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ABSTRACT

A folded disk is bistable, as it can be popped through to an inverted state with elastic energy localized in
a small, highly-deformed region on the fold. Cutting out this singularity relaxes the surrounding material
and leads to a loss of bistability when the hole dimensions reach a critical size. These dimensions are
strongly anisotropic and feature a surprising re-entrant behavior, such that removal of additional material
can re-stabilize the inverted state. A model of the surface as a wide annular developable strip is found to
capture the qualitative observations in experiments and simulations. These phenomena are consequential
to the mechanics and design of crumpled elastic sheets, developable surfaces, origami and kirigami, and

Bistability
Folds
Elasticity

other deployable and compliant structures.

© 2021 Elsevier Ltd. All rights reserved.

The role of elastic singularities in the deformation of thin sheets
and shells is still poorly understood, despite a quarter of a century
of intense investigation into their geometry and energetics [1-15].
Over the years, several perspectives have emerged, viewing these
localized high-energy regions as a manifestation of spontaneous
condensation of both curvature and stretching [16-19], sources of
rigidity [20-22], or an organizing framework for random crumpling
[23], regular patterns [24,25], or dynamics [26,27]. Our interest in
the current study was driven by Witten’s observation [28] that the
excision of such regions of focused elastic energy leads to signifi-
cant relaxation of neighboring regions of material, and the indica-
tion that such surgery should also modify the rigidity and stability
landscape of any surrounding structure. The proximity of the edge
of regression, or other virtual singularities living outside nominally
inextensible surfaces, has been qualitatively linked to the structural
stiffness response [29-31]. Another thread in this work is the ques-
tion of multistability of systems of creases and facets with compet-
ing flexibilities, including origamic analogs of elastic singularities
[32-39].

Our model system is a single fold in an elastic disk, and the sin-
gular structure formed by popping it through with a thumb. This
is perhaps the simplest bistable “foldable cone” examined in [37].
In [40] it was noted that a small hole reduced the energy bar-
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rier to pop through a fold to its inverted state, but this was not
pursued to its logical conclusion, the complete elimination of the
barrier with a sufficiently large hole. In this note, we employ the-
ory, numerics, and experiment to capture the complex behavior of
a fold after removal of its singularity and a variable zone of sur-
rounding material. We find that cutting a hole of sufficient size
around the singularity leads to a loss of bistability through a fold
bifurcation that destabilizes the inverted state. There is significant
anisotropy in the critical hole dimensions, such that a narrow slit
aligned along the crease can be as large as the disk without de-
stroying bistability. We also observe a curious re-entrant behavior
of the stability diagram for small elliptical holes aligned perpen-
dicular to the crease, which can in some parameter ranges more
effectively eliminate bistable behavior than a larger circular hole.
We demonstrate the surprising applicability of a developable rib-
bon model to this class of wide, topologically annular shapes.
Experiments were performed on disks of radius 1 <R < 10 cm,
thickness t = 0.005 in (0.127 mm), 0.003 in (0.076 mm), or 0.002
in (0.051 mm), and prescribed central elliptical hole geometries
(semiaxes a and b perpendicular and parallel to the eventual
crease), obtained by cutting (Cameo 3, Silhouette America, Lindon,
UT) polyester shim stock (Artus Corp., Englewood, NJ) and subse-
quently creasing along a diameter using a vise set to a prescribed
position and held for two seconds. The structure was then flexed
by inverting it once or twice and allowed to relax for five minutes
before bistability tests were performed, with the sample hanging
such that the crease was vertical to minimize gravitational effects
on the bistability of the thinnest sheets. We refer to the simply
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Fig. 1. Photographs of (a) folded and (b) inverted states of disks with different hole
dimensions, showing the disk radius R, hole semiaxes a and b perpendicular and
parallel to the crease, rest and final crease angles yp and yy, and an angle § charac-
terizing the inverted state. (c) Rendering of one half of an inverted state in a devel-
opable strip model, bounded by the crease. The directrix is the outer circumference,
parameterized by 0 < s < R for one half of the disk, and carrying a Darboux frame
(T, N, B). The generators make a local angle 8 with the tangent.

creased state as the folded configuration and the stable popped-
through state as the inverted configuration. When both stable states
exist, they are separated by an energy barrier corresponding to
another, unstable, equilibrium state. This barrier was examined in
[41] for a reduced model of the surface with a single hole size. The
folded state is characterized by a rest crease angle y, over which
we have little control; thickness, disk size, and hole size all con-
tribute significantly to this value, which we report as a range span-
ning multiple hole sizes for a given sample set (measured from
photographs of the disks). The inverted state is characterized by a
final crease angle yy, which is observed to be a function of radial
position in experiments and numerics, and an angle § between a
side of the crease and a line connecting the ends of the two sides.
Fig. 1(a-b) illustrates examples of the two states and associated pa-
rameters for two different hole geometries. The inverted config-
uration reflects a competition between the unknown and uncon-
trollable stiffness of the crease and the bending resistance of the
facets comprising the remainder of the disk, such that the overall
disk size R is a relevant scale that we can understand using the
related concepts of “origami length” [42] or “hinge index” [43]. We
should expect an asymptotic approach to a linear scaling of criti-
cal bistable hole size with the disk radius as the latter grows and
the crease becomes effectively rigid. However, the interference of
gravity also becomes more important with increasing disk radius,
setting a practical limit for the experiments.

We employ an annular wide-strip model that treats the punc-
tured disk as a developable surface outside of the crease, an ap-
proach that is reasonable for static configurations of sufficiently
thin elastic sheets [12,29,30,44-48]. In this model, we treat the
crease as a generator (zero-curvature direction) with uniform fi-
nal angle yy, an approximation we will revisit shortly below. Full
details of the model, including boundary conditions and numeri-
cal implementation, can be found in Appendix A; we sketch the
important aspects here. The directrix r(s) forms the outer cir-
cumference of one half of the symmetric disk, parameterized by
arc length 0 <s < R, and carries an orthonormal material (Dar-
boux) frame of curve tangent T =1/, where a prime denotes an
s-derivative, surface normal N, and surface tangent normal B =
T x N. The evolution of the frame is given by T’ = knN — kB,
N = —knT + 74B, B' = kT — 14N, where «n, kg = —1/R, and 74 are
the normal curvature, geodesic curvature, and geodesic torsion. As
shown in Fig. 1(c), generators lie in the B+ nT direction, making
a local angle B with the directrix; n = cot B = 7g/kn. The shape is
symmetric and given by the embedding

X(s,v) =r(s) + V[B(s) + n(s)T(s)], (1)

with 0 <v <V(s,n;R,a,b) the coordinate along the generator of

implicitly treated length V,/1+n2. This surface has mean cur-
Kn(]+"/2)
2[1+v[n/+kg(14+n2)]]
kg(14n?))]dsdv. Defining a crease stiffness per unit length K.
and a facet bending rigidity D = Et3/[12(1 — v2)] incorporating the

vature H = and area element dA=[1+v(n +
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Young’s modulus E and Poisson’s ratio v, the total elastic energy
U of a creased punctured disk can be written as an augmented
Wunderlich functional [30,44,49,50] with contributions from both
crease and facets,

U K. i -
— = —(R—b)/ sin(yr — yo)dy
2D D o ! !
1 R pV )
w5 [ [ @aa, 2)
o Jo
KR b =R
= 1——=]|1-cos(yr— + YWds,

D ( R>[ v =] A

with Y= - S04D%  and W — In[1 + V(' + &g(1 + n2))]. The

2[n"+xg(14+02)]
crease stiffness diverges as the origami length D/K. approaches
zero with the thickness [42]. The crease contribution to the en-
ergy (2) only enters the problem through the boundary condi-
tions, and does not appear in the Euler-Lagrange equations, given
by [44,50]

F =0, (3)
M +TxF=0, (4)
B, (YW) —)M; — M3 =0, (5)
3y (YW) — (3, (YW)) —icyM; =0, (6)

where forces and moments, normalized by D, have components
in the moving frame specified by F=FRT +EN+FEB and M =
M;T + MyN + M3B. Equations 3-(6) for one half of the symmet-
ric structure, along with an Euler angle description of the moving
frame, and boundary conditions imposed at the crease, are solved
using the continuation package AUTO 07P [51].

To explore beyond the limitations of the developable model,
as well as to allow independent control of rest crease angle,
crease stiffness, and material thickness not possible in exper-
iments, simulations were performed using the commercial fi-
nite element (FE) software COMSOL Multiphysics 5.4, employing
quadratic shell elements, linear-elastic material, and creases intro-
duced using a through-thickness thermal gradient [38]. These sim-
ulations also avoid self-contact effects that are an issue with ex-
periments at small hole sizes. Full simulation details can be found
in Appendix B.

Results from the developable model 3-(6) are shown in Fig. 2(a-
c) for circular holes (a = b), rest crease angle yy = 45°, and sev-
eral values of crease stiffness K.R/D. Certain features are shared
by all the solution curves in parameter space. The stable inverted
state and another unstable state are lost through a fold bifurca-
tion at a critical hole size, which shows only moderate variation
with crease stiffness. At the end of the unstable lower branch, the
curves terminate due to a failure of the embedding of the de-
velopable surface as the edge of regression approaches the sheet
boundary. For stiffer creases, a greater proportion of the energy U
is associated with facet bending energy U, rather than the open-
ing of the crease. At small hole sizes, the crease energy increases
rapidly, and the facet energy does likewise for stiff creases but de-
creases for softer creases. Renderings of stable, near-fold-point, and
unstable inverted states of the developable model with y, = 45°
and K:R/D = 20 show the generators (black lines), edges of regres-
sion (red curves), and color maps of twice the squared mean cur-
vature 2H2 (with R set to unity) that appears in the facet energy.
Further details of these solutions can be found in Appendix C. A
small hole size leads to a shape similar to a generalized cone,
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Fig. 2. (a) Developable strip solutions for circular holes of radius a, rest crease
angle yp =45°, and several values of dimensionless crease stiffness K.R/D. The
K:R/D = oo curve is generated using a fixed (rigid) crease angle. A stable and an
unstable branch are created at the fold bifurcation, and the curves truncate where
the developable assumption fails. (b) Normalized bending energy U,/D and nor-
malized crease energy U./D. (c) Renderings of stable, near-fold-point, and unstable
states for the developable model with y, = 45° and K.R/D = 20 showing generators
(black lines), edges of regression (red curves), and color maps of twice the squared
mean curvature 2H? with R set to unity. Generators near the crease align with it at
a/R~ 0.116. (d) Opening angle y; along the crease coordinate Yc in finite element
simulations of the stable inverted state for several values of hole radius, an outer
disk radius of 75 mm, a thickness of 0.127 mm, and a crease angle of 48° & 1°. The
effective crease stiffness is R/20t = 29.5. (e) Same for the unstable energy barrier
state. Bistability is lost between a = 10 and a = 11 mm. The nonsmoothness of the
curves near the boundaries is likely due to the finite mesh size, relatively large lo-
cal deviations in the rest angle at the boundaries, and the possible emergence of
a secondary curvature along the crease [7]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

which would have a single point “inside” the annulus as its edge of
regression, rather than the cusped curve of the more general struc-
ture. As the hole size increases, the generators near the crease first
align with it, becoming “cylindrical” at a/R ~ 0.116, echoing the
qualitative features of the ridge relaxation observed in Witten’s ex-
periment [28]. Past this point, the generators near the crease con-
verge towards the outer perimeter of the annulus, so that a por-
tion of the edge of regression lies “outside” it. On a developable
strip, the bending moment is inversely proportional to the dis-
tance of a point on a generator to the edge of regression. Thus, we
would expect that if the developable constraint were relaxed to al-
low a non-uniform crease angle yy, the inner part of the crease
would open to a wider angle than the outer part for small holes
and vice versa for large holes. Indeed we observe this effect in ex-
perimental samples. Results on this effect from a more quantita-
tive analysis using FE are shown in Fig. 2(d-e) for the stable in-
verted configuration and the unstable state on the energy barrier,
respectively, for several circular hole sizes up to a value close to
the loss of bistability. A representative set of crease parameters are
used (the value R/20t can be considered an effective crease stiff-
ness for the FE results, as discussed in Appendix B). In the inverted
configuration, the crease angle variation along the normalized dis-
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tance on the crease Y-/R from the center of the hole shows the
expected transition between inner and outer crease opening as the
hole size increases. The developable assumption of constant crease
angle works better for large hole sizes. In contrast, the unstable
equilibrium is always more open towards the outer edge of the
annulus. Curiously, the crease angle near the hole in the unstable
equilibrium is actually smaller than the rest angle.

We next explore the anisotropic interaction between material
removal and the elasticity of the structure by considering ellipti-
cal holes with semiaxes a perpendicular to and b parallel to the
crease. Bistability boundaries for the developable model are shown
in Fig. 3(a) for several values of rest crease angle yy and crease
stiffness K.R/D. Also shown are boundaries determined from exper-
iments on two thicknesses of material and from FE simulations of
one thickness and set of crease parameters. A quantitative compar-
ison across the three approaches is not possible. In experiments,
the crease stiffness is unknown and the rest angle has a strong
dependence on thickness and hole geometry; we report an aver-
age and standard deviation across a range of hole sizes in order
to treat hole size as if it were an independent parameter. Thick-
ness appears in the stiffness in the developable model; a previ-
ous observation indicates that the origami length D/K. ~ 200t for
mylar (a polyester) sheets [42], although we note that the geom-
etry of the current problem is significantly different than that of
the cited work. The crease becomes effectively rigid as the thick-
ness vanishes. The FE simulations use an angle close to one of the
developable solutions, with an effective stiffness falling within a
range in which the dependence of the developable model on stiff-
ness is very weak. However, the qualitative behavior of all the
boundary curves is the same, and the quantitative spread is fairly
small within a wide range of reasonable parameters. Boundaries
are shifted to larger hole sizes by a smaller crease angle (sharper
fold) or by a stiffer crease; the experiments on thinner materi-
als behave accordingly as having both sharper folds and stiffer
creases. An unexpected re-entrant behavior of the boundary curves
is present in all three approaches: theory, experiments, and simu-
lations. This means that in some parameter ranges, removing more
material actually leads to a reappearance of bistable behavior. Fix-
ing the length of the hole axis perpendicular to the crease, ellip-
tical holes with long axis perpendicular or parallel to the crease
can be monostable while less eccentric holes are bistable. It is also
apparent that long, slit-like holes along the crease do not elimi-
nate bistability, while small perpendicular slits do. Solution curves,
and renderings of stable inverted states near the bistability bound-
ary, for the developable model with yy = 45° and K.R/D = 20, are
shown in Fig. 3(b-c). Stable (upper) and unstable (lower) inverted
states are seen to appear via an isola-center bifurcation. The edges
of regression for elliptical hole inverted states can take more com-
plicated multi-cusp forms not observed with circular holes. Further
details of these solutions can be found in Appendix C.

In conclusion, we have examined the excision of high-energy
material around an elastic singularity formed by inverting a sim-
ply folded thin disk. This process eliminates a source of rigidity, in-
creasing the flexibility of the system. It reorients the low-curvature
directions around the fold, influencing the opening angle distribu-
tion and eventually eliminating the inverted state, and thus the
bistability, through a highly anisotropic mechanism re-entrant in
the space of hole geometric parameters. These findings have con-
sequences for the mechanical compliance and energetics of perfo-
rated thin sheets, and for the design of deployable structures, in
which fatigue of a highly stressed vertex is undesirable, prompting
the introduction of gaps. Beyond folded and cut structures, simi-
lar mechanics is expected in other compliant mechanisms featur-
ing networks of hinges, facets, and springs. Bistability and critical
hole dimensions are also influenced by the presence of multiple
folds or the addition or removal of angular sectors of material to
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Fig. 3. (a) Bistability boundaries for elliptical holes with semiaxes a perpendicular to and b parallel to the crease, for the developable model for several values of rest crease
angle y, and crease stiffness K.R/D, experiments with two thicknesses (crease angles reported are average and standard deviation of 14 — 15 samples at each thickness
across a range of hole sizes), and FE simulations for one choice of crease parameters (using R = 75mm and t = 0.127mm, as in one set of experiments). (b) Solution curves,
bounded by fold bifurcations or points of failure of the developable assumption, and (c) renderings of stable inverted states near the bistability boundary for the developable
model with y, = 45° and K.R/D = 20 showing generators (black lines), edges of regression (red curves), and color maps of twice the squared mean curvature 2H? with R
set to unity. Close-ups of the edges of regression show complex forms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

adjust the strength of the conical singularity, topics to be explored
in detail in a future study [54].
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Appendix A. Numerical implementation of the developable
model

The inextensible strip model is formulated as a two-point
boundary value problem (BVP), which can be parametrically stud-
ied using the continuation package AUTO O7P [51]. This requires
normalizing the length of the integral interval to unity. This ad-
ditional step is not explicitly shown in the following discussion,
but can be achieved by replacing the s—derivatives (primes) with
derivatives with respect to a normalized parameter s/smax (if s €
[0, smax]), thereby multiplying the right hand sides of all equations
by Smax. We retain the disk radius R in the descriptions below, al-
though in our calculations we set it equal to unity for simplicity.

To obtain inverted states, we begin with an annular sector of
a flat disk subtending an angle p < 7 and bend this into one half
of a conical frustum, the initial solution for numerical continua-
tion. The angle p is arbitrary and simply serves to create a non-
flat conical starting point. Then the crease angle corresponding to

a perfectly stiff crease is introduced by rotation of the ends of the
sector, and p is increased to w. The crease stiffness is relaxed by
replacing the boundary constraints on the crease angle with con-
ditions on the moment. Finally, the hole dimensions are adjusted.

We employ Euler angles (v, 0, @) to relate the director frame
to a fixed Cartesian frame [52],

—N cos¢p sing 07][cos® 0 —sinf
T |=|-sing cos¢ O 0 1 0
B 0 0 1] [sin6 0 cosé
cosy siny 07 [X
—siny cosyy O]V (A1)
0 0o 1]|z
Askn=-N-T,kg=B T, and 7y = —B - N, we have
Kn=¢@ + ¥’ cosb,
kg = —0'sing +'sinf cos ¢,
Tg = 0’ cos¢ + Y’ sinf sing . (A.2)

Fig. A.1 shows a Cartesian coordinate system (x,y,z) and a se-
quence of rotations applied to deform the annular sector into one
conical half of a creased structure with axis z and bisected by the
X — z plane. The origin is at %(r(O) +1r(pR)).

For circular holes, the limit V of the generator coordinate v
can be obtained explicitly in terms of the function n and the an-
nular radii a and R [50]. However, for elliptical holes, V has a
complicated dependence on the backbone coordinate s and must
be represented by an implicit function x (V,s, n; a, b, R) = 0. Using
n =cotB and A = s/R, this is

x(s.1.V(s,m)) =V?+ (R — 2VR - b?) sin’ B

+ [(b/a)*> = 1][V cos(B + 1) + Rsin B sin A]* (A3)
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Fig. Al. Euler angles are used to describe the sequential rotations of the director frame attached to the outer circle of an annular sector, following a z —y — z (3-2-3)
rotation convention. A Cartesian coordinate system is placed with cone axis z and origin at %(r(O) +r1(pR)). (a) The annular sector has its director frame attached to the
outer circle; at the midpoint, (=N, T, B) are aligned with x, y, z. (b) The annular sector is deformed into a conical frustum. The frame at each point is first aligned with the
Cartesian axes in a manner akin to the midpoint, then rotated about B(s) by ¥ (s), and then about T(s) by 6(s). In this step, ¥/ (s) is a linear function of s, and 6(s) is
constant. (c) The crease angle is introduced by rotating the director frame at the two ends about B(0) and B(pR).

which simplifies considerably for circular holes, for which a = b.
We treat V as an independent variable and turn the algebraic con-
straint x = 0 into a differential equation. Denoting explicit partial
derivatives by subscripts, we have V/ = Vs + V0" with Vs = —xs/xv
and V;) = —x;,/xv obtained through implicit differentiation [45].
We further differentiate the algebraic constitutive law in (5) and
combine with (6) to obtain a first order ordinary differential equa-
tion (ODE) for x, and a second order ODE for 7, and introduce
another variable € (= n’) to convert the latter to two first order
ODEs. The system is made autonomous by adding a trival differ-
ential equation s’ = 1. Constants “lost” through differentiation are
added back using additional boundary conditions. All of this is
combined with equations 3-(6), (A.2), and r'(s) =T to form the
full system,

F —knb +kgF5=0,
E +knFy —knnF =0,

E +kank — kg =0, (A.4)

Mll — knM, +KgM3 =0,

M, + knMy — knqpM3 — B =0,

M§+Kn77M2—KgM1 +5=0, (A.5)

n=Q,

(AE = CH)Q' = (CB-ADQ+AG (],

(AE — C®)k} = (IC - BE)Q2 + JE — GC, (A.6)

v X Kng (A7)
Xv  Xv

Y’ = (Tgsing + kg cos @)/ sinb ,

0" = 15c05¢) — Kgsing,

@' = kn— (kgcoSp + Tgsing)/tan6 , (A.8)

X' = —siny cos¢ — cos iy sing cosb ,

¥y =cos ¥ cos¢ —siny sing cos b,

Z =sinfsing, (A.9)

s =1 , (A]O)

in which

A= YK,‘K"W9

B = Yoy W + Y, Wy + Y, WV,

C=YeyW+Y, Wy,
I =Y, W +Y, W, +Y, WV,

+ YWy + YW, + YW Vg
E =YW +2Y, W, +W,, Y,
J =n'M;y — B+ kg(My — nM3) — Y, Wy Vs,
G=Y,W+YW, +YW,V,

— knMy = Y, Wy Vs — YW, Vs,

Fig. A.2 shows the sequence of continuation steps we use to

obtain inverted solutions. A flat annular sector subtending an angle

p < with a small circular hole a « 1 can be bent into the conical
frustum of Fig. A.2b. This starting solution for continuation is

F] =O,F2=O,E’,:O,

a |72 a
M]ZO,Mzzlﬂﬁ,IVh:— ﬁ—llnﬁ,
1 [m2

Kn =g /?—1,n=0,n’:0,

V =R
==

X = p—Rsin <£s) Yy = —’O—Rcos (ls),z=0,
b PR b PR
with s € [0, pR]. The ends of the sector are rotated about them-

selves to introduce the rest crease angle y; (Fig. A.2c). The bound-
ary conditions are then

E(0)=0.F(0)=0,
Mx(o) = O,

kn(0)(1 +1?(0))?
17/(0) + kg (1 + 1n2(0))

- 1n(0)M;(0) - M3(0) =0,

W(n'(0),7n(0))

n(0) =0,n(pR) =0,

T T Yo
v =-7.90=-(5-2).

VR =T 9ok = (5 - ).

x(0) =0,z(0) =0,x(pR) =0,z(pR) =0,
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Fig. A2. The inverted configuration is obtained through several continuation steps. (a) An annular sector that subtends an angle p < & is (b) bent into a conical frustum
with a central angle of 7w and (c) has its ends rotated about themselves to introduce the crease angle yy. Then (d) p is increased to 7, (e) a finite crease stiffness K.R/D is

introduced, and (f) the hole dimensions a/R and b/R are varied.

y(0)+y(pR) =0

s(0) =

where symmetry dictates the conditions on F,(0) =F(0)-§,
E(0) =F(0)-Z, and My(0) = M(0) - X. At this point the boundary
conditions constram the crease angle, so we have a perfectly stiff
crease. In the next step, we increase p to r by a simple rescaling
of s/smax. Then the actual crease stiffness is introduced by replac-
ing the two boundary conditions for ¢ above with moment condi-
tions

M3 (0) K:R/D(1 —b/R)sin[m — yo + 2¢(0)],

M3 (7R) KR/D(1 —b/R)sin[m — yp — 2¢(wR)],

and decreasing K.R/D from a large value to the real crease stiffness.
Finally, the hole dimensions a and b are continued to their real
values.

The geometry of the strip is reconstructed as

X(s.v) =r(s) + V[B(s) + n(s)T(9)],
= (x — v[n(siny cos ¢ + cos ¥ sin cosB) — sinb cos ¥ ])X
+ (v +v[n(cos ¥ cos ¢ — sinyr sing cosf) + sinf sin )y

+ (z+v[nsinf sing + cosO])Z, (A1)
with v e [0, V].
The edge of regression is
B sinf  B(s) +n(s)T(s)
€@ =1+ B’ — kg |B(s) +n($)T(s)]
— r(s) - BT NOTE) (A12)

N +kg(1+n?) "

¢ (14+02)+n" +3kgny’ .
‘M—an)]zg(3+ nT). At “cylin-

drical” points n’ = —kg4(1+n?), the edge of regression goes off to
infinity, and the mean curvature is constant along the local gener-
ator. At “conical” points n” = —3kgnn’ — I]ng(l +n?), the edge of
regression has a cusp. The generators can be mapped onto the flat
annular sector with tangent t(s) and binormal b(s) using

X(s,v) =r(s) + v[b(s) + n($)t(s)],
= (RsinA — vsin A + vn cos L)X
+ (—RcosA +vnsinA +vcosA)y,

Its first derivative is ¢/(s) =

(A13)

and the edge of regression onto it using
b(s) +n(s)t(s)
c(s)=r() - —-—-—"—-,
(s)=r() VG0
sinA —ncosi \.
N +kg(1+12)
nsinAcosA .
N+ kg(1+1n?)

(A14)
= (R sinA +

- (Rcosk+

Appendix B. Finite element simulations

Simulations were performed in the commercial finite element
(FE) software COMSOL Multiphysics 5.4. We used quadratic shell
elements with a linear elastic Hookean material and geometrically
nonlinear kinematic relations, and searched for solutions with the
default stationary solver that implements the nonlinear Newton
method. Mesh refinement studies were undertaken to ensure con-
vergence of the results. Symmetries of the disk were exploited so

0 displacement

Fig. B1. Aspects of FE simulations. (a) Geometry of the annulus. (b) Temperature-driven creasing. (c) Folded configuration and indentation process. (d) Schematic force-

displacement curve.
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that only one quarter of the domain required simulation. Aspects
of the simulations are illustrated schematically in Fig. B.1.

The disk dimensions were set to R=75mm and t = 127 um,
and the material properties used were a Young’s modulus E = 3.63
GPa and Poisson’s ratio v = 0.4, consistent with reported material
data and previous measurements on polyester sheets.

The simulations consist of two steps. First, a temperature-
induced folding angle is set via a coupled phase-field-like model,
in which the effect of a through-thickness temperature gradient
is confined to within the crease region. Then, with the two outer
crease ends vertically constrained, a downward force is applied at
both inner crease ends to deform the structure from the folded
configuration to the inverted configuration.

The temperature-induced creasing follows the method intro-
duced in [38]. An effective thermal expansion coefficient pr takes
the value 1 K1 in a strip of width Bt and O elsewhere. In the
present work, we use S = 20, so that the width of the crease is
comparable with that of the plastic region of real creases in mylar
sheets [53]. The plate is subjected to a through-thickness temper-
ature difference AT and responds with localized bending in the
crease region. Empirically, we have found that for folded rectangu-
lar sheets, the rest crease angle y, is given approximately by

Yo=m —1.4prATS. (B.1)

By adjusting AT we are able to approximate a desired rest crease
angle. In the present work, while aiming for a )y =45° we
achieved yp =48 +1° with most of the deviation occurring near
the edges of the crease.

During indentation, localized buckling can occur for some hole
geometries. To prevent this, foundation springs in the x direction
were attached to the crease ends at the beginning of indentation,
whose stiffnesses decrease linearly with the vertical indentation
depth so that their effects vanish before snapping occurs.

We estimate an effective crease stiffness for comparison with
the developable model by ignoring boundary and ridge effects. Let
the moment per unit length of qrease he

(a) —%
—e
—¢
£
©Q
0
0 0.57 T
15 "
(c) — 2
—~ —e
~ —¢
<
_l’_
Z oo
=
i
&
<
-1.5
0 0.57 T

S
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t/2
M= Zoxwdz, (B.2)
t/2
and the stress-strain relation be
Oxx = m(exx - E)?x) ) (B.3)

where €9, is the “rest strain” due to thermal expansion. The strains
are related to the crease angle by

]T —
Exx == Tyz . (B.4)
Thus, the resultant moment on one half of the crease is
D
M=—(R—b)E(V—Vo). (B.5)

We can thus identify % with K. in the developable model, and %

with the dimensionless crease stiffness K.R/D, where 8 = 20 in the
present work.

Appendix C. Details of developable solutions

Figs. C.1 and C.2 provide details of the geometry of configura-
tions from Figs. 2 and 3, respectively.

0.6

(b) H

'
o
o

o

0.57 T

e

(d)

(1+7?)

2
g

0"+ 3k +nk

0 0.57 T
S

Fig. C1. Details of the marked solutions in Fig. 2. (a) Normal curvature «,. (b) Geodesic torsion 7g. (c) Zeroes of n'+xg(1+n?) correspond to cylindrical
points, where the edge of regression goes off to infinity. (d) Zeroes of n”+3/cg7777’+r)/(g2(1+772) correspond to conical points, where the edge of regression has cusps.
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Fig. C2. Details of the marked solutions in Fig. 3. (a) Normal curvature ;. (b) Geodesic torsion tg. () Zeroes of n'+xg(1+n?) correspond to cylindrical points, where the
edge of regression goes off to infinity. (d) Zeroes of n”+3kgnn’ +nl<g2(1+n2) correspond to conical points, where the edge of regression has cusps.
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