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Bistability and equilibria of creased annular sheets and strips

Tian Yu*
Department of Civil and Environmental Engineering,

Princeton University, Princeton, NJ 08544

(Dated: January 17, 2022)

A creased thin disk is generally bistable since the crease could be pushed through
to form a stable cone-like inverted state with an elastic singularity corresponding to
the vertex of the conical surface. In a recent study, we found that this bistability
could be destroyed by removing the singularity through cutting a hole around the
vertex, depending on the size and shape of the hole. Particularly, to maintain the
bistability, a circular hole normally cannot exceed approximately 20% of the disk
size. This paper extends our recent work and is based on the following observations
in tabletop models of creased disks with circular holes: (i) reducing the circum-
ference of the creased disk by removing an annular sector could increase the hole
size to be as large as the disk without destroying the bistability, (ii) with a single
crease, the circular hole could be as large as the disk without loss of the bistability,
and (iii) a family of stable inverted states can be obtained by inverting the disk
almost anywhere along the crease. An inextensible strip model is implemented to
investigate these phenomena. We formulate a minimal facet of the creased disk as a
two-point boundary value problem with the creases modeled as nonlinear hinges, and
use numerical continuation to conduct parametric studies. Specifically, we focus on
geometric parameters which include an angle deficit that determines the circumfer-
ence of the disk, the rest crease angle, the number of evenly distributed creases, and
an eccentricity that determines the position of the hole on the crease. Our numerical
results confirm the qualitative observations in (i)-(iii) and further reveal unexpected
results caused by the coupling between these geometric parameters. Our results
demonstrate that by varying the geometry of a simply creased disk, surprisingly rich

nonlinear behaviors can be obtained, which shed new light on the mechanics and



design of origami, kirigami, and morphable structures.

Keywords: annular sheets and strips; crease pattern; bistability; inextensible strips; numer-

ical continuation

I. INTRODUCTION

Creases and vertices often occur together in the extreme deformation of thin sheets [1-5],
such as squeezing a soda can and crumpling a piece of paper [2, 6], in which deformations are
highly localized around the creases and vertices with the rest surface remaining relatively
flat. For engineering applications, discrete crease patterns have been introduced to both
thin and thick plates to achieve different functions and forms, such as the foldability and
free-form surfaces in rigid and curved origami [7-16] and sheet metals [17], energy absorption
in crash tubes [18-20], and the redistribution of bending stiffness [21]. Introducing flexibility
to the facets of creased thin sheets leads to the creation of new equilibria, which extend the
configuration space of the traditional rigid origami [22-26].

It is the competition between the mechanics of creases and the flexibility of the facets
that determines the mechanics of creased thin structures [14, 22, 27]. Thin sheets prefer to
bend rather than to stretch due to the large ratio of stretching to bending stiffness. Various
continuum theories have been employed to study the mechanics of thin sheets and strips,
e.g., Foppl-von Karman theory [28], 1-director Cosserat plate theory [29], small-deflection
inextensible plate theory [30-33], and geometrically exact inextensible strip model [22, 27,
34]. Under the inextensible theory, a flat sheet will be deformed into a developable surface.
Sadowsky [35] and Wunderlich [36] derived the energy functional for inextensible strips with
infinitesimal width and finite width respectively. Based on Wunderlich’s functional, Starostin
and van der Heijden first derived the Euler-Lagrange equations of the inextensible strip
model, which has been employed to study the shapes of Mobius bands [34], the triangular
buckling patterns of twisted ribbons [3], the cascade unlooping of helical ribbons [37], and

the mechanics of elastic annuli [38].
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The inextensible strip model is known to have singular behaviors for geometries where the
local stretch of the surface would be preferred to be incorporated [39-45]. On the other hand,
it works well to capture the mechanical behaviors of thin sheets with singularity-free and
stretching-free geometries [22, 27, 37, 46]. With the proper choice of materials and lighting, it
is possible to approximately see the generators (i.e., unbent lines), and potential singularities
(where generators intersect with each other on the material surface) and stretching areas in
deformed thin sheets, which help determine if the inextensible strip model could be applied
to the whole geometry or only part of it [1, 3]. Our choice of the inextensible strip model in
this study is based on the observation that our deformed geometries are singularity free and
could be parameterized by a family of straight lines.

Creases play a key role in the mechanics of creased thin sheets [3, 27, 28, 47-50]. A
single crease unfolds quickly at first and then slowly in terms of a progressive relaxation [51].
The origami length [47] and a similar hinge index [52] are able to quantify the competition
between the deformations of the crease and the facets. Creases are normally modeled as
rotational hinges with a finite stiffness that balances the bending moments from the thin
sheets [27, 47, 53-55]. Creases could also be modeled as continuous structures, where the
local tangent makes a rapid turn within a short material length [56-58]. Accurate prediction
of the mechanical responses of creased thin sheets requires incorporating both the mechanics
of thin sheets and creases. In flexible origami, thin sheets have been modeled as inextensible
strips with the creases modeled as elastic hinges [27, 59]. Various discrete models are also
developed to study nonrigid origami, such as the bar and hinge model [60-62], triangular
mesh model [14, 63], and the hinge and facet model [64].

A thin sheet with a single crease is generally bistable with a second stable state obtained by
locally inverting the crease, which results in a conical shape with a singularity corresponding
to the vertex of the cone [28, 64, 65]. Elastic singularities play important roles in the
mechanics of thin sheets [1, 66] and are used to generate concentrated Gaussian curvatures
[15, 67, 68]. The bistable behavior in a simply creased sheet is generally insensitive to
the constituent materials and the shape of the sheet [28, 64]. Excising the singularity by
making a hole around the vertex could reduce the forces needed to invert the crease [64]. It is

found that when indented at the center of a creased metal disk, a localized dimple first forms
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surrounding the center and then propagates towards the disk edge before the structure snaps
to the conical shape [53]. In a recent work, the author and collaborators demonstrated with
both experiments and numerical continuation of an inextensible strip model that a creased
thin disk could lose its bistability if the vertex of the inverted shape is cut by making a large
enough hole, with the critical size dependent on the shape of the hole [59]. For example, we
found that the critical size of a circular hole should be less than approximately 20% of the

the disk for the purpose of retaining bistability.

This paper extends our recent work [59] and investigates several additional factors that
affect the mechanics of creased annular sheets and strips. The rest of the paper is organized
as follows. Section II introduces the geometric parameters and novel mechanics phenomena
of creased sheets and strips through tabletop models. In Section III, we use an inextensible
strip model to describe a minimal facet of the creased annular strip with the creases mod-
eled as nonlinear hinges whose angle-moment relationship follows a sinusoidal form. From
Sections IV to VII, we present numerical results obtained through numerical continuation
of the inextensible strip model. Specifically, Section IV reports the influence of the angle
deficit a on the bistability of creased thin disks with two creases. Section V presents the
effect of the rest crease angle vy on the mechanics of creased thin disks with two creases. In
Section VI, we solve both the folded and inverted state of creased thin disks with different
number of evenly space creases. Section VII introduces an eccentricity to the position of the
hole with N. = 2 and studies its effect on the bistability. We give a summary and further
discussion in Section VIII. In Appendix A, we document the details of formulating a creased
annular strip as a two-point boundary value problem and the procedures of solving it with
numerical continuation. Appendix B gives an example (N, = 2) with the crease following
a linear angle-moment relationship. Appendix C displays the 3D profile and corresponding
2D projections of the outer and inner circumferences of some renderings shown in Sections
IV-VII. Additional renderings of the folded and inverted state with different eccentricities,
hole sizes, and number of creases are documented in Appendix D for the interest of the

reader.



II. TABLETOP DEMONSTRATIONS AND DEFINITION OF THE
GEOMETRIES

The tabletop models in Figure 1 include disks with radius R = 75 mm (Figures 1(a-d))
and 60 mm (Figures 1(e-h)), thickness ¢ = 0.127 mm, and different hole size a. They are cut
from polyester shim stock (Artus Corp., Englewood, NJ) by a Silhouette Cameo 3 cutter,
and subsequently creased using a vise. In this study, we did not attempt to obtain creases
with precise rest crease angles considering their complex relaxation mechanisms [51]. These
models are used only to demonstrate the qualitative behaviors of creased thin disks with
different geometries.

We refer to the stable creased configuration in Figure 1(a) as the folded state and the
stable inverted configuration in Figure 1(b) as the inverted state; between these two stable
states exists an unstable energy barrier, which is captured by numerical modeling with an
inextensible strip model (Section IV). In addition, numerical results predict flipped states
with the crease being inverted to bend in the other direction, due to our choice of a sinusoidal
constitutive law for the crease (Sections III and IV). Figure 1 summarizes some tabletop
models whose mechanical features are influenced by several geometric parameters, which
include the hole size a/R and the rest crease angle vy (Figure 1(a)), an angle deficit a that
determines the circumference of the annular strip (Figures 1(c-d)), the number of evenly
distributed creases (Figures 1(e-g)), and an eccentricity (Figure 1(h)) that determines the
position of the hole on the crease (see Figure 1). In this paper, we will address the following

points:

e Figures 1(c-d) demonstrate that by cutting an annular sector 27(1 — «), the size of a
circular hole could increase significantly without destroying the bistability. The model
in Figure 1(d) is sequentially made by joining the two ends of the open annulus in
Figure 1(c) with transparent tapes, making two evenly spaced creases to create the
folded state (not shown), and inverting the folded state. In our definition, a < 1
corresponds to removing a sector, a > 1 corresponds to inserting a sector, and a =1
represents an annulus with an exact angle of 27. The stable inverted state in Figure

1(d) has (a,a/R) = (0.75,0.85). We are interested in the effect of the angle deficit «
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on the bistability of the creased thin disk.

The bistability is created by decorating a thin disk with creases. How does the crease

angle and crease stiffness affect the mechanical behaviors?

How does the number of creases, IN., affect the mechanics of creased annular sheets
and strips? We focus on radial creases that are evenly spaced along the circumference.
Figures 1(e-f) show the folded state and inverted state with N. = 3 and 4, respectively.
In addition, with a single crease N, = 1, the circular hole can be as large as the
disk without loss of the bistability. Figure 1(g) shows the stable inverted state with
(N,,a/R) = (1,0.7) (its stable folded state is not included).

A creased thin disk can be inverted about almost anywhere along the crease, resulting
in a continuous family of inverted states. Figure 1(h) shows an example of an inverted
state, with the small hole corresponding to the singularity of the conical surface being
nonconcentric to the disk. We will introduce an eccentricity to the position of the hole

and study its influence on the mechanics.

We take advantage of the symmetry in the structure and use the inextensible strip model

to study a minimal facet of the folded and inverted state, which are characterized by the

final crease angle and the inclined angle between the crease and the horizontal plane. With

N, > 2, the folded and inverted state have N_.-fold mirror symmetries, and the structure

could be characterized by the final crease angle vy and and the inclined angle §, at one

end of a minimal facet, shown in Figures 1(b), 1(d), and 1(e-f). However, with N, =1, the

inverted state has one-fold mirror symmetry and we study half of the structure whose two

ends have different inclined angles 0y and ¢; (Figure 1(g)). This is also true for the case with

N, =2 and a nonvanishing eccentricity (Figure 1(h)), which further results in two different

final crease angles s and ~yy at the two creases. In addition, the crease with a shorter

length is observed to have a larger final crease angle, i.e., v > 71 in Figure 1(h).
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FIG. 1: Photographs of creased annular sheets and strips. (a) An energy-free folded state
with two evenly spaced creases, a rest crease angle v, and a circular hole with radius a
that is concentric to the disk with radius R. (b) The inverted state of (a). s represents
the final crease angle at one end and dy measures the inclined angle between the crease and
the horizontal plane. (c¢) Cutting an annular sector 27(1 — a) could significantly increase
the hole size without loss of the inverted state, shown in (d). (c-d) have

(a,a/R) = (0.75,0.85). (e) A folded state with three evenly spaced creases contains bent
facets. One of the creases is characterized by 77y and dp. (f) The inverted state of (e). (g)
The inverted state with a single crease could admit a hole as large as the disk. (h) A
continuous family of stable inverted states can be obtained by inverting almost anywhere
along the crease. Shown is the inverted state of a creased disk with a small hole that is
nonconcentric to the disk. The nonvanishing eccentricity results in different final crease

angles ¢ and ~y and different inclined angles dp and d; at the two creases.

III. AN INEXTENSIBLE STRIP MODEL

We describe a creased annular strip as a developable surface decorated with creases that
are modeled as nonlinear hinges. The equilibrium equations presented in this section have
been derived in our recent work [59], which follows directly from Starostin and van der
Heijden’s, and Dias and Audoly’s pioneering works on the mechanics of inextensible straight
and curved strips [3, 39, 69]. Here, we only include a brief discussion of the inextensible

theory and focus on applying it to the current study.
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We take advantage of symmetries in the system and only solve a minimal facet. For
example, with N, evenly spaced creases, we solve one piece bounded by two adjacent creases,
as shown in Figure 2. The description involves an orthonormal Darboux frame (7', N, B)
attached to the directrix r(s) of the deformed configurations, corresponding to the outer
circle. Here s is the arc length of the directrix. T represents the tangent of 7r(s), N
represents the normal of the surface, and B =T x N.

Figure 2(a) shows a flat annular sector with an angle deficit a (s € [0,27Ra/N..]) and a
right-handed orthonormal frame (¢, n,b) attached to the undeformed directrix. The annular
sector has an inner radius a and outer radius R and is positioned symmetrically about the
x — z plane of a Cartesian coordinate system. Figures 2(b-c) respectively correspond to its
folded and inverted state, with the creases rendered as thick black lines. The two ends s =0
and s = 2mrRa/ N, of the folded state (Figure 2(b)) and the inverted state (Figure 2(c)) are
constrained in the x —y plane to slide along the two rays y = —tan L and y = tan L,
respectively. In addition, the rotation axis of the full structure (which can be constructed by
using symmetry properties) aligns with the z axis. dy and d; correspond to the inclined angle
of the crease at the two ends. Because of the symmetry, in both the folded and inverted
state, we have &g = d;. In our definition, dy > 0 for the inverted state and dy < 0 for the folded
state. We assume that creases at the two ends remain straight as two generators.

Moving of the the Darboux frame (7", N, B) on the directrix can be described as T" =
knIN —kgB, N' = -k, T +7,B, and B' = k,/T'—7,IN, where a prime denotes an s-derivative,
kg is the preserved geodesic curvature under isometric deformation, and 7, represents the
geodesic torsion. In our notation, k, = —1/R. Generators (thin black lines) align with the
vector (B +nT') and make a local angle 5 with T'. Here 7 is related to § through 7 = cot f3.
Adjacent generators intersect each other on a space curve called the edge of regression, whose
analytical expression is included in Appendix A. The developable annular sector in Figures

2(b-c) can be parameterized as

X (s,v) =7(s) +v(B(s) +n(s)T(s)), (1)

with v € [0,V] and s € [0,27Ra/N,]. v is the coordinate along the generator whose
length is V'\/1 +n?; V can be determined by 7, s and the hole geometry through an implicit

8



FIG. 2: A minimal facet of a creased annular strip with N, evenly spaced creases and an
angle deficit « is described by an inextensible strip model. (a) The flat configuration
corresponds to an annular sector with a central angle 2ra/N,.. The undeformed outer circle
carries a right-handed orthonormal frame (¢,m,b) with n going into the plane. (b) Folded

state. (c) Inverted state.

function x(V,s,n,a, R) = 0. In Figure 2, for a thin disk with a concentric circular hole, y

can be written as [59]

x(7,V) =V%+ (R?-2VR - a?)sin® 3, (2)

where V' could be explicitly solved as a function of 1 and the geometric parameters a
and R [69]. Later we will show that x becomes complicated in the case with a nonvanishing
eccentricity, where solving V' explicitly becomes nontrivial. Following [59], we treat V as a
variable and differentiate the algebraic constraint y = 0 to obtain an additional differential
equation. This technique makes it convenient for using the inextensible strip model to solve
developable surfaces with any smooth boundaries, where the length of the generator may
not be explicitly solved in terms of the geometry. Details are discussed in Appendix A.

The mean curvature of the developable surface represented by Equation (1) is H =

Iin(1+7]2)
2[L+v(n'+rg(140?))]

[59]. The identical vanishing of the Gaussian curvature further requires 1 = 7,/k,.

and an area element can be written as dA = [1+v(n' + K,(1 + 1?))]dsdv

The total elastic energy U of a creased annular strip includes elastic energy stored in
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the crease and the bending energy of the facets. We assume that the bending moment
generated by the crease follows K.(R — a)sin(5f — 7o), where K. is the crease stiffness per
unit length, v is the rest crease angle, and 74 measures the deformed crease angle [70]. We
wish to emphasize that the mechanics of crease is complicated and a precise description of its
angle-moment relationship does not exist [47, 51]. In Appendix B, we demonstrate that with
the crease following a linear angle-moment relationship, the major conclusions of this study
(i.e., the qualitative observations in Figure 1) are not affected and the numerical results only
contain slight quantitative differences. Note that in our crease model, the crease moment
periodically vanishes at 7y = yo+im (i is an integer). With 4, € [9, 70+ 5], the crease moment
increases with the opening of the crease. On the other hand, with 5; € [y + 5,7 + 7], the
crease enters a softening regime, where the crease moment decreases with the further opening
of the crease. Our numerical results in Section IV show that in certain parameter spaces, the
crease could flip to reach a final crease angle around vy + 7. We assume the thin sheet has
a bending rigidity D = Et3/[12(1 - v?)], where E and v are the material’s Young’s modulus
and Poisson’s ratio, respectively. The total elastic energy of the inverted and folded state of

a thin disk with N, evenly spaced creases (N, > 2) can be written as [59]

27 Ra
U KC vfo ~ _ 1 N, v 2
_Ze(Rp- —70)d —f f 2H)dA,
55 5B [ G- eg [ [
KR 2mRa (3)
C a’ c
=5 (1—§)[1—cos(7f0—70)]+f0 N ywds,

with ¥ = % and W =In[1+ V(7' + k,(1+7n?))]. We have assumed that all the
creases have the same length (R - a) and the same final crease angle ygo. In this study, we
assume the final crease angle is always constant along the crease length. Equation (3) needs
minor modifications for a few cases in this paper. For example with N, = 2, introducing an
eccentricity to the position of the hole results in creases with different lengths and different
final crease angles (Figure 1(h)). In the following sections, we will include the corresponding
modifications of Equation (3) when necessary. For thin sheets, the origami length D/K. is
found to be proportional to the thickness of the material [47]. This makes the dimensionless

crease stiffness K.R/D diverge as the material thickness goes to zero, resulting in a rigid

crease that will not store any elastic energy.
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With our modeling of the creases as discrete hinges, the mechanics of the crease only
balances the moments of the thin sheets at the boundaries, and does not appear in the

Euler-Lagrange equations, given by [34, 69]

F'=0, 4

M +TxF=0, 5

8,€N(YW)—T]M1—M3:O, 6

(4)
(5)
(6)
Oy (YW) = (8 (YW)) = kM1 =0, (7)

where forces and moments, normalized by D, are resolved in the material frame through
F=FRT+F,N+F;Band M = M,;T+My;N + M;B. Equations (4), (5), and (6-7) represent
the force balance, moment balance, and the constitutive laws, respectively. Together with
a quaternion description of the rotations of the material frame and boundary conditions
imposed at the two ends of a minimal facet, we obtain a two-point boundary value problem
(TPBVP) and solve it with the continuation package AUTO 07P [71]. To obtain a consistent
prescription of boundary conditions for the quaternions, we follow Healey and Metha and
introduce a dummy parameter [43, 72]. The current implementation combined the merits of
quaternions, which are free of polar singularity that Euler angles could suffer, and the merits
of Euler angles, which are convenient for imposing boundary conditions explicitly containing
“rotation angles”, such as the moment balance at the crease. Detailed formulation of the
TPBVP can be found in Appendix A.

Throughout the rest of this paper, the results from numerical continuation of the inex-
tensible strip model are presented as solution curves, loci of the fold (which connect the
inverted state and the energy barrier), and renderings corresponding to the symbols on the
solution curves. All the numerical results have R set to unity. The solution curves measure
the response of the creased disk through the angle d, the total elastic energy, and the change
of the crease angle (yp0—"0) as certain parameter varies, e.g., the hole size a/R. In numerical
continuation, we constrain the hole size a/R in the range [0.001,0.96]. The solution curves
include the inverted state, the folded state, the energy barrier, and possibly a half-flipped

state and a flipped state that exist only in certain parameter spaces. Numerical continuation
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could fail at a point (indicated by a cross) where the edge of regression contacts the material
surface resulting in the blow-up of the local bending [34, 39]. The renderings include the
3D deformed configurations and their developments on the 2D flat configurations. Both of
them display the bending energy density (color maps of twice the squared mean curvature
2H?) on a minimal facet of the creased thin disk and the generators (black lines) on the rest
facets, which are shown in grey. Only the edge of the regression of the facet to the left of
the color map is included as red lines on the 3D renderings. In the flat developments of the
configurations with « > 1 (i.e., with inserted sectors), the facets are slightly shifted outward
to avoid overlapping. We also examine some solutions in detail by reporting the distribution

of the contact forces/moments, the curvature «,, the geodesic torsion 7,, and 7.

IV. ANGLE DEFICIT

With tabletop models, we observed that cutting a sector could allow for the increase in
hole size of a creased disk significantly without destroying the bistability (Figures 1(c-d)).
In this section, we study the effect of the angle deficit o on the bistability of a creased thin
disk with two creases. « enters the two-point BVP through a scaling factor corresponding to
the length of the directrix (see Appendix A), which enables us to insert or remove materials
by varying « directly. With N, = 2 and a = 1 , the folded state always contains two flat
facets and is energy free. However with N, =2 and « # 1, the facets of the folded state could
also be deformed. We will discuss the numerical results of folded state in Section VI.

Figure 3 reports solution curves with different dimensionless crease stiffness K.R/D and
angle deficit « in panels (a-c), and the loci of the fold in panel (d). The rest crease angle v,
is fixed to 45°. Figure 3(e) shows several renderings corresponding to the symbols in Figure
3(b). Figures 3(a-c) employ the hole size a/R as the continuation parameter and the angle
do as the solution measure, and respectively correspond to a weak crease (K.R/D =4), a
crease with an intermediate stiffness (K.R/D = 20), and a strong crease (K.R/D = 100).
Two elements are employed in Figures 3(a-c) to improve their readability. First, the solid
lines, dashed lines, dotted lines, and dash-dot lines represent the stable inverted state, the

unstable energy barrier, the flipped state, and the half flipped state, respectively. Second,
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FIG. 3: Solution curves (0 versus a/R) with different (K.R/D,«), and loci of folds (
versus a/R) with different K.R/D. (N.,7) is fixed to (2,45°). (a) Solutions with a small
crease stiffness K.R/D =4. (b) Solutions with a moderate crease stiffness K.R/D =20. (c)

Solutions with a large crease stiffness K.R/D =100. (d) Loci of the fold. The area enclosed
by the upper and lower boundary corresponds to the bistable region. (e) Renderings that

correspond to the symbols in (a - c).

colors are used for different o with black, blue, and brown corresponding to o = 1.0, 0.85,
and 0.7, respectively. The grey curves in Figures 3(b-c) have o = 1.03. For example, the

black solid and dashed lines in Figure 3(a) correspond to an inverted branch and an energy
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barrier branch with « = 1, respectively.

Increasing the hole size a/R could destroy the bistability through a fold (black circle),
resulting in a critical hole size. Decreasing a generally leads to the increase of the critical
hole size. With v = 0.7, the inverted branch could approach a/R =1 without a fold (we only
report the portion up to 0.96), implying that the hole can be as large as the disk without loss
of the bistability. This qualitatively matches our experimental observations demonstrated in
Figures 1c-1d. On the other hand, increasing « (i.e., inserting a sector) reduces the critical
hole size quickly. For example, see the grey curves in Figures 3(b-c), whose counterpart
disappears in Figure 3(a) with a weak crease. We also notice that while the solution curves
of the inverted branch (solid lines) in Figure 3(c) decline monotonically with the increase of
a/R, they first rise a bit and then start declining in Figures 3(a-b). This is due to the fact
that a small a/R will generate a large bending moment from the conical shape at the two
boundaries, which will open the crease angle a lot with a weak crease. Opening the crease
angle generally flattens the inverted state and thus reduces its inclined angle dy.

A flipped state and a pair of half flipped states exist in certain parameter spaces. In
Figure 3(a), with o = 0.7 and 0.85, decreasing a/R could also lead to instability through a
fold (black circle), which further connects to a flipped state and a pair of half-flipped states
through a bifurcation point (grey circle). The pair of flipped states with « = 0.85 terminate
soon after the bifurcation, where the edge of regression contacts the material surface and
bending energy blows up locally. With a larger crease stiffness in Figures 3(b-c), the inverted
state, the pair of half flipped states, and the flipped state are separated for o = 0.7; with
a = 0.85, the pair of half flipped states cannot be obtained due to the local contact between
the edge of regression and the material surface. The final crease angle of the flipped crease is
about (7 + ), at which the crease generates almost a vanishing moment but stores a finite
elastic energy. This is different from the rest angle vy, at which both the crease moment and
crease energy vanish. We remark that the additional fold and bifurcation at a small a/R is
due to our specific choice of the constitutive law for the crease, which follows a sinusoidal
form and has a second fictitious rest angle of (7 + 7). In Appendix B, we give an example
to show that with linear creases (i.e., a crease with linear angle-moment relationship), the

additional fold and bifurcation at small a/R disappear.
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Figure 3(d) reports the loci of the fold in the « versus a/R plane with different crease
stiffness K.R/D. For each crease stiffness, we obtain an upper and a lower boundary, with
the enclosed area corresponding to the bistable regime. The upper boundary corresponds to
the fold that connects to the unstable energy barrier, and the lower boundary corresponds
to the fold that connects to the flipped state. Starting with a bistable geometry, both
increasing and decreasing « could cross the stability boundary and thus destroy the inverted
state. The curves at the upper left corner (o > 1) set the limit of the largest sector that
can be inserted without destroying the inverted state. Actually only with small holes, @ can
slightly exceed unity and is always less than 1.1, which implies that only a small sector could
be inserted without loss of the bistability. In addition, the upper boundary slowly declines
with the increase of a/R, following almost a linear relationship. This implies that by cutting
a small sector, the critical hole size could be increased significantly. For example, with
(K.R|D,a) = (100,0.794), the critical hole size increases to a/R = 0.92, corresponding to
the right end of the green curve. The lower boundary sets the limit of the minimal material
needed to preserve the inverted state. Although increasing the crease stiffness does not
remarkably change the upper boundary, it shifts the lower boundary significantly downward,
implying that the inverted state exists in a larger parameter space with a stronger crease.
We remark that with the crease following a linear response, there is no such lower boundary.
However, a similar upper boundary exists. Figure 3(e) displays several renderings, whose
3D profiles and their 2D projections of the outer and inner circumferences are documented
in Figure 21 (Appendix C).

Figure 4 reports the deviation of the crease from the rest angle (yp — ) at s = 0 for
the solutions in Figures 3(a-c). Vertically, the curves are approximately divided into two
groups: the top group is close to 180°, including the flipped state and one of the half flipped
state with the crease at s = 0 flipped; the bottom group contains the inverted state, the
energy barrier, and the other half flipped state with the crease flipped at s = tRa. With
a weak crease K .R/D = 4, the top group is connected to the bottom group through folds
and bifurcations. Increasing K.R/D to 20 and 100 separates the top and bottom groups
and pushes the deviation (ypo — ) to approach 180° and 0°, respectively. Large K.R/D

corresponds to a relatively rigid crease, which will force the final crease angle 7y to be close
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FIG. 4: Changes of the crease angle at s =0, (70 —70)- (a), (b), and (c) correspond to the
solutions in Figures 3(a), 3(b), and Figure 3(c), respectively.

to the moment-free crease angle vy and o+ 7. In Figures 4(b-c), the final crease angle 5o of
the bottom group approaches 7y, while the final crease angle 7o of the top group approaches
(70 + ), with the latter storing more crease energy.

Figures 5(a-b) report respectively the normalized elastic energies of the solutions in Fig-
ures 3(a-b), including the total energy U/D, the bending energy U,/D, and the crease energy
U./D. The total elastic energy U/D of different states follows: stable inverted state < energy
barrier < half-flipped state < flipped state. Later we will show that the folded state gener-
ally contains much lower elastic energy than the inverted state. The bending energy U,/D
follows: flipped state < half-flipped state < stable inverted state. However, the relationship
between the bending energy of the inverted state and the energy barrier could reverse. For
example, with (K.R/D,a) = (4,1), energy barrier < inverted state, while this is reversed for
(K.R/D,a) =(4,0.85). The crease energy U./D follows: stable inverted state < half-flipped
state < flipped state. The relationship between the crease energy of the inverted state and
the energy barrier could reverse. For example, with (K.R/D,«) = (4,1), inverted state <
energy barrier, while this is reversed for (K.R/D,«) = (4,0.85). We conclude that flipping
the crease generally reduces the bending energy, but increases the crease energy significantly,

and thus increases the total energy.
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FIG. 5: Normalized total energy U/D, bending energy U,/D, and crease energy U./D. (a)
and (b) correspond to the solutions in Figures 3(a) and 3(b), respectively.

With the hole size a/R fixed, cutting material in the circumferential direction (i.e., de-
creasing «) generally leads to an increase in both the bending energy and the crease energy
of the inverted state. The former is similar to an exact cone made by joinning the two ends of
a flat sector, in which a smaller sector generally results in a conical structure with a higher
elastic energy. Tabletop models show that for the inverted state, decreasing « generally
leads to an increase in bending of the facet and the opening of the crease angle. Here our
numerical results show that the intuitive decrease of the elastic energy due to the decrease of
the bending area (caused by reducing «) is exceeded by the increase of the bending energy
density and the crease energy density. In addition, increasing a/R (i.e., cutting materials in
the radial direction) generally leads to a decrease in all the energies of all the states. An
exception to this is the bending energy of disks with a weak crease (K.R/D = 4), in which
the energy curves first rise a bit, and then decline with an increase in a/R. The reason this

occurs also explains why the inclined angle d, first rises a bit and then declines in Figure
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3(a): the large crease moment caused by a small hole will open a weak crease a lot and thus
flattens the facet, which decreases the bending energy.

The ratio of the crease energy to the bending energy in the structure mainly depends
on the dimensionless crease stiffness K.R/D and the hole size a/R. For the inverted state
with a weak crease K.R/D =4 and small a/R, the two creases contribute more energy than
the bending of the facets. On the other hand, increasing a/R will unload the crease and
increase the bending deformation of the facet, which reverses the energy contribution. In
other words, with K.R/D = 4 and large a/R, the bending of the facets contributes more
energy than the two creases. However, for the flipped and half flipped branch, the crease
energy contributes more than the bending energy. Increasing K.R/D to 20 significantly
increases the total elastic energy in the system. With K.R/D = 20, the portion from the
crease energy reduces significantly for the inverted state and the energy barrier, in which
most of the elastic energy comes from the bending of the facets. However, for the half flipped
and particularly the flipped states, the contribution from the bending energy is small and
most of the energy comes from the flipped crease.

Symmetries in the structure could facilitate our understanding of the contact force and
moment on the directrix r(s). The inverted state, the flipped state and the energy barrier
have two-fold mirror symmetries, with the plane spanned by the two creases and the x — z
plane (see Figure 2) being planes of symmetry. These mirror symmetries vanish the contact
force F' identically and result in a constant contact moment in the z direction. The pair
of half flipped states is only symmetric about the plane spanned by the two creases (i.e.
the y — z plane), resulting in a constant contact force in the x direction and a nonconstant
contact moment in the y — z plane.

Figure 6 reports the Cartesian component of the contact force/moment and several ge-
ometric quantities for the renderings shown in Figure 3(e). Figures 6(a-c) report F,, M,,
and M., respectively. The horizontal axis represents the arc length s, up to 1.037 for %
(av=1.03). Other Cartesian components F,, F,, and M, are set to zero through boundary
conditions due to the mirror symmetry about the y — z plane (Appendix A). Only the pair
of half flipped state (» and €) have nonvanishing F, (which is constant) and nonvanishing

M, (which is nonconstant). M, in the pair of half flipped states keeps varying along the arc
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length, and is constant for the other renderings including the two inverted states (¢ and %),
a flipped state (m), and an energy barrier (a). These predictions match with our symmetry
analysis. In addition, F} of the two half flipped states have equal magnitude but opposite
sign (F, <0 for < and F, >0 for »), which imply that the non-flipped end of the directrix is
under compression, while the flipped end is under tension. Figures 6(d-f) report the normal
curvature r,, geodesic torsion 74, and 7, respectively. Notice that in the two half-flipped
states, the normal curvature k,, approaches zero at the flipped crease, implying that a singu-
larity (corresponding to k, = 0) is about to form and could move inside the integral interval

(39, 40].
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FIG. 6: The Cartesian component of contact force/moment and several geometric
quantities, corresponding to the renderings in Figure 3(e). Because of the symmetry, only
one facet is reported. (a) F,. (b) M,. (¢) M,. (d) Normal curvature ,. (¢) Geodesic

torsion 7,. (f) 7.
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V. REST CREASE ANGLE

The bistability of a creased thin disk is created by introducing non-flat crease angles;
decreasing 7 (i.e., folding the crease more heavily) generally makes the inverted state more
stable. However, in certain parameter spaces, we observed that decreasing 7y could destroy
the inverted state. For example, with the removal of a sector (i.e., a < 1), it is observed with
tabletop models that the rest crease angle 7y must be large enough to stabilize the inverted
state. In this section, we study the effect of the rest crease angle v, on the bistability. We
vary the rest crease angle v, with different hole size and angle deficit. Other parameters
(N, K.R/D) are fixed to (2,20).

Figure 7 summarizes the numerical results from the inextensible strip model. Figures 7(a-
c¢) employ the rest angle v, as the continuation parameter and the angle dy as the solution
measure, and have respectively a = 0.95, 1.0, and 1.02. With « = 0.95 and large hole
sizes a/R = 0.4, 0.6, and 0.9, decreasing - could destroy the bistability through a fold;
with a smaller hole such as a/R = 0.3, the inverted state exists for the entire range 7 €
[0°,180°]. At ~o = 180°, the four solution curves merge approximately at the point (o, do) »
(180°, cos™1 0.95), which corresponds to a perfect cone. With a rigid crease, they will merge

exactly at (180°,cos10.95).

With o = 1.0 and 1.02 (Figures 7(b-c)), increasing 7o destroys the bistability through a
fold. With o = 1, the solution curves could merge at (7o,d0) = (180°,0°) for small holes,
corresponding to a flat annulus. With « = 1.02, the inverted state is destroyed far before
the rest crease angle reaches 7 for a/R > 0.02. Figure 7(d) shows the loci of the fold in
the 7o versus a/R plane with different «. The area below the loci curve corresponds to
the bistable region. Starting with a bistable geometry, increasing the hole size a/R will
generally cross the stability boundary from the bistable region to a monostable region, and
thus destroys the bistability. With o < 0.99, decreasing 7o could destroy the bistability,
while with « > 1, increasing 7, destroys the bistability. With a = 1, the stability boundary
is almost a horizontal line and the critical hole size is not sensitive to 7. A tiny reentry
exists at the bottom right of the curves with a=1.01,1.02 and 1.03. We did not explore the

details of these structures in this paper. Figure 7(e) shows several renderings corresponding

20



e fold x failure o fold
a=0.95 a=1

\
. AVERR Y
0 60 120 180 0 60 120 180
(d)O.Q
o fold x failure
a=1.02
a4
~
3
1.00
1.03 .02 1.01
0 ' 0 -
0 60 120 180 0 60 120 180

(o

6 070 15° l110

1@ ?7}%7/)%

Al

‘DODIDD

FIG. 7: Solutions curves (dy versus 7p) of the inverted state (solid lines) and energy barrier
(dashed lines), and loci of folds (a/R versus 7y) with different (o, a/R). (K.R/D,N,.) is
fixed to (20,2). (a) a=0.95. (b) @ =1.0 (¢) @ =1.02. (d) Loci of the fold with different a.
(e) Renderings that correspond to the symbols in (a-c).

to the symbols in Figures 7(a-c). The numerical results presented in this section confirm
that together with the angle deficit o, both decreasing and increasing the rest crease angle 7y

could stabilize or destabilize the inverted state.

21



VI. NUMBER OF EVENLY DISTRIBUTED CREASES

A thin disk can be decorated with a pattern of creases. In this section, we study the
inverted and folded state with different number of evenly spaced creases. The facets of the
folded state are generally deformed for N, # 2. With N, = 2 and a # 1, the facets of the
folded state could also be deformed. With a single crease N, = 1, the inverted state has
one mirror symmetry. We solve half of the structure and only impose the crease boundary
condition at one end (Appendix A). In this case, we have only one crease contributing to

the elastic energy in Equation 3.

A. The inverted state

In Figure 8, the crease angle is fixed to 7o = 45°. We employ a/R as the continuation
parameter and 0y as the solution measure with different (N.,«) in Figures 8(a-c), which
correspond to N, = 1, 3, and 4, respectively. Figure 8(d) reports the loci of the fold in the
N, versus a/R plane with different (o, K.R/D) through a series of discrete points.

Figure 8(a) shows that with a single crease N, = 1 and o < 1, a/R on the inverted
state (solid lines) could be continued in the entire range [0.001,0.96] without any fold or
bifurcation. This matches with our experimental observation that with a single crease, the
hole could be as large as the disk without loss of the bistability (Figure 1g). In the same
diagram with a =1.03, 1.04, and 1.05, the hole could still be as large as the disk. However,
decreasing the hole size could destroy the bistability through a fold, which connects to the
energy barrier state. Increasing a quickly moves the fold toward the right limit a/R = 1. Our
results show that to preserve the inverted branch, o cannot exceed 1.1. In other words, with
a single crease, only a small sector is allowed to be inserted without loss of the inverted state.
The solution curves in Figures 8(b-c) with V. = 3 and 4 share several features: increasing
hole size a/R destroys the bistability through a fold that connects to the energy barrier;
decreasing « from 1 to 0.7 leads to a significant increase of the critical hole size; the critical
hole size quickly drops to zero as « is slightly larger than 1. Figure 8(d) reports the loci of
the fold in the N, versus a/R plane (up to nine creases) with several (a, K.R/D). While
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FIG. 8: Solution curves (0 versus a/R) of the inverted state (solid lines) and energy
barrier (dashed lines) with different (N, «), and loci of the fold (a/R versus N.) with
different (o, K.R/D). In (a-¢), (K.R/D,~o) is fixed to (20,45°). (a) N.=1. (b) N, =3.
(¢) N.=4. (d) Loci of the fold with 7y fixed to 45°. (e) Renderings that correspond to the

symbols in (a - ¢).

the critical hole size increases monotonically with the increase of N, for a = 1.03, it first
decreases a bit and then reverses to increase for o < 1. The reverse effect becomes more

pronounced with the decrease of o. In addition, a stronger crease generally leads to a larger
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critical hole size. The mechanical behavior with N, =1 is qualitatively different from N, > 2
and is not included in Figure 8(d). For example, with a < 1, there is no fold in the entire
range a/R € [0.001,0.96]. Figure 8(e) shows several renderings corresponding to the symbols
in Figures 8(a-c).

Figures 9(a-c) report the normalized elastic energies of the solutions in Figures 8(a-c),
respectively, including the total energy U/D, the bending energy U, /D, and the crease energy
U./D. The solutions in Figure 8(a) with o = 1.04 and 1.05 are not included for clarity. Similar
to the results in Figure 5 with N, = 2, decreasing « generally leads to the increase of the
various energies, and increasing a/R generally reduces these energies. In addition, a thin
disk decorated with more creases generally contains more bending energy, crease energy, and
thus the total elastic energy.

With a single crease N. = 1, the system has one mirror symmetry; while with N, > 2,
the inverted state and energy barrier have N.-fold mirror symmetries. As a result, with
N, =1, the contact force F' is a constant vector in the x direction and the contact moment
is restricted in the y — z plane. With N, = 3 and 4, the contact force vanishes identically, and
the contact moment M is a constant vector in the z direction. Figures 10(a-c) present the
Cartesian component of the contact force and moment F,, M,, and M, of the renderings in
Figure 8(e), respectively. The numerical results match with our symmetry analysis. With
(Ney,a/R) =(1,0.9) (i.e., #), F, is found to be a nonvanishing small constant 0.0252, and its
corresponding M, and M, varies slowly along the arc length. F, > 0 for all the renderings
with N, = 1 (¢, m, and <), which implies that the creased end of the directrix r(s) is in
tension, while the non-creased end of the directrix is under compression. Figures 10(d-f)
display the normal curvature x,, geodesic torsion 7,4, and 7 of the renderings in Figure 8(e),
respectively. Notice that in the energy barrier €, the normal curvature , approaches zero
at the noncreased end at s = aw R, implying that a singularity (corresponding to «, = 0) is

about to form and could move inside the integral interval.
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FIG. 9: Normalized total energy U/D, bending energy U,/D, and crease energy U./D. (a),
(b), and (c) correspond to the solutions in Figures 8(a), 8(b), and 8(c), respectively.
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B. The folded state

In tabletop models, we observed that with a single crease N, = 1, an inflection point (i.e.,
kn = 0) exists on the folded state, which could lead to local divergence of the bending energy
and will bring significant difficulty in solving the inextensible strip model [39, 40]. We did
not include the solutions of the folded state with N, =1 in this study.

(a — ¢) black: =1, blue: «=0.85, brown: «=0.7, green: a«=0.5; solid: vy = 45°, dashed: vy = 135°
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FIG. 11: Solution curves of the folded state (5, versus a/R) with different (N, a,~o).

K. R/D is fixed to 20. (a) N.=2. (b) N.=3. (¢) N.=4. (d) Renderings that correspond to
the symbols in (a - c¢).

Figures 11(a-c) present the solution curves of the folded state with N. =2, N, = 3 and
N, = 4, respectively. We employ a/R as the continuation parameter and &y as the solution
measure with different («,~,). Black curves are omitted in Figure 11(a) because the folded

state with (N, «) = (2,1) remains flat and is trivial. The grey dashed curve with o = 1.1 is
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not included in Figures 11(b-c) because they cannot be obtained with the inextensible strip
model due to the local contact between the edge of regression and the material surface. The
folded state is stable in the entire range a/R € [0.001,0.96]. Figure 11(d) displays several
renderings corresponding to the symbols in Figures 11(a-c). The facets could be convex (4,
m, » and %) or concave (€ and a), depending on the choice of the geometric parameters
(o, N¢,70). Convex facets tend to close the crease angle (i.e., v < 70), while concave facets
tend to open the crease angle (i.e., v > o).

Figures 12(a-d) present the Cartesian component of the contact moment A, the normal
curvature ky,, the geodesic torsion 7,, and n of the renderings in Figure 11(d), respectively.
The configurations with convex facets have M, > 0 and &, < 0 (¢, m, » and %), and the
configurations with concave facets (4 and a) have M, < 0 and &, > 0. In general, increasing
o or decreasing « will lead to convex facets, while decreasing -y, or increasing o will result in
concave facets. By carefully choosing (7o, v, N.), the facets of the folded state could remain
flat with the crease being exactly the rest angle 7y, which results in energy-free folded states.

For N, > 3, this requires

= — -1 2 2 ma 2
Yo = T — COS (coch+2tan 7, COs NC), (8)

such that the folded state lies on the surface of a regular pyramid with a regular N.-gonal
base and a “vertex angle” ¢ = sin™! (sin ¥ /sin Ni), which is defined as the angle between
the axis and the lateral edge of the pyramid (Figure 13(a)). Notice that the hole size a/R
does not appear in Equation (8). Because « > 0, Equation (8) further requires 7o > (7 — ]2\]—’2),
i.e., to obtain an energy free folded state, the rest angle 7y must be larger than the internal
angle of the base polygon. Figure 13(b) displays the relationship between the angle deficit
a and the rest crease angle vy in Equation (8) with different N.. All the curves merge at
the point (7o, ) = (180°,1), corresponding to a flat annulus. With a > 1, Equation (8) does
not have real solutions. With « slightly larger than unity, our numerical results show that
the folded state always have a concave shape (e.g., the two renderings € and a in Figure
11(d)). In Figure 13(b), a geometry from the left side of each curve corresponds to a concave

shape, while a geometry from the right regime results in a convex shape. Figures 13(c-e)
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display three energy-free renderings (blue surfaces) and their host pyramids (sketched by
black lines), corresponding to the symbols in Figure 13(b).
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FIG. 12: The Cartesian component of the contact moment and several geometric
quantities, corresponding to the renderings in Figure 11(d). Because of the symmetry, only

one facet is reported. (a) M,. (b) Normal curvature x,,. (c) Geodesic torsion 7,. (d) 7.

Figures 14(a-c) report the normalized elastic energies of the solutions with 7 = 45° in
Figures 11(a-c), respectively, including the total energy U/D, the bending energy U,/D, and
the crease energy U./D. Compared with the elastic energies of the inverted state in Figure
5(b) and Figures 9(b-c), the folded state contains much less elastic energy. In all the three
panels of Figure 14, the bending energy contributes much more to the total energy than the
crease energy, and all the three energies decrease with the increase of the hole size a/R.

With N, =2 in Figure 14(a), decreasing « leads to the increase of all the three energies.
With N, = 2 and «a < 1, the folded state is always convex no matter what the rest crease

angle is (see the two renderings ¢ and m in Figure 11(d)), which tends to close the crease
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FIG. 13: Energy-free folded states that lie on regular pyramids. (a) The vertex angle ( is
defined as the angle between the lateral edge (inclined solid lines) and the vertical axis
(dashed line). (b) The relationship between « and v, with different N, that leads to
energy-free folded state. (c) An energy-free folded state with three creases (blue surface)
which correspond to the symbol ¢ in (b). The pyramid is sketched by the black lines. (d)

An example with four creases. (e) An example with five creases.

angle (i.e., yf0 < 7). Decreasing o generally makes the facets more convex, which increases
the bending energy density and leads to the closing of the crease angle. The latter leads
to higher crease energy. Our numerical results show that the bending energy also increases
with the decrease of o, implying that the intuitive decrease of the bending energy caused
by decreasing o (which reduces the area of the facets) is exceeded by the increase of the

bending energy density.

In Figure 14(b) with N, = 3, decreasing « leads to the increase of the crease energy but the
decrease of the bending energy and the total energy. From Figure 13(b) we know that with
(Ney70) = (3,45°), the folded state is concave in the entire range « € (0,1]. Actually with
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a = 1.1, the structure is also concave, corresponding to €in Figure 11(d). Here, decreasing «
will reduce the facet area and flatten the facet, and thus decreases the bending energy. On
the other hand, decreasing « tends to open the crease angle, which leads to an increase in the
crease energy. Our results show that the bending energy is dominant here, and decreasing
a leads to the decrease of the total energy.

In Figure 14(c) with (N.,v) = (4,45°), the transitions are slightly different. While the
crease energy increases with the decrease of a, the bending energy and the total energy does

not change much as we vary a.
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FIG. 14: Normalized total energy U/D, bending energy U,/D, and crease energy U./D. (a)
corresponds to the solutions in Figure 11(a). (b) Figure 11(b). (c) Figure 11(c).
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VII.

ECCENTRICITY - A FAMILY OF STABLE INVERTED STATES

In experiments, we observed that a creased disk can be inverted about almost anywhere

along the crease to obtain a family of stable inverted states (Figure 1(h)). In this section,

we study the mechanics of this family of states by introducing a nonvanishing distance e

between the center of the hole and the center of disk, shown in Figure 15(a). Figure 15(b)

shows the inverted state, which is obtained by first introducing a finite crease angle to the

flat configuration in Figure 15(a) and then inverting the crease. We call e/ R the eccentricity

of the hole. A nonvanishing e/R breaks one of the two mirror symmetries in the inverted

state, which now has a single mirror symmetry about the plane spanned by the two creases.

Here we focus on the case with a = 1. The total energy can be written as

s=7R

FIG. 15: (a) The flat configuration of a creased disk with a circular hole of radius a,

located eccentrically at (0,e). The thick black lines correspond to the crease and (t,mn,b) is

a material frame attached to the outer circle, with n going into the plane. The generators

are mapped from the inverted state in (b), where nonvanishing |e/R| leads to different

inclined angles dp and ¢; and different final crease angles vy and 7y at the two ends.
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where v and 41 represent the final crease angle at s =0 and s = 7R, respectively. The

+

first two terms represent the elastic energies in the two creases with different lengths, and
the third term represents the bending energy of the facets. The Euler-Lagrange equations
are the same as Equations (4)-(7). The boundary conditions are slightly modified to account
for the differences between the two creases. In addition, the algebraic constraint y that

implicitly determines V' is modified to

x=V?+(R?-2VR-a?)sin® B +esin Blesin B - 2R cos Asin B + 2V sin(3 + \)], (10)

where \ = s/R, resulting in a “nonautonomous” system. A\ measures the angle between —y
and the radius (Figure 15(a)). With e = 0, Equation (10) degenerates to Equation (2). We
follow standard techniques and transform the nonautonomous system into an autonomous
system. Details of the transformation and the boundary conditions can be found in Appendix
A.

Figure 16 summarizes the solution curves (dy versus e/R), loci of the fold (a/R versus
e/R), and several renderings with different (a/R, K.R/D,~y). Small crease stiffness and large
crease angle generally lead to a shallower inverted state with smaller §y. In Figure 16(a), the
curve with a/R = 0.03 increases significantly with the decrease of ¢/R when e¢/R — —1. This
is qualitatively different from the other curves. Upon a further examination of the solution,
we find that the final crease angle v, corresponding to the upper left end of the curve is
greater than m, which results in the increase of dy with the further decrease in e/R. With
a fixed a/R, the eccentricity e/R is symmetrically bounded by two folds (one with e/R <0
and the other with e/R > 0), where the inverted state (solid lines) loses stability through a
fold which connects to the energy barrier (dashed lines). The inverted state and the energy
barrier tend to form a closed loop. However, with small holes such as a/R = 0.03 and 0.07,

the curves do not close completely and terminate at the cross, where the bending energy
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blows up locally due to the local contact between the edge of regression and the material
surface. Increasing a/R tends to close the solution curves and shrink the closed loop, e.g.,
the loop with a/R = 0.15 is smaller than the loop with a/R = 0.11. This follows the typical
feature of an isola center bifurcation, which is clearly seen in Figure 16(d) that shows the loci
of the fold with different (K.R/D,70). The area below the stability boundary corresponds
to the bistable region where the inverted state exists. Increasing the eccentricity |e/R| leads
to the decrease of the critical hole size, and with a small hole, the eccentricity can be very
large (i.e., le/R| could approach unity) without loss of the bistability. This matches with our
experimental observation that a creased thin disk can be wnverted almost anywhere along the
crease (Figure 1h). The renderings in Figure 16(e) correspond to the symbols in Figures
16(a-c), including several inverted states ¢, 4 and a, and their energy barriers m, » and x,
respectively. More renderings of the inverted state with different (a/R, e/R) are documented
in Figure 25 of Appendix D.

Figures 17(a-b) report the normalized elastic energy of the solutions in Figures 16(a-b),
respectively. The total energy of the inverted state generally decreases with the increase of
the eccentricity |e/R|. With a weak crease and a large crease angle (K.R/D,~o) = (4,135°),
the total energy is low and the inverted state is slightly deformed from the flat configuration.
In addition, for each a/R, the bending energy is slightly larger than the crease energy. With
an intermediate crease stiffness and an intermediate crease angle (K.R/D,~y) = (20,90°),
the total energy increases significantly, mainly from the contribution of the bending energy.
The crease energy does not change too much, and its contribution is small compared with
the bending energy.

Nonvanishing eccentricity e/R breaks the mirror symmetry of the inverted state about
the x — z plane, which now has a single mirror symmetry about the plane spanned by the
two creases (i.e., the y — z plane). This mirror symmetry forces the contact force to be a
constant vector in the x direction, and the contact moment to be nonconstant in the y — z
plane. Figures 18(a-c) present respectively the Cartesian component of the contact force
and moment F,, M,, and M,, with (K.R/D,~o,a/R,«a) fixed to (20,90°,0.07,1). With
various eccentricities, F, is always found to be a positive constant, which matches with the

symmetry analysis and further implies that with e/R < 0, the extremity of the directrix
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FIG. 16: Solution curves (dy versus e/R) of the inverted state (solid lines) and the energy
barrier (dashed lines), and loci of the fold (a/R versus e/R) with different
(a/R,K.R/D,~y). The angle deficit « is fixed to 1. (a) (K.R/D,70) = (4,135°). (b)
(K.R/D,~) =(20,90°). (c¢) (K.R/D,~y) = (100,45°). (d) Loci of the fold. (e) Renderings

that correspond to the symbols in (a-c).

s =0 is in tension while the other extremity s = 7R is under compression. In other words, a
nonvanishing eccentricity will make the end of the directrix closer to the hole be in tension,
while the farther end will be under compression. Our numerical results further show that

for the inverted state, the crease angle of the shorter crease always opens more than the

35
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FIG. 17: Normalized total energy U/D, bending energy U,/D, and crease energy U./D. (a)
and (b) correspond to the solutions in Figures 16(a) and 16(b), respectively.

crease angle of the longer crease, which also qualitatively matches with our experimental
observations (Figure 1(h)).

With nonvanishing eccentricity, M, and M, vary along the arc length. The minimum M,
corresponds to the highest point of the directrix = in the z direction. Near the two ends
s =0 and s = w, M, decreases a bit with the increase of s, corresponding to the fact that
the two ends s =0 and s = 7 are usually not the extremities in the y direction. Instead, two
material points slightly inside the two ends of the directrix have the largest and smallest y
coordinate, which can be seen in the projections of the outer and inner circumferences in
Figure 24 (Appendix C). Figures 18(d-f) present respectively the distribution of the normal

curvature ,, the geodesic torsion 7,5, and 7.
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FIG. 18: Distribution of the Cartesian components of contact force/moment and several
geometric quantities with different e/R. (K.R/D,~y,a/R, ) is fixed to (20,90°,0.07,1).

Because of the symmetry, only one facet of the structure is reported. (a) Fj. (b)

M,. (d) Normal curvature x,. (e) Geodesic torsion 7,. (f) n.
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VIII. SUMMARY AND FURTHER DISCUSSION

Creases and cuts have been introduced to thin sheets to create novel structures called
Origami and Kirigami, which can achieve morphable geometries and nontraditional mechan-
ical properties [73-77]. We found geometry determines the mechanics of creased thin disk
and the influences of material properties are minimal. The novel mechanics phenomena stud-
ied in this work are general and not restricted to specific geometries or material properties.
For example, it can be easily demonstrated through a piece of printing paper that the crease
could be inverted about almost anywhere along the crease, independent of the crease angle
and the geometry of the paper sheet. The influences of inserting or removing materials in
the circumferential direction also appear to be general in creased thin sheets. Particularly,
removing a circumferential sector could increase the critical hole size significantly, up to the
size of the disk, in which case anisotropic rod model (which is free of singularity that might
bother the inextensible strip) should work well. In a forthcoming work, we use anisotropic
rod theory to further investigate multistable and looping behaviors of creased annular strips
with a continuous description of creases [78]].

In this work, we studied the mechanics of annular sheets and strips decorated with radial
creases. Several geometric parameters that lead to novel mechanical phenomena are first
identified through tabletop models. We then used an inextensible strip model to formulate a
minimal facet as a two-point boundary value problem with the creases modeled as nonlinear
hinges. Numerical continuation with AUTO 07P was conducted to obtain solution curves
as certain geometric parameters vary. The numerical predictions match our experimental
observations and further reveal unexpected nonlinear behaviors. We summarize our major

findings and conclusions here:

e Our numerical results show that with N, > 2 (i.e., with more than two evenly spaced
creases), removing and inserting a small sector could significantly increase and decrease
the critical hole size, respectively. For example, with the angle deficit o < 0.7 (i.e.,
cutting more than 30% of the annulus along the circumference), the critical hole size
with N, = 2 could be as large as the disk; For N. = 3 and 4, this requires a < 0.5.
On the other hand, « generally cannot exceed 1.1, otherwise the bistability will be
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destroyed even with an infinitesimal hole. In addition, increasing the hole size a/R

generally destroys the inverted branch through a fold.

A thin disk with N. =1 (i.e., a single crease) behaves differently from the ones with
N, > 2. First, the inverted state with a single crease can contain a hole as large as the
disk without the requirement of cutting any sector. Second, inserting a sector could
also destroy the inverted state and « generally cannot exceed 1.1, which is similar to
the case with N. > 2. However, instead of decreasing the largest critical hole size in
the case with N, > 2, inserting a sector with N. =1 could create a lower boundary for
the hole size. In other words, with N, =1 and « slightly larger than 1, decreasing a/R

could destroy the bistability, and at the same time, increasing a/R will not lose the

inverted state and the hole can still be as large as the disk.

Several geometric parameters could conspire to create unexpected mechanical behav-
iors. For example, with N, =2 and « > 1, decreasing the rest crease angle 7, generally
makes the inverted state more stable and could turn a monostable creased disk into a
bistable one. On the contrary, with N, =2 and a < 0.99, decreasing the crease angle 7,
makes the inverted state less stable and could turn a bistable disk into a monostable

one.

The folded state contains much less energy than the inverted state. With N, >3 (i.e.,
more than three creases), facets of the folded state are generally bent. An exception
can be obtained by a careful choice of the geometric parameters such that the folded
state lies on the lateral surface of a regular pyramid, resulting in energy-free folded

states.

Our results confirm that a creased disk can be inverted almost anywhere along the

crease, resulting in a family of stable inverted states.

The mechanics of the crease affect the nonlinear behaviors of the creased disk. With
N, = 2 and a small hole, a crease following a sinusoidal angle-moment relationship

could be flipped to create a pair of half flipped states and a flipped state, which do
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not exist with a crease following a linear angle-moment relationship. However in both
cases, the system behaves similarly as we increase the hole size a/R with different
angle deficit a. In other words, using different crease models does not affect the main

conclusions and findings of this study.

Our findings demonstrate that with a simply creased disk, varying several geometric
parameters could create extremely rich nonlinear behaviors. We have explored only a few
novel phenomena in this system, which is worth further study. For example, the distribution
of the creases could affect the mechanical behaviors of the creased disk. A tabletop model
shows that with V. =2 and an uneven distribution of creases, the critical hole size could be
increased significantly. In addition, a creased thin sheet could be inverted simultaneously
about several places along the creases, resulting in a system with several elastic singularities
that could interact with each other. We reserve these topics for future study.

The inextensible strip model employed in this work is appropriate only for thin sheets,
in which stretching of the surface is much more energetically expensive than bending. In
experiments, thickness of the material is observed to be another factor that affects the
mechanics of the creased disk. It is known that the competition between the mechanics of
creases and the bending of facets in creased thin sheets is determined by the origami length
[47], which is proportional to the thickness of the material. With a thick creased disk, we
found that the bistability may not exist even without a hole. It will be interesting to study
the transitional behavior between thin and thick sheets in such systems.

Accurate modeling of the mechanics of creased thin sheets requires a precise description
of the mechanics of the crease, which usually have complex relaxation phenomena and com-
plicated mechanical responses under external loading [51, 79, 80]. We have adopted only
an elastic response for the crease in this study. In addition, we assumed a constant final
crease angle along the crease. Our recent work with detailed FE modelings demonstrated
that the final crease angle of the inverted state usually varies along the crease [59]. The
moment balance at the crease implemented in this work represents an overall balance and is
not a pointwise local balance along the crease length. It appears that a non-constant final

crease angle could be incorporated into the developable model to describe the inverted and
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the non-flat folded state, in which the crease is no longer a generator and will not remain
straight. In other words, the crease will intersect with the nearby generators. This may
require partitioning the deformed facet into several developable pieces with the generators
bounded by different space curves [22], which is beyond the scope of this study. A recent
study of the creased disk through FE modeling shows that near the crease, the lines of

smallest principal curvature could intersect with the crease [65].
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Appendix A: Numerical implementation of the inextensible strip model

Based on the inextensible strip model [39, 69], we formulate a minimal facet of the creased
thin disk as a two-point boundary value problem and use continuation package AUTO 07P
to conduct parametric studies [71]. Euler angles (¢,0,¢) are employed to describe the
sequential rotations of the director frame (T',IN, B), following a 3 — 2 — 3 convention. With
N, evenly spaced creases (N, > 2), both the folded state and the inverted state have N
fold mirror symmetries. We take advantage of the symmetries and only solve 1/N, of the
structure bounded by two adjacent creases. With a single crease N, =1, we solve half of the
structure due to the single mirror symmetry.

Figure 19 displays a series of deformations that first transform a flat annular sector with a
central angle 2wa/ N, into conical frustums in panels (b1) and (b2), which are then deformed
respectively into a minimal facet of the inverted and folded state by rotating the generator
at the two ends s =0 and s = L (= 2nRa/N,) to match with the rest crease angle . Finite
crease stiffness will be introduced later and so far the two creases are rigid. The two conical
frustums in Figures 19(b1) and 19(b2) are mirror images of each other about the x -y plane
of a Cartesian coordinate system x —y—z. The two ends s =0 and s = L of the inverted and
the folded state (Figures 19(cl) and 19(c2)) are symmetrically constrained in the z -y plane
to slide along the two rays y = —tan Nlcx and y = tan Nlca;, respectively. The rotation axis of
the complete structure is aligned with the z axis.

The Euler angles are further implemented through unit quaternions to avoid potential
polar singularity. The relationship between the director frame and the Cartesian frame can

be related through Euler angles and quaternions as,

-N cosp sing 0||cosf 0 —sinf|| cosyp siny O||&
T |=|-sing cos¢ 0 0O 1 0 —siny cosy Of|wg
B 0 0 1|]|sinfé 0 cosf 0 0 11z
(A1)
B+BE -5 0+ aa @u-ags ||
=2 a3 — 1 q%+q§—% QG+ QG2 ||
s+ (g3 Gsda—01q2 G+ai -5 || 2
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FIG. 19: Euler angles (1,6, ¢) are used to describe the rotations of the material frame

attached to the outer circle of an annular sector, following a 3-2-3 rotation convention. The
flat annular sector in (a) is deformed into two conical frustums in (b1) and (b2) by rotating
the director frame about B(s) by ¥(s) (a linear function of s), and then about T'(s) by
0(s) (a constant). The crease angle is introduced to (bl) and (b2) by rotating the
generator at the two ends, resulting in a minimal facet of the inverted state and the folded

state in (cl) and (c2), respectively.

For a 3 - 2 - 3 rotation, quaternions can be written in terms of Euler angles as [81]

ql—cosgcos‘z’w, q2:s1ngsm¢w, q:;-sm%cosu, q4—c05231n¢+w (A2)

The derivatives of quaternion components can be written as

N)I»—l

giKn + q2l€g q37—g) ’ q% = %(_QU'ig + q3kn — q47—g) ;

(A3)

=5(-
( QoRkn — 4'%9 + q1Tg) ) qg = %(Q3Rg t+q1Kkn + q27-g) .

l\DI»—l

To obtain a system of first order ordinary differential equations (ODEs), we first differen-
tiate the algebraic constitutive law in Equation (6) with respect to s and combine with (7) to
obtain a first order ODE for x,, and a second order ODE for 7. The latter is transformed into
two first order ODEs by introducing an intermediate variable 2 = /. In addition, we treat

V' as an independent variable and differentiate the implicit relationship y = 0 with respect
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to s, resulting in a first order ODE for V. Combining Equations (4)-(5), (A3), ' =T, and
the ODEs for k,, n, 2, and V', we have

?—L(Fénf‘—b kgkF3) =0 %+L(/%F1 knnE3) :0,%+L(FﬁnnF2_HgFl) =0,
S S
M M. M.
dd1 L(kn My = r5,Ms) =0, aM, + L(kp M, — kynMs — F3) = 0 dd3 + L(knn My — kgMy + F5) =0,
dT] d“n

-0, (AE- 02)£ = L[(CB -~ ADQ+ AG - CJ].(AE - )2 = L[(IC = BE)Q + JE - GO,

ds
av (_& _ X_Q) L
ds Xv  Xv
dg, dgs
E = L[0-5(—Q4/€n + @akg — Q3Tg) + th] ? L[O 5( Q1Rg + @3kn — Q4Tg) + NQ2] )
dgs qa
ds L[0.5(=qakin = qukig + q17g) + p1q3] , a5 L[0.5(gskg + qubin + GaTy) + 11Ga],
dx d 9 o
= = 2L@2a3 - @), o= =2L(a1 + g5 - ) d‘ = 2L(g394 + ¢192) ,
ds
i
ds '
(A4)
where L (= 2rRa/N,) corresponds to the length of the directrix r(s), & ds = dL L(),
and
A=Y, .. W,
B=Y, W+Y, W,+Y, WiV,
C=Y., W+Y, Wy,
[ =YW + YW, + Yy Wy Vi + Y, Wy + Y Wy + Y Wy Vi (A5)

E =YW +2Y, Wy + WY,
J=n'My - Fy+ kg(My —nMs) =Y, Wy Vs,
G=Y,W+YW, +YWyV, -k, My =Y, Wy, Vs =YW,/ Vs,
where a subscript represents a partial derivative and a prime denotes an s—derivative.
Through the introduction of 5 (e [0,1]), we have normalized the length of the integral
interval to unity, which is required by AUTO. In addition, the last ODE in Equation (A4)

transforms the nonautonomous system into an autonomous system. Varying « through L

allows us to remove or insert a sector. Following [72], we have introduced a dummy parameter
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1 to enable a consistent prescription of boundary conditions for quaternions, through which
the original pointwise constraint of the unit quaternions is required only at the two ends.
i is treated as a free parameter (i.e., a scalar unknown) in numerical continuation and its
value should always be numerically zero [72].

The N.-fold mirror symmetries of the folded and the inverted state vanish the contact
force identically and force the contact moment to be a constant vector in the z direction.
For the half flipped state with IN. = 2 and the inverted state with N, = 1, they have a single
mirror symmetry. Forces in the plane of symmetry and the moment perpendicular to the
plane of symmetry are set to zeros through the boundary conditions at the two ends of the

minimal facet, which can be summarized as

FZ(O) :Ova(O) :OaMt(O) 2078(0) :07
x(V(0),0,7(0)) =0,7(0) = 0,7(1) =0,

ORT() ) o
77/(0) + Iig(O)(l + 7]2(0)) W(77 (0)777(0)) W(O)M1(O) M3(O) O,
N. 2(77 ’YO))]

01(0) = cos % cos [ (& + (7~ 7))] . 42(0) = sin % sin [ 1 (&

43(0) = sin 5 cos |5 (= 3(7 = 20))] - 4a(0) = = cos G sin [ 5 (57 + 3(m = 0))] -
[ (NL %(W 70))]a92(1)—51n_sm[ ( ot %(W‘%))],

(- ) :

Z+Hm=0))] s aa(1) = cos G sin[L (£ + L(m-0))] .

(AD)

q(1) = cos & L cos |3
q3(1) = sm 4 cos [%
2(0) = -y(0) cot 3, 2(0) = 0,
z(1) = y(1) cot -, 2(1) = 0,y(0) +y(1) = 0,
where F;(0) = F(0) - [~ cos({-)@ +sin(F-)9] and F.(0) = F'(0) - £ represents the contact
force in the plane of symmetry, and M;(0) = M(0) - [sin(37)Z + cos({-)y] represents the
moment perpendicular to the symmetry plane. Notice that the boundary conditions in
Equation (A6) admit the half flipped solutions with N, = 2, because we have only imposed
one-fold mirror symmetry about the plane spanned by the two creases. 6y and 6; (both are
negative in our definition) correspond respectively to the unknown second Euler angle at
s=0and s =1, and are treated as free parameters in numerical continuation. This is due to

the fact that the two inclined angles oy and ; are unknown a prior:, and can be obtained
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respectively as dy = § + 6y and §; = § +6;. Equation (A6) contains 21 boundary conditions
that are consistent with the number of unknowns, which include 18 state variables from
Equation (A4), and 3 free parameters p, 0y, and 0;. Equations (A4) and (A6) lead to a
well-posed two-point BVP.

We use the conical frustum in Figures 19(b1) and 19(b2) as start solution for conducting
numerical continuation on the inverted branch and folded branch, respectively. The start

solution for the inverted state in Figure 19(b1l) can be summarized as

R
4
R
10al =cos(g)cos(%) , Qo = —sin(g)sin(%) .3 =sin(g)cos(%) , Q4 :cos(g)sin(%) )

1-25 1-235 2
u,y:_ammuﬂ:o <= WRO[E,V:R—CL’

x =aRcos N, N, ) N,

with § = —sin"' a, and ) = - (25 - 1). The start solution for the folded state in Figure
19(b2) is different from Equation A7 only in the sign of M3 and k, and the value of 6,
because the conical frustum in Figure 19(b1) is pointing upward, while the conical frustum

in Figure 19(b2) is pointing downward. The different part can be rewritten as

1 1 1
MgIIH%\/E—l,KJnI—E\/ﬁ—l,HZSin_lOé — . (A8)

In numerical continuation, we always fix R to 1 (i.e., k, = —1). Starting from a conical
frustum (i.e., @ < 1) with a small hole (e.g., a/R = 0.01), we rotate the two end generators by
decreasing vy in Equation (A6) to the target rest crease angle, which results in a configuration
with rigid creases that will be used as start solution to introduce a finite crease stiffness.

To introduce flexible creases, the boundary conditions in Equation (A6) need slight mod-
ifications. Particularly, the two final crease angles v and 74 (at s = 0 and s = 27/ N,

respectively) become unknowns. We replace 7o in ¢;(0) (i = 1,2,3,4) with v4 and 7 in

46



¢(1) (1 =1,2,3,4) with 74, respectively. In addition, two additional boundary conditions

representing the moment balance at the crease are added as following

K.R a+e. .
M3(0) = D (1- R )Sln(wo—%),

K_.R a-e (A9)
My(1) = =22 (1= ) sin(r - 0).

In numerical continuation, the scalar unknowns vy and 7y, are treated as free parameters.
The consistency between the additional unknowns and the additional boundary conditions
leads to a well-posed two-point BVP consisting of 23 unknowns and 23 boundary conditions.
Equation (A9) implies that a large dimensional creases stiffness K.R/D will penalize v¢, and
71 to be the rest crease angle 7y. Starting with a rigid crease solution, we decrease K.R/D
from a large number to the target finite crease stiffness. Equation (A9) also incorporates the
eccentricity factor. Now, we are able to vary a/R, a, 7p etc. to conduct parametric studies.

The case with a single crease N, =1 is similar to N, = 2. We solve half of the structure
and impose only the crease boundary condition in Equation (A9) at §=0. The 5=1 end is
equivalent to a rigid crease with a rest crease angle 7.

After obtaining the numerical results, an annular sector can be constructed as

X (s,v) =r(s) +v[B(s) +n(s)T(s)],
= (@ +2v[n(q2q3 — (104) + G2qs + (1q3]) T (A10)
+ (y+20[n(q + 63— 5) + 4sqa - (102])Y

+ (2 + 20[n(a391 + q142) + 43 + ¢ — 3])
where 1 = 7,/k,, and v € [0,V ]. The complete structure is constructed by using symmetry

properties. The edge of regression, on which adjacent generators intersect each other, can

be defined as

o) r(e)a S8 BOEAOTE) o BE T
B = kg |B(s) +n(s)T(s)] '+ rg(L+m%)
By differentiation, we have ¢'(s) = [”“3[‘;,ng)(+1"+';;3;’]‘“5"”'] (B+nT'). The isolated points where

0" = =3kgnn’ —nk2Z(1+n?) are called “conical”, because at such points, the edge of regression
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contains a cusp [39]. In addition, the points where 1’ = —,(1 + 1?) are called “cylindrical”.
At a cylindrical point, the mean curvature is constant along the local generator [39].

The generators can be mapped onto the flat annular sector as

X (s,0) =7(s) +v[b(s) +n(s)t(s)],

= (Rsin A —vsin A + vncos A& + (—~Rcos A + vnsin A + veos\) g,

(A12)

where b(s) and t(s) are the binormal and the tangent of the outer circle, respectively. The
edge of regression (which we did not include in the flat developments of the 3D renderings
in this study) can be mapped onto the flat annular sector as

e B £ ()2)
) )

= RSin)\-FM i— Rcos)\+w ,g
7],"‘/{9(14"[’}2) 77,+/fg(1+7’}2)

(A13)

Appendix B: Crease with a linear angle-moment relationship

Here we give an example to show that with creases having a linear response, in certain
parameter spaces a creased disk could behave differently from one with creases adopting a
sinusoidal angle-moment relationship. With linear creases, the crease boundary conditions

in Equation (A9) are modified as

K.R a+e

Ms(0) = 1- 0=7);
0= T 20020 o
M3(1) = 5 (1- I ) (71— 0) -

The numerical results in Figure 20(a) adopt linear creases ( Equation (B1)) with
(K.R/D,N,,,e) fixed to (4,2,45°,0), which contain the same parameter setting with
the results in Figure 3(a). It is found there is not a lower boundary for a/R with « < 0.85,
which does exist in Figure 3(a). The reason is that a linear crease does not have a fictitious
rest crease angle, e.g., (V70 +70) in creases following a sinusoidal angle-moment relationship.
Figure 20(b) reports the deviation of the crease from the rest angle (s —70) at s = 0 for the
solutions in Figure 20(a). With small a/R the final crease angle opens significantly due to

the large bending moment from the conical surface. Figure 20(c) displays several renderings
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corresponding to the symbols in Figure 20(b). With a small « = 0.3, the final crease angle
vfo could be much larger than 7, e.g., the configuration indicated by a .

We want to emphasize that using a linear crease model does not change much the solution
curves as we increase the hole size. For example, the hole size could have an upper boundary
that destroys the bistability of the creased disk, decreasing o generally leads to the increase
of the critical hole size, and with a < 0.7, the hole size could be as large as the disk without

loss of bistability.

(a — b) black: =1, blue: «=0.85, brown: «=0.7, orange: « =0.5, green: @ =0.3; solid: inverted, dashed: energy barrier
e fold x failure

0 0.5 1 0 0.5 1

a/R a/R
c ¢ inverted m energy barrier <« inverted » inverted A inverted * inverted

D%%u% e L

DDOLIsar

FIG. 20: Solution curves with a linear crease and different o. (K.R/D,N.,70) is fixed to

(4,2,45°). (a) 0 versus a/R. (b) The same results presented in (70— 7o) versus a/R plane.
(c) Renderings that correspond to the symbols in (b).
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Appendix C: 3D profile and corresponding 2D projections of the outer and inner

circumferences

Here, we document the 3D profile and corresponding 2D projections of the outer and
inner circumferences of some renderings presented in the main text. Figure 21 displays the

3D profile and corresponding 2D projections of the renderings in Figure 3(e).
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FIG. 21: 3D profile and corresponding 2D projections of the outer and inner

circumferences of the renderings in Figure 3(e). (a) ¢ and m. (b) €and ». (c) A and *.
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Figure 22 displays the 3D profile and corresponding 2D projections of the outer and inner

circumferences of some renderings in Figure 8(e).
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FIG. 22: 3D profile and corresponding 2D projections of the outer and inner

circumferences of some of the renderings in Figure 8(e). (a) ¢ and m. (b) » and A. (c) x.

51



Figure 23 displays the 3D profile and corresponding 2D projections of the outer and inner

circumferences of the renderings in Figure 11(e).
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FIG. 23: 3D profile and corresponding 2D projections of the outer and inner

Ko
So
o

circumferences of the renderings in Figure 11(e). (a) ¢ and m. (b) €and ». (c) A and x.
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Figure 24 displays the 3D profile and corresponding 2D projections of the outer and
inner circumferences of several inverted states with various eccentricities. Other geometric

parameters are fixed to (K.R/D,y,a/R,a) = (20,90°,0.07,1).

Y = 90°
(a) 1 _ — KR _ 9
D
e/R=0
— ¢/R=-0.3
e/R=-0.5

20

-1 0 1 -1 0 1
T Y

FIG. 24: 3D profile and corresponding 2D projections of the outer and inner
circumferences of several inverted states with different eccentricities. Other parameters are

fixed to (K.R/D,~0,a/R, ) =(20,90°,0.07,1).

53



Appendix D: Additional renderings

Here, we document additional renderings obtained from numerical continuation of the
inextensible strip model for the interest of the reader. Figure 25 displays renderings of the
inverted state and their flat developments with different (a/R,e/R). (K.R/D,~) is fixed to
(20,90°).
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FIG. 25: Renderings of the inverted state and their developments on the flat configurations
with different (a/R,e/R). (K.R/D,~) is fixed to (20,90°). All the panels share the same
color bar. (a) a/R =0.03. (b) a/R=0.07. (¢) a/R=0.11. (d) a/R = 0.15.
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Figure 26 displays renderings of the inverted state and their flat developments with dif-
ferent (a/R,N.). (a, K.R|D,~) is fixed to (0.5,20,45°).
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a/R=0.001 a/R=0.2 a/R=0.4 a/R=0.6 a/R 0.8 a/R=0.94
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FIG. 26: Renderings of the inverted state and their developments on the flat configurations
with different combination (a/R, N.). (a, K.R/D,~y) is fixed to (0.5,20,45°). All the
panels share the same color bar. (a) N.=1. (b) N.=2. (¢) N.=3. (d) N.=4.

Figure 27 displays renderings of the folded state with different (N,, «,v9,a/R). K.R|D =
20 is fixed to 20.
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a/R=0.001
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a=0.95
Yo =45°

a=0.5
Y0 =135°

(b) N.=3
a=1.1
Yo =45°

a=0.5
Yo = 135°

e ¥ <N

(¢c)N.=4
a=1.1
Yo =45°

¥

a=0.5
Y =135°

<

FIG. 27: 3D renderings of the folded state with different (N, a,vo,a/R). K.R/D is fixed
to 20. All the panels share the same color bar. (a) N.=2. (b) N.=3. (¢) N.=4.
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