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Abstract
A nonlinear small-strain elastic theory is constructed from a systematic expansion in Biot strains, truncated at quadratic
order. The primary motivation is the desire for a clean separation between stretching and bending energies for shells,
which appears to arise only from reduction of a bulk energy of this type. An approximation of isotropic invariants,
bypassing the solution of a quartic equation or computation of tensor square roots, allows stretches, rotations, stresses,
and balance laws to be written in terms of derivatives of position. Two-field formulations are also presented. Extensions
to anisotropic theories are briefly discussed.
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1. Introduction
In a finite deformation, described in terms of positions or displacements, information about strains is polluted
with information about rotations. In statics, the strains are important but the rotations are irrelevant, and any
hyperelastic energy and resulting constitutive relations must respect this.

A common solution is to symmetrize the deformation by “squaring” it with its transpose to obtain particular
objective strain measures, either the right or left Cauchy-Green deformation tensors, the respective squares
of the right and left stretch tensors. This has the additional advantages that these measures, and the closely
related Green-Lagrange or Euler-Almansi strain tensors, may be written straightforwardly using derivatives
of position, and interpreted quite intuitively in terms of metric tensor components in referential and present
configurations of the body. Many other objective strain measures may be constructed as well, and a general
nonlinear elastic energy can be written in terms of any of these. In the continuum mechanics literature, this
is often the end of the discussion. One finds results derived for general stored energy functions, as well as a
variety of phenomenological models of nonlinearly elastic materials, often expressed in terms of an incomplete
collection of powers of principal stretches, for example neo-Hookean, Mooney-Rivlin, or Ogden materials [1].

However, in the physics literature, there is a desire to construct field theories by a systematic expansion in a
small quantity. In linear elasticity, this would be the displacement, but in a nonlinear elasticity theory the choice
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of appropriate field variables is not immediately clear, and constitutes a fundamental unanswered question. Fur-
ther motivation and clues for this question may be found in the study of thin shells, where it is often the case that
strains are small, but deformations are far from linear. Owing to its ease of representation and interpretation, the
Green-Lagrange strain has been widely adopted as the small field for expansion of elastic energies by soft con-
densed matter physicists [2–6]. However, the squaring of the deformation has the unfortunate consequence that
the leading-order terms in such energies are quartic in stretch. As has been rediscovered several times, surface
elastic energies derived from dimensional reduction of such bulk elastic energies have undesirable features,
including a mixing of stretching and bending contents [7–11]. This stands in unsatisfying contrast to simple
direct theories [12–14] that employ particular natural kinematic measures of surface stretching and bending
to obtain separate and distinct energies. Selecting a simple bulk theory that corresponds to such simple direct
theories requires a careful construction of energy quadratic in stretch, but this process has only been performed
for one-dimensional and axisymmetric bodies [7, 8, 10, 15–17], and indeed appropriate bending measures have
only been defined for such special cases1 of thin bodies [8, 10, 18, 19]. Finally, quadratic-stretch elastic energies
arise naturally in bead-spring descriptions of soft matter mesostructures such as biological membranes [20, 21]

It is our intent in this paper to lay the groundwork for the development of theories applicable to general shells,
by first considering bulk elasticity from the perspective of a comprehensive expansion in stretches, truncated at
quadratic order. More precisely, we make use of the Biot strain, the deviation of the right stretch from the iden-
tity, as our small quantity. As will become apparent below, this choice classifies our theory as “referential,” but
there is no reason why a complementary left-handed theory making use of tensors in the present configuration
could not be constructed. We also leave the analysis of reduced energies for thin bodies to subsequent work. A
significant challenge in constructing a stretch-based theory is that stretch has an indirect dependence on position
and its derivatives, requiring simultaneous consideration of an additional field, the rotation. Our synthesis leads
us to connect several areas in theoretical and computational elasticity, including the kinematics of stretch and
rotation, variational principles with auxiliary fields, and relations between isotropic invariants of different strain
measures. We employ convected coordinates and a mixture of referential and present bases, revealing interest-
ing relationships between components of various tensors. Our Biot-quadratic energy is surprisingly rare in the
nonlinear elasticity literature, although its roots go back to early work by Lurie [22] and John [23]. Inspired by
the works of Atluri and Murakawa [24], Wiśniewski [25], and Merlini [26], we propose a variational principle
in terms of position, Biot strain, and rotation fields, and show that constitutive stress-strain relations and balance
equations can be written in terms of positions and stretches alone. A new result is that the neglect of terms cubic
in Biot strain allows for an explicit representation of stretch without either taking tensor square roots or solving
a quartic equation, leading to an approximate description of all fields in terms of positions alone.

Our kinematic treatment may have broader application to theories in which rotations must be tracked, such as
models of nematic elastomers [27, 28] or tension-field theory [29]. And although it is not the primary motivation
for this work, we anticipate that it may have value with regard to the systematic construction of general nonlinear
small-strain field theories of elasticity. However, one disadvantage of the present method as it currently stands
is that it is not immediately clear how to adapt it to incompatible elasticity, in which no stress-free reference
configuration or corresponding set of basis vectors exists but nonetheless the idea of a reference metric is still
useful and intuitive. We reserve this question for future work, and note that while the idea of an incompatible
deformation gradient appears in previous works [30, 31] it is not clear how such an object would be constructed
in practice.

An outline of the paper follows. Section 2 defines relevant tensorial objects and derives kinematic relations
between them, their components, and their invariants. Small-strain approximations lead to algebraic expressions
for invariants and explicit expressions for all the relevant tensors in terms of derivatives of position. Section 3
presents stresses, balance laws, and constitutive relations obtained from a mixed variational principle in terms
of position, Biot strain, and rotation. In Section 4, a general isotropic energy quadratic in Biot strains is con-
structed. Further constitutive relations are derived, in particular one for Biot stress in terms of Biot strain and its
invariants, and then specialized to this energy. Formulations are presented in terms of positions, positions and
rotations, or positions and stretches. Extensions to anisotropic theories are sketched in Section 5. Appendices
A–D discuss alternative decompositions of the deformation gradient, the symmetry of a certain rotated stress,
details of the energy variation, and the strain and stress of Bell that complement those of Biot.
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2. Kinematics

2.1. Definitions and notation

We denote material coordinates as ηi and (non-covariant) material derivatives with respect to these as di. An
elastic body B with boundary ∂B has reference configuration X(ηi) and present configuration x(ηi), both in
E
3. We define referential and present coordinate bases GI = diX and gi = dix, reciprocal bases through the

relations GI · GJ = δIJ and gi · gj = δij using the Kronecker delta, and covariant and contravariant components
of the corresponding metric tensors GIJ = GI · GJ , gij = gi · gj, GIJ = GI · GJ , and gij = gi · gj. Both metric
tensors correspond to the identity, G = g = I. In all of these expressions, capitalization of some indices is
just a reminder that these should be raised and lowered with components of the reference metric; summation
ignores case. We denote covariant derivatives corresponding to the referential and present metrics as ∇̄I and ∇i,
respectively, and corresponding Christoffel symbols as �̄I

JK and �i
jk . We define referential and present gradients

∇̄() = ∇̄i()GI and ∇() = ∇i()gi. The metric determinants G = det[Gij] and g = det[gij], where [ ] denotes a
matrix, are found in the referential and present volume forms dV = √

G
∏

i dη
i and dv = √

g/GdV . Surface
forms dA and da are defined analogously using two surface coordinates only.

2.2. Deformation measures, polar decomposition, and shifter

The deformation gradient ∇̄x takes the simple form giGI in material coordinates. While this is straightforwardly
expressed purely in terms of derivatives of position, it is far from trivial to do the same for its rotationally
invariant stretching content.

Any non-singular second-order tensor, such as the deformation gradient when
√
g/G > 0, admits unique

right and left decompositions into an element of the special orthogonal group SO(3) of rotations and an element
of the set Sym+ of positive-definite symmetric tensors. In terms of the rotation tensor Q ∈ SO(3) and the right
U or left V stretch tensors ∈ Sym+,

giG
I = Q · U = V · Q. (1)

This is the most commonly adopted decomposition in continuum mechanics, but in Appendix A we consider
alternatives. The orthogonal rotation’s transpose is also its inverse,

Q� · Q = Q · Q� = I, (2)

a fact used repeatedly in the sequel. The right and left Cauchy-Green deformation tensors areC = GIgi ·gjGJ =
gij GIGJ and B = giGI · GJgj = GIJ gigj, respectively. Further relationships include C = U2, B = V2,
U = Q� · V · Q, V = Q · U · Q�, C = Q� · B · Q, and B = Q · C · Q�.

A natural way to represent the rotation and stretch tensors is

Q = Qi
J giG

J , U = UIJ GIGJ , V = Vij gigj, (3)

such that Q has the same mixed character as the deformation gradient, taking quantities in the reference config-
uration into the present configuration. From (1), we find that the components of rotation, stretches, and metrics
are related,

Qi
JG

JKUKL = Qi
JU

J
L = δiL = Vi

k Q
k
L = VijgjkQ

k
L. (4)

We further see that
Qi

JgikQ
k
L = GJL, Qi

JG
JLQk

L = gik , (5)

which may be compared with

UIJG
ILUKL = gjk or UI

J U
J
K = GIJgjk . (6)

Ericksen and Truesdell [32] describe this mixed-basis representation of rotation as “shifted.” The components
of the shifter [33] μ = (

gk · GJ

)
gkGJ = μk

JgkG
J can be used to relate the mixed-basis components of rotation

with their representation in either the reference or present configuration. The shifter can be thought of as the
identity in a mixed-basis representation; the statement Q · μ = Q = μ · Q is, in components, Qi

kμ
k
J = Qi

J =
μi

LQ
L
J . Invariants are computed along similar lines, for example TrQ = Q : I = Qi

JgiG
J : μk

LgkG
L =

Qi
Jμ

J
i = Q L

k μk
L = Qi

i = Q L
L .
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2.3. Stretch and rotation

Due to the uniqueness of the square root of a symmetric positive-definite tensor [34], the right stretch U can be
obtained as the square root of the right Cauchy-Green deformation

√
C, or similarly, the left stretch V can be

obtained as the square root of the left Cauchy-Green deformation
√
B. However, this operation is inconvenient,

and adds an additional layer of complexity, as these square roots, unlike C and B themselves, cannot be written
in terms of derivatives of position. This has led many to explore other representations for U and Q that avoid
the computation of tensor square roots, but instead make use of relationships between invariants of different
strain tensors. While two-dimensional derivations such as that of Biot [35] are not too cumbersome, three-
dimensional representations generally require another difficult step such as the selection of a root of a quartic
equation [36–46].

Our starting point is Ting’s relatively simple expression [38] for the right stretch U in terms of C and the
invariants of U. The three principal invariants iUk of U are

iU1 = TrU = λ1 + λ2 + λ3,

iU2 = 1

2

[
(TrU)2 − Tr (U2)

]
= λ1λ2 + λ2λ3 + λ1λ3, (7)

iU3 = DetU = λ1λ2λ3,

where the principal stretches λk are the eigenvalues of U. Since U is positive-definite, its eigenvalues and
principal invariants are all positive. The stretch tensors U and V have the same eigenvalues and invariants.
The Cauchy-Green strain tensors C and B also share eigenvalues, which are the squares λ2

k of those of U, and
invariants iCk , constructed in an analogous manner to those of U. Just like C itself, all three iCk can be written in
terms of derivatives of position. In our notation, Ting’s expression is

U = (
iU1 i

U
2 − iU3

)−1
(
iU1 i

U
3GIJ +

[(
iU1

)2 − iU2

]
gij − gikG

KLglj
)
GIGJ . (8)

Similarly, the left stretch V may be written

V = (
iU1 i

U
2 − iU3

)−1
(
iU1 i

U
3 g

ij +
[(
iU1

)2 − iU2

]
GIJ − GIKgklG

LJ
)
gigj. (9)

The relations Q = Q−� = (giGI · U)−� = giGI · U yield the rotation

Q = (
iU1 i

U
2 − iU3

)−1
(
iU1 i

U
3GKJg

ki +
[(
iU1

)2 − iU2

]
δij − GIKgkj

)
giG

J . (10)

The issue now becomes how to write the invariants iUk of U. The third invariant is simple, as iU3 =
√
iC3 = √

g/G.

However, to obtain the other two invariants requires finding the eigenvalues of C, or solving a quartic equation
for iU1 obtained from the trace of (8) [36, 39].

In the following section, we show that neglect of terms higher order than quadratic in Biot strain allows for
the computation of relevant strain invariants from a quadratic equation in which the single relevant root is easily
identifiable. This leads to explicit approximate representations of stretch and rotation in terms of derivatives of
position.

2.4. Quadratic-Biot theory: explicit approximate representation of stretch and rotation in terms of derivatives
of position

The central quantity in our derivations will be the Biot strain

EB = U − I, (11)

whose eigenvalues are �k = λk − 1 and whose principal invariants are related to those of the right stretch by

iEB
1 = �1 + �2 + �3 = iU1 − 3,

iEB
2 = �1�2 + �1�3 + �2�3 = iU2 − 2iU1 + 3, (12)

iEB
3 = �1�2�3 = iU3 − iU2 + iU1 − 1.
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The simplification we seek will come from neglect of the cubic invariant. Note that

iU3 = iEB
3 + iEB

2 + iEB
1 + 1, (13)

and, as EB
2 = C − 2U + I,

iEB
2 = 1

2

[
(TrEB)

2 − Tr (EB
2)

]
= 1

2
(iEB
1 )2 − 1

2
iC1 + iEB

1 + 3

2
. (14)

These expressions may be combined into a quadratic equation for the first invariant of Biot strain,

(iEB
1 )2 + 4iEB

1 = iC1 + 2iU3 − 2iEB
3 − 5 . (15)

The only term on the right-hand side of (15) that cannot be expressed in terms of derivatives of position is
iEB
3 = Det(U − I), but this term is O(�3) (and identically zero in the case of plane strain). Thus,

(iEB
1 )2 + 4iEB

1 = gijG
IJ + 2

√
g/G − 5 + O(iEB

3 ), (16)

and the only relevant root is that which connects with the solution for vanishing deformation, for which iEB
1 and

the right-hand side of (16) are both zero, namely

iEB
1 =−2 +

√
gijGIJ + 2

√
g/G − 1 + O(iEB

3 ). (17)

This result allows us to approximately express the three invariants appearing in expressions for the stretches
(8)–(9) and rotation (10) purely in terms of derivatives of position,

iU1 = 1 +
√
gijGIJ + 2

√
g/G − 1 + O(iEB

3 ),

iU2 =
√
gijGIJ + 2

√
g/G − 1 +

√
g/G + O(iEB

3 ), (18)

iU3 =
√
g/G.

Note that neglect of O(�3) terms makes these three quantities linearly dependent, as may have been gleaned
from (12). The two quantities gijGIJ and g/G appearing in (18) are the first and third invariants of C. Using (12)
and (18) and collecting results,

iEB
1 =−2 +

√
gijGIJ + 2

√
g/G − 1 + O(iEB

3 ),

iEB
2 = 1 −

√
gijGIJ + 2

√
g/G − 1 +

√
g/G + O(iEB

3 ), (19)

iEB
3 = O(�1�2�3).

3. Conservation laws and constitutive relations

3.1. Stresses

The force per unit area in the reference and present configurations is respectively given by the tractions T and t,
which are related to the first Piola-Kirchhoff and Cauchy stresses P and σ ,

t da = n · σ da = σ� · n da =
√
g/G σ� · giGI · N dA = P · N dA = N · P� dA = T dA, (20)

where N and n are the referential and present unit normals. The stresses are related by P = √
g/G σ� · giGI .

Because σ is often assumed symmetric, there is some inconsistency in the literature as to the definition of P.
For instance, both Lurie [22] and Atluri [47] define P as the transpose of our definition. While P is generally
not symmetric, P · GIgi is symmetric whenever σ is symmetric. In Appendix B, we further show that P� · Q is
always symmetric for an isotropic material with symmetric σ .



Vitral and Hanna 467

3.2. Variational framework

We adopt, with slight modifications, the variational principle of Atluri and Murakawa [24, 47, 48] to write a
referential stored energy (density)W in terms of Biot strain, with position derivatives, rotation, and right stretch
linked by a multiplier so that auxiliary fields may be varied independently. The energy is

E(x,Q,EB;P) =
∫
B

[W(EB) + P :
(
giG

I − Q · U)]
dV . (21)

Our choice of symbol anticipates the identification of the multiplier Pwith the first Piola-Kirchhoff stress. Three
expressions are obtained from stationarity of (21) under variation of x ∈ E

3, Q ∈ SO(3), U ∈ Sym+, noting
that δU = δEB. Details of the variation, and the derivation of the equations and single boundary condition on
stress, are reserved for Appendix C. We obtain the balances of linear and angular momentum (22)–(23) and the
constitutive relation (24) for the Biot stress �Biot,

∇̄ · P� = 0, (22)

giG
I · P� = P · GJgj, (23)

�Biot ≡ ∂W
∂EB

= 1

2

(
P� · Q + Q� · P)

, (24)

to be used alongside the compatibility constraint (1) and the restriction on rotation (2). An equivalent set of
equations was presented by Wiśniewski [25]. One possible set of component forms is

∇̄JP
iJ = dJP

iJ + �i
kjP

kJ + �̄J
JLP

iL = 0, (25)

PiJ = PjI , (26)

(�Biot)
IJ = 1

2

(
PkIQ J

k + Q I
k P

kJ
)
, (27)

to accompany (4) and (5), where of course Q J
i = gikQk

LG
LJ and so on.

We have defined the Biot stress �Biot in a natural way, as the derivative of the stored energy W with respect
to the Biot strain EB, rather than the more traditional [1] derivative with respect to the right stretch U. The
Biot stress is the symmetric part of P� · Q. The unsymmetrized quantity has a particular interpretation [1],
which can be seen from the relation N · P� · Q = T · Q, indicating that its associated local load is a rotation
of the referential traction T. In Appendix D, we discuss the Bell stress and strain, which would appear in a
complementary formulation based on the left stretch V.

WhenW is specified, the constitutive relation (24) and, if necessary, the angular momentum balance (23) will
provide the first Piola-Kirchhoff stress P in terms of Q and U. Then the unknowns in the remaining equations
are the position x, rotation Q, and stretch U. In Section 4.3, different formulations will be presented in terms of
one or two out of three of these quantities.

4. Isotropic quadratic-Biot theory
In this section we consider an elastic energy quadratic in the isotropic invariants of right stretch or, equivalently,
Biot strain, constitutive relations for this specific energy, and forms of the field equations in terms of positions
alone or combined with either rotations or stretches.

4.1. Energy

A quadratic-Biot energy may be identified with that of John’s two-dimensional “harmonic” materials [23] and
Lurie’s “semilinear” materials [22]. This energy was considered by Neff and co-workers in [49]. It also appears
in Ozenda and Virga [11], who however lose its desirable qualities by subsequently expanding the right stretch
in powers of the Green-Lagrange strain. Carroll [50] introduced more general classes of energies defined by
functions of stretch invariants. Another setting in which stretch-based energies have been explored is that of
theories with independent rotational degrees of freedom, introduced either for computational convenience or to
describe micropolar continua [49, 51–59].
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Consider small Biot strains around a stress-free reference configuration at which the three isotropic invariants
iEB
1 = iEB

2 = iEB
3 = 0. As the third invariant is of cubic order, a general isotropic quadratic energy is of the form

W
(
iEB
1 , iEB

2

)
= c1

(
iEB
1

)2
+ c2 i

EB
2 , (28)

= c1

(
−2 +

√
gijGIJ + 2

√
g/G − 1

)2

+ c2

(
1 −

√
gijGIJ + 2

√
g/G − 1 +

√
g/G

)
+ O(iEB

3 ),

(29)

=
(
c1 + c2

2

)
(TrEB)

2 − c2
2
Tr

(
EB

2
)
, (30)

where c1 ≥ −c2/2 and c2 ≤ 0 are constant material parameters. In terms of an elastic tensor, with W =
1
2EB : A : EB, we have 1

2A
IJKL = (

c1 + c2
2

)
GIJGKL − c2

4

(
GIKGJL + GILGJK

)
. The approximate form (29)

of the energy suggests a definition in terms of the alternate invariants iEB
1 =

√
gijGIJ + 2

√
g/G − 1 − 2 and

iEB
2 + iEB

1 = √
g/G − 1. An incompressible (

√
g/G = 1) form of the quadratic-Biot energy would depend

only on the first of these, in the simplified form
√
gijGIJ + 1 − 2. It is illustrative to compare this with the

incompressible neo-Hookean energy

WNH = cNH
(−3 + gijG

IJ
)
, (31)

in which only some of the possible quadratic-stretch terms appear. Incompressibility needs to be implemented
with an additional constraint (pressure) term, but the energetic parts of quadratic-Biot with c2 = −4c1 and
neo-Hookean would agree to O(iEB

3 ).

4.2. Constitutive relations

For an isotropic material with symmetric Cauchy stress σ , the terms in the Biot stress are identically symmetric,
so that �Biot = P� · Q = Q� · P. The first Piola-Kirchhoff stress P can now be written as a function of Q, U,
and derivatives of W with respect to the invariants of U (see [60–62]). The derivation, as carefully detailed by
Wheeler [62], leads to the expression

P =
(

∂W
∂iU1

+ iU1
∂W
∂iU2

)
Q − ∂W

∂iU2
Q · U + ∂W

∂iU3
iU3 (Q · U)−�. (32)

Using the Cayley–Hamilton theorem [62], U3 − iU1U
2 + iU2U− iU3 I = 0, which allows replacement of U−1, thus

P =
(

∂W
∂iU1

+ iU1
∂W
∂iU2

+ iU2
∂W
∂iU3

)
Q −

(
∂W
∂iU2

+ iU1
∂W
∂iU3

)
Q · U + ∂W

∂iU3
Q · U2. (33)

The relationships between invariants (12), those between stresses, and the definition of the Biot strain, convert
this expression into one for the Biot stress in terms of the Biot strain and its invariants,

�Biot =
(

∂W
∂iEB

1

+ iEB
1

∂W
∂iEB

2

+ iEB
2

∂W
∂iEB

3

)
I −

(
∂W
∂iEB

2

+ iEB
1

∂W
∂iEB

3

)
EB + ∂W

∂iEB
3

EB
2. (34)

Specifically for the quadratic-Biot energy (28),

�Biot = (2c1 + c2)i
EB
1 I − c2 EB, (35)

= (2c1 + c2)

(
−2 +

√
gijGIJ + 2

√
g/G − 1

)
I − c2 EB + O(iEB

3 ),

and P = Q · �Biot.
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4.3. Formulations in terms of rotations or stretches

Either the rotation or stretch field may be eliminated to form a set of equations for two fields, one of which
must be obtained by solving a quadratic equation, or both rotation and stretch can be eliminated to obtain an
approximate description in terms of position derivatives alone. Formulations involving independent rotations
have been developed in [25, 26, 55]. While these were motivated by computational concerns, the equations
presented below are relatively simple from an analytical point of view.

A description in terms of position derivatives and rotations is the linear momentum equation (22) with

P =
[
(2c1 + c2) i

EB
1 + c2

]
Q − c2 giG

I , (36)

PiJ =
[
(2c1 + c2) i

EB
1 + c2

]
Qi

KG
KJ − c2G

IJ , (37)

with iEB
1 = Q K

k − 3 = gkiQi
JG

KJ − 3 =−2 +
√
gijGIJ + 2

√
g/G − 1 + O(iEB

3 ). The rotations may be obtained

either exactly by solving the constraint (2) or (5), or approximately by using the explicit form from (10) and
(18).

A description in terms of position derivatives and stretches is the linear momentum equation (22) with

P =
[
(2c1 + c2) i

EB
1 + c2

]
giGI · U − c2 giG

I , (38)

PiJ =
[
(2c1 + c2) i

EB
1 + c2

]
gikUKLG

LJ − c2G
IJ , (39)

with iEB
1 = UI

I − 3 = GIJUJI − 3 =−2+
√
gijGIJ + 2

√
g/G − 1+O(iEB

3 ). We have used Q = Q−� to rewrite

P in terms of U. The stretches may be obtained either exactly by solving (6), or approximately by using the
explicit form from (8) and (18).

5. Towards anisotropic theories
Many soft material structures of the type our theory is intended to address are anisotropic. In this section, we
briefly indicate how to construct energies and balance equations for such materials, through the example of a
transversely isotropic elastic solid such as a fiber-reinforced material.

Let the anisotropic material have a distinguished direction, in the reference configuration, identified with the
unit vector D. Following the pattern for constructing a transversely isotropic energy using this quantity and a
strain tensor [63, 64], we obtain to quadratic order in stretch

W(EB,D) =
(
c1 + c2

2

)
(TrEB)

2 − c2
2
Tr

(
EB

2
) + c3 (TrEB) (EB : DD) + c4(EB : DD)2 + c5EB

2 : DD, (40)

where the ci are constant material parameters. In terms of an elastic tensor, withW = 1
2EB : A : EB, we have

1
2A

IJKL = (
c1 + c2

2

)
GIJGKL − c2

4

(
GIKGJL + GILGJK

) + c3GIJDKDL + c4DIDJDKDL +
c5
4

(
GIKDJDL + GILDJDK + GJKDIDL + GJLDIDK

)
. The Biot stress is still computed as the derivative of W

with respect to EB,

�Biot = (2c1 + c2)i
EB
1 I − c2EB + c3

(
I EB : DD + iEB

1 DD
)

+ 2c4EB : DDDD + c5 (DD · EB + EB · DD) ,
(41)

but P� ·Q is no longer symmetric. The first Piola-Kirchhoff stress can be written [25] in terms of the symmetric
Biot stress plus an additional anisotropic contribution �an,

P = Q · (�Biot + �an) , (42)

whose determination will require use of the angular momentum balance (23) alongside the linear momentum
balance (22) and constitutive equation (24).
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6. Conclusions
This paper has established a basis for small-strain nonlinear-elastic theories with energies quadratic in stretch,
reflecting a systematic expansion in Biot strains. Results on the kinematics of stretch and rotation, and vari-
ational principles for elasticity with auxiliary fields, have been further developed and combined within this
framework. Neglect of higher-order strains results in simple algebraic expressions for isotropic invariants that
bypass the need for complex operations involving quartic equations or tensor square roots. Stresses, balance
laws, and constitutive relations are expressed in terms of derivatives of position, with optional simultaneous
consideration of a stretch or rotation field. The ideas are developed in the context of an isotropic material, with
a brief sketch of anisotropic extensions.
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Note

1. E. G. Virga has recently shared with us an unpublished note in which he derived more general bending measures.
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Appendix A. Other decompositions of the deformation gradient
The multiplicative, polar decomposition of the deformation gradient (1) is a cornerstone of continuum mechan-
ics, possessing several desirable features, including unique symmetric positive-definite right and left stretches.
However, it is not the only option. In micropolar continuum theories [26, 65, 66] the multiplicative decomposi-
tion involves an independent micropolar rotation and a non-symmetric stretch. Chen [67] proposed an additive
decomposition into a symmetric strain tensor and an orthogonal rotation tensor,

giG
I = S + R. (43)

The strain S is unique. By contrast, there are two choices in the polar decomposition, corresponding to the order
of application of strain and rotation, with corresponding natural notions of referential (Biot) and present (Bell)
strains. The tensors in the decomposition (43) can be computed directly from derivatives of position [67],

S =−I + 1

2

(
giG

I + GIgi
) − 1

1 + cosθ
W · W, (44)

R = I + 1

2
W + 1

1 + cosθ
W · W, (45)

W = 1

2

(
giG

I − GIgi
)
, (46)

cosθ = (1 − W : W)1/2 , (47)

However, in contrast to the stretches from the polar decomposition, the strain S is not a pure measure of mate-
rial distortion but is still corrupted by irrelevant rotational information, and the functional form of an objective
elastic energy must include some combination of both strain S and rotation R. This approach has, to our knowl-
edge, not been explored. In micropolar theories [26, 65, 66], a quantity of the type S = giGI −R is one possible
definition for the linear strain, to be accompanied by an angular strain.

Appendix B. Symmetry of P�· Q for isotropic materials
The following line of reasoning may be found in Lurie [22] and Ogden [1]. For isotropic materials with sym-
metric Cauchy stress σ , there exists a representation σ = c0I + c1V + c2V2, where the ci are functions of the
invariants of V. This means that σ is coaxial to (shares eigenvectors with) V and B and, consequently,Q� ·σ ·Q
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is coaxial to U and C. Noting further that U is coaxial with its inverse, and that P� ·Q = √
g/GU−1 ·Q� ·σ ·Q

and Q� · P = √
g/GQ� · σ · Q · U−1, the coaxiality of Q� · σ · Q and U−1 implies the symmetry of P� · Q,

which can thus be identified with the Biot stress via (24).

Appendix C. Variation of the energy
Here we detail the first variation of the energy (21) under independent shifts in x ∈ E

3, Q ∈ SO(3), U ∈ Sym+.
The approach follows Atluri and Murakawa [24].

Noting that δU = δEB and using P : δQ · U = δQ : P · U and P : Q · δEB = Q� · P : δEB, we obtain

δE =
∫
B

[
−∇̄ · P� · δx − δQ : P · U +

(
∂W
∂EB

− Q� · P
)
: δEB

]
dV +

∫
∂B

N · P� · δx dA. (48)

The terms conjugate to δx directly provide the linear momentum balance (22) and a boundary condition
N · P� = 0.

Using δQ ·Q� =−Q · δQ�, we rewrite the quantity involving δQ as −δQ : P ·U = (
Q · δQ� · Q)

: P ·U =
δQ� ·Q :

(
Q� · P · U)

. Because δQ� ·Q is antisymmetric, only the antisymmetric part of the conjugate quantity
need vanish,

U · P� · Q = Q� · P · U. (49)

Left dotting with Q and right dotting with Q� provides the form of the angular momentum balance shown in
(23).

Because δEB is symmetric, only the symmetric part of its conjugate quantity need vanish, leading to the
constitutive equation (24).

Appendix D. Bell strain and stress
Our framework has employed the referential right stretch and associated Biot strain. Their counterparts are the
present left stretch V and the Bell strain, defined as

EBell = V − I. (50)

The Biot and Bell strains share eigenvalues and invariants. A variational principle based on the energy

E(x,Q,EBell;P) =
∫
B

[W(EBell) + P :
(
giG

I − V · Q)]
dV (51)

would result in a constitutive relation for the symmetric Bell stress [62, 68, 69],

�Bell ≡ ∂W
∂EBell

= 1

2

(
Q · P� + P · Q�)

. (52)

For isotropic materials with symmetric Cauchy stress, �Biot = P� · Q and �Bell = Q · P�, so the first Piola-
Kirchhoff stress P admits the decomposition

P = Q · �Biot = �Bell · Q. (53)

Despite its resemblance to the polar decomposition of the deformation gradient, this decomposition for P is not
unique, since �Biot and �Bell are generally neither positive- nor negative-definite.


