages when the graph is small, by

up to 3.6× speedup with 1K graph. For graphs with more than 3K

nodes, TCUDB selects TCU-SpMM to exercise the Join/Aggrega-

tion/Groupby operator due to the low density in their adjacency

matrices. Compared with a pure TCU Join/Aggregation/Groupby

operator, a TCU-SpMM-based operator spends more time in creat-

ing operator inputs. However, as the TCU-SpMM-based operator

skips submatrices with all 0s, TCU-SpMM significantly reduces the

computation time on matrix multiplications and allows TCUDB to

outperform YDB that essentially performs sparse matrix operations

on CUDA cores by up to 7.69×.
PR Q2 is also a one-time process in the PageRank algorithm

but requires additional arithmetic to initialize the values for PR

Q3. Figure 12(b) shows that TCUDB consistently performs better

than YDB. with speedup ranging from 1.40× to 4.18×. Similar to Q1,

TCUDB uses a dense TCU operator for graphs smaller than 2K and

uses TCU-SpMM’s Join/Aggregation/Groupby to exercise queries

for larger graphs.

Figure 12(c) shows the performance of TCUDB and YDB in per-

forming PR Q3, the core of the PageRank algorithm that the algo-

rithm executes multiple times until values converge. In our experi-

ments, we performed PR Q3 for 50 iterations for each configuration.

For PR Q3, TCUDB’s Join/Aggregation/Group operator improves

the execution time of arithmetic calculations over the multi-step

process in YDB. TCUDB is 4.22× faster than YDB with 1K nodes

in the graph. Even with graphs containing 8K nodes, TCUDB still

outperforms YDB by 3.24×, as TCU-SpMM’s Join/Aggregation/-

Groupby skips submatrices containing all 0s.

5.5 Comparison with Graph Database Systems
TCUDB demonstrates the potential of using relational database

engines to analyze datasets that are originally graphs through case

studies on PageRank. On the other hand, graph database systems

 0

 1

 2

 3

 4

 5

 6

1
K

(Y
D

B
)

1
K

(T
C

U
D

B
)

2
K

(Y
D

B
)

2
K

(T
C

U
D

B
)

3
K

(Y
D

B
)

3
K

(T
C

U
D

B
)

4
K

(Y
D

B
)

4
K

(T
C

U
D

B
)

8
K

(Y
D

B
)

8
K

(T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o
n

 t
im

e
 (

L
o

w
e

r
is

 f
a

s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
GroupBy+Aggregation (YDB)

Join+GroupBy+Aggregation (TCUDB)

1.00

0.23

1.34

0.41

1.98

0.44

3.23

0.48

5.26

0.68

 0

 1

 2

 3

 4

 5

1
K

(Y
D

B
)

1
K

(T
C

U
D

B
)

2
K

(Y
D

B
)

2
K

(T
C

U
D

B
)

3
K

(Y
D

B
)

3
K

(T
C

U
D

B
)

4
K

(Y
D

B
)

4
K

(T
C

U
D

B
)

8
K

(Y
D

B
)

8
K

(T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o
n

 t
im

e
 (

L
o

w
e

r
is

 f
a

s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
GroupBy+Aggregation (YDB)

Join+GroupBy+Aggregation (TCUDB)

1.00

0.24

1.34

0.48

1.74

1.25

2.12

1.36

4.17

1.96

 0

 1

 2

 3

 4

 5

1
K

(Y
D

B
)

1
K

(T
C

U
D

B
)

2
K

(Y
D

B
)

2
K

(T
C

U
D

B
)

3
K

(Y
D

B
)

3
K

(T
C

U
D

B
)

4
K

(Y
D

B
)

4
K

(T
C

U
D

B
)

8
K

(Y
D

B
)

8
K

(T
C

U
D

B
)

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o
n

 t
im

e
 (

L
o

w
e

r
is

 f
a

s
te

r)

Fill Matrices (TCUDB)
GPU Memory Copy

HashJoin (YDB)
GroupBy+Aggregation (YDB)

Join+GroupBy+Aggregation (TCUDB)

1.00

0.24

1.44

0.53

1.95

0.85

2.41

0.94

4.70

1.45

(a) (b) (c)

Figure 12: The relative execution time of executing PageRank queries (a) Q1, (b) Q2, and (c) Q3 on TCUDB, using YDB running
the same query as the baseline. Each value equals the actual query time divided by YDB’s runtime on the 1k table.

 0

 1

 2

 3

 4

 5

 6

 7

1K 2K 4K 8K 16K 32K

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

 (
L
o
w

e
r

is
 f
a
s
te

r)

MonetDB

1
.0

0

1
.1

0

1
.3

9

3
.2

4

3
.4

1

6
.6

0YDB

0
.4

9

0
.7

1

1
.1

8

2
.3

1

MagiQ

0
.2

5

0
.3

8

0
.6

9

1
.1

5

2
.2

1

4
.3

3

TCUDB

0
.1

2

0
.2

6

0
.4

6

0
.7

1 1
.4

7

1
.5

8

Figure 13: The relative latency of the core join and aggre-
gation operation when running PageRank Q3 in MonetDB,
YDB, MAGiQ, and TCUDB.

provide more natural representations and storage layouts to serve

the same purpose. To investigate the strength and the implications

of TCUDB in the future advancement of graph database systems,

this section compares the performance of TCUDB on the PageRank

algorithmwith the state-of-the-art graph query engineMAGiQ [43].

In contrast to the table-style storage that relational database sys-

tems and TCUDB use, MAGiQ’s backend storage is organized as

2-dimensional key-value pairs, typically already in some sparse ma-

trix formats. MAGiQ translates the queries described by SPARQL

into a set of GraphBLAS [19] calls on these sparse matrices.

We use the same SNAP dataset as in Section 5.4.3 to evaluate the

PageRank performance of MAGiQ with GPU and TCUDB. Figure 13

compares the performance of MAGiQ and TCUDB with MonetDB

and YDB as references. However, the released version of YDB can

only support these queries with datasets containing at most 8,192

nodes. Due to the large overhead of retrieving sparse matrices

in MAGiQ compared to other counterparts, we only present the

latency of the core join and aggregation operations in each exper-

iment. The presented numbers are PageRank Q3’s performance

on the sub-sampled graphs listed in Table 4. MAGiQ outperforms

YDB, the pure GPU query engine on relational databases, in all

cases, demonstrating that a customized graph database engine does

provide a more efficient platform for graph analytics on the same

architecture. Meanwhile, TCUDB outperforms MAGiQ in all eval-

uated cases. The main reason is that TCUs allow TCUDB to more

efficiently exercise these queries than GraphBLAS that uses only

conventional GPU cores at this moment. We observed that the dif-

ference is more significant as the graph becomes larger and more

sparse. These results help us generate two insights. First, with TCUs,

graph analytics can be efficient with existing relational databases.

Second, graph databases can also be more efficient if their backends

can leverage TCUs as TCUDB does.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Q1
(YDB)

Q1
(TCUDB)

Q3
(YDB)

Q3
(TCUDB)

Q4
(YDB)

Q4
(TCUDB)

S
p
e
e
d
u
p
 (

H
ig

h
e
r

is
 B

e
tt
e
r)

4096,32

1
.1

0

1
.5

2

1
.0

8

1
.4

3

1
.0

4

1
.6

6

8192,32

1
.2

0

1
.9

3

1
.1

2

1
.9

0

1
.1

9

2
.3

2

16384,32

1
.1

4

1
.8

8

1
.0

5

1
.8

7

1
.0

6

2
.5

8

32768,32

2
.0

4

1
.7

5

1
.6

8

1
.7

5

1
.7

1

2
.4

2average

1
.3

7

1
.7

7

1
.2

3

1
.7

4

1
.2

5

2
.2

5

Figure 14: The microbenchmark speedup of using RTX 3090
over RTX 2080 for Q1, Q3, Q4 on TCUDB and YDB. Each value
equals RTX 2080 time divided by RTX 3090 time.

5.6 TCUDB on different GPU architectures
To investigate the performance scaling on different GPU architec-

tures and their implications to the design of the TCU-accelerated

DB engine, we perform experiments on NVIDIA’s 2080, which uses

an earlier Turing GPU architecture with the last generation TCU

available.

Figure 14 compares the performance of microbenchmarks on the

same queries Q1, Q3, Q4 mentioned in Section 5.2 using both YDB

and TCUDB on RTX 3090 GPU and RTX 2080 GPU. The baseline

ran the same query using the same DB engine on RTX 2080. We

observed that TCUDB performs better generation-over-generation

– when using RTX 3090 TCUDB achieved an average speedup of

1.77× on Q1, 1.74× on Q3 and 2.25× on Q4, but YDB only achieved

1.37× on Q1, 1.23× on Q3 and 1.25× on Q4. It is worth noting that

RTX 3090 contains only 328 Tensor Cores compared to 368 Tensor

Cores in RTX 2080. On the other hand, the RTX 3090 has 10496

conventional CUDA GPU cores for vector processing while RTX

2080 only has 2944 of them. The results reveals that the performance

scaling of Tensor Cores in newer generations of GPU architectures

is stronger than conventional vector processing cores, given that

RTX 3090 has fewer Tensor Cores, 3.4× more CUDA cores, but

TCUDB’s speedup is more significant on RTX 3090. This result also

indicates applications, including DB engines, with a larger portion

relying on TCUs will expect to receive more performance gains

when new GPU architectures are used.

6 RELATEDWORK
Hardware-accelerated DB’s. Integrating advanced hardware ac-

celerators into database systems has been an active line of research

for the past few decades. Commonly considered accelerators in-

clude GPUs [12, 13, 17, 29, 34, 54, 72, 76, 83, 87, 89, 90, 92, 93] and

FPGAs [28, 59, 63, 69, 88]. Optimization techniques have been pro-

posed for database operators including Select [79], Join [35, 37, 38,

78], Sort [33] and Group-by Aggregate [47]. In particular, to support

star schema queries, YDB [92] implements these operators into a

data warehousing engine, which we used as a baseline for TCUDB.

GPUs have also been incorporated into industrial DB engines such

as OmnisciDB [67], Kinetica [49], and BlazingSQL [9].

With GPUs reducing the computation time but the increasing

volume of datasets, the data movement overhead becomes more

significant to the degree that DB engines must be aware [11, 73].

Several GPUDB systems incorporate GPU RDMA techniques [4,

48, 55, 66, 81, 95] to directly access data on the storage devices [15,

54, 96] or efficiently exchange data among multiple GPUs [58],

bypassing the host system’s main memory. This paper is orthogonal

but will receive significant benefit from this line of research projects.

To fundamentally address the data movement overhead, DB systems

can push down the computation of query processing into existing

or additional hardware logic to offload part of the computation

instead of using computing resources on the host system [22, 23,

44, 45, 51, 85, 86]. However, due to the power and hardware budget

of memory/storage devices, the computing resources near data

locations are typically limited. For the cases studied in this paper, DB

systems still have to rely on host computing resources (i.e., GPUs,

TCUs, FPGAs and TPUs) to efficiently perform the received queries.

With modern matrix processors need to partition matrix data and

accept reduced precision values, DB system like this paper can

still leveage near data processing models to reduce precisions [41]

or reshape data [56] if the processing power in storage devices is

permitted.

Matrix processors in relational databases. To the best of our

knowledge, TCUDB is the first database system that fully lever-

ages Tensor Core Units (TCUs) as matrix processors to acceler-

ate compute-intensive database queries. Prior work [18] leverages

TCUs for scan/reduction operators by mapping scan/reduction

into matrix-vector products. However, [18] only treats TCUs as

wider vector processors leveraging TCU’s fused operations that can

perform multiplications and accumulations in a single operation.

In contrast, TCUDB transforms queries into matrix-matrix opera-

tions so that it can fully utilize TCUs’ nature as matrix processors.

Prior work [40] investigated the feasibility of accelerating relational

queries using Google Cloud’s closed-architecture TPU platform and

proprietary version of TensorFlow. However, due to limitations of

the platform, [40] only accelerates vector-based operators such

as reduced sum. Its implementation can only support single-table

queries (called Dimension Join in [40]). On the other hand, TCUDB

can support a wide range of queries include two-way natural joins

by leveraging TCUs for matrix operations.

Join processing as matrix multiplication. A key technical con-

tribution of TCUDB is to cast the join operator as dense matrix

multiplication. While being unconventional due to the high theo-

retical computational complexity, this idea was explored in [5] and

more recently in [20]. In particular, [20] proposed a fast join algo-

rithm that combines worst-case optimal join algorithms [65] and

fast matrix multiplication. The authors also provide a CPU-based

implementation highlighting performance gain from the highly-

optimized linear algebra framework such as Intel MKL [84]. The

implementation achieves up to 50× performance improvement com-

pared to baselines. In TCUDB, we further push this trend by lever-

aging NVIDIA’s TCUs that are specialized for tensor processing,

which commonly appears in deep learning workloads to achieve

up to 288× performance gain.

Graph queries as matrix operators. Processing queries as ma-

trix operators have also been considered in the context of graph

databases. In particular, MAGiQ [43] accelerates SPARQL queries

on RDF graphs by translating queries into sparse matrix linear al-

gebra programs. We have discussed the key differences between

TCUDB and MAGiQ in Section 5.5. Our experiment results also

show that integrating TCUDB’s strategy of executing those matrix

operators in TCUs can be an interesting optimization opportunity

for graph query engines like MAGiQ.

Advanced in-database analytics. To accommodate the expo-

nential growth in data science and machine learning applications,

a recent line of work [3, 14, 24, 26, 39, 42, 57, 80] focuses on sup-

porting advanced analytics queries that involve linear algebra (LA)

operators. TCUDB shares the goal of LevelHeaded [3] in identifying

the worst-case optimal join (WCOJ) [65] or LaraDB’s rule-based

translation between relational queries and parallel LA queries, but

TCUDB additionally provides the capability of translating (parts

of) the query to TCU-accelerated matrix multiplication operator(s)

and different sets of opportunities from the orders of magnitude

speedup by TCUs in such operations. TCUDB also offers a better

system architecture by making TCU-accelerated operators as inte-

gral parts of the DB engine and thus incurs zero system overhead

in processing TCU-accelerated queries. In contrast, query analyzers

like AIDA [26] that rely on external parallel libraries from different

language frameworks from the query engine always lead to redun-

dant memory copies that are especially significant in our use cases.

Compared with proposals relying on SQL extensions that introduce

data type labels (e.g., vector and matrix) to support LA queries [57]

or new query languages [14], TCUDB does not require any change

to the SQL.

Entity Matching and PageRank. A major challenge in EM [16,

25, 27, 50] is in the blocking phase [30, 50, 70] to reduce the number

of candidate pairs to be matched by heuristics specified as natu-

ral joins. Our case study demonstrates that TCUDB delivers over

300× speedup for blocking queries compared to a GPU-accelerated

HashJoin implementation. This indicates the potential of building

scalable EM systems with TCUDB as the backend.

PageRank is a graph-based ranking algorithm with applications

from web searches to basic science (see [32] for a survey). PageRank

is also commonly used in benchmarks of graph databases [21, 61, 64].

While there has been an effort to accelerate PageRank (and other

graph analytic queries) using GPUs [74, 77, 91], to our knowledge,

TCUDB is the first to attempt to accelerate PageRank using TCUs.

7 CONCLUSION
This paper proposes, implements and evaluates TCUDB, an efficient

database query engine with TCUs, an emerging type of AI/ML hard-

ware accelerator presented in modern GPU architectures. This pa-

per identifies query patterns that match TCUs’ acceleration model.

Through solving technical difficulties such as remapping inputs

and limited precision, the resulting TCUDB shows ours achieves up

to 288× speedup against the baseline GPU-accelerated DB engine.

The performance gain of TCUDB over conventional GPU-based

DB engines indicates a strong performance scaling in new GPU

architectures. For future work, we plan to extend TCUDB by explor-

ing more potential workloads and addressing the complex query

optimization problem with multiple accelerators of different types.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

helpful comments. This work was sponsored by the two National

Science Foundation (NSF) awards, CNS-1940048 and CNS-2007124.

This work was also supported by new faculty start-up funds from

University of California, Riverside.

REFERENCES
[1] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. 2009. Column-oriented

database systems. Proceedings of the VLDB Endowment 2, 2 (2009), 1664–1665.
[2] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. 2008. Column-stores vs.

row-stores: How different are they really?. In SIGMOD. ACM, 967–980.

[3] Christopher Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré. 2018.

Levelheaded: A unified engine for business intelligence and linear algebra query-

ing. In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
449–460.

[4] AMD Inc. 2014. AMD FirePro DirectGMA. http://developer.amd.com/community/

blog/2014/09/08/amd-firepro-gpus-directgma/.

[5] Rasmus Resen Amossen and Rasmus Pagh. 2009. Faster join-projects and sparse

matrix multiplications. In Proceedings of the 12th International Conference on
Database Theory. Association for Computing Machinery, 121–126.

[6] Apple Inc. 2020. Apple M1. https://www.apple.com/newsroom/2020/11/apple-

unleashes-m1/.

[7] B. He, M. Lu, K. Yang, R. Fang, N. Govindaraju, Q. Luo, and P. Sander. 2013.

GPUDB source code. http://code.google.com/p/gpudb

[8] Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL Database Operations

on a GPU with CUDA. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. Association for Computing Machinery,

94–103.

[9] BlazingSQL Inc. 2015. BlazingDB. https://blazingsql.com.

[10] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-

Pipelining Query Execution.. In CIDR, Vol. 5. 225–237.
[11] Sebastian Bre𝛽 , Henning Funke, and Jens Teubner. 2016. Robust Query Processing

in Co-Processor-Accelerated Databases. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). 1891–1906.

[12] Sebastian Bre𝛽 , Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl,

and Volker Markl. 2018. Generating Custom Code for Efficient Query Execution

on Heterogeneous Processors. The VLDB Journal 27, 6 (Dec. 2018), 797–822.
[13] Sebastian Breß and Gunter Saake. 2013. Why it is time for a HyPE: A hybrid

query processing engine for efficient GPU coprocessing in DBMS. Proc. VLDB
Endow. 6, 12 (2013), 1398–1403.

[14] Robert Brijder, Floris Geerts, Jan Van Den Bussche, and Timmy Weerwag. 2019.

On the Expressive Power of Query Languages for Matrices. ACM Trans. Database
Syst. 44, 4, Article 15 (Oct. 2019).

[15] W. G. Choi, D. Kim, H. Roh, and S. Park. 2020. OurRocks: offloading disk scan

directly to GPU in write-optimized database system. IEEE Trans. Comput. (2020),
1–1.

[16] Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. 2015. Entity

resolution in the web of data. Synthesis Lectures on the Semantic Web 5, 3 (2015),
1–122.

[17] Periklis Chrysogelos, Panagiotis Sioulas, andAnastasia Ailamaki. 2019. Hardware-

conscious query processing in gpu-accelerated analytical engines. In Proceesings
of the 9th Biennial Conference on Innovative Data Systems Research.

[18] Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. 2019.

Accelerating Reduction and Scan Using Tensor Core Units. In Proceedings of the
ACM International Conference on Supercomputing. Association for Computing

Machinery, 46–57.

[19] Tim Davis, Michel Pelletier, and Scott Kolodziej. 2017. GraphBLAS Standard.

https://github.com/GraphBLAS.

[20] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2020. Fast Join Project Query

Evaluation Using Matrix Multiplication. In SIGMOD. Association for Computing

Machinery, 1213–1223.

[21] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E Lee. 2020. Aggregation support for

modern graph analytics in TigerGraph. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 377–392.

[22] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,

and David J. DeWitt. 2013. Query Processing on Smart SSDs: Opportunities and

Challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. ACM, 1221–1230.

[23] Jaeyoung Do and Jignesh M. Patel. 2009. Join Processing for Flash SSDs: Remem-

bering Past Lessons. In Proceedings of the Fifth International Workshop on Data
Management on New Hardware. 1–8.

[24] Oksana Dolmatova, Nikolaus Augsten, and Michael H Böhlen. 2020. A Relational

Matrix Algebra and its Implementation in a Column Store. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 2573–2587.

[25] Xin Luna Dong and Divesh Srivastava. 2013. Big data integration. In 2013 IEEE
29th international conference on data engineering (ICDE). IEEE, 1245–1248.

[26] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA:

Abstraction for Advanced in-Database Analytics. PVLDB 11, 11 (2018), 1400–

1413.

[27] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. 2006.

Duplicate record detection: A survey. IEEE Transactions on knowledge and data
engineering 19, 1 (2006), 1–16.

[28] Jian Fang, Yvo TB Mulder, Jan Hidders, Jinho Lee, and H Peter Hofstee. 2020.

In-memory database acceleration on FPGAs: a survey. The VLDB Journal 29, 1
(2020), 33–59.

[29] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner. 2018.

Pipelined Query Processing in Coprocessor Environments. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD ’18). 1603–1618.

[30] Luca Gagliardelli, Giovanni Simonini, Domenico Beneventano, and Sonia Berga-

maschi. 2019. SparkER: Scaling Entity Resolution in Spark. In EDBT 2019: 22nd
International Conference on Extending Database Technology.

[31] Pedram Ghodsnia. 2012. An In-GPU-Memory Column-Oriented Database for

Processing Analytical Workloads. 54–59.

[32] David F Gleich. 2015. PageRank beyond the Web. siam REVIEW 57, 3 (2015),

321–363.

[33] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006. GPUT-

eraSort: high performance graphics co-processor sorting for large database man-

agement. In SIGMOD. ACM, 325–336.

[34] Naga K Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.

2004. Fast computation of database operations using graphics processors. In

SIGMOD. ACM, 215–226.

[35] C. Guo and H. Chen. 2019. In-Memory Join Algorithms on GPUs for Large-

Data. In 2019 IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
1060–1067.

[36] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and

Pedro V. Sander. 2009. Relational Query Coprocessing on Graphics Processors.

ACM Trans. Database Syst. 34 (2009).
[37] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and

Pedro Sander. 2008. Relational joins on graphics processors. In SIGMOD. 511–524.
[38] Jiong He, Mian Lu, and Bingsheng He. 2013. Revisiting co-processing for hash

joins on the coupled cpu-gpu architecture. VLDB 6, 10 (2013), 889–900.

[39] Joseph M Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,

Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,

Kun Li, et al. 2012. The MADlib Analytics Library. Proceedings of the VLDB
Endowment 5, 12 (2012).

[40] Pedro Holanda and Hannes Mühleisen. 2019. Relational Queries with a Tensor

Processing Unit. In Proceedings of the 15th International Workshop on Data Man-
agement on New Hardware. Association for Computing Machinery, Article 19,

3 pages.

[41] Yu-Ching Hu, Murtuza Taher Lokhandwala, Te I, and Hung-Wei Tseng. 2019.

Dynamic Multi-Resolution Data Storage. In 52th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2019 (Best Paper Honorable Mention)).

[42] Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Ker-

nel for Linear and Relational Algebra Computation. In Proceedings of the 4th
ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond
(BeyondMR’17). Article 2, 10 pages.

[43] Fuad Jamour, Ibrahim Abdelaziz, Yuanzhao Chen, and Panos Kalnis. 2019. Matrix

Algebra Framework for Portable, Scalable and Efficient Query Engines for RDF

Graphs. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19).
Association for Computing Machinery.

[44] Yanqin Jin, Hung-Wei Tseng, Steven Swanson, and Yannis Papakonstantinou.

2017. KAML: A Flexible, High-Performance Key-Value SSD. In 23th International
Symposium on High Performance Computer Architecture (HPCA 2017).

[45] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,

Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance for Big Data Analytics. In

Proceedings of the 42Nd Annual International Symposium on Computer Architecture.
ACM, 1–13.

[46] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. 2012. GPU join

processing revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware. 55–62.

[47] Tomas Karnagel, René Müller, and Guy M Lohman. 2015. Optimizing GPU-

accelerated Group-By and Aggregation. ADMS@ VLDB 8 (2015), 20.

[48] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Amir Wated, Emmett

Witchel, and Mark Silberstein. 2014. GPUnet: Networking abstractions for GPU

programs. In OSDI. 6–8.
[49] Kinetica DB Inc. 2016. Kinetica. https://www.kinetica.com/.

[50] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jef-

frey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al. 2016.

Magellan: Toward building entity matching management systems. Proceedings of
the VLDB Endowment 9, 12 (2016), 1197–1208.

[51] Gunjae Koo, Kiran Kumar Matam, Te I, Hema Venkata Krishna Giri Narra, Jing

Li, Steven Swanson, Hung-Wei Tseng, and Murali Annavaram. 2017. Summarizer:

Trading Bandwidth with Computing Near Storage. In 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2017). 219–231.

[52] Monica D Lam, Edward E Rothberg, and Michael E Wolf. 1991. The cache

performance and optimizations of blocked algorithms. ACM SIGOPS Operating
Systems Review 25, Special Issue (1991), 63–74.

http://developer.amd.com/community/blog/2014/09/08/amd-firepro-gpus-directgma/
http://developer.amd.com/community/blog/2014/09/08/amd-firepro-gpus-directgma/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
http://code.google.com/p/gpudb
https://blazingsql.com
https://github.com/GraphBLAS
https://www.kinetica.com/

[53] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009.

Community Structure in Large Networks: Natural Cluster Sizes and the Absence

of Large Well-Defined Clusters. Internet Mathematics 6, 1 (2009), 29–123.
[54] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven

Swanson. 2016. Hippogriffdb: Balancing I/O and GPU bandwidth in big data

analytics. PVLDB 9, 14 (2016), 1647–1658.

[55] Yang Liu, Hung-Wei Tseng, Mark Gahagan, Jing Li, Yanqin Jin, and Steven Swan-

son. 2016. Hippogriff: Efficiently Moving Data in Heterogeneous Computing

Systems. In 2016 IEEE 34th International Conference on Computer Design (ICCD).
IEEE, 376–379.

[56] Yu-Chia Liu and Hung-Wei Tseng. 2021. NDS: N-Dimensional Storage. In 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2021
(Best Paper Nomination)).

[57] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine. 2019. Scalable Linear

Algebra on a Relational Database System. IEEE Transactions on Knowledge and
Data Engineering 31, 7 (2019), 1224–1238.

[58] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.

2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-

connects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’20). 1633–1649.

[59] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar, and

Hadi Esmaeilzadeh. 2018. In-RDBMS Hardware Acceleration of Advanced Ana-

lytics. PVLDB 11, 11 (2018).

[60] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S

Vetter. 2018. Nvidia tensor core programmability, performance & precision. In

2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 522–531.

[61] Ioannis Mitliagkas, Michael Borokhovich, Alexandros G Dimakis, and Constan-

tine Caramanis. 2015. FrogWild! Fast PageRank Approximations on Graph

Engines. Proc. VLDB Endow. 8, 8 (4 2015), 874–885.
[62] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.

Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD.
Association for Computing Machinery, 19–34.

[63] Rene Mueller and Jens Teubner. 2009. FPGA: What’s in It for a Database?. In

Proceedings of the 2009 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’09). ACM, 999–1004.

[64] Mark Needham and Amy E Hodler. 2019. Graph Algorithms: Practical Examples
in Apache Spark and Neo4j. O’Reilly Media.

[65] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal

join algorithms. Journal of the ACM (JACM) 65, 3 (2018), 1–40.
[66] NVIDIA. 2017. GPUDirect RDMA. https://developer.nvidia.com/gpudirect.

[67] OmniSci Inc. 2018. Open Source Analytical Database & SQL Engine. https:

//www.omnisci.com/platform/omniscidb.

[68] Patrick O‘Neil, Elizabeth O‘Neil, Xuedong Chen, and Stephen Revilak. 2009.

The star schema benchmark and augmented fact table indexing. In Performance
evaluation and benchmarking. 237–252.

[69] Muhsen Owaida, Gustavo Alonso, Laura Fogliarini, Anthony Hock-Koon, and

Pierre-Etienne Melet. 2019. Lowering the Latency of Data Processing Pipelines

through FPGA Based Hardware Acceleration. Proc. VLDB Endow. 13, 1 (2019),
71–85.

[70] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.

2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1–42.

[71] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In NeurIPS.
[72] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based pipelined

query processing engine. In Proceedings of the 2016 International Conference on
Management of Data. 1935–1950.

[73] Steven Pelley, Thomas F Wenisch, Brian T Gold, and Bill Bridge. 2013. Storage

management in the NVRAM era. Proceedings of the VLDB Endowment 7, 2 (2013),
121–132.

[74] Arnon Rungsawang and Bundit Manaskasemsak. 2012. Fast pagerank computa-

tion on a gpu cluster. In 2012 20th Euromicro International Conference on Parallel,
Distributed and Network-based Processing. IEEE, 450–456.

[75] Kaz Sato, Cliff Young, and David Patterson. 2017. An in-depth look at Google’s

first Tensor Processing Unit (TPU). Google Cloud Big Data and Machine Learning
Blog 12 (2017).

[76] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-

mental Performance Characteristics of GPUs and CPUs for Database Analytics.

In SIGMOD. 1617–1632.
[77] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and

Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. ACM Computing
Surveys (CSUR) 50, 6 (2018), 1–35.

[78] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.

2019. Hardware-Conscious Hash-Joins on GPUs. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 698–709.

[79] Evangelia A Sitaridi and Kenneth A Ross. 2013. Optimizing select conditions on

GPUs. In Proceedings of the Ninth International Workshop on Data Management
on New Hardware. 1–8.

[80] Anthony Thomas and Arun Kumar. 2018. A Comparative Evaluation of Systems

for Scalable Linear Algebra-Based Analytics. Proc. VLDB Endow. 11, 13 (2018),
2168–2182.

[81] Hung-Wei Tseng, Yang Liu, Mark Gahagan, Jing Li, Yanqin Jin, and Steven Swan-

son. 2015. Gullfoss: Accelerating and Simplifying Data Movement among Hetero-
geneous Computing and Storage Resources. Technical Report. UCSD Technical

Report.

[82] P. Volk, D. Habich, andW. Lehner. 2010. GPU-Based Speculative Query Processing

for Database Operations. In ADMS@VLDB.
[83] Slawomir Walkowiak, Konrad Wawruch, Marita Nowotka, Lukasz Ligowski, and

Witold Rudnicki. 2010. Exploring utilisation of GPU for database applications.

Procedia Computer Science 1, 1 (2010), 505–513.
[84] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing

Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi. Springer, 167–188.

[85] JianguoWang, Chunbin Lin, Ruining He, Moojin Chae, Yannis Papakonstantinou,

and Steven Swanson. 2017. MILC: Inverted List Compression in Memory. Proc.
VLDB Endow. 10, 8 (4 2017).

[86] Jianguo Wang, Dongchul Park, Yannis Papakonstantinou, and Steven Swanson.

2016. SSD In-Storage Computing for Search Engines. IEEE Trans. Comput. (2016).
[87] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding, and

Xiaodong Zhang. 2014. Concurrent Analytical Query Processing with GPUs.

VLDB 7, 11 (7 2014), 1011–1022.

[88] Zeke Wang, Huiyan Cheah, Johns Paul, Bingsheng He, and Wei Zhang. 2016.

Accelerating Database Query Processing on OpenCL-based FPGAs. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 274–274.

[89] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.

2012. Kernel weaver: Automatically fusing database primitives for efficient gpu

computation. In MICRO. IEEE Computer Society, 107–118.

[90] Haicheng Wu, D. Zinn, M. Aref, and S. Yalamanchili. 2014. Multipredicate join

algorithms for accelerating relational graph processing on GPUs. In International
Workshop on Accelerating Data Management Systems Using Modern Processor and
Storage Architectures.

[91] Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi Xu. 2010. Efficient

PageRank and SpMV Computation on AMD GPUs. In 2010 39th International
Conference on Parallel Processing. IEEE, 81–89.

[92] Yuan Yuan, Rubao Lee, andXiaodong Zhang. 2013. The Yin and Yang of processing

data warehousing queries on GPU devices. VLDB 6, 10 (2013), 817–828.

[93] Y. Yuan, M. F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang. 2016. Spark-GPU:

An accelerated in-memory data processing engine on clusters. In 2016 IEEE
International Conference on Big Data (Big Data). 273–283.

[94] Orestis Zachariadis, Nitin Satpute, Juan Góumez-Luna, and Joaquqín Olivares.

2020. Accelerating sparse matrix-matrix multiplication with GPU Tensor Cores.

Computers and Electrical Engineering 88 (2020), 106848. https://doi.org/10.1016/j.

compeleceng.2020.106848

[95] Jie Zhang, David Donofrio, John Shalf, Mahmut T Kandemir, andMyoungsoo Jung.

2015. NVMMU: A Non-volatile Memory Management Unit for Heterogeneous

GPU-SSD Architectures. In PACT. IEEE, 13–24.
[96] Kai Zhang, Feng Chen, Xiaoning Ding, Yin Huai, Rubao Lee, Tian Luo, Kaibo

Wang, Yuan Yuan, and Xiaodong Zhang. 2015. Hetero-DB: Next Generation High-

Performance Database Systems by Best Utilizing Heterogeneous Computing and

Storage Resources. Journal of Computer Science and Technology 30, 4 (2015),

657–678.

[97] Zach Zimmerman. 2016. MSplitGEMM: Large matrix multiplication in CUDA.

https://github.com/zpzim/MSplitGEMM.

https://developer.nvidia.com/gpudirect
https://www.omnisci.com/platform/omniscidb
https://www.omnisci.com/platform/omniscidb
https://doi.org/10.1016/j.compeleceng.2020.106848
https://doi.org/10.1016/j.compeleceng.2020.106848
https://github.com/zpzim/MSplitGEMM

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Tensor Core Units (TCUs)
	2.2 GPU-accelerated Database System Architecture (GPUDB)
	2.3 The Missing Opportunities of GPU Databases in TCUs

	3 TCU-accelerated query patterns
	3.1 Two-way natural join
	3.2 Multi-way joins
	3.3 Group-by aggregates over joins
	3.4 Other supported operators

	4 TCUDB: A TCU-Accelerated DB Engine
	4.1 Overview
	4.2 TCUDB query optimizer

	5 Experimental Results
	5.1 Experimental Methodology
	5.2 Microbenchmark
	5.3 Analytic queries: Star Schema Benchmark
	5.4 Case studies: matrix multiplication, entity matching, and PageRank
	5.5 Comparison with Graph Database Systems
	5.6 TCUDB on different GPU architectures

	6 Related Work
	7 Conclusion
	References

