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A creased thin disk is generally bistable since the crease could be pushed through

to form a stable cone-like inverted state with an elastic singularity corresponding to

the vertex of the conical surface. In a recent study, we found that this bistability

could be destroyed by removing the singularity through cutting a hole around the

vertex, depending on the size and shape of the hole. Particularly, to maintain the

bistability, a circular hole normally cannot exceed approximately 20% of the disk

size. This paper extends our recent work and is based on the following observations

in tabletop models of creased disks with circular holes: (i) reducing the circum-

ference of the creased disk by removing an annular sector could increase the hole

size to be as large as the disk without destroying the bistability, (ii) with a single

crease, the circular hole could be as large as the disk without loss of the bistability,

and (iii) a family of stable inverted states can be obtained by inverting the disk

almost anywhere along the crease. An inextensible strip model is implemented to

investigate these phenomena. We formulate a minimal facet of the creased disk as a

two-point boundary value problem with the creases modeled as nonlinear hinges, and

use numerical continuation to conduct parametric studies. Specifically, we focus on

geometric parameters which include an angle deficit that determines the circumfer-

ence of the disk, the rest crease angle, the number of evenly distributed creases, and

an eccentricity that determines the position of the hole on the crease. Our numerical

results confirm the qualitative observations in (i)-(iii) and further reveal unexpected

results caused by the coupling between these geometric parameters. Our results

demonstrate that by varying the geometry of a simply creased disk, surprisingly rich

nonlinear behaviors can be obtained, which shed new light on the mechanics and
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design of origami, kirigami, and morphable structures.

Keywords: annular sheets and strips; crease pattern; bistability; inextensible strips; numer-

ical continuation

I. INTRODUCTION

reases and vertices often occur together in the extreme deformation of thin sheets [1

as squeezing a soda can and crumpling a piece of paper [2, 6], in which deformations

ly localized around the creases and vertices with the rest surface remaining relativ

For engineering applications, discrete crease patterns have been introduced to b

and thick plates to achieve different functions and forms, such as the foldability

form surfaces in rigid and curved origami [7–16] and sheet metals [17], energy absorp

ash tubes [18–20], and the redistribution of bending stiffness [21]. Introducing flexib

e facets of creased thin sheets leads to the creation of new equilibria, which extend

guration space of the traditional rigid origami [22–26].

is the competition between the mechanics of creases and the flexibility of the fa

determines the mechanics of creased thin structures [14, 22, 27]. Thin sheets prefe

rather than to stretch due to the large ratio of stretching to bending stiffness. Var

inuum theories have been employed to study the mechanics of thin sheets and str

Föppl-von Kármán theory [28], 1-director Cosserat plate theory [29], small-deflec

tensible plate theory [30–33], and geometrically exact inextensible strip model [22,

Under the inextensible theory, a flat sheet will be deformed into a developable surf

wsky [35] and Wunderlich [36] derived the energy functional for inextensible strips w

itesimal width and finite width respectively. Based on Wunderlich’s functional, Staro

van der Heijden first derived the Euler-Lagrange equations of the inextensible s

el, which has been employed to study the shapes of Mobius bands [34], the triang

ling patterns of twisted ribbons [3], the cascade unlooping of helical ribbons [37],

echanics of elastic annuli [38].

ny@princeton.edu
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he inextensible strip model is known to have singular behaviors for geometries where

stretch of the surface would be preferred to be incorporated [39–45]. On the other ha

orks well to capture the mechanical behaviors of thin sheets with singularity-free

ching-free geometries [22, 27, 37, 46]. With the proper choice of materials and lightin

ssible to approximately see the generators (i.e., unbent lines), and potential singulari

re generators intersect with each other on the material surface) and stretching area

rmed thin sheets, which help determine if the inextensible strip model could be app

e whole geometry or only part of it [1, 3]. Our choice of the inextensible strip mode

study is based on the observation that our deformed geometries are singularity free

d be parameterized by a family of straight lines.

reases play a key role in the mechanics of creased thin sheets [3, 27, 28, 47–50].

e crease unfolds quickly at first and then slowly in terms of a progressive relaxation [

origami length [47] and a similar hinge index [52] are able to quantify the competi

een the deformations of the crease and the facets. Creases are normally modeled

tional hinges with a finite stiffness that balances the bending moments from the t

ts [27, 47, 53–55]. Creases could also be modeled as continuous structures, where

tangent makes a rapid turn within a short material length [56–58]. Accurate predic

e mechanical responses of creased thin sheets requires incorporating both the mecha

in sheets and creases. In flexible origami, thin sheets have been modeled as inextens

s with the creases modeled as elastic hinges [27, 59]. Various discrete models are

loped to study nonrigid origami, such as the bar and hinge model [60–62], triang

model [14, 63], and the hinge and facet model [64].

thin sheet with a single crease is generally bistable with a second stable state obtained

ly inverting the crease, which results in a conical shape with a singularity correspond

he vertex of the cone [28, 64, 65]. Elastic singularities play important roles in

anics of thin sheets [1, 66] and are used to generate concentrated Gaussian curvatu

67, 68]. The bistable behavior in a simply creased sheet is generally insensitive

constituent materials and the shape of the sheet [28, 64]. Excising the singularity

ing a hole around the vertex could reduce the forces needed to invert the crease [64].

d that when indented at the center of a creased metal disk, a localized dimple first fo

3
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unding the center and then propagates towards the disk edge before the structure sn

e conical shape [53]. In a recent work, the author and collaborators demonstrated w

experiments and numerical continuation of an inextensible strip model that a crea

disk could lose its bistability if the vertex of the inverted shape is cut by making a la

gh hole, with the critical size dependent on the shape of the hole [59]. For example

d that the critical size of a circular hole should be less than approximately 20% of

isk for the purpose of retaining bistability.

his paper extends our recent work [59] and investigates several additional factors t

t the mechanics of creased annular sheets and strips. The rest of the paper is organ

llows. Section II introduces the geometric parameters and novel mechanics phenom

eased sheets and strips through tabletop models. In Section III, we use an inextens

model to describe a minimal facet of the creased annular strip with the creases m

as nonlinear hinges whose angle-moment relationship follows a sinusoidal form. F

ions IV to VII, we present numerical results obtained through numerical continua

e inextensible strip model. Specifically, Section IV reports the influence of the an

it α on the bistability of creased thin disks with two creases. Section V presents

t of the rest crease angle γ0 on the mechanics of creased thin disks with two creases

ion VI, we solve both the folded and inverted state of creased thin disks with differ

ber of evenly space creases. Section VII introduces an eccentricity to the position of

with Nc = 2 and studies its effect on the bistability. We give a summary and furt

ssion in Section VIII. In Appendix A, we document the details of formulating a crea

lar strip as a two-point boundary value problem and the procedures of solving it w

erical continuation. Appendix B gives an example (Nc = 2) with the crease follow

ear angle-moment relationship. Appendix C displays the 3D profile and correspond

rojections of the outer and inner circumferences of some renderings shown in Sect

II. Additional renderings of the folded and inverted state with different eccentricit

sizes, and number of creases are documented in Appendix D for the interest of

er.

4
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II. TABLETOP DEMONSTRATIONS AND DEFINITION OF THE

GEOMETRIES

he tabletop models in Figure 1 include disks with radius R = 75 mm (Figures 1(a

60 mm (Figures 1(e-h)), thickness t = 0.127 mm, and different hole size a. They are

polyester shim stock (Artus Corp., Englewood, NJ) by a Silhouette Cameo 3 cut

subsequently creased using a vise. In this study, we did not attempt to obtain cre

precise rest crease angles considering their complex relaxation mechanisms [51]. Th

els are used only to demonstrate the qualitative behaviors of creased thin disks w

rent geometries.

e refer to the stable creased configuration in Figure 1(a) as the folded state and

le inverted configuration in Figure 1(b) as the inverted state; between these two sta

s exists an unstable energy barrier, which is captured by numerical modeling with

tensible strip model (Section IV). In addition, numerical results predict flipped st

the crease being inverted to bend in the other direction, due to our choice of a sinuso

titutive law for the crease (Sections III and IV). Figure 1 summarizes some table

els whose mechanical features are influenced by several geometric parameters, wh

de the hole size a/R and the rest crease angle γ0 (Figure 1(a)), an angle deficit α t

rmines the circumference of the annular strip (Figures 1(c-d)), the number of eve

ibuted creases (Figures 1(e-g)), and an eccentricity (Figure 1(h)) that determines

ion of the hole on the crease (see Figure 1). In this paper, we will address the follow

ts:

Figures 1(c-d) demonstrate that by cutting an annular sector 2π(1 − α), the size

circular hole could increase significantly without destroying the bistability. The mo

in Figure 1(d) is sequentially made by joining the two ends of the open annulu

Figure 1(c) with transparent tapes, making two evenly spaced creases to create

folded state (not shown), and inverting the folded state. In our definition, α

corresponds to removing a sector, α > 1 corresponds to inserting a sector, and α

represents an annulus with an exact angle of 2π. The stable inverted state in Fig

1(d) has (α, a/R) = (0.75,0.85). We are interested in the effect of the angle defic

5
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on the bistability of the creased thin disk.

The bistability is created by decorating a thin disk with creases. How does the cre

angle and crease stiffness affect the mechanical behaviors?

How does the number of creases, Nc, affect the mechanics of creased annular sh

and strips? We focus on radial creases that are evenly spaced along the circumfere

Figures 1(e-f) show the folded state and inverted state with Nc = 3 and 4, respectiv

In addition, with a single crease Nc = 1, the circular hole can be as large as

disk without loss of the bistability. Figure 1(g) shows the stable inverted state w

(Nc, a/R) = (1,0.7) (its stable folded state is not included).

A creased thin disk can be inverted about almost anywhere along the crease, resul

in a continuous family of inverted states. Figure 1(h) shows an example of an inver

state, with the small hole corresponding to the singularity of the conical surface be

nonconcentric to the disk. We will introduce an eccentricity to the position of the h

and study its influence on the mechanics.

e take advantage of the symmetry in the structure and use the inextensible strip mo

udy a minimal facet of the folded and inverted state, which are characterized by

crease angle and the inclined angle between the crease and the horizontal plane. W

2, the folded and inverted state have Nc-fold mirror symmetries, and the struct

d be characterized by the final crease angle γf0 and and the inclined angle δ0 at

of a minimal facet, shown in Figures 1(b), 1(d), and 1(e-f). However, with Nc = 1,

ted state has one-fold mirror symmetry and we study half of the structure whose

have different inclined angles δ0 and δ1 (Figure 1(g)). This is also true for the case w

2 and a nonvanishing eccentricity (Figure 1(h)), which further results in two differ

crease angles γf0 and γf1 at the two creases. In addition, the crease with a sho

th is observed to have a larger final crease angle, i.e., γf0 > γf1 in Figure 1(h).

6
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R R

. 1: Photographs of creased annular sheets and strips. (a) An energy-free folded sta

two evenly spaced creases, a rest crease angle γ0, and a circular hole with radius a

is concentric to the disk with radius R. (b) The inverted state of (a). γf0 represen

nal crease angle at one end and δ0 measures the inclined angle between the crease

orizontal plane. (c) Cutting an annular sector 2π(1 − α) could significantly increas

ole size without loss of the inverted state, shown in (d). (c-d) have

/R) = (0.75,0.85). (e) A folded state with three evenly spaced creases contains ben

s. One of the creases is characterized by γf0 and δ0. (f) The inverted state of (e).
inverted state with a single crease could admit a hole as large as the disk. (h) A

inuous family of stable inverted states can be obtained by inverting almost anywher

g the crease. Shown is the inverted state of a creased disk with a small hole that is

oncentric to the disk. The nonvanishing eccentricity results in different final crease

es γf0 and γf1 and different inclined angles δ0 and δ1 at the two creases.

III. AN INEXTENSIBLE STRIP MODEL

e describe a creased annular strip as a developable surface decorated with creases t

odeled as nonlinear hinges. The equilibrium equations presented in this section h

derived in our recent work [59], which follows directly from Starostin and van

den’s, and Dias and Audoly’s pioneering works on the mechanics of inextensible stra

curved strips [3, 39, 69]. Here, we only include a brief discussion of the inextens

ry and focus on applying it to the current study.

7
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e take advantage of symmetries in the system and only solve a minimal facet.

ple, with Nc evenly spaced creases, we solve one piece bounded by two adjacent crea

own in Figure 2. The description involves an orthonormal Darboux frame (T ,N ,

ched to the directrix r(s) of the deformed configurations, corresponding to the ou

e. Here s is the arc length of the directrix. T represents the tangent of r(s),
esents the normal of the surface, and B = T ×N .

igure 2(a) shows a flat annular sector with an angle deficit α (s ∈ [0,2πRα/Nc]) an

-handed orthonormal frame (t,n,b) attached to the undeformed directrix. The ann

r has an inner radius a and outer radius R and is positioned symmetrically about

plane of a Cartesian coordinate system. Figures 2(b-c) respectively correspond to

d and inverted state, with the creases rendered as thick black lines. The two ends s

s = 2πRα/Nc of the folded state (Figure 2(b)) and the inverted state (Figure 2(c))

trained in the x − y plane to slide along the two rays y = − tan π
Nc
x and y = tan N

ectively. In addition, the rotation axis of the full structure (which can be constructed

g symmetry properties) aligns with the z axis. δ0 and δ1 correspond to the inclined an

e crease at the two ends. Because of the symmetry, in both the folded and inver

, we have δ0 = δ1. In our definition, δ0 > 0 for the inverted state and δ0 < 0 for the fol

. We assume that creases at the two ends remain straight as two generators.

oving of the the Darboux frame (T ,N ,B) on the directrix can be described as T

−κgB, N ′ = −κnT + τgB, and B′ = κgT − τgN , where a prime denotes an s-derivat

the preserved geodesic curvature under isometric deformation, and τg represents

esic torsion. In our notation, κg = −1/R. Generators (thin black lines) align with

or (B + ηT ) and make a local angle β with T . Here η is related to β through η = co

cent generators intersect each other on a space curve called the edge of regression, wh

ytical expression is included in Appendix A. The developable annular sector in Figu

c) can be parameterized as

X(s, v) = r(s) + v(B(s) + η(s)T (s)) ,
ith v ∈ [0, V ] and s ∈ [0,2πRα/Nc]. v is the coordinate along the generator wh

th is V
√

1 + η2; V can be determined by η, s and the hole geometry through an imp

8
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. 2: A minimal facet of a creased annular strip with Nc evenly spaced creases and a

e deficit α is described by an inextensible strip model. (a) The flat configuration

sponds to an annular sector with a central angle 2πα/Nc. The undeformed outer ci

es a right-handed orthonormal frame (t,n,b) with n going into the plane. (b) Fold

. (c) Inverted state.

tion χ(V, s, η, a,R) = 0. In Figure 2, for a thin disk with a concentric circular hole

be written as [59]

χ(η, V ) = V 2 + (R2 − 2V R − a2) sin2 β ,

here V could be explicitly solved as a function of η and the geometric paramete

R [69]. Later we will show that χ becomes complicated in the case with a nonvanish

ntricity, where solving V explicitly becomes nontrivial. Following [59], we treat V

ble and differentiate the algebraic constraint χ = 0 to obtain an additional differen

tion. This technique makes it convenient for using the inextensible strip model to s

lopable surfaces with any smooth boundaries, where the length of the generator m

be explicitly solved in terms of the geometry. Details are discussed in Appendix A.

he mean curvature of the developable surface represented by Equation (1) is H

κn(1+η2)(η′+κg(1+η2))] and an area element can be written as dA = [1 + v(η′ + κg(1 + η2))]d
The identical vanishing of the Gaussian curvature further requires η = τg/κn.

he total elastic energy U of a creased annular strip includes elastic energy stored

9
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crease and the bending energy of the facets. We assume that the bending mom

rated by the crease follows Kc(R − a) sin(γ̃f − γ0), where Kc is the crease stiffness

length, γ0 is the rest crease angle, and γ̃f measures the deformed crease angle [70].

to emphasize that the mechanics of crease is complicated and a precise description o

e-moment relationship does not exist [47, 51]. In Appendix B, we demonstrate that w

rease following a linear angle-moment relationship, the major conclusions of this st

the qualitative observations in Figure 1) are not affected and the numerical results o

ain slight quantitative differences. Note that in our crease model, the crease mom

dically vanishes at γ̃f = γ0+iπ (i is an integer). With γ̃f ∈ [γ0, γ0+ π
2 ], the crease mom

ases with the opening of the crease. On the other hand, with γ̃f ∈ [γ0 + π
2 , γ0 + π],

se enters a softening regime, where the crease moment decreases with the further open

e crease. Our numerical results in Section IV show that in certain parameter spaces,

se could flip to reach a final crease angle around γ0 + π. We assume the thin sheet

nding rigidity D = Et3/[12(1 − ν2)], where E and ν are the material’s Young’s modu

Poisson’s ratio, respectively. The total elastic energy of the inverted and folded stat

in disk with Nc evenly spaced creases (Nc ≥ 2) can be written as [59]

U

NcD
= Kc

D
(R − a)∫ γf0

γ0
sin(γ̃f − γ0)dγ̃f + 1

2 ∫ 2πRα
Nc

0
∫ V

0
(2H)2

dA ,

= KcR

D
(1 − a

R
) [1 − cos(γf0 − γ0)] +∫ 2πRα

Nc

0
YWds ,

ith Y = κ2n(1+η2)2
2[η′+κg(1+η2)] and W = ln[1 + V (η′ + κg(1 + η2))]. We have assumed that all

ses have the same length (R − a) and the same final crease angle γf0. In this study,

me the final crease angle is always constant along the crease length. Equation (3) ne

r modifications for a few cases in this paper. For example with Nc = 2, introducing

ntricity to the position of the hole results in creases with different lengths and differ

crease angles (Figure 1(h)). In the following sections, we will include the correspond

ifications of Equation (3) when necessary. For thin sheets, the origami length D/K
d to be proportional to the thickness of the material [47]. This makes the dimension

se stiffness KcR/D diverge as the material thickness goes to zero, resulting in a r

se that will not store any elastic energy.

10
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ith our modeling of the creases as discrete hinges, the mechanics of the crease o

nces the moments of the thin sheets at the boundaries, and does not appear in

r-Lagrange equations, given by [34, 69]

F ′ = 0 ,

M ′ +T ×F = 0 ,

∂κn(YW ) − ηM1 −M3 = 0 ,

∂η(YW ) − (∂η′(YW ))′ − κnM1 = 0 ,

e forces and moments, normalized by D, are resolved in the material frame thro

F1T +F2N +F3B and M =M1T +M2N +M3B. Equations (4), (5), and (6-7) repres

force balance, moment balance, and the constitutive laws, respectively. Together w

aternion description of the rotations of the material frame and boundary condit

sed at the two ends of a minimal facet, we obtain a two-point boundary value prob

BVP) and solve it with the continuation package AUTO 07P [71]. To obtain a consist

cription of boundary conditions for the quaternions, we follow Healey and Metha

duce a dummy parameter [43, 72]. The current implementation combined the merit

ernions, which are free of polar singularity that Euler angles could suffer, and the me

uler angles, which are convenient for imposing boundary conditions explicitly contain

ation angles”, such as the moment balance at the crease. Detailed formulation of

VP can be found in Appendix A.

hroughout the rest of this paper, the results from numerical continuation of the in

ible strip model are presented as solution curves, loci of the fold (which connect

ted state and the energy barrier), and renderings corresponding to the symbols on

ion curves. All the numerical results have R set to unity. The solution curves meas

esponse of the creased disk through the angle δ0, the total elastic energy, and the cha

e crease angle (γf0−γ0) as certain parameter varies, e.g., the hole size a/R. In numer

inuation, we constrain the hole size a/R in the range [0.001,0.96]. The solution cu

de the inverted state, the folded state, the energy barrier, and possibly a half-flip

and a flipped state that exist only in certain parameter spaces. Numerical continua

11



Journal Pre-proof

coul rial

surfa the

3D d h of

them ure

2H2 rest

facet t of

the c the

confi ard

to av tion

of th

W e in

hole d)).

In th hin

disk g to

the l ials

by v flat

facet uld

also

F and

angl e γ0

is fix ure

3(b) gle

δ0 as ), a

crea 00).

Two olid

lines the

unst nd,
Jo
ur

na
l P

re
-p

ro
of

d fail at a point (indicated by a cross) where the edge of regression contacts the mate

ce resulting in the blow-up of the local bending [34, 39]. The renderings include

eformed configurations and their developments on the 2D flat configurations. Bot

display the bending energy density (color maps of twice the squared mean curvat

) on a minimal facet of the creased thin disk and the generators (black lines) on the

s, which are shown in grey. Only the edge of the regression of the facet to the lef

olor map is included as red lines on the 3D renderings. In the flat developments of

gurations with α > 1 (i.e., with inserted sectors), the facets are slightly shifted outw

oid overlapping. We also examine some solutions in detail by reporting the distribu

e contact forces/moments, the curvature κn, the geodesic torsion τg, and η.

IV. ANGLE DEFICIT

ith tabletop models, we observed that cutting a sector could allow for the increas

size of a creased disk significantly without destroying the bistability (Figures 1(c-

is section, we study the effect of the angle deficit α on the bistability of a creased t

with two creases. α enters the two-point BVP through a scaling factor correspondin

ength of the directrix (see Appendix A), which enables us to insert or remove mater

arying α directly. With Nc = 2 and α = 1 , the folded state always contains two

s and is energy free. However with Nc = 2 and α ≠ 1, the facets of the folded state co

be deformed. We will discuss the numerical results of folded state in Section VI.

igure 3 reports solution curves with different dimensionless crease stiffness KcR/D
e deficit α in panels (a-c), and the loci of the fold in panel (d). The rest crease angl

ed to 45○. Figure 3(e) shows several renderings corresponding to the symbols in Fig

. Figures 3(a-c) employ the hole size a/R as the continuation parameter and the an

the solution measure, and respectively correspond to a weak crease (KcR/D = 4

se with an intermediate stiffness (KcR/D = 20), and a strong crease (KcR/D = 1

elements are employed in Figures 3(a-c) to improve their readability. First, the s

, dashed lines, dotted lines, and dash-dot lines represent the stable inverted state,

able energy barrier, the flipped state, and the half flipped state, respectively. Seco

12
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. 3: Solution curves (δ0 versus a/R) with different (KcR/D,α), and loci of folds (α

s a/R) with different KcR/D. (Nc, γ0) is fixed to (2,45○). (a) Solutions with a sm

se stiffness KcR/D = 4. (b) Solutions with a moderate crease stiffness KcR/D = 20.

tions with a large crease stiffness KcR/D = 100. (d) Loci of the fold. The area enclo

he upper and lower boundary corresponds to the bistable region. (e) Renderings th

spond to the symbols in (a − c).
s are used for different α with black, blue, and brown corresponding to α = 1.0, 0

0.7, respectively. The grey curves in Figures 3(b-c) have α = 1.03. For example,

solid and dashed lines in Figure 3(a) correspond to an inverted branch and an ene

13
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ier branch with α = 1, respectively.

creasing the hole size a/R could destroy the bistability through a fold (black circ

lting in a critical hole size. Decreasing α generally leads to the increase of the crit

size. With α = 0.7, the inverted branch could approach a/R = 1 without a fold (we o

rt the portion up to 0.96), implying that the hole can be as large as the disk without

e bistability. This qualitatively matches our experimental observations demonstrate

res 1c-1d. On the other hand, increasing α (i.e., inserting a sector) reduces the crit

size quickly. For example, see the grey curves in Figures 3(b-c), whose counterp

pears in Figure 3(a) with a weak crease. We also notice that while the solution cu

e inverted branch (solid lines) in Figure 3(c) decline monotonically with the increas

they first rise a bit and then start declining in Figures 3(a-b). This is due to the

a small a/R will generate a large bending moment from the conical shape at the

daries, which will open the crease angle a lot with a weak crease. Opening the cre

e generally flattens the inverted state and thus reduces its inclined angle δ0.

flipped state and a pair of half flipped states exist in certain parameter spaces.

re 3(a), with α = 0.7 and 0.85, decreasing a/R could also lead to instability throug

(black circle), which further connects to a flipped state and a pair of half-flipped st

ugh a bifurcation point (grey circle). The pair of flipped states with α = 0.85 termin

after the bifurcation, where the edge of regression contacts the material surface

ing energy blows up locally. With a larger crease stiffness in Figures 3(b-c), the inver

, the pair of half flipped states, and the flipped state are separated for α = 0.7; w

.85, the pair of half flipped states cannot be obtained due to the local contact betw

dge of regression and the material surface. The final crease angle of the flipped creas

t (π + γ0), at which the crease generates almost a vanishing moment but stores a fi

ic energy. This is different from the rest angle γ0, at which both the crease moment

se energy vanish. We remark that the additional fold and bifurcation at a small a/R
to our specific choice of the constitutive law for the crease, which follows a sinuso

and has a second fictitious rest angle of (π + γ0). In Appendix B, we give an exam

ow that with linear creases (i.e., a crease with linear angle-moment relationship),

tional fold and bifurcation at small a/R disappear.

14
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igure 3(d) reports the loci of the fold in the α versus a/R plane with different cre

ess KcR/D. For each crease stiffness, we obtain an upper and a lower boundary, w

nclosed area corresponding to the bistable regime. The upper boundary correspond

old that connects to the unstable energy barrier, and the lower boundary correspo

e fold that connects to the flipped state. Starting with a bistable geometry, b

asing and decreasing α could cross the stability boundary and thus destroy the inver

. The curves at the upper left corner (α > 1) set the limit of the largest sector t

be inserted without destroying the inverted state. Actually only with small holes, α

tly exceed unity and is always less than 1.1, which implies that only a small sector co

serted without loss of the bistability. In addition, the upper boundary slowly decl

the increase of a/R, following almost a linear relationship. This implies that by cut

all sector, the critical hole size could be increased significantly. For example, w

/D,α) = (100,0.794), the critical hole size increases to a/R = 0.92, corresponding

ight end of the green curve. The lower boundary sets the limit of the minimal mate

ed to preserve the inverted state. Although increasing the crease stiffness does

rkably change the upper boundary, it shifts the lower boundary significantly downw

ying that the inverted state exists in a larger parameter space with a stronger cre

emark that with the crease following a linear response, there is no such lower bound

ever, a similar upper boundary exists. Figure 3(e) displays several renderings, wh

rofiles and their 2D projections of the outer and inner circumferences are documen

igure 21 (Appendix C).

igure 4 reports the deviation of the crease from the rest angle (γf0 − γ0) at s = 0

solutions in Figures 3(a-c). Vertically, the curves are approximately divided into

ps: the top group is close to 180○, including the flipped state and one of the half flip

with the crease at s = 0 flipped; the bottom group contains the inverted state,

gy barrier, and the other half flipped state with the crease flipped at s = πRα. W

ak crease KcR/D = 4, the top group is connected to the bottom group through f

bifurcations. Increasing KcR/D to 20 and 100 separates the top and bottom gro

pushes the deviation (γf0 − γ0) to approach 180○ and 0○, respectively. Large KcR

sponds to a relatively rigid crease, which will force the final crease angle γf0 to be c

15
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. 4: Changes of the crease angle at s = 0, (γf0 − γ0). (a), (b), and (c) correspond to

ions in Figures 3(a), 3(b), and Figure 3(c), respectively.

e moment-free crease angle γ0 and γ0+π. In Figures 4(b-c), the final crease angle γf

ottom group approaches γ0, while the final crease angle γf0 of the top group approac

π), with the latter storing more crease energy.

igures 5(a-b) report respectively the normalized elastic energies of the solutions in F

3(a-b), including the total energy U/D, the bending energy Ub/D, and the crease ene

. The total elastic energy U/D of different states follows: stable inverted state < ene

ier < half-flipped state < flipped state. Later we will show that the folded state ge

contains much lower elastic energy than the inverted state. The bending energy U

ws: flipped state < half-flipped state < stable inverted state. However, the relations

een the bending energy of the inverted state and the energy barrier could reverse.

ple, with (KcR/D,α) = (4,1), energy barrier < inverted state, while this is reversed

/D,α) = (4,0.85). The crease energy Uc/D follows: stable inverted state < half-flip

< flipped state. The relationship between the crease energy of the inverted state

energy barrier could reverse. For example, with (KcR/D,α) = (4,1), inverted stat

gy barrier, while this is reversed for (KcR/D,α) = (4,0.85). We conclude that flipp

rease generally reduces the bending energy, but increases the crease energy significan

thus increases the total energy.
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. 5: Normalized total energy U/D, bending energy Ub/D, and crease energy Uc/D.

(b) correspond to the solutions in Figures 3(a) and 3(b), respectively.

ith the hole size a/R fixed, cutting material in the circumferential direction (i.e.,

sing α) generally leads to an increase in both the bending energy and the crease ene

e inverted state. The former is similar to an exact cone made by joinning the two end

t sector, in which a smaller sector generally results in a conical structure with a hig

ic energy. Tabletop models show that for the inverted state, decreasing α gener

s to an increase in bending of the facet and the opening of the crease angle. Here

erical results show that the intuitive decrease of the elastic energy due to the decreas

ending area (caused by reducing α) is exceeded by the increase of the bending ene

ity and the crease energy density. In addition, increasing a/R (i.e., cutting material

radial direction) generally leads to a decrease in all the energies of all the states.

ption to this is the bending energy of disks with a weak crease (KcR/D = 4), in wh

nergy curves first rise a bit, and then decline with an increase in a/R. The reason

rs also explains why the inclined angle δ0 first rises a bit and then declines in Fig

17



Journal Pre-proof

3(a) hus

flatt

T nds

on t tate

with han

the and

incre In

othe ore

ener ase

ener ntly

incre the

crea ich

most ped

and and

most

S and

mom rier

have − z
plan tact

force pair

of h (i.e.

the y ant

cont

F ge-

ome My,

and r ☀
(α = ary

cond pair

of ha ing

My ( arc
Jo
ur

na
l P

re
-p

ro
of

: the large crease moment caused by a small hole will open a weak crease a lot and t

ens the facet, which decreases the bending energy.

he ratio of the crease energy to the bending energy in the structure mainly depe

he dimensionless crease stiffness KcR/D and the hole size a/R. For the inverted s

a weak crease KcR/D = 4 and small a/R, the two creases contribute more energy t

bending of the facets. On the other hand, increasing a/R will unload the crease

ase the bending deformation of the facet, which reverses the energy contribution.

r words, with KcR/D = 4 and large a/R, the bending of the facets contributes m

gy than the two creases. However, for the flipped and half flipped branch, the cre

gy contributes more than the bending energy. Increasing KcR/D to 20 significa

ases the total elastic energy in the system. With KcR/D = 20, the portion from

se energy reduces significantly for the inverted state and the energy barrier, in wh

of the elastic energy comes from the bending of the facets. However, for the half flip

particularly the flipped states, the contribution from the bending energy is small

of the energy comes from the flipped crease.

ymmetries in the structure could facilitate our understanding of the contact force

ent on the directrix r(s). The inverted state, the flipped state and the energy bar

two-fold mirror symmetries, with the plane spanned by the two creases and the x

e (see Figure 2) being planes of symmetry. These mirror symmetries vanish the con

F identically and result in a constant contact moment in the z direction. The

alf flipped states is only symmetric about the plane spanned by the two creases

− z plane), resulting in a constant contact force in the x direction and a nonconst

act moment in the y − z plane.

igure 6 reports the Cartesian component of the contact force/moment and several

tric quantities for the renderings shown in Figure 3(e). Figures 6(a-c) report Fx,

Mz, respectively. The horizontal axis represents the arc length s, up to 1.03π fo

1.03). Other Cartesian components Fy, Fz, and Mx are set to zero through bound

itions due to the mirror symmetry about the y − z plane (Appendix A). Only the

lf flipped state (▸ and◂) have nonvanishing Fx (which is constant) and nonvanish

which is nonconstant). Mz in the pair of half flipped states keeps varying along the
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th, and is constant for the other renderings including the two inverted states (⧫ and

ped state (∎), and an energy barrier (▲). These predictions match with our symm

ysis. In addition, Fx of the two half flipped states have equal magnitude but oppo

(Fx < 0 for◂and Fx > 0 for▸), which imply that the non-flipped end of the directri

r compression, while the flipped end is under tension. Figures 6(d-f) report the nor

ature κn, geodesic torsion τg, and η, respectively. Notice that in the two half-flip

s, the normal curvature κn approaches zero at the flipped crease, implying that a sin

y (corresponding to κn = 0) is about to form and could move inside the integral inte

40].

. 6: The Cartesian component of contact force/moment and several geometric

tities, corresponding to the renderings in Figure 3(e). Because of the symmetry, on

facet is reported. (a) Fx. (b) My. (c) Mz. (d) Normal curvature κn. (e) Geodesic

on τg. (f) η.
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V. REST CREASE ANGLE

he bistability of a creased thin disk is created by introducing non-flat crease ang

easing γ0 (i.e., folding the crease more heavily) generally makes the inverted state m

le. However, in certain parameter spaces, we observed that decreasing γ0 could dest

nverted state. For example, with the removal of a sector (i.e., α < 1), it is observed w

top models that the rest crease angle γ0 must be large enough to stabilize the inver

. In this section, we study the effect of the rest crease angle γ0 on the bistability.

the rest crease angle γ0 with different hole size and angle deficit. Other parame

KcR/D) are fixed to (2,20).
igure 7 summarizes the numerical results from the inextensible strip model. Figures

ploy the rest angle γ0 as the continuation parameter and the angle δ0 as the solu

sure, and have respectively α = 0.95, 1.0, and 1.02. With α = 0.95 and large h

a/R = 0.4, 0.6, and 0.9, decreasing γ0 could destroy the bistability through a f

a smaller hole such as a/R = 0.3, the inverted state exists for the entire range

80○]. At γ0 = 180○, the four solution curves merge approximately at the point (γ0, δ

○, cos−1 0.95), which corresponds to a perfect cone. With a rigid crease, they will me

tly at (180○, cos−1 0.95).
ith α = 1.0 and 1.02 (Figures 7(b-c)), increasing γ0 destroys the bistability throug

With α = 1, the solution curves could merge at (γ0, δ0) = (180○,0○) for small ho

sponding to a flat annulus. With α = 1.02, the inverted state is destroyed far be

rest crease angle reaches π for a/R ≥ 0.02. Figure 7(d) shows the loci of the fold

γ0 versus a/R plane with different α. The area below the loci curve correspond

bistable region. Starting with a bistable geometry, increasing the hole size a/R
rally cross the stability boundary from the bistable region to a monostable region,

destroys the bistability. With α ≤ 0.99, decreasing γ0 could destroy the bistabi

e with α ≥ 1, increasing γ0 destroys the bistability. With α = 1, the stability bound

most a horizontal line and the critical hole size is not sensitive to γ0. A tiny reen

s at the bottom right of the curves with α = 1.01,1.02 and 1.03. We did not explore

ils of these structures in this paper. Figure 7(e) shows several renderings correspond
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. 7: Solutions curves (δ0 versus γ0) of the inverted state (solid lines) and energy bar

hed lines), and loci of folds (a/R versus γ0) with different (α, a/R). (KcR/D,Nc) is

to (20,2). (a) α = 0.95. (b) α = 1.0 (c) α = 1.02. (d) Loci of the fold with different

enderings that correspond to the symbols in (a-c).

e symbols in Figures 7(a-c). The numerical results presented in this section confi

together with the angle deficit α, both decreasing and increasing the rest crease angl

stabilize or destabilize the inverted state.
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VI. NUMBER OF EVENLY DISTRIBUTED CREASES

thin disk can be decorated with a pattern of creases. In this section, we study

ted and folded state with different number of evenly spaced creases. The facets of

d state are generally deformed for Nc ≠ 2. With Nc = 2 and α ≠ 1, the facets of

d state could also be deformed. With a single crease Nc = 1, the inverted state

mirror symmetry. We solve half of the structure and only impose the crease bound

ition at one end (Appendix A). In this case, we have only one crease contributing

lastic energy in Equation 3.

A. The inverted state

Figure 8, the crease angle is fixed to γ0 = 45○. We employ a/R as the continua

meter and δ0 as the solution measure with different (Nc, α) in Figures 8(a-c), wh

spond to Nc = 1, 3, and 4, respectively. Figure 8(d) reports the loci of the fold in

ersus a/R plane with different (α,KcR/D) through a series of discrete points.

igure 8(a) shows that with a single crease Nc = 1 and α ≤ 1, a/R on the inver

(solid lines) could be continued in the entire range [0.001,0.96] without any fold

cation. This matches with our experimental observation that with a single crease,

could be as large as the disk without loss of the bistability (Figure 1g). In the sa

ram with α = 1.03, 1.04, and 1.05, the hole could still be as large as the disk. Howe

easing the hole size could destroy the bistability through a fold, which connects to

gy barrier state. Increasing α quickly moves the fold toward the right limit a/R = 1.

lts show that to preserve the inverted branch, α cannot exceed 1.1. In other words, w

gle crease, only a small sector is allowed to be inserted without loss of the inverted st

solution curves in Figures 8(b-c) with Nc = 3 and 4 share several features: increa

size a/R destroys the bistability through a fold that connects to the energy barr

easing α from 1 to 0.7 leads to a significant increase of the critical hole size; the crit

size quickly drops to zero as α is slightly larger than 1. Figure 8(d) reports the loc

fold in the Nc versus a/R plane (up to nine creases) with several (α,KcR/D). W
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. 8: Solution curves (δ0 versus a/R) of the inverted state (solid lines) and energy

ier (dashed lines) with different (Nc, α), and loci of the fold (a/R versus Nc) with

rent (α,KcR/D). In (a − c), (KcR/D,γ0) is fixed to (20,45○). (a) Nc = 1. (b) Nc =
c = 4. (d) Loci of the fold with γ0 fixed to 45○. (e) Renderings that correspond to t

ols in (a − c).

critical hole size increases monotonically with the increase of Nc for α = 1.03, it

eases a bit and then reverses to increase for α ≤ 1. The reverse effect becomes m

ounced with the decrease of α. In addition, a stronger crease generally leads to a la

23



Journal Pre-proof

criti ≥ 2

and tire

rang ols

in F

F -c),

resp rgy

Uc/D ilar

to th the

vario hin

disk and

thus

W ≥ 2,

the ith

Nc = ent

is re and

the c the

Cart s in

Figu ith

(Nc, its

corre ings

with s in

tens d-f)

disp (e),

resp ero

at th ) is

abou
Jo
ur

na
l P

re
-p

ro
of

cal hole size. The mechanical behavior with Nc = 1 is qualitatively different from Nc

is not included in Figure 8(d). For example, with α ≤ 1, there is no fold in the en

e a/R ∈ [0.001,0.96]. Figure 8(e) shows several renderings corresponding to the symb

igures 8(a-c).

igures 9(a-c) report the normalized elastic energies of the solutions in Figures 8(a

ectively, including the total energy U/D, the bending energy Ub/D, and the crease ene

. The solutions in Figure 8(a) with α = 1.04 and 1.05 are not included for clarity. Sim

e results in Figure 5 with Nc = 2, decreasing α generally leads to the increase of

us energies, and increasing a/R generally reduces these energies. In addition, a t

decorated with more creases generally contains more bending energy, crease energy,

the total elastic energy.

ith a single crease Nc = 1, the system has one mirror symmetry; while with Nc

inverted state and energy barrier have Nc-fold mirror symmetries. As a result, w

1, the contact force F is a constant vector in the x direction and the contact mom

stricted in the y−z plane. With Nc = 3 and 4, the contact force vanishes identically,

ontact moment M is a constant vector in the z direction. Figures 10(a-c) present

esian component of the contact force and moment Fx, My, and Mz of the rendering

re 8(e), respectively. The numerical results match with our symmetry analysis. W

a/R) = (1,0.9) (i.e., ⧫), Fx is found to be a nonvanishing small constant 0.0252, and

sponding My and Mz varies slowly along the arc length. Fx > 0 for all the render

Nc = 1 (⧫, ∎, and◂), which implies that the creased end of the directrix r(s) i

ion, while the non-creased end of the directrix is under compression. Figures 10(

lay the normal curvature κn, geodesic torsion τg, and η of the renderings in Figure 8

ectively. Notice that in the energy barrier◂, the normal curvature κn approaches z

e noncreased end at s = απR, implying that a singularity (corresponding to κn = 0

t to form and could move inside the integral interval.
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. 9: Normalized total energy U/D, bending energy Ub/D, and crease energy Uc/D.

and (c) correspond to the solutions in Figures 8(a), 8(b), and 8(c), respectively.
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. 10: The Cartesian component of the contact force/moment and several geometric

tities of the renderings in Figure 8(e). Because of the symmetry, only one facet is

rted. (a) Fx. (b) My. (c) Mz. (d) Normal curvature κn. (e) Geodesic torsion τg. (f)
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B. The folded state

tabletop models, we observed that with a single crease Nc = 1, an inflection point (

0) exists on the folded state, which could lead to local divergence of the bending ene

will bring significant difficulty in solving the inextensible strip model [39, 40]. We

include the solutions of the folded state with Nc = 1 in this study.

. 11: Solution curves of the folded state (δ0 versus a/R) with different (Nc, α, γ0).

/D is fixed to 20. (a) Nc = 2. (b) Nc = 3. (c) Nc = 4. (d) Renderings that correspond

ymbols in (a − c).
igures 11(a-c) present the solution curves of the folded state with Nc = 2, Nc = 3

4, respectively. We employ a/R as the continuation parameter and δ0 as the solu

sure with different (α, γ0). Black curves are omitted in Figure 11(a) because the fol

with (Nc, α) = (2,1) remains flat and is trivial. The grey dashed curve with α = 1.
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included in Figures 11(b-c) because they cannot be obtained with the inextensible s

el due to the local contact between the edge of regression and the material surface.

d state is stable in the entire range a/R ∈ [0.001,0.96]. Figure 11(d) displays sev

erings corresponding to the symbols in Figures 11(a-c). The facets could be convex

and ☀) or concave (◂ and ▲), depending on the choice of the geometric parame

c, γ0). Convex facets tend to close the crease angle (i.e., γf0 < γ0), while concave fa

to open the crease angle (i.e., γf0 > γ0).

igures 12(a-d) present the Cartesian component of the contact moment Mz, the nor

ature κn, the geodesic torsion τg, and η of the renderings in Figure 11(d), respectiv

configurations with convex facets have Mz > 0 and κn < 0 (⧫, ∎, ▸ and ☀), and

gurations with concave facets (◂and ▲) have Mz < 0 and κn > 0. In general, increa

decreasing α will lead to convex facets, while decreasing γ0 or increasing α will resul

ave facets. By carefully choosing (γ0, α,Nc), the facets of the folded state could rem

ith the crease being exactly the rest angle γ0, which results in energy-free folded sta

Nc ≥ 3, this requires

γ0 = π − cos−1 (cos 2π
Nc

+ 2 tan2 πα
Nc

cos2 π
Nc
) ,

ch that the folded state lies on the surface of a regular pyramid with a regular Nc-go

and a “vertex angle” ζ = sin−1 (sin πα
Nc
/ sin π

Nc
), which is defined as the angle betw

xis and the lateral edge of the pyramid (Figure 13(a)). Notice that the hole size

not appear in Equation (8). Because α ≥ 0, Equation (8) further requires γ0 ≥ (π −
to obtain an energy free folded state, the rest angle γ0 must be larger than the inte

e of the base polygon. Figure 13(b) displays the relationship between the angle de

d the rest crease angle γ0 in Equation (8) with different Nc. All the curves merg

oint (γ0, α) = (180○,1), corresponding to a flat annulus. With α > 1, Equation (8) d

have real solutions. With α slightly larger than unity, our numerical results show t

folded state always have a concave shape (e.g., the two renderings ◂ and ▲ in Fig

)). In Figure 13(b), a geometry from the left side of each curve corresponds to a conc

e, while a geometry from the right regime results in a convex shape. Figures 13(
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lay three energy-free renderings (blue surfaces) and their host pyramids (sketched

lines), corresponding to the symbols in Figure 13(b).

. 12: The Cartesian component of the contact moment and several geometric

tities, corresponding to the renderings in Figure 11(d). Because of the symmetry, o

facet is reported. (a) Mz. (b) Normal curvature κn. (c) Geodesic torsion τg. (d) η.

igures 14(a-c) report the normalized elastic energies of the solutions with γ0 = 45

res 11(a-c), respectively, including the total energy U/D, the bending energy Ub/D,

rease energy Uc/D. Compared with the elastic energies of the inverted state in Fig

and Figures 9(b-c), the folded state contains much less elastic energy. In all the th

ls of Figure 14, the bending energy contributes much more to the total energy than

se energy, and all the three energies decrease with the increase of the hole size a/R.

ith Nc = 2 in Figure 14(a), decreasing α leads to the increase of all the three energ

Nc = 2 and α < 1, the folded state is always convex no matter what the rest cre

e is (see the two renderings ⧫ and ∎ in Figure 11(d)), which tends to close the cre
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. 13: Energy-free folded states that lie on regular pyramids. (a) The vertex angle ζ

ed as the angle between the lateral edge (inclined solid lines) and the vertical axis

hed line). (b) The relationship between α and γ0 with different Nc that leads to

gy-free folded state. (c) An energy-free folded state with three creases (blue surface

h correspond to the symbol ⧫ in (b). The pyramid is sketched by the black lines. (d

xample with four creases. (e) An example with five creases.

e (i.e., γf0 < γ0). Decreasing α generally makes the facets more convex, which incre

bending energy density and leads to the closing of the crease angle. The latter le

igher crease energy. Our numerical results show that the bending energy also incre

the decrease of α, implying that the intuitive decrease of the bending energy cau

ecreasing α (which reduces the area of the facets) is exceeded by the increase of

ing energy density.

Figure 14(b) with Nc = 3, decreasing α leads to the increase of the crease energy but

ease of the bending energy and the total energy. From Figure 13(b) we know that w

γ0) = (3,45○), the folded state is concave in the entire range α ∈ (0,1]. Actually w
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.1, the structure is also concave, corresponding to◂in Figure 11(d). Here, decreasin

reduce the facet area and flatten the facet, and thus decreases the bending energy.

ther hand, decreasing α tends to open the crease angle, which leads to an increase in

se energy. Our results show that the bending energy is dominant here, and decrea

ds to the decrease of the total energy.

Figure 14(c) with (Nc, γ0) = (4,45○), the transitions are slightly different. While

se energy increases with the decrease of α, the bending energy and the total energy d

change much as we vary α.

. 14: Normalized total energy U/D, bending energy Ub/D, and crease energy Uc/D.

sponds to the solutions in Figure 11(a). (b) Figure 11(b). (c) Figure 11(c).
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VII. ECCENTRICITY - A FAMILY OF STABLE INVERTED STATES

experiments, we observed that a creased disk can be inverted about almost anywh

g the crease to obtain a family of stable inverted states (Figure 1(h)). In this sect

tudy the mechanics of this family of states by introducing a nonvanishing distanc

een the center of the hole and the center of disk, shown in Figure 15(a). Figure 15

s the inverted state, which is obtained by first introducing a finite crease angle to

onfiguration in Figure 15(a) and then inverting the crease. We call e/R the eccentri

e hole. A nonvanishing e/R breaks one of the two mirror symmetries in the inver

, which now has a single mirror symmetry about the plane spanned by the two crea

we focus on the case with α = 1. The total energy can be written as

�

. 15: (a) The flat configuration of a creased disk with a circular hole of radius a,

ed eccentrically at (0, e). The thick black lines correspond to the crease and (t,n,b
terial frame attached to the outer circle, with n going into the plane. The generato

apped from the inverted state in (b), where nonvanishing ∣e/R∣ leads to different

ned angles δ0 and δ1 and different final crease angles γf0 and γf1 at the two ends.
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U

D
=KcR

D
(1 − a

R
+ e

R
) [1 − cos(γf0 − γ0)]

+ KcR

D
(1 − a

R
− e

R
) [1 − cos(γf1 − γ0)] + 2∫ πR

0
YWds = Uc

D
+ Ub
D
,

here γf0 and γf1 represent the final crease angle at s = 0 and s = πR, respectively.

two terms represent the elastic energies in the two creases with different lengths,

third term represents the bending energy of the facets. The Euler-Lagrange equat

he same as Equations (4)-(7). The boundary conditions are slightly modified to acco

he differences between the two creases. In addition, the algebraic constraint χ t

icitly determines V is modified to

= V 2 + (R2 − 2V R − a2) sin2 β + e sinβ[e sinβ − 2R cosλ sinβ + 2V sin(β + λ)] , (

here λ = s/R, resulting in a “nonautonomous” system. λ measures the angle between

the radius (Figure 15(a)). With e = 0, Equation (10) degenerates to Equation (2).

w standard techniques and transform the nonautonomous system into an autonom

m. Details of the transformation and the boundary conditions can be found in Appen

igure 16 summarizes the solution curves (δ0 versus e/R), loci of the fold (a/R ve

, and several renderings with different (a/R,KcR/D,γ0). Small crease stiffness and la

se angle generally lead to a shallower inverted state with smaller δ0. In Figure 16(a),

e with a/R = 0.03 increases significantly with the decrease of e/R when e/R → −1. T

alitatively different from the other curves. Upon a further examination of the solut

nd that the final crease angle γf0 corresponding to the upper left end of the curv

ter than π, which results in the increase of δ0 with the further decrease in e/R. W

ed a/R, the eccentricity e/R is symmetrically bounded by two folds (one with e/R
the other with e/R > 0), where the inverted state (solid lines) loses stability throug

which connects to the energy barrier (dashed lines). The inverted state and the ene

ier tend to form a closed loop. However, with small holes such as a/R = 0.03 and 0

curves do not close completely and terminate at the cross, where the bending ene
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s up locally due to the local contact between the edge of regression and the mate

ce. Increasing a/R tends to close the solution curves and shrink the closed loop, e

oop with a/R = 0.15 is smaller than the loop with a/R = 0.11. This follows the typ

re of an isola center bifurcation, which is clearly seen in Figure 16(d) that shows the

e fold with different (KcR/D,γ0). The area below the stability boundary correspo

e bistable region where the inverted state exists. Increasing the eccentricity ∣e/R∣ le

e decrease of the critical hole size, and with a small hole, the eccentricity can be v

(i.e., ∣e/R∣ could approach unity) without loss of the bistability. This matches with

rimental observation that a creased thin disk can be inverted almost anywhere along

e (Figure 1h). The renderings in Figure 16(e) correspond to the symbols in Figu

-c), including several inverted states ⧫,◂ and ▲, and their energy barriers ∎,▸ and

ectively. More renderings of the inverted state with different (a/R, e/R) are documen

igure 25 of Appendix D.

igures 17(a-b) report the normalized elastic energy of the solutions in Figures 16(a

ectively. The total energy of the inverted state generally decreases with the increas

ccentricity ∣e/R∣. With a weak crease and a large crease angle (KcR/D,γ0) = (4,13

otal energy is low and the inverted state is slightly deformed from the flat configurat

dition, for each a/R, the bending energy is slightly larger than the crease energy. W

termediate crease stiffness and an intermediate crease angle (KcR/D,γ0) = (20,9

otal energy increases significantly, mainly from the contribution of the bending ene

crease energy does not change too much, and its contribution is small compared w

ending energy.

onvanishing eccentricity e/R breaks the mirror symmetry of the inverted state ab

x − z plane, which now has a single mirror symmetry about the plane spanned by

creases (i.e., the y − z plane). This mirror symmetry forces the contact force to b

tant vector in the x direction, and the contact moment to be nonconstant in the y

e. Figures 18(a-c) present respectively the Cartesian component of the contact fo

moment Fx, My, and Mz, with (KcR/D,γ0, a/R,α) fixed to (20,90○,0.07,1). W

us eccentricities, Fx is always found to be a positive constant, which matches with

etry analysis and further implies that with e/R < 0, the extremity of the direc
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. 16: Solution curves (δ0 versus e/R) of the inverted state (solid lines) and the energ

ier (dashed lines), and loci of the fold (a/R versus e/R) with different

,KcR/D,γ0). The angle deficit α is fixed to 1. (a) (KcR/D,γ0) = (4,135○). (b)

/D,γ0) = (20,90○). (c) (KcR/D,γ0) = (100,45○). (d) Loci of the fold. (e) Renderin

correspond to the symbols in (a-c).

is in tension while the other extremity s = πR is under compression. In other word

anishing eccentricity will make the end of the directrix closer to the hole be in tens

e the farther end will be under compression. Our numerical results further show t

he inverted state, the crease angle of the shorter crease always opens more than

35



Journal Pre-proof

FIG (a)

and

crea ntal

obse

W My

corre nds

s = 0 hat

the t two

mate st y

coor s in

Figu mal

curv
Jo
ur

na
l P

re
-p

ro
of

. 17: Normalized total energy U/D, bending energy Ub/D, and crease energy Uc/D.

(b) correspond to the solutions in Figures 16(a) and 16(b), respectively.

se angle of the longer crease, which also qualitatively matches with our experime

rvations (Figure 1(h)).

ith nonvanishing eccentricity, My and Mz vary along the arc length. The minimum

sponds to the highest point of the directrix r in the z direction. Near the two e

and s = π, Mz decreases a bit with the increase of s, corresponding to the fact t

wo ends s = 0 and s = π are usually not the extremities in the y direction. Instead,

rial points slightly inside the two ends of the directrix have the largest and smalle

dinate, which can be seen in the projections of the outer and inner circumference

re 24 (Appendix C). Figures 18(d-f) present respectively the distribution of the nor

ature κn, the geodesic torsion τg, and η.
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. 18: Distribution of the Cartesian components of contact force/moment and severa

etric quantities with different e/R. (KcR/D,γ0, a/R,α) is fixed to (20,90○,0.07,1)
use of the symmetry, only one facet of the structure is reported. (a) Fx. (b) My. (c

(d) Normal curvature κn. (e) Geodesic torsion τg. (f) η.
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VIII. SUMMARY AND FURTHER DISCUSSION

reases and cuts have been introduced to thin sheets to create novel structures ca

ami and Kirigami, which can achieve morphable geometries and nontraditional mech

properties [73–77]. We found geometry determines the mechanics of creased thin d

the influences of material properties are minimal. The novel mechanics phenomena st

n this work are general and not restricted to specific geometries or material propert

xample, it can be easily demonstrated through a piece of printing paper that the cre

d be inverted about almost anywhere along the crease, independent of the crease an

the geometry of the paper sheet. The influences of inserting or removing material

ircumferential direction also appear to be general in creased thin sheets. Particula

ving a circumferential sector could increase the critical hole size significantly, up to

of the disk, in which case anisotropic rod model (which is free of singularity that m

er the inextensible strip) should work well. In a forthcoming work, we use anisotro

theory to further investigate multistable and looping behaviors of creased annular st

a continuous description of creases [78]].

this work, we studied the mechanics of annular sheets and strips decorated with ra

ses. Several geometric parameters that lead to novel mechanical phenomena are

tified through tabletop models. We then used an inextensible strip model to formula

mal facet as a two-point boundary value problem with the creases modeled as nonlin

es. Numerical continuation with AUTO 07P was conducted to obtain solution cu

rtain geometric parameters vary. The numerical predictions match our experime

rvations and further reveal unexpected nonlinear behaviors. We summarize our ma

ngs and conclusions here:

Our numerical results show that with Nc ≥ 2 (i.e., with more than two evenly spa

creases), removing and inserting a small sector could significantly increase and decre

the critical hole size, respectively. For example, with the angle deficit α ≤ 0.7 (

cutting more than 30% of the annulus along the circumference), the critical hole

with Nc = 2 could be as large as the disk; For Nc = 3 and 4, this requires α ≤
On the other hand, α generally cannot exceed 1.1, otherwise the bistability wil
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destroyed even with an infinitesimal hole. In addition, increasing the hole size

generally destroys the inverted branch through a fold.

A thin disk with Nc = 1 (i.e., a single crease) behaves differently from the ones w

Nc ≥ 2. First, the inverted state with a single crease can contain a hole as large as

disk without the requirement of cutting any sector. Second, inserting a sector co

also destroy the inverted state and α generally cannot exceed 1.1, which is simila

the case with Nc ≥ 2. However, instead of decreasing the largest critical hole siz

the case with Nc ≥ 2, inserting a sector with Nc = 1 could create a lower boundary

the hole size. In other words, with Nc = 1 and α slightly larger than 1, decreasing

could destroy the bistability, and at the same time, increasing a/R will not lose

inverted state and the hole can still be as large as the disk.

Several geometric parameters could conspire to create unexpected mechanical beh

iors. For example, with Nc = 2 and α ≥ 1, decreasing the rest crease angle γ0 gener

makes the inverted state more stable and could turn a monostable creased disk in

bistable one. On the contrary, with Nc = 2 and α ≤ 0.99, decreasing the crease angl

makes the inverted state less stable and could turn a bistable disk into a monosta

one.

The folded state contains much less energy than the inverted state. With Nc ≥ 3 (

more than three creases), facets of the folded state are generally bent. An excep

can be obtained by a careful choice of the geometric parameters such that the fol

state lies on the lateral surface of a regular pyramid, resulting in energy-free fol

states.

Our results confirm that a creased disk can be inverted almost anywhere along

crease, resulting in a family of stable inverted states.

The mechanics of the crease affect the nonlinear behaviors of the creased disk. W

Nc = 2 and a small hole, a crease following a sinusoidal angle-moment relations

could be flipped to create a pair of half flipped states and a flipped state, which
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not exist with a crease following a linear angle-moment relationship. However in b

cases, the system behaves similarly as we increase the hole size a/R with diffe

angle deficit α. In other words, using different crease models does not affect the m

conclusions and findings of this study.

ur findings demonstrate that with a simply creased disk, varying several geome

meters could create extremely rich nonlinear behaviors. We have explored only a

l phenomena in this system, which is worth further study. For example, the distribu

e creases could affect the mechanical behaviors of the creased disk. A tabletop mo

s that with Nc = 2 and an uneven distribution of creases, the critical hole size could

ased significantly. In addition, a creased thin sheet could be inverted simultaneou

t several places along the creases, resulting in a system with several elastic singulari

could interact with each other. We reserve these topics for future study.

he inextensible strip model employed in this work is appropriate only for thin she

hich stretching of the surface is much more energetically expensive than bending.

riments, thickness of the material is observed to be another factor that affects

anics of the creased disk. It is known that the competition between the mechanic

ses and the bending of facets in creased thin sheets is determined by the origami len

which is proportional to the thickness of the material. With a thick creased disk,

d that the bistability may not exist even without a hole. It will be interesting to st

ransitional behavior between thin and thick sheets in such systems.

ccurate modeling of the mechanics of creased thin sheets requires a precise descrip

e mechanics of the crease, which usually have complex relaxation phenomena and c

ted mechanical responses under external loading [51, 79, 80]. We have adopted o

lastic response for the crease in this study. In addition, we assumed a constant fi

se angle along the crease. Our recent work with detailed FE modelings demonstra

the final crease angle of the inverted state usually varies along the crease [59].

ent balance at the crease implemented in this work represents an overall balance an

a pointwise local balance along the crease length. It appears that a non-constant fi

se angle could be incorporated into the developable model to describe the inverted
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non-flat folded state, in which the crease is no longer a generator and will not rem

ght. In other words, the crease will intersect with the nearby generators. This m

ire partitioning the deformed facet into several developable pieces with the genera

ded by different space curves [22], which is beyond the scope of this study. A rec

y of the creased disk through FE modeling shows that near the crease, the line

lest principal curvature could intersect with the crease [65].
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Appendix A: Numerical implementation of the inextensible strip model

ased on the inextensible strip model [39, 69], we formulate a minimal facet of the crea

disk as a two-point boundary value problem and use continuation package AUTO

onduct parametric studies [71]. Euler angles (ψ, θ, φ) are employed to describe

ential rotations of the director frame (T ,N ,B), following a 3 − 2 − 3 convention. W

venly spaced creases (Nc ≥ 2), both the folded state and the inverted state have

mirror symmetries. We take advantage of the symmetries and only solve 1/Nc of

ture bounded by two adjacent creases. With a single crease Nc = 1, we solve half of

ture due to the single mirror symmetry.

igure 19 displays a series of deformations that first transform a flat annular sector wi

ral angle 2πα/Nc into conical frustums in panels (b1) and (b2), which are then deform

ectively into a minimal facet of the inverted and folded state by rotating the genera

e two ends s = 0 and s = L (= 2πRα/Nc) to match with the rest crease angle γ0. Fi

se stiffness will be introduced later and so far the two creases are rigid. The two con

ums in Figures 19(b1) and 19(b2) are mirror images of each other about the x−y pl

Cartesian coordinate system x− y − z. The two ends s = 0 and s = L of the inverted

olded state (Figures 19(c1) and 19(c2)) are symmetrically constrained in the x−y pl

ide along the two rays y = − tan π
Nc
x and y = tan π

Nc
x, respectively. The rotation axi

omplete structure is aligned with the z axis.

he Euler angles are further implemented through unit quaternions to avoid poten

r singularity. The relationship between the director frame and the Cartesian frame

lated through Euler angles and quaternions as,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−N
T

B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosφ sinφ 0

− sinφ cosφ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosψ sinψ 0

− sinψ cosψ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂

ŷ

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2
1 + q2

2 − 1
2 q2q3 + q1q4 q2q4 − q1q3

q2q3 − q1q4 q2
1 + q2

3 − 1
2 q3q4 + q1q2

q2q4 + q1q3 q3q4 − q1q2 q2
1 + q2

4 − 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂

ŷ

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
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. 19: Euler angles (ψ, θ, φ) are used to describe the rotations of the material frame

ched to the outer circle of an annular sector, following a 3-2-3 rotation convention.

annular sector in (a) is deformed into two conical frustums in (b1) and (b2) by rota

irector frame about B(s) by ψ(s) (a linear function of s), and then about T (s) by

(a constant). The crease angle is introduced to (b1) and (b2) by rotating the

rator at the two ends, resulting in a minimal facet of the inverted state and the fold

in (c1) and (c2), respectively.

or a 3 − 2 − 3 rotation, quaternions can be written in terms of Euler angles as [81]

q1 = cos θ2 cos φ+ψ2 , q2 = sin θ
2 sin φ−ψ

2 , q3 = sin θ
2 cos φ−ψ2 , q4 = cos θ2 sin φ+ψ

2 , (

he derivatives of quaternion components can be written as

q′1 = 1
2(−q4κn + q2κg − q3τg) , q′2 = 1

2(−q1κg + q3κn − q4τg) ,
q′3 = 1

2(−q2κn − q4κg + q1τg) , q′4 = 1
2(q3κg + q1κn + q2τg) . (

o obtain a system of first order ordinary differential equations (ODEs), we first diffe

the algebraic constitutive law in Equation (6) with respect to s and combine with (7

in a first order ODE for κn and a second order ODE for η. The latter is transformed

first order ODEs by introducing an intermediate variable Ω = η′. In addition, we t

an independent variable and differentiate the implicit relationship χ = 0 with resp
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dF1

ds̄
dM1

ds̄
+ F2) = 0 ,

dη

ds̄
= JE −GC] ,

dV

ds̄
dq1

ds̄
dq3

ds̄
dx

ds̄
=

ds

ds̄
=
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resulting in a first order ODE for V . Combining Equations (4)-(5), (A3), r′ = T ,

DEs for κn, η, Ω, and V , we have

−L(κnF2 − κgF3) = 0 ,
dF2

ds̄
+L(κnF1 − κnηF3) = 0 ,

dF3

ds̄
+L(κnηF2 − κgF1) = 0 ,

−L(κnM2 − κgM3) = 0 ,
dM2

ds̄
+L(κnM1 − κnηM3 − F3) = 0 ,

dM3

ds̄
+L(κnηM2 − κgM1

LΩ , (AE −C2)dΩ

ds̄
= L[(CB −AI)Ω +AG −CJ] , (AE −C2)dκn

ds̄
= L[(IC −BE)Ω +

= (− χs
χV

− χη
χV

Ω)L ,
= L[0.5(−q4κn + q2κg − q3τg) + µq1] , dq2

ds̄
= L[0.5(−q1κg + q3κn − q4τg) + µq2] ,

= L[0.5(−q2κn − q4κg + q1τg) + µq3] , dq4

ds̄
= L[0.5(q3κg + q1κn + q2τg) + µq4] ,

2L(q2q3 − q1q4) , dy
ds̄

= 2L(q2
1 + q2

3 − 1
2) , dzds̄ = 2L(q3q4 + q1q2) ,

L ,

(

here L (= 2πRα/Nc) corresponds to the length of the directrix r(s), d()
ds̄ = Ld()

ds = L
A = YκnκnW ,

B = YκnηW + YκnWη + YκnWV Vη ,

C = Yκnη′W + YκnWη′ ,

I = Yη′ηW + Yη′Wη + Yη′WV Vη + YηWη′ + YWη′η + YWη′V Vη ,

E = Yη′η′W + 2Yη′Wη′ +Wη′η′Y ,

J = η′M1 − F2 + κg(M1 − ηM3) − YκnWV Vs ,

G = YηW + YWη + YWV Vη − κnM1 − Yη′WV Vs − YWη′V Vs ,

(

here a subscript represents a partial derivative and a prime denotes an s−derivat

ugh the introduction of s̄ (∈ [0,1]), we have normalized the length of the inte

val to unity, which is required by AUTO. In addition, the last ODE in Equation (

sforms the nonautonomous system into an autonomous system. Varying α throug

s us to remove or insert a sector. Following [72], we have introduced a dummy param
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enable a consistent prescription of boundary conditions for quaternions, through wh

original pointwise constraint of the unit quaternions is required only at the two en

treated as a free parameter (i.e., a scalar unknown) in numerical continuation and

e should always be numerically zero [72].

he Nc-fold mirror symmetries of the folded and the inverted state vanish the con

identically and force the contact moment to be a constant vector in the z direct

the half flipped state with Nc = 2 and the inverted state with Nc = 1, they have a sin

or symmetry. Forces in the plane of symmetry and the moment perpendicular to

e of symmetry are set to zeros through the boundary conditions at the two ends of

mal facet, which can be summarized as

Fz(0) = 0 , Fb(0) = 0 ,Mt(0) = 0 , s(0) = 0 ,

χ(V (0),0, η(0)) = 0 , η(0) = 0 , η(1) = 0 ,

κn(0)(1 + η2(0))2

η′(0) + κg(0)(1 + η2(0))W (η′(0), η(0)) − η(0)M1(0) −M3(0) = 0 ,

q1(0) = cos θ02 cos [1
2
( π
Nc

+ 1
2(π − γ0))] , q2(0) = sin θ0

2 sin [1
2
( π
Nc

− 1
2(π − γ0))] ,

q3(0) = sin θ0
2 cos [1

2
( π
Nc

− 1
2(π − γ0))] , q4(0) = − cos θ02 sin [1

2
( π
Nc

+ 1
2(π − γ0))] ,

q1(1) = cos θ12 cos [1
2
( π
Nc

+ 1
2(π − γ0))] , q2(1) = sin θ1

2 sin [1
2
(− π

Nc
+ 1

2(π − γ0))] ,
q3(1) = sin θ1

2 cos [1
2
(− π

Nc
+ 1

2(π − γ0))] , q4(1) = cos θ12 sin [1
2
( π
Nc

+ 1
2(π − γ0))] ,

x(0) = −y(0) cot π
Nc
, z(0) = 0 ,

x(1) = y(1) cot π
Nc
, z(1) = 0 , y(0) + y(1) = 0 ,

(

here Fb(0) = F (0) ⋅ [− cos( π
Nc
)x̂ + sin( π

Nc
)ŷ] and Fz(0) = F (0) ⋅ ẑ represents the con

in the plane of symmetry, and Mt(0) = M(0) ⋅ [sin( π
Nc
)x̂ + cos( π

Nc
)ŷ] represents

ent perpendicular to the symmetry plane. Notice that the boundary condition

ation (A6) admit the half flipped solutions with Nc = 2, because we have only impo

fold mirror symmetry about the plane spanned by the two creases. θ0 and θ1 (both

tive in our definition) correspond respectively to the unknown second Euler angle

and s = 1, and are treated as free parameters in numerical continuation. This is du

act that the two inclined angles δ0 and δ1 are unknown a priori, and can be obtai
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ectively as δ0 = π
2 + θ0 and δ1 = π

2 + θ1. Equation (A6) contains 21 boundary condit

are consistent with the number of unknowns, which include 18 state variables f

ation (A4), and 3 free parameters µ, θ0, and θ1. Equations (A4) and (A6) lead t

posed two-point BVP.

e use the conical frustum in Figures 19(b1) and 19(b2) as start solution for conduc

erical continuation on the inverted branch and folded branch, respectively. The s

ion for the inverted state in Figure 19(b1) can be summarized as

F1 = 0 , F2 = 0 , F3 = 0 ,M1 = 0 ,M2 = ln
a

R
,M3 = − ln

a

R

√
1

α2
− 1

κn = 1

R

√
1

α2
− 1 , η = 0 , η′ = 0

= cos(θ
2
) cos(ψ

2
) , q2 = − sin(θ

2
) sin(ψ

2
) , q3 = sin(θ

2
) cos(ψ

2
) , q4 = cos(θ

2
) sin(ψ

2
)

x = αR cos
π(1 − 2s̄)

Nc

, y = −αR sin
π(1 − 2s̄)

Nc

, z = 0, s = 2πR

Nc

αs̄, V = R − a
(

ith θ = − sin−1 α, and ψ = π
Nc
(2s̄ − 1). The start solution for the folded state in Fig

2) is different from Equation A7 only in the sign of M3 and κn and the value o

use the conical frustum in Figure 19(b1) is pointing upward, while the conical frust

igure 19(b2) is pointing downward. The different part can be rewritten as

M3 = ln
a

R

√
1

α2
− 1 , κn = − 1

R

√
1

α2
− 1 , θ = sin−1 α − π. (

numerical continuation, we always fix R to 1 (i.e., κg = −1). Starting from a con

um (i.e., α < 1) with a small hole (e.g., a/R = 0.01), we rotate the two end generator

easing γ0 in Equation (A6) to the target rest crease angle, which results in a configura

rigid creases that will be used as start solution to introduce a finite crease stiffness

o introduce flexible creases, the boundary conditions in Equation (A6) need slight m

tions. Particularly, the two final crease angles γf0 and γf1 (at s = 0 and s = 2πα/
ectively) become unknowns. We replace γ0 in qi(0) (i = 1,2,3,4) with γf0 and γ
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(i = 1,2,3,4) with γf1, respectively. In addition, two additional boundary condit

esenting the moment balance at the crease are added as following

M3(0) = KcR

D
(1 − a + e

R
) sin(γf0 − γ0) ,

M3(1) = KcR

D
(1 − a − e

R
) sin(γf1 − γ0) . (

numerical continuation, the scalar unknowns γf0 and γf1 are treated as free paramet

consistency between the additional unknowns and the additional boundary condit

s to a well-posed two-point BVP consisting of 23 unknowns and 23 boundary conditi

ation (A9) implies that a large dimensional creases stiffness KcR/D will penalize γf0

o be the rest crease angle γ0. Starting with a rigid crease solution, we decrease KcR

a large number to the target finite crease stiffness. Equation (A9) also incorporates

ntricity factor. Now, we are able to vary a/R, α, γ0 etc. to conduct parametric stud

he case with a single crease Nc = 1 is similar to Nc = 2. We solve half of the struct

impose only the crease boundary condition in Equation (A9) at s̄ = 0. The s̄ = 1 en

valent to a rigid crease with a rest crease angle π.

fter obtaining the numerical results, an annular sector can be constructed as

X(s, v) = r(s) + v[B(s) + η(s)T (s)] ,
= (x + 2v[η(q2q3 − q1q4) + q2q4 + q1q3])x̂
+ (y + 2v[η(q2

1 + q2
3 − 1

2) + q3q4 − q1q2])ŷ
+ (z + 2v[η(q3q4 + q1q2) + q2

1 + q2
4 − 1

2])ẑ ,
(A

here η = τg/κn, and v ∈ [0, V ]. The complete structure is constructed by using symme

erties. The edge of regression, on which adjacent generators intersect each other,

efined as

c(s) = r(s) + sinβ

β′ − κg B(s) + η(s)T (s)∣B(s) + η(s)T (s)∣ = r(s) − B(s) + η(s)T (s)
η′ + κg(1 + η2) . (A

y differentiation, we have c′(s) = [ηκ2g(1+η2)+η′′+3κgηη′][η′+κg(1+η2)]2 (B+ηT ). The isolated points wh

−3κgηη′−ηκ2
g(1+η2) are called “conical”, because at such points, the edge of regres
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ains a cusp [39]. In addition, the points where η′ = −κg(1 + η2) are called “cylindric

cylindrical point, the mean curvature is constant along the local generator [39].

he generators can be mapped onto the flat annular sector as

X(s, v) = r(s) + v[b(s) + η(s)t(s)] ,
= (R sinλ − v sinλ + vη cosλ)x̂ + (−R cosλ + vη sinλ + v cosλ) ŷ , (A

here b(s) and t(s) are the binormal and the tangent of the outer circle, respectively.

of regression (which we did not include in the flat developments of the 3D render

is study) can be mapped onto the flat annular sector as

c(s) = r(s) − b(s) + η(s)t(s)
η′ + κg(1 + η2) ,

= (R sinλ + sinλ − η cosλ

η′ + κg(1 + η2)) x̂ − (R cosλ + η sinλ + cosλ

η′ + κg(1 + η2)) ŷ .
(A

Appendix B: Crease with a linear angle-moment relationship

ere we give an example to show that with creases having a linear response, in cer

meter spaces a creased disk could behave differently from one with creases adoptin

oidal angle-moment relationship. With linear creases, the crease boundary condit

quation (A9) are modified as

M3(0) = KcR

D
(1 − a + e

R
)(γf0 − γ0) ,

M3(1) = KcR

D
(1 − a − e

R
)(γf1 − γ0) . (

he numerical results in Figure 20(a) adopt linear creases ( Equation (B1)) w

/D,Nc, γ0, e) fixed to (4,2,45○,0), which contain the same parameter setting w

esults in Figure 3(a). It is found there is not a lower boundary for a/R with α ≤ 0

h does exist in Figure 3(a). The reason is that a linear crease does not have a fictit

crease angle, e.g., (γf0 +γ0) in creases following a sinusoidal angle-moment relations

re 20(b) reports the deviation of the crease from the rest angle (γf0−γ0) at s = 0 for

ions in Figure 20(a). With small a/R the final crease angle opens significantly du

arge bending moment from the conical surface. Figure 20(c) displays several render
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sponding to the symbols in Figure 20(b). With a small α = 0.3, the final crease an

ould be much larger than π, e.g., the configuration indicated by a ☀.

e want to emphasize that using a linear crease model does not change much the solu

es as we increase the hole size. For example, the hole size could have an upper bound

destroys the bistability of the creased disk, decreasing α generally leads to the incre

e critical hole size, and with α ≤ 0.7, the hole size could be as large as the disk with

of bistability.

. 20: Solution curves with a linear crease and different α. (KcR/D,Nc, γ0) is fixed t

,45○). (a) δ0 versus a/R. (b) The same results presented in (γf0 − γ0) versus a/R pla

enderings that correspond to the symbols in (b).
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pendix C: 3D profile and corresponding 2D projections of the outer and inne

circumferences

ere, we document the 3D profile and corresponding 2D projections of the outer

r circumferences of some renderings presented in the main text. Figure 21 displays

rofile and corresponding 2D projections of the renderings in Figure 3(e).

. 21: 3D profile and corresponding 2D projections of the outer and inner

mferences of the renderings in Figure 3(e). (a) ⧫ and ∎. (b)◂and▸. (c) ▲ and ☀.
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igure 22 displays the 3D profile and corresponding 2D projections of the outer and in

mferences of some renderings in Figure 8(e).

. 22: 3D profile and corresponding 2D projections of the outer and inner

mferences of some of the renderings in Figure 8(e). (a) ⧫ and ∎. (b)▸ and ▲. (c) ☀
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igure 23 displays the 3D profile and corresponding 2D projections of the outer and in

mferences of the renderings in Figure 11(e).

. 23: 3D profile and corresponding 2D projections of the outer and inner

mferences of the renderings in Figure 11(e). (a) ⧫ and ∎. (b)◂and▸. (c) ▲ and ☀
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igure 24 displays the 3D profile and corresponding 2D projections of the outer

r circumferences of several inverted states with various eccentricities. Other geome

meters are fixed to (KcR/D,γ0, a/R,α) = (20,90○,0.07,1).

. 24: 3D profile and corresponding 2D projections of the outer and inner

mferences of several inverted states with different eccentricities. Other parameters

to (KcR/D,γ0, a/R,α) = (20,90○,0.07,1).
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Appendix D: Additional renderings

ere, we document additional renderings obtained from numerical continuation of

tensible strip model for the interest of the reader. Figure 25 displays renderings of

ted state and their flat developments with different (a/R, e/R). (KcR/D,γ0) is fixe

90○).
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. 25: Renderings of the inverted state and their developments on the flat configurat

different (a/R, e/R). (KcR/D,γ0) is fixed to (20,90○). All the panels share the sam

bar. (a) a/R = 0.03. (b) a/R = 0.07. (c) a/R = 0.11. (d) a/R = 0.15.

igure 26 displays renderings of the inverted state and their flat developments with

t (a/R,Nc). (α,KcR/D,γ0) is fixed to (0.5,20,45○).
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. 26: Renderings of the inverted state and their developments on the flat configurat

different combination (a/R,Nc). (α,KcR/D,γ0) is fixed to (0.5,20,45○). All the

ls share the same color bar. (a) Nc = 1. (b) Nc = 2. (c) Nc = 3. (d) Nc = 4.

igure 27 displays renderings of the folded state with different (Nc, α, γ0, a/R). KcR/
fixed to 20.
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. 27: 3D renderings of the folded state with different (Nc, α, γ0, a/R). KcR/D is fixe

. All the panels share the same color bar. (a) Nc = 2. (b) Nc = 3. (c) Nc = 4.
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