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ABSTRACT

X-ray image classification of anatomical structures or tissue types is critical for diagnosing lesions of various
kinds. Differentiation of different contrast agents and bone is essential for such accurate classification in a range
of applications. The complex tissue composition in organs presents a challenge for many material decomposition
methods, which assume a limited number (two or three) of materials in the mixture. However, spectral infor-
mation in x-ray imaging allows for improved material differentiation. In recent years, multi-energy computed
tomography (CT) is becoming possible thanks to photon-counting detectors (PCDs). PCDs allow sorting incom-
ing x-ray photons to discrete energy bins. These technological advancements represent promising opportunities
for material decomposition. This paper first introduces a spectral distortion correction based on a per-pixel
calibration and subsequently a material decomposition method that takes full advantage of the spectral infor-
mation that PCDs provide. We show our results using Medipix3 class of PCDs. In our approach, we solve the
decomposition problem through a series of steps, each time using cluster analysis to separate one new material
from the multi-material object. The experimental results show that our spectral correction and high-dimensional
data clustering reduces noise and improve decomposition accuracy.
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1. INTRODUCTION

In conventional CT, only the cumulative attenuation contribution of the composite materials is measured, not
the individual contribution of each component. This leads to a lack of specificity in separating contrast agents
from bone or alcifications.1,2 Contrast agents with high atomic numbers (Z) are differentiable due to the char-
acteristic K-edge energies. However, there are still challenges when the task involves separating multiple tissue
types and contrast agents simultaneously.
The spectral capabilities of Medipix3 photon-counting detectors(PCDs) represent a promising opportunity for
material decomposition and quantitative CT in general. For example, PCDs allow imaging and decomposing a
wide selection of contrast agents.3–5 Even though PCDs have many advantages, they are not perfect; they show
spectral distortions due to physical effects in the detector such as charge sharing, K-escape energy loss, pulse
pileup and inter-pixel variability.6,7 Crystal defects that originate during the fabrication process usually change
the individual pixel’s response, generating noise and ring artifacts during the CT reconstruction. As a result,
spectral distortion corrections are fundamental to improving material decomposition performance. In this paper,
to address spectral distortions, we first remove the inter-pixel variability using a signal to equivalent PMMA
thickness calibration approach similar to the one proposed by Jackubeck et al.,8 which we have repurposed to
CT applications. Subsequently, we associate the corrected intensities to a set of ideal PMMA mass attenuation
values. One of the main advantages of this approach is its simplicity and versatility, as it does not require the
formulation of the detector’s response model.
PCDs show the most promise in material decomposition applications, specifically in applications that use materi-
als with K-edge in the diagnostic energy range (30-100keV). PCDs generate valuable spectral information in this
range, but we need to incorporate cluster analysis in the material decomposition process to take full advantage of
spectral data. The classical approach of single-step (dual-energy) material decomposition is no longer acceptable
because it only uses a fraction of the available information. For example, prior work by Le and Molloi found that
direct material decomposition of closely related materials from multi-energy data is generally unsuccessful.9,10



Several multi-material decomposition methods have been proposed to bypass the two-material limitation of dual-
energy CT and increase the total number of materials that can be discriminated and quantified. These methods
use spectral information to reduce the number of estimated materials. However, most of these approaches are
threshold-based image segmentation techniques2,11,12 which require a user-defined threshold for the segmen-
tation. One of the main benefits of our method comes from our approach to material basis reduction, which
utilizes all the available spectral information and achieves multi-material decomposition without the need for
any user-defined thresholding. We demonstrate the simultaneous decomposition of several materials, including
two contrast agents, using a CdTe-1mm Medipix detector to validate our technique. This study also explores the
benefit of our spectral correction and unsupervised clustering on mass attenuation and mass fraction accuracy.

2. MATERIAL AND METHODS

Figure 1: The PMMA phantom used in these experiments contains potassium iodide(KI) 10% water solution,
potassium iodide(KI) 5% water solution, Gadopentetic acid(C14H20GdN3O10 –H2O) 10% water solution, and
hydroxyapatite(Ca5(PO4)3OH) 10% water solution. The PMMA phantom has a cylindrical shape with a diame-
ter of 27mm with four cylindrical holes, each one with a diameter of 4mm. The acquisition time is 1 second/frame
with a tube potential of 100kVp, 500µA and 1.89mm Aluminum filter. Detector: Medipix3 CdTe-1mm detector.
Detector mode: fine pitch mode - charge summing mode (FPM-CSM)

2.1 Imaging System

We used a polychromatic microfocus x-ray tube (Hamamatsu L8121-03) with an adjustable tube peak voltage
(40 - 150 kV) and current (0 - 500µA). The tube potential was kept constant at 100 kV with a current of 500µA.
We operated the x-ray source using a focal spot size of 70µm. The source to object and the object to detector
distances remained similar for all data sets, in the range of 60-65 cm and 9-10 cm, respectively. We gathered
the data using a 55µm bump bonded CdTe WidePix detector (tiled version of 5 Medipix3RX single-chip units)
used in FPM-CSM (fine pitch mode - charge summing mode). The detector was first energy-calibrated using
our previously proposed methods.13 The WidePix detector has a 1000µm CdTe sensor screening an active area
of 1.408cm × 7.040cm. For all these multi-material phantom measurements, 290 projections were acquired over
a 290-degree arc.

2.2 Materials

To illustrate the separation of contrast agent and bone, we prepared a four-material phantom containing water,
Poly-methyl methacrylate (PMMA), hydroxyapatite(Ca5(PO4)3OH), potassium iodide(KI) and Gadopentetic
acid (C14H20GdN3O10 – H2O), see Fig 1. These are common materials that have been used in various other ma-
terial decomposition studies14 and are relevant to medical imaging. PMMA is a commonly used tissue surrogate
with attenuation properties similar to soft tissue. Hydroxyapatite is a relatively high calcium content material
and is the primary constituent of bone and calcifications. Iodine and Gadolinium are the active elements used in
approved contrast agents to highlight regions of interest in the human body because their characteristic K-edge
lies in the range of typical medical imaging energies.



2.3 Theory

2.3.1 Signal-to-thickness calibration(STC)

PCDs is a promising technology, but still has several deficiencies; some common detector issues are charge sharing,
pulse pileup effects, partial charge collection, inter-pixel response variability, and fluorescence photons released by
the detector’s material.7,15,16 Without correction, the measured attenuation coefficients are underestimated,17

and reconstruction artefacts plague the obtained CT image. To correct for inter-pixel variability, we implemented
signal-to-thickness calibration(STC) similar to the one done by Jackubeck et al.18 which we have adapted to
CT reconstruction. For the STC, we used fifteen different thicknesses of polymethyl methacrylate(PMMA). The
dependence of the detected count rate on the PMMA thickness is measured(calibrated) for each pixel in the
detector. We have chosen to use PMMA as its attenuation properties are similar to those typically found in soft
tissue. We fitted the following exponential attenuation model to each energy window E as:

IE(TE) = AEe
BETE (1)

where AE and BE are fitting parameters for energy window E, and TE is the calibration material thickness
for that energy window. These parameters {AE , BE} are obtained for each pixel independently. Subsequently,
the measured count rate IE is transformed into equivalent PMMA thickness δPMMA

E .

After signal-to-thickness calibration, we performed CT reconstruction using 230 projection images for five
different energy windows. A slice of the CT reconstruction of the phantom is shown in Fig 1. Because of the
energy resolving capabilities of our WidePix (CdTe-1mm) detector, we get five 3D images, one for each one of
the five energy windows used in this measurement: 20-26, 26-32, 32-42, 42-50, and 50-60keV.

2.3.2 Mass attenuation correction

To restore the measured mass attenuation values, we associate the measured voxel size of our CT reconstruction
with the measured equivalent PMMA thickness values δPMMA

E using the following relation:

∆ µE = δPMMA
E µPMMA

E (2)

The above equation relates the mass linear attenuation µE of an unknown material for energy window E to the
equivalent PMMA thickness δPMMA

E for the same energy window E. ∆ is the voxel size in our CT reconstruction
(mm), and µPMMA

E is the theoretical mass attenuation of PMMA (obtained from the NIST database).
From this, we get to the corrected linear mass attenuation coefficients µE of an unknown material for energy
window E.

To test our correction technique, we compared the measured mass attenuation values of several known
materials with the expected NIST values, see Fig 2. The corrected mass attenuation agrees with the expected
theoretical values for most energies; however, it fails to capture the K-edge effects. At the K-edge energy of
iodine, there is a mismatch between experimental results and NIST values attributed to charge sharing effects,
which our signal-to-thickness calibration does not remove.

2.3.3 Data clustering using unsupervised clustering

Due to the high amount of spectral information generated by PCDs, cluster analysis or other sophisticated
statistical methods are needed to make the most of the data. Our work applies unsupervised machine learning
(Gaussian Mixture Model) iteratively to cluster each voxel using mass attenuation values. Unsupervised learning
methods such as Gaussian Mixture Model (GMM) allow for different ellipsoidal shapes, sizes, densities and
orientations. GMM has advantages over other popular clustering algorithms such as K-means, which fail when
the clusters have varying sizes, densities, or non-spherical shapes. We organize voxels into clusters with similar
mass attenuation properties. The result of this iterative clustering process is that each voxel in the sample
is classified as belonging to one “fundamental” clusters, containing one or more constituent materials in a
mixture(e.g. 1-3 materials). In other words, we solve the decomposition problem through a series of steps,
each time using cluster analysis to separate one new material from the multi-material object. After clustering,
each voxel in the volume has only a limited number of material basis to solve. Finally, we use least-squares to
determine the concentration of the reduced set of possible materials.



Figure 2: This graph makes a comparison of corrected and uncorrected mass attenuation against expected values
obtained from the National Institute of Standards and Technology (NIST) database. There is a good agreement
between measured and expected mass attenuation values except for the K-edge effects of iodine, which is not
fully captured by our correction. The difference between the theoretical and corrected values is attributed to
charge sharing effects which degrade spectral resolution. Tube potential 100kVp, current 500µA and 1.89mm
Aluminum filter. Detector: Medipix3 CdTe-1mm detector. Detector mode: fine pitch mode - charge summing
mode (FPM-CSM)

3. RESULTS

3.1 The benefits of spectral correction on voxel clustering

From data acquisition to material decomposition, there are several data processing steps. First, we collect multi-
energy computed tomography measurements using a CdTe-1mm Medipix detector. This step gives us a set of
projections for each energy window. Subsequently, using signal-to thickness calibration, these projections are
converted to equivalent PMMA thickness using Eq ??. The PMMA equivalent projections are then reconstructed
to obtain 3D multi-energy images of the object. Subsequently, the equivalent PMMA thickness of each voxel is
converted into mass attenuation values using Eq ??. Then, we apply cluster analysis in steps, separating one
new material at a time from the multi-material object. We classify the most abundant materials first, usually
air and soft tissue. Then we proceed with the materials that have more similar mass attenuation values, each
time “zooming” into materials with more similar mass attenuation. We repeat this process until we reach the
“fundamental” cluster, for which no further cluster differentiation is possible. Finally, we obtain the maps of
each material within the object using a least-squares material decomposition. A general overview of the different
steps involved in the data processing pipeline is illustrated in Fig 3.

To test the effect of spectral correction on voxel clustering, we compare the results obtained after cluster
analysis. Fig 4 shows the fundamental clusters obtained for two different experimental conditions. In the first



Figure 3: This figure shows an overview of the main steps in the data processing pipeline: spectral correction,
cluster analysis, and material decomposition. Our spectral correction reduces voxel misclassification at the
boundaries between materials by reducing noise and removing beam hardening effects. The several clusters are:
PMMA (cyan), potassium iodide(red), Gadopentetic acid(yellow), and Hydroxyapatite(blue).

situation Fig 4(A), we applied only a flat-field correction to the projection images. Beam hardening effects
generate much of the noise present in the reconstruction, especially towards the centre of the PMMA phantom.
The pixel-to-pixel variability also increases voxel misclassification, which leads to noise and rings of incorrectly
classified voxels.
In the second situation, see Fig 4(B) we have the results of using our spectral correction. In both situations,
we used all five energy windows(20-26, 26-32, 32-42, 42-50 and 50-60keV) for classification. We observed a
significant noise reduction in this situation, and many voxels that were initially misclassified using dual-energy
are now successfully classified when using more than two energy windows. However, we still have incorrectly
classified voxels at the boundary between materials, suggesting that mass attenuation values alone are insufficient
for complete tissue classification in a complex mixture of materials.

3.2 Material decomposition using multi-contrast agents

The mass attenuation can be written as a linear combination of all the materials present in that voxel.9–11 After
the clustering step, we use least-squares to determine mass fractions, each cluster having only a limited number
of material basis to solve.
Fig. 2 shows how the corrected mass attenuation values deviate from the theoretical NIST values for the energy
window 32-42keV, which prevents us from using this energy window for material decomposition. This is why
after voxel classification, we only use 20-26 and 26-32 keV for material decomposition, avoiding using the iodine
K-edge energy range because our spectral correction does not fully capture the K-edge effects.

µM (E) =
N∑
i=1

mi µM,i(E), subject to

N∑
i=1

βi = 1, 0 ≤ βi, i = 1, ..., N

(3)

where βi = mi∑N
i=1 mi

is the mass fraction of each constituent material and mi is the total mass of material i

in the mixture.

After cluster analysis, each cluster has a tailored set of values {µM,i} that correspond to the reduced set of
the possible material basis. These mass attenuation values used for material decomposition are obtained from
the National Institute of Standards and Technology (NIST) database.
We tested our iterative clustering decomposition method using a phantom, see Fig 1. The benefits that spectral
correction brings to material decomposition quantification could be seen in reduced errors in classifications. The
measured mass fractions agreed with nominal values, with a maximum error of 3.75% for Iodine and 9.3% for Gd.
Spectral correction plays a fundamental role in the accuracy of measured mass fractions. Due to the detector
defects, the measured mass attenuation values are meaningless without spectral correction.



Figure 4: Fundamental clusters obtained for different conditions. A) Only flat-field correction was applied to
the projection images. B) Using our spectral correction. On both situation we used five energy windows for
voxel classification: 20-26, 26-32, 32-42, 42-50, and 50-60keV. The acquisition time is 1 second/frame with a tube
potential of 100kVp, 500µA and 1.89mm Aluminum filter. Detector: Medipix3 CdTe-1mm detector. Detector
mode: fine pitch mode - charge summing mode (FPM-CSM).

4. CONCLUSIONS AND DISCUSSION

Material decomposition of tissues and organs is challenging because most material decomposition methods can
only deal with two material basis. Nevertheless, several methods have been proposed to bypass the two-material
limitation of dual-energy CT. Many of these methods rely on the spectroscopic capabilities of photon-counting
detectors and the K-edge effect to reduce the number of material basis to solve. However, the performance of
all these decomposition methods depends on the accuracies of the measured attenuation values, which can be
heavily affected by detector distortions. We implemented a signal-to-thickness calibration to eliminate inter-pixel
variability and restore the measured mass attenuation to theoretical NIST values. We have presented experi-
mental proof showing how our spectral correction significantly reduces material decomposition error and noise
compared to flat-field correction. One of the main advantages of our approach is its simplicity and versatility, as
it does not require the formulation of a model for our PCD. However, our correction does not fully recover the



photons lost in charge sharing events, which improvements to the PCD’s hardware can only solve.
This work has demonstrated the benefits of using spectral correction and unsupervised clustering on material
decomposition. We iteratively used a Gaussian Mixture Model to group voxels according to similar attenua-
tion properties. We consistently obtained better clustering results when using more than two energy windows;
the voxels originally misclassified using dual-energy were correctly classified when using more energy windows.
Furthermore, by utilizing all the spectral information, we take advantage of the unique K-edge effects of iodine
and gadolinium. Moreover, we also show that material segmentation based on attenuation values alone may
not be enough. When using only corrected mass attenuation values for clustering, the segmentation fails at the
boundaries between different materials. One possible solution to this may be to incorporate spatial informa-
tion during classification. It may be necessary to include texture features during clustering to reduce noise and
miss-classification at the edges between different materials. Reducing the misclassification at the edges between
different materials could improve the delineation of gross target volumes in radiotherapy. There could also be
benefits in including spectral scatter signatures as they have shown to improve estimation accuracy in x-ray
imaging with photon counting detectors.19

When combining our spectral correction with unsupervised iterative clustering, we can better use the spectral
information that PCDs provide, which allows for the reliable separation of contrast agents and multi-material
decomposition.
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